

A Multi-type Preferential Attachment Model

Sebastian Rosengren

April 2017

Abstract

A multi-type preferential attachment model is introduced, and studied using general multi-type branching processes. For the p-type case we derive a framework for studying the model where a type i vertex generates new type j vertices with rate $w_{ij}(n_1, n_2, \ldots, n_p)$ where n_k is the number of type k vertices previously generated by the type i vertex, and w_{ij} is a function from \mathbb{N}^p to \mathbb{R} . The framework is then used to derive results for models with more specific attachment rates.

In the case with linear preferential attachment—where type i vertices generate new type j vertices with rate $w_{ij}(n_1,n_2,\ldots,n_p)=\gamma_{ij}(n_1+n_2+\cdots+n_p)+\beta_{ij}$, where γ_{ij} and β_{ij} are positive constants—we show that under mild regularity conditions on the parameters $\{\gamma_{ij}\},\{\beta_{ij}\}$ the asymptotic degree distribution of a vertex is a power law distribution. The asymptotic composition of the vertex population is also studied.

Keywords: Multi-type preferential attachment; multi-type general branching process; power law degree distribution; asymptotic composition.