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1. INTRODUCTION AND MOTIVATION

Under the multiple testing framework, estimating the proportion π0 of true null

hypotheses is informative for various reasons. On the one hand, in applications like

quality control or anomaly detection, the presence of a certain number of untypical

data points already indicates the necessity for an intervention, no matter which of the

data points are responsible for that. On the other hand, data-adaptive multiple test

procedures (Dickhaus 2014, sec. 3.1.3) incorporate an estimate π̂0 into their decision

rules in order to optimize power (Langaas et al. 2005; Finner and Gontscharuk 2009;

Celisse and Robin 2010; Dickhaus et al. 2012).

Throughout the remainder, we assume that m null hypotheses, which relate

to the (main) parameter ϑ of one and the same statistical model, are simulta-

neously under consideration. We let m0 = m0(ϑ) denote the number of true

nulls, hence π0 = m0/m. The number of false null hypotheses is denoted by

m1 = m1(ϑ) = m − m0. Furthermore, we assume that test statistics T1, . . . , Tm

and corresponding p-values P1, . . . , Pm are at hand. Without loss of generality,

we will assume throughout that the p-values P1, . . . , Pm0 correspond to true null

hypotheses, while Pm0+1, . . . , Pm correspond to false null hypotheses. Under in-

dependence assumptions regarding the joint distribution of the p-values, the very

popular Schweder-Spjøtvoll estimator π̂Schweder
0 for π0 has originally been proposed

by Schweder and Spjøtvoll (1982). Theoretical properties of π̂Schweder
0 and slightly

modified versions of it have been investigated by Storey et al. (2004), Langaas et al.

(2005), Finner and Gontscharuk (2009), Dickhaus et al. (2012), Dickhaus (2013),

and Cheng et al. (2015). Based on the EM algorithm, a novel estimation procedure

for π0 has recently been proposed by Oyeniran (2016), also under independence as-

sumptions. Competing estimators have been compared by Hwang et al. (2014) and

Nguyen and Matias (2014).

To our knowledge, the case of dependent test statistics or p-values, respectively,

has not been treated yet in depth in the literature. Under the assumption of a linear

factor model, Friguet and Causeur (2011) proposed an adjustment procedure prior

to the application of π̂Schweder
0 . Under monotonicity and convexity constraints re-

garding the mixture density of the p-values, Ostrovnaya and Nicolae (2012) worked

out a (maximum likelihood) estimator based on a multinomial model. However, in

many applications in modern life sciences, where the involved technical and biolog-

ical mechanisms of data generation typically lead to involved temporal, spatial, or

spatio-temporal dependencies (Stange et al. 2016), it is hard to verify such explicit
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model assumptions. Therefore, we express dependency structures in this work in the

most general manner by means of copula functions (Sklar 1996). Unfortunately, as

we will demonstrate in Example 1 below, π0 is not identified under general depen-

dencies. This seems to be a well known fact in multiple test theory. Meinshausen

and Bühlmann (2005) established an upper bound for π0 based on a bounding func-

tion approach. However, the choice of an appropriate bounding function is only

straightforward in the case of a multi-sample problem. Wang et al. (2011) employed

a sliding linear model (SLIM) approach which is based on the empirical cumulative

distribution function (ecdf) of all m marginal p-values.

The estimator π̂Schweder
0 also relies on the ecdf of P1, . . . , Pm and on a tuning

parameter λ ∈ (0, 1), where the typical default value is λ = 1/2. The tuning

parameter is chosen such that all p-values under alternatives are presumably smaller

than λ. Denoting the ecdf of P1, . . . , Pm by F̂m, π̂Schweder
0 is given by

π̂Schweder

0 ≡ π̂Schweder

0 (λ) =
1− F̂m(λ)

1− λ
.

There exist several heuristic motivations for the usage of π̂0. The simplest one

considers a histogram of the marginal p-values with exactly two bins, namely [0, λ]

and (λ, 1]. Then, the height of the bin associated with (λ, 1] equals π̂0(λ) (Dickhaus

2014, fig. 3.2(a)). A graphical algorithm for computing π̂0 connects the point

(λ, F̂m(λ)) with the point (1, 1). The offset of the resulting straight line at t = 0

equals π̂1 = π̂1(λ) = 1− π̂0(λ) (Dickhaus 2014, fig. 3.2(b)). Both of these heuristic

motivations implicitly assume that the ecdf of the p-values corresponding to true

null hypotheses is close to the main diagonal in the unit square. However, under

dependency this assumption is prone to be violated, because the p-values have the

tendency to cluster. A drastic example of this behavior can be used to demonstrate

that it is impossible to estimate π0 based on F̂m under arbitrary dependencies, even

if the sample size tends to infinity.

Example 1. Assume that the copula of P = (P1, . . . , Pm)> is a Gumbel-Hougaard

copula with copula parameter η ≥ 1; see Stange et al. (2015) for justifications of this

type of copula in the context of multiple tests related to extreme value theory. The

value η = 1 corresponds to joint independence of all m p-values, while the strength of

dependency among P1, . . . , Pm increases with η > 1. Furthermore, assume that the

p-values corresponding to true null hypotheses are marginally uniformly distributed

on [0, 1], while each Pj, j > m0, is marginally uniformly distributed on [0, γj] for

uniformly selected values γj < 1.
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In Figure 1, we present two computer simulations for m = 100, m0 = 50, η = 100,

and λ = 1/2. In both graphs displayed in Figure 1, the clustering of the p-values

which is due to the large value of η can clearly be observed. The ecdf of P1, . . . , Pm

exhibits a large step at the realized value of the first p-value P1, because all m0 “true

p-values” are almost totally dependent so that they take with very high probability

essentially all the same value.

Figure 1: Computer simulations of the behavior of π̂Schweder
0 under a Gumbel-

Hougaard copula with copula parameter η = 100. In the left graph, the p-values

corresponding to true null hypotheses cluster around a value smaller than λ, while

in the right graph they cluster around a value larger than λ.

Under this model, the behavior of π̂Schweder
0 (indicated by the straight lines) can

be characterized as follows. If P1 takes a value smaller than λ (as in the left graph),

the main step of F̂m is at a value smaller than λ, hence the estimated proportion of

false hypotheses equals 1, meaning that we estimate m0 to be equal to zero. On the

other hand, if P1 takes a value larger than λ (as in the right graph), the main step

of F̂m is at a value larger than λ, hence the estimated proportion of false hypotheses

is less than or equal 0, meaning that we estimate m0 to be larger than or equal

to m. In practice, one may truncate the estimator at m0 = m. In summary, the

truncated Schweder-Spjøtvoll estimator for π0 follows under very strong dependency

a two-point distribution with two point masses in zero and one. It may be true that

the point mass in one is large enough to make the (truncated) estimator mean

conservative (i. e., upwardly biased), but its usage is inappropriate in practice. In

particular, it is not consistent if π0 ∈ (0, 1). Finally, notice that the behavior of

π̂Schweder
0 would remain exactly the same for a different value of m0. Whether π̂Schweder

0
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takes the value zero or the value one only depends on the realization of P1, and this

value is independent of the true value of m0. In this sense, π0 is not identified.

Example 1 demonstrates that some structural information about the dependency

structure among the test statistics or p-values, respectively, it inevitable for the

estimation of π0. In this work, we assume that the dependency structure among

P1, . . . , Pm can be separated from the information that P1, . . . , Pm carry about ϑ.

Based on this structural assumption, we develop a marginal parametric bootstrap

method for the estimation of π0. We transform a bootstrap sample of the data

into p-values P ∗1 , . . . , P
∗
m, which approximately behave like realizations of jointly

stochastically independent random variables. These p-values can then be used in

π̂Schweder
0 instead of the original p-values. Applying this methodology to the situation

considered in Example 1 leads to an accurate estimate of π0, see Example 3 below. In

contrast, the other approaches from the literature mentioned before are not suitable

in this context. Namely, the model assumptions of Friguet and Causeur (2011) or

Ostrovnaya and Nicolae (2012), respectively, are not fulfilled here. Application of

the bounding function approach by Meinshausen and Bühlmann (2005) is difficult,

because the p-values originated from one-sample problems. When applying the SLIM

approach by Wang et al. (2011) with the recommended number of ten segments (i. e.,

subintervals of [0, 1]), we essentially encountered the same problems as for π̂Schweder
0 ,

because their approach also relies on the ecdf F̂m. In every of the ten segments, we

either obtained an estimated value for π0 which exceeded one or which was equal

to zero. It is to be expected that any ecdf-based estimator will suffer from the

clustering effect of the p-values under null hypotheses.

The rest of the paper is structured as follows. In Section 2, we introduce the

proposed bootstrap procedure. Theoretical properties of this procedure are analyzed

in Section 3. A real data example from cancer research is presented in Section 4.

Implications for multiple testing are discussed in Section 5, and we conclude with a

discussion in Section 6.

2. ESTIMATION OF π0 VIA MARGINAL PARAMETRIC BOOTSTRAP

For concreteness, we consider multiple test problems of the form (X n,F⊗n, (P⊗nϑ,C :

ϑ ∈ Θ, C ∈ C),H) for an independent and identically distributed (i.i.d.) sam-

ple X1, . . . ,Xn, where X1 ∼ X and X = (X1, . . . , Xm)> is a random vector tak-

ing values in X ⊆ Rm with an unknown absolutely continuous distribution P ∈
{Pϑ,C : ϑ ∈ Θ, C ∈ C}, and F is a σ-field over X . The parameter ϑ = (ϑ1, . . . , ϑm)>
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is the main parameter of the model to which the family H of hypotheses H1, . . . , Hm

with corresponding alternatives K1, . . . , Km relates, and its parameter space Θ is a

subset of Rm. We assume that each ϑj is a parameter of the marginal distribution

of Xj, for 1 ≤ j ≤ m. The symbol C denotes the copula of X, expressing the depen-

dency structure among (X1, . . . , Xm)>. We mainly consider a semi-parametric setup

in which C is a function space, although parametric copulae are utilized in some ex-

amples below. The hypotheses are interpreted as non-empty subsets of the parame-

ter space Θ. We assume that hypotheses have the structure Hj = {ϑ ∈ Θ |ϑj = θj },
where (θ1, . . . , θm)> is a fixed element of Θ. This type of null hypotheses typically

leads to uniformly distributed p-values under the null, while the latter is not fulfilled

for general composite hypotheses (Dickhaus 2013).

Our proposed bootstrap method for estimating π0 under arbitrary copula C of

X is formalized in Algorithm 1.

Algorithm 1. Let ϑ̂n be a consistent estimator of ϑ, x1, . . . ,xn be the observed data

sample and k (n) ∈ N the size of the bootstrap pseudo samples, where k (n) is usually

equal to n. We assume that for testing Hj a real-valued test statistic Tj = Tj,n is at

hand which tends to larger values under the alternative Kj, 1 ≤ j ≤ m.

1. For every 1 ≤ b ≤ B, 1 ≤ j ≤ m and 1 ≤ i ≤ k (n)

(a) sample U
∗(b)
i,j as standard uniformly distributed and independent random

variable in i, j and b.

(b) calculate X∗i,j := X
∗(b)
i,j := F←

Xj |ϑ̂n(x1,...,xn)

(
U
∗(b)
i,j

)
, where

F← (u) := inf {x ∈ R |F (x) ≥ u} denotes the generalized inverse of a cdf

F .

2. For every 1 ≤ b ≤ B and 1 ≤ j ≤ m

(a) calculate T ∗j := T
∗(b)
j,n := Tj,k(n)

(
X
∗(b)
1,j , . . . , X

∗(b)
k(n),j

)
.

(b) calculate P ∗j := P
∗(b)
j,n := 1− FTj,k(n)|θj

(
T
∗(b)
j,n

)
.

3. For every 1 ≤ b ≤ B calculate the Schweder-Spjøtvoll estimator

π̂
∗(b)
0,n (λ) =

1− F̂ ∗(b)m (λ)

1− λ
,

where F̂ ∗(b)m is the empirical distribution function of P
∗(b)
1,n , . . . , P

∗(b)
m,n .

4. Take the average π̂
∗
0 := π̂

∗
0,n,B := 1

B

∑B
b=1 π̂

∗(b)
0,n .
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In the first step, we generate for every 1 ≤ j ≤ m independently a bootstrap

pseudo sample with the same marginal cdf as Xj under the estimated value of

ϑ. Then, in step two, we calculate the test statistics and p-values based on these

pseudo samples instead of the original data. In steps 3 and 4, we finally compute the

Schweder-Spjøtvoll estimator. We show in Lemma 1 in Section 3 that the resulting

bootstrap p-values are indeed conditionally independent given the data. Therefore,

in contrast to Figure 1 we can expect the Schweder-Spjøtvoll estimator, applied

to the bootstrapped p-values, to behave as in the case of joint independence of

X1, . . . , Xm.

The following assumptions regarding the test statistics T1, . . . , Tm are made

throughout the remainder.

Assumption 1.

(a) The marginal parametric bootstrap works for the chosen test statistics, i. e.,

under true null hypotheses the differences between the marginal cdfs of the test

statistics and the marginal cdfs of the bootstrap test statistics converge to zero

uniformly, in probability.

(b) The marginal cdf of Tj only depends on ϑj and is continuous under true null

hypotheses, for all 1 ≤ j ≤ m.

Assumption (a) refers to the validity of the parametric bootstrap in a generic

manner. Parametric bootstrap procedures have been considered in many fields, for

example in gene expression analysis (Van Der Laan and Bryan 2001), in the anal-

ysis of variance (ANOVA) (Krishnamoorthy et al. 2007), for goodness-of-fit statis-

tics (Cramr-von Mises, Kolmogorov-Smirnov) (Genest and Rémillard 2008), and for

Wald statistics in dynamic factor models (Dickhaus and Pauly 2016). Assumption

(b) formalizes the separation of the dependency structure in the data and their in-

formation about ϑ which we have mentioned in the introduction. Continuity of the

marginal cdfs is necessary for uniformly distributed p-values under true hypothe-

ses. This property is essential for a reasonable behavior of the Schweder-Spjøtvoll

estimator.

Remark 1. The marginal bootstrap is not suitable to approximate the null distribu-

tion of statistics like max1≤j≤m Tj, which depend on the joint distribution of X. For

example, the maxT procedure of Westfall and Young (1993) for testing the global

hypothesis H0 =
⋂m
j=1Hj uses the maximum of the test statistics to define adjusted

p-values.
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Before we analyze the theoretical properties of the proposed estimator π̂
∗
0 in

Section 3, the following examples illustrate the usage of Algorithm 1.

Example 2. Assume that X is normally distributed in Rm with expectation ϑ and

covariance matrix Σ ∈ Rm×m, where the diagonal elements σ2
1, . . . , σ

2
m are known,

but the covariances are arbitrary. The null hypotheses H1, . . . , Hm are given by

Hj := {ϑ ∈ Rm |ϑj = θj }, where θ ∈ Rm. A consistent estimator ϑ̂j of the unknown

parameter ϑj is given by the sample mean ϑ̂j (X1,j, . . . , Xn,j) = X̄j := n−1∑n
i=1Xi,j

in coordinate j. Based on this, we let Tj =
√
n
(
X̄j − θj

)
/σj, 1 ≤ j ≤ m. Since

the data are assumed to be normally distributed, these test statistics are standard

normally distributed under true null hypotheses. Thus, the p-values for the two-sided

tests are given by Pj = 2 · (1− Φ (|Tj|)), 1 ≤ j ≤ m, where Φ denotes the cdf of the

univariate standard normal distribution. Following Algorithm 1, we sample for every

1 ≤ j ≤ m the variates X∗1,j, . . . , X
∗
k(n),j i.i.d. from N

(
ϑ̂j, σ

2
j

)
and plug their values

into Tj. The resulting bootstrap test statistic T ∗j is equal to
√
k (n)

(
X̄∗j − θj

)
/σj,

and the bootstrap p-value P ∗j equals 2 ·
(
1− Φ

(∣∣∣T ∗j ∣∣∣)).
It is straightforward to check that our general Assumption 1 holds true for this

example. Notice that part (b) of Assumption 1 is fulfilled by construction. Hence, it

remains to check part (a), i. e.,
∥∥∥FTj,n − F ∗T ∗

j,n

∥∥∥
∞

P−→ 0 as n→∞ for all 1 ≤ j ≤ m0.

To this end, notice that the term
√
k (n)

(
ϑ̂j − θj

)
/σj =

√
k (n)

∑n
i=1 (xi,j − θj) / (σjn)

converges to 0 for suitable choices of k (n). For instance, we may choose k (n)

as the nearest integer to n1−ε with ε > 0. Then the bootstrap test statistics

T ∗j,n ∼ N
(√

k (n)
(
ϑ̂j − θj

)
/σj, 1

)
, 1 ≤ j ≤ m, are almost surely asymptotically

standard normal under true null hypotheses by the dominated convergence theorem.

By Pólyas uniform convergence theorem (Serfling 1980, sec. 1.5.3) the marginal cdfs

converge uniformly.

Figure 2 displays the results of a computer simulation regarding the behavior

of π̂
∗
0 from Algorithm 1. The covariance matrix Σ has been generated randomly

utilizing the function genPositiveDefMat from the R package clusterGeneration,

and the means ϑm0+1, . . . , ϑm ∈ (−10, 10) are chosen uniformly. The bootstrap

estimate π̂
∗
0 ≈ 0.56 is slightly larger than π0 = 0.5. In general, the estimator π̂

∗
0 is

asymptotically positively biased as we will show in Theorem 1 below.
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Figure 2: Computer simulation of π̂
∗
0 in the setting of Example 2. The right graph

displays one of the B Schweder-Spjøtvoll estimates based on the bootstrap p-values

P ∗1 , . . . , P
∗
m. The left graph displays the histogram of all estimates π̂

∗(1)
0,n , . . . , π̂

∗(B)
0,n

with B = 10,000. In this simulation the bootstrap estimate of π0 = 0.5 is π̂
∗
0 =

B−1∑B
b=1 π̂

∗(b)
0,n ≈ 0.56.

Example 3 (Example 1 continued.). We consider the setup of Example 1, but

now assume that the test statistics (instead of the p-values) are strongly depen-

dent and possess a Gumbel-Hougaard copula with parameter η. Thus, the p-values

cluster for large values of η, as in Example 1. Let 1 ≤ j ≤ m and assume that

the sample X1,j, . . . , Xn,j possesses the stochastic representation Xi,j
d
= ϑj · Zi,j,

where ϑj > 0 is unknown and Z1,j, . . . , Zn,j follow a beta distribution with fixed

shape parameters α = 1 and β > 2. For each 1 ≤ j ≤ m we want to test

the null hypothesis Hj = {ϑ ∈ (0,∞)m |ϑj = θj } versus the (one-sided) alternative

Kj := {ϑ ∈ (0,∞)m |ϑj > θj }, where θj > 0 is given. Assume that the dependence

structure among X1, . . . , Xm is given by a Gumbel-Hougaard copula with param-

eter η. According to Section 4.2 in Stange et al. (2015), suitable test statistics

are given by T̃j = max1≤i≤nXi,j/θj, 1 ≤ j ≤ m, and possess the same copula

function. In order to get a non-degenerate limiting distribution function, we trans-

form these test statistics to Tj :=
(
T̃j − bn

)
/an, where an = 1 − F−1

Z1,1
(1− n−1)

and bn ≡ 1. Since an and bn are deterministic quantities, the transformed test

statistics follow the same Gumbel-Hougaard copula as well. The p-values for the

one-sided hypotheses are given by Pj := 1 − FT̃j |θj
(
T̃j
)

= 1 − F n
Beta(α,β)(T̃j). Since

the random variables Zi,j are beta distributed, the expected value of X1,j is equal to

ϑjα/ (α + β). Hence, a consistent (method of moments) estimator ϑ̂j of ϑj is given
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by ϑ̂j (X1,j, . . . , Xn,j) = X̄j (α + β) /α.

The plug-in rule of Algorithm 1 now yields bootstrap variatesX∗i,j
d
= ϑ̂j (x1,j, . . . , xn,j)·

Zi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, for observed data x1, . . . ,xn, with corresponding test

statistics and p-values.

The validity of part (a) of Assumption 1 can be shown as follows. First, utilizing

techniques from extreme value theory, we obtain that the marginal cdf of each

original test statistic Tj converges under Hj to the (continuous) Weibull cdf with

parameter β > 0, i. e.,

lim
n→∞

FTj,n (x) = lim
n→∞

F n
Z1,1

(anx+ bn) = G (x) :=


exp

(
− (−x)β

)
, x < 0,

1, x ≥ 0.

In order to establish the limiting law of the bootstrapped test statistics, notice

first that Tj
d
= (max1≤i≤n Zi,j − bn) /an under Hj. Let a′n := anϑ̂j,n/θj and b′n :=

bnϑ̂j,n/θj. We get that a−1
n a′n converges to 1 P-a.s. for n→∞. Now, assume for the

moment that a−1
n (b′n − bn) converges to 0 P-a.s. for n → ∞. Then we get for all

1 ≤ j ≤ m0 and x ∈ R that

∣∣∣F ∗T ∗
j,n

(x)−G (x)
∣∣∣ =

∣∣∣∣∣F n
Z1,1

(
θj

ϑ̂j,n
(anx+ bn)

)
−G (x)

∣∣∣∣∣
=
∣∣∣F n
Z1,1

(a′nx+ b′n)−G (x)
∣∣∣

=
∣∣∣FTj,n (a−1

n a′nx+ a−1
n (b′n − bn)

)
−G (x)

∣∣∣
≤
∥∥∥FTj,n −G∥∥∥∞ +

∣∣∣G (a−1
n a′nx+ a−1

n (b′n − bn)
)
−G (x)

∣∣∣
→ 0 for n→∞ P− a.s.

It remains to show that a−1
n (b′n − bn) → 0 almost surely as n → ∞. To this end,

notice that the convergence rate of ϑ̂j,n/θj − 1 is arbitrarily close to o
(
n−1/2

)
P-a.s.

(Durrett 2010, thm. 2.5.8). For the chosen parameter values α = 1 and β > 2, we

get that an = n−1/β and n(1/2−ε)−1/β → ∞ for any ε > 0 which is small enough.

This means that a−1
n (b′n − bn) = o (1) /

(
n(1/2−ε)−1/β

)
indeed converges to 0 P-a.s.

for n→∞.

Finally, Pólyas uniform convergence theorem yields that∥∥∥FTj − F ∗T ∗
j

∥∥∥
∞
→ 0

P-a.s. for n→∞ and all 1 ≤ j ≤ m0, since the limiting cdf G is continuous.

In analogy to Figure 2, Figure 3 displays the results of a computer simulation

employing Algorithm 1 in this example, where η = 100. One may compare the
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right graph in Figure 3 with Figure 1 for a demonstration of the improvement of

estimation accuracy obtained by applying Algorithm 1.

Figure 3: Computer simulation of π̂
∗
0 in the setting of Example 3 with α = 1,

β = 4, n = 100, m = 100, m0 = 50 and η = 100. The parameter values

ϑm0+1, . . . , ϑ100 ∈ (1.5, 2.5) have been chosen uniformly. The right graph displays

one of the B Schweder-Spjøtvoll estimates based on the bootstrapped p-values

P ∗1 , . . . , P
∗
m. The left graph displays the histogram of all estimates π̂

∗(1)
0,n , . . . , π̂

∗(B)
0,n

with B = 10,000. In this simulation the bootstrap estimate of π0 = 0.5 is

π̂
∗
0 = B−1∑B

b=1 π̂
∗(b)
0,n ≈ 0.62.

3. THEORETICAL ANALYSIS

In this section we analyze the theoretical properties of our bootstrap estimator

π̂
∗
0. For the ease of notation let P = P⊗nϑ,C denote the true distribution of the data

sample X1, . . . ,Xn and let (Ω∗,F∗,P∗) denote the probability space related to the

bootstrap random variables for fixed data.

First, we prove that the bootstrap p-values are indeed independent.

Lemma 1. Let n ∈ N and the observed data sample be fixed. Then the following

assertions hold true.

1. The bootstrapped p-values P
∗(b)
1,n , . . . , P

∗(b)
m,n are stochastically independent with

respect to P∗ for every 1 ≤ b ≤ B.

2. The estimators π̂
∗(1)
0,n , . . . , π̂

∗(B)
0,n are i.i.d. with respect to P∗.

11



Proof. For fixed data our bootstrap sample X
∗(b)
1 , . . . ,X∗(b)n consists of random vari-

ables X
∗(b)
i,j , which are independent in i, j and b by construction. They are also

identically distributed in i and b. In Algorithm 1 we just transform this sample to

T
∗(b)
j,n , P

∗(b)
j,n and π̂

∗(b)
0,n (λ) for every 1 ≤ b ≤ B. These measurable transformations

depend on j, but not on b. Therefore, the assertions follow.

Remark 2. Under the assumptions of Lemma 1 we get by the strong law of large

numbers that

π̂
∗
0 → E∗

[
π̂
∗(1)
0,n

]
P∗-a.s. for B →∞.

Lemma 2. Let b ∈ {1, . . . , B} be fixed. Then∥∥∥∥FPj,n
− F ∗

P
∗(b)
j,n

∥∥∥∥
∞

P−→ 0 as n→∞

for all 1 ≤ j ≤ m0.

Proof. From part (a) of Assumption 1 we get that∥∥∥∥FTj,n − F ∗T ∗(b)
j,n

∥∥∥∥
∞

P−→ 0 as n→∞

for each 1 ≤ j ≤ m0. Since the p-values are measurable transformations of the test

statistics, the assertion follows.

The following theorem is the main result of this section. Note that we can choose

B as large as we want, if we have enough computing power. Therefore, the assertion

of Theorem 1 is mainly an asymptotic property with respect to the sample size

n→∞.

Theorem 1. We have

lim
n→∞

lim
B→∞

π̂
∗
0,n,B ≥ π0

P∗-a.s. and in probability with respect to P.

Proof. To proof this theorem, we combine Remark 2 with Lemma 2. Let (nk)k∈N =

(n`k)k∈N be an arbitrary subsequence of a subsequence (n`)`∈N of integers. Remark

2 yields that for every observed data sample it holds P∗-a.s. that

lim
B→∞

π̂
∗
0,nk,B

= E∗
[
π̂
∗(1)
0,nk

]
= E∗

[
1− F̂ ∗(1)

m (λ)

1− λ

]

=
1− 1

m

∑m
j=1 P∗

[
P ∗j,nk

≤ λ
]

1− λ
.
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Furthermore, from Lemma 2 it follows that

∀1 ≤ j ≤ m0 : P∗
[
P ∗j,nk

≤ λ
]
→ Prob(U ≤ λ) = λ as nk →∞

P-a.s., where U denotes a standard uniform variate.

Hence, we get P-a.s. that

lim
nk→∞

1−m−1∑m
j=1 P∗

[
P ∗j,nk

≤ λ
]

1− λ
= lim

nk→∞

1− π0λ−m−1∑m
j=m0+1 P∗

[
P ∗j,nk

≤ λ
]

1− λ

≥ 1− π0λ− (1− π0)

1− λ
= π0.

Thus, the assertion follows by the subsequence principle.

Theorem 1 shows that the bootstrap estimator π̂
∗
0 is asymptotically non-negatively

biased (i. e., mean conservative). The theorem also shows that we achieve an asymp-

totically unbiased estimator of π0 whenever P∗
[
P ∗j,n ≤ λ

]
tends to one for n → ∞

under alternatives. The latter condition is weaker than the assumption of a consis-

tent multiple test (Troendle 2000).

Remark 3. For fixed 1 ≤ b ≤ B and varying m, the bootstrap estimator π̂
∗(b)
0,n =

π̂
∗(b)
0,n (m) converges to a number greater than or equal to π0 in probability with

respect to P∗ and P for n → ∞ and m → ∞, if π0 := limm→∞m0 (m) /m exists.

This follows from the weak law of large numbers for triangular arrays applied to{
1{P ∗

j ≤λ} : 1 ≤ j ≤ m,m ∈ N
}

(Lehmann and Romano 2005, lem. 15.4.1). Hence,

F̂ ∗m (λ) converges to its expected value in probability with respect to P∗. The rest

of the argumentation is analogous to the second part of the proof of Theorem 1.

4. REAL DATA ANALYSIS

In order to demonstrate the relevance of the proposed methodology in practice,

we apply Algorithm 1 to a real-life gene expression dataset from Notterman et al.

(2001). The goal of the study was to identify differentially expressed gene, RNA, and

DNA profiles. The authors compared tumor tissues with paired healthy tissues from

n = 18 adenocarcinomic cancer patients. On total, expression levels for 7457 RNA,

DNA and gene entities were determined for every tissue. The available data matrix

(Xj,i : 1 ≤ j ≤ m, 1 ≤ i ≤ 2n) consists of m rows and 2n columns, where the first n

columns contain the measurements for tumor tissues and the column i+ n contains
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the paired measurement for healthy tissue, 1 ≤ i ≤ n. Our model follows part (b) of

Definition 10.1 of Dickhaus (2014). For every entity j under consideration, we test

the null hypothesis of no differential expression between tumor tissue and healthy

tissue. To this end, we take the logarithmic differences Di,j := log(Xi,j)−log(Xi+n,j),

1 ≤ i ≤ n, 1 ≤ j ≤ m, and calculate the test statistic Tj (X1, . . . ,Xn) :=
√
n·Dj/Sj,

where Dj is the sample mean and S2
j := (n− 1)−1∑n

i=1

(
Di,j −Dj

)2
is the sample

variance of the logarithmic differences in coordinate j. Under the assumption that

D1,j, . . . , Dn,j are i.i.d. normally distributed with mean ϑj and finite variance, Tj

follows under the null hypothesis Hj : {ϑj = 0} a Student’s t-distribution with

n − 1 = 17 degrees of freedom, for every 1 ≤ j ≤ m. Corresponding two-sided

p-values are given by Pj := 2 · (1− Ft17 (|Tj|)), 1 ≤ j ≤ m.

In such type of data, there are often pronounced dependencies among the p-values

due to the biological mechanism of co-regulation of genes. In the dataset at hand,

for example, entity 4035 exhibits strong dependencies with a block of 57 interacting

entities. Considering this block of entities for exemplary purposes, we obtain a

multiple test problem with m = 58. As displayed in Figure 4, the m observed p-

values were all extremely small, indicating that presumably all corresponding null

hypotheses are false.

Figure 4: Empirical cdf of a block of m = 58 p-values calculated from the gene

expression dataset of Notterman et al. (2001).

This allows for a data transformation yielding a pseudo ground truth for the

evaluation of the accuracy of the considered estimators of π0. Namely, we randomly

chose m0 = 29 of the m considered entities and subtracted from the corresponding

raw measurements their respective group-specific mean, imitating the case of no dif-
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ferential expression between the groups. Thereafter, we took the signed logarithm

(see page 75 of Zumel and Mount (2014)) of the resulting measurements. This trans-

formation does not change the dependency structure. With the so-transformed data,

we re-computed the m p-values and applied the original Schweder-Spjøtvoll estima-

tor as well as the proposed new estimator from Algorithm 1. Figure 5 demonstrates

that our proposed algorithm can deal with the pronounced dependencies among the

p-values much better than the original Schweder-Spjøtvoll estimator.

Figure 5: Results of the analysis of the transformed data from the gene expression

dataset of Notterman et al. (2001). The left graph corresponds to the original

Schweder-Spjøtvoll estimator. The right graph corresponds to one particular Monte

Carlo run of Algorithm 1. In both groups of tissues the group-specific sample mean

was subtracted from the original data for m0 = 29 randomly chosen entities.

5. IMPLICATIONS FOR MULTIPLE TESTING

A multiple test for testing H is a measurable mapping ϕ = (ϕ1, . . . , ϕm) :

X n → {0, 1}m, where ϕj (x1, . . . ,xn) = 1 means rejection of the j-th null hy-

pothesis Hj in favor of the alternative Kj, 1 ≤ j ≤ m. We restrict our at-

tention to multiple tests which operate on the p-values P1, . . . , Pm and are such

that ϕj = 1[0,αj) (Pj), where α1, . . . , αm denote local (marginal) significance lev-

els. The traditional type I error measure in multiple hypotheses testing is the

family-wise error rate (FWER). For given values of ϑ and C, it is defined by

FWERϑ,C (ϕ) := Pϑ,C

(⋃m0
j=1 {ϕj = 1}

)
. A multiple test ϕ controls the FWER at

level α in the strong sense if supϑ∈Θ,C∈C FWERϑ,C (ϕ) ≤ α.

A simple, but often conservative method for achieving strong FWER control
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under arbitrary copula C is the Bonferroni correction, meaning that the local sig-

nificance levels are given by αj = α/m for all 1 ≤ j ≤ m. In the sequel, we

choose α = 0.05. One approach to improve upon the Bonferroni correction is the

so-called Bonferroni plug-in (BPI) method, where m is replaced by m̂0 = m · π̂0 in

the denominator of the αj’s, where π̂0 is some estimate of π0.

For a comparison, Figure 6 displays histograms of the empirical powers (Dickhaus

2014, def. 1.4) of the original Bonferroni method and its plug-in version utilizing π̂
∗
0

for the normal means problem considered in Example 2. The histograms are based

on 100 simulation runs with B = 10,000 Monte Carlo repetitions in Algorithm 1

within each of these runs. For each simulation run the covariance matrix Σ with

fixed diagonal elements σ2
1 = . . . = σ2

m = 100 has been generated randomly using the

function genPositiveDefMat from the R package clusterGeneration (Joe 2006)

and the means ϑ1, . . . , ϑm are uniformly taken from (−10, 10) under alternatives.

The values m = 100, m0 = 20, n = 40, and θ1 = . . . = θm = 0 have been fixed

throughout the whole simulation. In every of the 100 simulation runs, the empirical

power of the BPI method was larger than or equal to that of the original Bonferroni

method, and the average improvement in empirical power was approximately 5.6%,

see the right graph in Figure 6.

Figure 6: The left graph displays the histograms of the Bonferroni and the Bonferroni

plug-in method resulting from Algorithm 1 over 100 simulation runs. The right graph

displays a histogram of their power differences.
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6. DISCUSSION

We have presented a method for estimating the proportion of true null hypothe-

ses under arbitrary copula dependence. In contrast to multivariate multiple test

procedures which explicitly exploit the dependencies in the data in order to relax

the multiplicity adjustment in comparison with the independent case (Dickhaus and

Stange 2013), addressing the estimation problem considered in this work profits

from neglecting the dependencies, meaning that in the proposed marginal bootstrap

procedure the true copula of the data is replaced by the independence copula.

There are a couple of potential modifications and extensions of the present statis-

tical model which can be treated in an analogous manner. For example, consider the

problem of “all pairs” comparisons (Tukey contrasts) in the balanced one-factorial

ANOVA with k groups and n observational units per group. Here, the multiplicity

of the multiple test problem equals m = k(k+1)/2, such that the dimension of ϑ and

the multiplicity m do not coincide. Furthermore, we do not observe dependent data,

but the dependencies in the test statistics are induced by utilizing the same data

points in several of the test statistics (which are the scaled group-specific mean differ-

ences). However, this problem can easily be converted to our setup by re-organizing

the data. Namely, one may construct a matrix (Xj,i) : 1 ≤ j ≤ m, 1 ≤ i ≤ 2n, where

every row contains the data for exactly two of the k groups. With this construction,

Algorithm 1 may readily be applied, and the dependency-inducing issue that data

from one and the same group appear repeatedly (i. e., in more than one row) in the

constructed matrix is addressed by our proposed marginal bootstrap method which

only utilizes the estimated mean differences.

The obvious limitation of our approach is that only marginal parameters can be

tested. We do not see any way of getting rid of part (b) of Assumption 1 in the

case of a completely unspecified copula C. One could, however, consider special

(parametric) model classes for C and design whitening procedures which exploit

these parametric assumptions regarding the dependencies.
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