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Abstract

We consider bounds on the variance of the standard unbiased vari-
ance estimator in a general non-Gaussian linear model for finite sample
sizes. In particular we obtain bounds that are sharp in the sense that
both the lower and upper bound will converge to the same asymptotic
limit when scaled with the sample size. Further, these bounds are in-
dependent of covariate information. Due to this we may also obtain
unconditional variance bounds for the situation with random covari-
ates. The above results rely on a result in Atiqullah (1962) which is
stated without proof. We provide a proof of this result, both for easy
reference, but also since the derivation of the variance bounds rely on
an observation in the construction of this proof.

Keywords: General linear models, non-Gaussian error terms, moments
of variance estimators, finite sample size bounds, random covariates, uncon-
ditional bounds

1 Introduction

In the present note we will consider the variance of the standard unbiased
variance estimator in a general linear model (GLM) with non-Gaussian er-
ror terms. For this class of models the covariance of the generalized least
squares estimator β̂ is well-known, but an explicit expression for the vari-
ance of σ̂2 is not as widely known. In [2] an expression for this variance is
provided without proof for a mixed GLM with non-Gaussian homoscedastic
error terms. This result allows us to obtain finite sample size bounds on the
variance of σ̂2 which are independent of the covariates in the non-Gaussian
GLM. Moreover, the bounds which we obtain are sharp in the sense that



both the lower and upper bound, when scaled by the sample size n, con-
verges to the asymptotic variance of

√
nσ̂2 as n → ∞. Further, we note

that these results remain valid if the covariates are random, but conditioned
upon. Consequently, since the variance bounds are independent of covariate
information it is possible to obtain unconditional variance bounds for the
situation when the covariates themselves are random, given suitable regu-
larity conditions. This is interesting since the unconditional variance of the
standard unbiased variance estimator is in general not explicitly computable
due to the randomness of the covariates.

The problem formulation above of course relies on the theory of random
quadratic forms. For more on this topic, see e.g. [4, 5, 8] and the references
therein. One can also note that the special case of a sample variance in
the non-Gaussian setting, i.e. an intercept only GLM, was treated already
in e.g. [3, Eq. (27.4.2)]. Other similar results are obtained in the theory of
minimum variance component estimation, see e.g. [6, 7] and the proof of [8,
Thm. 3.4].

One direct application of the bounds derived in the present note is that
they provide a simple way of assessing consistency of σ̂2.

Another motivating example is the situation when we want to calculate
conditional moments of a non-linear function of the parameter estimators.
This is typically computationally infeasible, but the results in the present
note provide exact expressions for second order Taylor approximations of
conditional moments. Analogous approximations of unconditional moments
will not result in exact expressions, but we may obtain sharp finite sample
size bounds.

2 The General Linear Model

Let Y be a random n × 1 vector and let X be a random n × p matrix of
almost surely full column rank, rank(X) = p, with n > p. Further, let Σ be a
symmetric almost surely strictly positive definite n×n matrix. This ensures
that we may define Σ1/2 in the standard way using orthogonalization. The
class of GLMs which will be studied in the present note are of the form

Y = Xβ + σΣ1/2e, (1)

where β is a p × 1 vector, σ > 0 is a scalar and e is some random n × 1
vector whose elements are independent. Moreover, we assume that e has,
conditional on X and Σ, mean 0 and covariance In, together with common
central fourth moments µ4. Here In denotes the n×n identity matrix. The
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standard generalized least squares estimator of β, conditional on X and Σ,
is given by:

β̂ = (X ′Σ−1X)−1X ′Σ−1Y ,

see for instance [8, Sec. 3.10] for this and more on the general linear model.
Moreover, an unbiased estimator of σ2 (conditional on X and Σ), and the
estimator we will focus on in the present note, is given by:

σ̂2 =
1

n− p

(
Y −Xβ̂

)′
Σ−1

(
Y −Xβ̂

)
. (2)

The results below will of course remain valid, with the obvious changes,
if we consider an estimator normalized with some other, non-degenerate,
function of n and p, for instance simply n. It is important to note that X
is random, but we assume that it is possible to observe perfectly. That is,
we are not dealing with an errors-in-variables model, which would lead to
problems such as biased estimators.

As stated in the introduction, the result of [2] concerns general linear
mixed models with non-Gaussian homoscedastic errors. In order to see how
this result may be used in the above setting, let Ỹ := Σ−1/2Y and X̃ :=
Σ−1/2X, which gives us that we can restate (1) as the linear model

Ỹ = X̃β + σe, (3)

and may hence rephrase the estimator σ̂2 in terms of (3). Further, define

U := Σ−1/2X(X ′Σ−1X)−1X ′Σ−1/2,

which corresponds to the projection matrix associated with the linear model
(3), and we note for future reference that tr(U) = rank(X) = p. If, in
addition, we introduce

K := In −U

we obtain the following result, which is a special case of a result stated
without proof in [2]:

Proposition 1. (Atiqullah (1962) for the special case (1), see [2]) Let

(i) Σ be a random symmetric almost surely positive definite n× n matrix
and X be a random n× p matrix of almost surely full column rank,
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(ii) the error term components defining the random n × 1 vector e be in-
dependent with, conditional on X and Σ, mean 0, variance 1 and
common fourth central moments µ4.

It then holds that

Var(σ̂2|X,Σ) =
σ4

n− p

(
2 +

µ4 − 3

n− p

n∑
i=1

K2
ii

)
. (4)

The proof of Proposition 1 relies on that (2) may be rewritten according
to

σ̂2 =
σ2

n− p
e′Ke, (5)

which together with an application of [8, Thm. 1.6] yields the desired result.
Further, the derivation of the variance bounds stated below in Corollary 1
and 2, rely on that U and K are idempotent, facts used in the derivation
of (5).

Proof. (Proof of Proposition 1) In order to see how this result is obtained,
one can note that if we let ˆ̃e := Ỹ − X̃β̂, it follows that

σ̂2 =
1

n− p
ˆ̃e
′ˆ̃e,

which may be expressed in terms of e by noting that

ˆ̃e =
(
X̃β + σe

)
−UỸ

= X̃β + σe−U
(
X̃β + σe

)
= σ (In −U) e = σKe.

Hence, we have

σ̂2 =
σ2

n− p
e′K ′Ke.

Further, since U is a projection matrix, it follows that U is idempotent,
and moreover, U is, by definition, symmetric. Thus, K will inherit these
properties as well, since (In −U)(In −U) = In − 2U +UU and, trivially,
In −U is symmetric if U is symmetric. Due to this we arrive at

σ̂2 =
σ2

n− p
e′Ke,
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which is exactly (5). Continuing, recall from above that tr(U) = p, which
immediately yields tr(K) = tr(In −U) = tr(In)− tr(U) = n− p. Finally,
an application of [8, Thm. 1.6], which is also stated without proof in [1],
gives us

Var(σ̂2|X,Σ) =
σ4

(n− p)2
Var(e′Ke|X,Σ)

=
σ4

n− p

(
2 +

µ4 − 3

n− p

n∑
i=1

K2
ii

)
.

which corresponds to the result of Proposition 1.

Remark 1. Note that for the application of [8, Thm. 1.6] in the proof
of Proposition 1 we need not assume that the error terms have common
(conditional) third moments. This can be seen by inspecting the proof of [8,
Thm. 1.6] and noting that any parts involving the third moments disappear
since the first moment is 0.

Further, note that it is possible to generalize Proposition 1 in the obvious
way when the error terms have finite, but not necessarily common, fourth
moments. This however is not very illuminating and is hence omitted.

3 Results: bounds on the variance of σ̂2

Based on Proposition 1 it is natural to approachK in order to obtain bounds
on the variance of σ̂2. If we exploit the properties of K directly we arrive
at the following naive bounds:

Corollary 1. If the assumptions of Proposition 1 hold: Then

Var(σ̂2|X,Σ),Var(σ̂2) ∈
[

2σ4

n− p
,
σ4(µ4 − 1)

n− p

]
.

Proof. (Proof of Corollary 1) SinceK is idempotent and symmetric it follows
that

Kii = K2
ii +

∑
j 6=i
K2

ij ,

and in turn that

0 ≤
n∑
i=1

K2
ii ≤

n∑
i=1

Kii = n− p.
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This together with (4) directly yields

2σ4

n− p
≤ Var(σ̂2|X,Σ) ≤ σ4(µ4 − 1)

n− p
.

It now trivially follows that the inequality holds for Var(σ̂2) as well.

Note that the bounds in Corollary 1 are not sufficient in order to show
that the variance of

√
nσ̂2 will converge to a limit point. However, by using

that K = In − U and exploiting the properties of U the lower variance
bound may be tightened:

Corollary 2. If the assumptions of Proposition 1 hold: Then

Var(σ̂2|X,Σ),Var(σ̂2) ∈ [νn − κn, νn]

with νn := σ4 µ4−1n−p and κn := σ4 (µ4−3)p
(n−p)2 .

Proof. (Proof of Corollary 2) SinceK = In−U we can rewrite (4) as follows

Var(σ̂2|X,Σ) =
σ4

n− p

(
2 +

µ4 − 3

n− p

n∑
i=1

(1−U ii)
2

)
.

Expanding the square and noting that
∑n
i=1U ii = p yields

Var(σ̂2|X,Σ) =
σ4

n− p

(
µ4 − 1− (µ4 − 3)p

n− p
+
µ4 − 3

n− p

n∑
i=1

U2
ii

)
.

Now, as before for K, since U is idempotent and symmetric we know that

0 ≤
n∑
i=1

U2
ii ≤

n∑
i=1

U ii = p, (6)

and therefore

σ4(µ4 − 1)

n− p
− σ4(µ4 − 3)p

(n− p)2
≤ Var(σ̂2|X,Σ) ≤ σ4(µ4 − 1)

n− p
.

As before the inequality trivially follows for Var(σ̂2).

We can also state a finite sample upper bound on the difference between
the conditional and unconditional variances together with convergence of
these using the bounds in Corollary 2.
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Corollary 3. If the assumptions of Proposition 1 hold: Then

|Var(σ̂2|X,Σ)−Var(σ̂2)| ≤ κn, for all n,

and

nVar(σ̂2)→ ν, nVar(σ̂2|X,Σ)→ ν, uniformly as n→∞

where ν = σ4(µ4 − 1).

Proof. (Proof of Corollary 3) The first part follows trivially from Corollary 2,
but we also get that

nVar(σ̂2|X,Σ) ∈ [nνn − nκn, nνn]

and, since limn nνn = ν and limn nκn = 0, it follows that

lim
n→∞

nVar(σ̂2|X,Σ) = ν,

due to the assumptions on X and Σ. That is, nVar(σ̂2|X,Σ) → ν uni-
formly. By the same argument it follows that nVar(σ̂2) → ν uniformly in
n.

Remark 2. One example of a more restricted sub-class of the GLM from
(1) is when we explicitly include an intercept, i.e. X̃ contains a column of
ones. In [8, Eq. (10.12)] it is shown that in this situation it holds that

1/n ≤ U ii ≤ 1

which gives us that the lower bound in (6) can be tightened according to

1

n
≤

n∑
i=1

U2
ii.

Hence, in this situation we can tighten the lower bound in Corollary 2 to
νn − κn + µ4−3

(n−p)n .

Another natural sub-class of models contained in the GLM from (1) is to
assume that Σ is diagonal. In this situation it holds that diag(U) = diag(P )
where

P := X(X ′Σ−1X)−1X ′Σ−1

is the projection matrix of the general linear model in (1). Thus, assuming
diagonal Σ does not make any parts of the variance formula, or its bounds,
any more explicit.
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