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Abstract

A model of mortality is introduced which is based on a data generating process defined in
terms of the continuous-time dynamics of a Lexis diagram. Through counting process arguments,
the likelihood of death count data sampled at yearly intervals is shown to be equivalent to that of
a certain Poisson likelihood. Therefore a hidden Markov model with Poisson distributed obser-
vations and a Gaussian state process is introduced. More specifically, the latent mortality rate
process is driven by a low-dimensional autoregressive process, where the dimension reduction in
a Poisson setting is based on so-called generalized principal component analysis (GPCA). The
full likelihood of the Poisson state space model is not analytically tractable, but it is possible
to derive explicit sufficient statistics when conditioning on the state of the latent mortality rate
process. This makes it possible to estimate the model parameters using the stochastic approxima-
tion expectation-maximization (SAEM) algorithm, where sampling is made using particle filter
techniques. This circumvents the two-step estimation procedure used for e.g. the Lee-Carter
model.

Further, the constructive nature of the introduced model makes it easy to decompose the
observed variation in terms of population (“Poisson”) variation and variation due to the latent
mortality rate process. Since all model parameters are estimated using maximum likelihood
theory we argue that it is natural to assess the model performance using logarithmic scores. In
particular, we introduce a proper scoring rule based on a transformation of a certain logarithmic
score which is closely connected to the maximization step in the SAEM-algorithm. This scoring
rule may be seen as a coefficient of determination like measure which can be used for assessing
specific age and calendar year model performance, both in-sample and out-of-sample.

The versatility of the model is illustrated on Swedish and US data, where both in-sample and
out-of-sample forecast performance is analyzed. We illustrate the convergence of the numerical
routines being used and discuss initiation procedures. Further, the numerical illustrations in-
dicate that by not explicitly taking the population part of the variation into account may lead
to that too much variation is attributed to the mortality rates, consequently being a potential
problem for Lee-Carter type models.

Keywords: Non-linear non-Gaussian state-space-models; Generalized Principal Component Anal-
ysis; log-concave likelihood; Stochastic Approximation EM; Particle filter; Mortality forecasting;
Hidden Markov model

1 Introduction

Understanding and forecasting mortality is an important part of demographic research and policy
making, due to its connection to e.g. pensions, taxation and public health. A closely related area
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of application is within actuarial science and, in particular, life insurance.

A first step in understanding mortality patterns is to construct a model describing observed death
counts or mortality rates, or “force of mortality”, across age groups (“period mortality”) or within
cohorts (indexed w.r.t. time of birth).

One of the earliest contributions to the area of mortality forecasting is the so-called “Gompertz law
of mortality” (Gompertz, 1825). For more on other mortality laws, see e.g. the survey Pitacco (2018)
and the references therein. A more recent important contribution to the area is the Lee-Carter model
(Lee and Carter, 1992), where a log-linear multivariate Gaussian model is assumed for the mortality
rates, across age groups and calendar time. The model is a factor model, where the factor loadings
are given by the first component in a principal component decomposition, in this way inducing
dependencies across age groups as well as reducing the dimension of the problem. Concerning
forecasting, the model assumes that the calendar time effect is governed by a one-dimensional
Gaussian random walk with drift. Consequently, the Lee-Carter model treats the mortality rates as
a stochastic process. Thus, an alternative, and very natural, interpretation of the Lee-Carter model
is as a Gaussian hidden Markov model (HMM), see e.g. De Jong and Tickle (2006); Fung et al. (2017)
for a discussion in a mortality context and e.g. Cappé et al. (2006); Durbin and Koopman (2012) for
comprehensive introductions to HMMs (also known as state space models.) For a survey of various
extensions of the Lee-Carter model, see e.g. Booth and Tickle (2008); Haberman and Renshaw
(2011) and the references therein. Another line of work is the Gaussian Bayesian extension of the
Lee-Carter model treated in Pedroza (2006), where models with random drifts are discussed. One
drawback with the Lee-Carter model is that it models the mortality rates directly, that is, firstly
standard point estimates of mortality rates are obtained and secondly, given these rates, a (discrete
time) stochastic process is fitted. However, in practice what is observed are death counts, and the
mortality rates corresponds to unknown functions/processes to be estimated. Moreover, by instead
using death count dynamics as a starting point, an additional source of randomness is introduced;
randomness caused by the population being finite. This additional source of randomness allows for
decomposing observed variation into population randomness and estimation randomness. Examples
of more constructive modeling approaches which explicitly includes population variation are given
in e.g. Brouhns et al. (2002); Ekheden and Hössjer (2014, 2015).

In the present paper a constructive HMM approach is taken. A Lexis diagram, which summarizes
age and calendar time dynamics in continuous time per individual, will serve as the starting point.
This allows us to use standard survival analysis techniques for right censored counting processes in
order to arrive at a Poisson likelihood. Thus, by making use of the likelihood principle, it follows that
a likelihood equivalent modelling approach is to model the mortality dynamics as a Poisson process.
Moreover, it follows that this Poisson process is expressed in terms of exposure-to-risk, i.e. the total
time individuals of a certain age has been alive (under risk) during a specific calendar time period,
see Wilmoth et al. (2017, Sec. 2.2). This allows continuous time information to be summarized on
e.g. a yearly basis. This is described in Section 2. Based on the likelihood equivalence with a Poisson
process and inspired by the Lee-Carter model, we suggest that the mortality rates appearing in the
Poisson process themselves are described by a multivariate Gaussian process. Hence, the model
introduced in the present paper corresponds to a HMM with Poisson distributed observations, see
Section 2.1. In Section 3 basic properties of the likelihood of the Poisson state space model is
discussed, as well as how the model can be fitted. Moreover, in order to reduce the dimension of the
multivariate Gaussian process governing the evolution of the mortality rates an approach known as
generalized principal component analysis (GPCA) is suggested. This is described in Section 3.1,
and is based on Collins et al. (2001).

Furthermore, the introduced Poisson state space model will have a likelihood function which is ana-
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lytically intractable. Still, the model is based on a combination of Gaussian and Poisson dynamics,
which makes it possible to obtain closed form low-dimensional conditional sufficient statistics. One
efficient method for fitting models with these properties is to use the stochastic approximation EM
(SAEM) technique, see Section 3.5. The “stochastic approximation” part of the SAEM algorithm
is based on using particle filter techniques, and in particular forward filtering backward smoothing
(FFBS), see e.g. Cappé et al. (2006); Kantas et al. (2015). This is described in Section 3.

Continuing, it is possible to obtain estimates of mortality rates without introducing an HMM,
using e.g. central mortality rates which are defined as certain scalings of observed death counts.
Still, by using an HMM it is possible to attribute the variation seen in these estimates to variation
stemming from the underlying mortality rate process and to variation stemming from the population
(“Poisson”) variation. Due to this, we argue that model performance should be assessed w.r.t. death
counts or scalings thereof. In Section 4 we discuss model validation criteria which are based on
(proper) scoring rules that are applicable to both training and validation data, hence allowing for
model selection based on predictive performance. In particular we use introduce an R2-like measure
defined in terms of deviance. Moreover, in Section 5 we discuss forecasting.

The paper concludes with a numerical illustration, where the methods from the present paper
are illustrated based on Swedish and US data from Human Mortality Database (2018) and where
predictions are made for 20 - 50 years, which corresponds to time intervals of interest for e.g. life
insurers, designing of pension systems, and demographic applications. Based on the numerical
illustration it is seen that the model forecasting performance is satisfactory w.r.t. both in-sample
(training) data and out-of-sample (validation). This is illustrated by varying the length of the time
period used for fitting. The analyses also illustrate the importance of separating between variation
from the mortality rates and Poisson variation from the population – for Swedish data it is clearly
seen that the majority of the variation stems from population variation. An implication of this is
the potentially misleading results when using Lee-Carter type models in this type of situation.

2 Probabilistic mortality model

The probabilistic model which will be introduced in the present paper is based on the population
dynamics as it is summarized in a Lexis-diagram, see Figure 1. On the horizontal axis is calendar
year and on the vertical axis is age. An individual’s life is represented by a 45 degree straight
line. Since most individuals are not born on January 1, the time spent in each square will differ
from individual to individual. As an example, consider the shaded area in Figure 1: The oldest
individual, the one closest to the northwest corner of the Lexis diagram, is a + 2 years old at the
beginning of calendar year 1902 and turn a+ 3 during the year 1902. The second oldest individual
will turn a+ 2 during year 1902 and is alive at the end of the year 1902. The youngest individual
will turn a+ 2 during 1902 and will die before the end of 1902.

More specifically, with respect to mortality, the life of an individual, say i, can be characterized by
the time of birth Bi and the time of death Qi, where 0 ≤ Bi ≤ Qi, and time is measured in years.

Moreover, let [t, t] be the time period when individuals are observed in the data set, and let n denote
the total number of individuals that have been alive in [t, t]. That is, only individuals for which[
t, t
]
∩ [Bi, Qi] 6= ∅ are considered. Further, the age of individual i at calendar time t is denoted by

Ai(t) := t−Bi, Bi ≤ t ≤ Qi.
The life history of individual i can be described by a counting process, Di(t) ∈ {0, 1}, where 0
corresponds to that the individual is alive. The process can be defined in terms of a multiplicative
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Figure 1: Example of a Lexis-diagram.

intensity process (see e.g. Andersen et al. (1993); Aalen et al. (2008)): Let m(a, t) ≥ 0, denote the
hazard rate at age a and calendar time t. Using the introduced notation, the intensity process can
be expressed as

λi(t) = m(Ai(t), t)1
(
Qi −Bi ≥ Ai(t), Bi ≤ t

)
= m(Ai(t), t)Yi(t),

i.e. Yi(t) is 1 if individual i is alive at t and is usually referred to as the “at-risk” indicator of
individual i. That is, Yi(t) = 1−Di(t).

Hence, the total number of individuals that experience the event “death” up until t, t ≤ t ≤ t,
denoted D(t), is given by

D(t) =
n∑
i=1

Di(t),

which is a counting process with intensity process

λ(t) =
n∑
i=1

m(Ai(t), t)Yi(t).

Continuing, the main interest is to describe the process of deaths within yearly Lexis-squares: The
Lexis squares of interest are of the form

Sa,t = [a, a+ 1)× [t, t+ 1) ⊂ R2, a, t ∈ N, t ≤ t ≤ t.

Let A denote the set of relevant ages and let T denote the set of relevant calendar years. The
collection of all relevant Lexis squares, S̄, is then given by

S̄ := {Sa,t | (a, t) ∈ A× T }.

A general lexis square, without specifying a and t, will be denoted as S. Then, Di(t;S) which
denotes the counting process which may register a single death for individual i in the Lexis-square
S, has intensity process given by

λi(t;S) = m(Ai(t), t)Yi(t)1
((
Ai(t), t

)
∈ S

)
=: m(Ai(t), t)Yi(t;S),
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and the total number of observed death counts in S is given by the counting process

D(t;S) =
n∑
i=1

Di(t;S),

with intensity process

λ(t;S) =
n∑
i=1

m(Ai(t), t)Yi(t;S).

Moreover, due to that census data, typically, is only publicly available at integer ages and on yearly
basis, the approach taken in the present paper is to model the hazard rates m(a, t) as constants
within yearly Lexis-squares, i.e. m(a, t) = mS if (a, t) ∈ S. That is, D(t;S) has a multiplicative
intensity process

λ(t;S) =
n∑
i=1

mSYi(t;S).

Furthermore, by introducing DS , the stochastic number of deaths in S, as

DS =
n∑
i=1

1
(
(Qi −Bi, Qi) ∈ S

)
,

and the total amount of time that individuals have been alive in S, the so-called “exposure-to-risk”,
ES , by

ES =
n∑
i=1

∫ t

t
Yi(t;S) dt,

it is possible to state the following lemma relating to observed data:

Lemma 2.1. Assuming independence between individuals, the log-likelihood for the total population
is,

l(M) =
∑
S∈S̄

(dS logmS − eSmS), (1)

whereM =
{
mS | S ∈ S̄

}
is the collection of unknown piecewise constant mortality rate parameters,

dS is the observed number of deaths and eS is the observed exposure-to-risk in S.

For more on likelihood inference on Lexis diagrams, see e.g. Keiding (1991) and the references
therein. Note that Lemma 2.1 and its derivation adjusts for partial information due to right cen-
soring. The proof is given in Appendix A.

Now, consider the following probability model: For each S, there is an independent Poisson-process
with constant intensity mS , running for time eS , during which dS events are observed. The total
log-likelihood of this model is equivalent to Equation (1). Thus, by the likelihood principle, it is
enough to consider this simpler model, where only the number of deaths and the exposure-to-risk
in each Lexis-square needs to be observed, not the individual level data. Also note that the model
implied by (1) has no explicit dependence on the time of birth or death of specific individuals,
since the exposure-to-risk summarizes all this information. Thus, it is enough to have access to, for
example, country level mortality data. For later use, note that (1) gives the following ML estimator
of mS

m̂S =
dS
eS
. (2)
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In Section 2.1 a state space model is introduced, where mS is treated as an unobservable, latent,
stochastic process, MS , and the total number of deaths observed in S is Poisson-distributed given
MS = mS and eS . A consequence of this modelling approach is that the latent MS-process is
independent of population size. On the other hand, since m̂S depends on the population size, these
estimates will display more variation than that, typically, seen in the randomness of the latent MS
in itself. This effect is something which will be discussed further in Section 6 where a numerical
illustration is given.

2.1 Mortality model

In this section we will define the probabilistic model of mortality that will be used in our analysis and
describe the method of estimation and forecasting. We however begin by introducing the notation:

Number of age categories k
Number of observation years n
Number of factors p
Number of deaths in S DS ∈ N0

Exposure-to-risk in S eS ∈ [0,∞)
Death intensity in S MS ∈ R
Factor loadings Υ ∈ Rk×p
Factor in year t Xt ∈ Rp
State transition matrix Γ ∈ Rp×p
Transition covariance matrix Σ ∈ Rp×p
Random mean in year t Kt ∈ Rp
Mean transition matrix ΓK ∈ Rp×p
Mean transition covariance matrix ΣK ∈ Rp×p
Mean level µ ∈ Rp

All vectors are column-vectors. Also, Dt ∈ Nk0 denotes the vector of number of deaths in year t, and
similarly for et and mt. The corresponding variables without subscripts are the matrices with the
observation years in the columns and ages in the rows, e.g. D ∈ Nk×n0 . The parameters Υ, Γ, Σ and
µ will in general be unknown and are to be estimated. The procedure for estimation is described
in Section 3.

We define a Poisson model with linear Gaussian signal. For t ∈ {0, . . . , n},

DS |MS ∼ Po(eSMS)

MSa,t = exp
{
(ΥXt)a

}
Xt+1 = ΓXt + µ+ Ut, Ut ∼ N(0,Σ)

X0 ∼ N(µ0,Σ0)


(M1)

This is an HMM with non-Gaussian observations and linear Gaussian state equation. One can
note that the dependence between ages is introduced by M . That is, conditioned on M , all ages
are independent. Further, as argued in the previous section, under rather weak assumptions, a
reasonable model for the number of deaths in a given year for a given age category is independent
Poisson with intensity proportional to the exposure. The model specifies an exponential link-
function. It is certainly possible to choose a different link-function and for the method described
below, the exponential link-function is not crucial. However, since this link-function has been
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widely used in mortality studies going back to Lee and Carter (1992) (or even Gompertz (1825))
and also corresponds to the canonical link in terms of exponential families it is a natural choice.
The matrix Υ contains the factor loadings associated with the time-varying factor scores Xt. This
has two purposes: Firstly, it seems intuitive that individuals of similar age at the same time should
experience a similar mortality rate. Therefore, to model MSa,t independently for each a does not
seem reasonable. Secondly, since we usually are concerned with a large number of ages (say about
100), it is impractical to estimate a mortality rate process for each age independently. Thus, Υ
also provides a dimension reduction that simplifies the estimation problem and may be thought of
as a non-parametric alternative to basis functions. The model for Xt is a linear Gaussian model,
although non-linear models are certainly also possible to analyze, but they are not considered in
this paper. However, even under the restriction of linear and Gaussian signals, (M1) should in many
cases have enough flexibility so that it is possible to find a specific model that fits well with data.

For the purpose of the numerical illustration a slight variation of Model (M1) will also be considered:

DS |MS ∼ Po(eSMS)

MSa,t = exp
{
(ΥXt)a

}
Xt+1 = ΓXt +Kt + µ+ Ut, Ut ∼ N(0,Σ)

Kt+1 = ΓKKt + Vt, Vt ∼ N(0,ΣK)

X0 ∼ N(µ0,Σ0)

K0 ∼ N(µK0 ,Σ
K
0 )


(M2)

which explicitly allows for a random drift, something discussed in e.g. Pedroza (2006).

To make it easier to follow our numerical illustration explicit formulas will, when necessary, be
provided also for this model.

3 Model fitting

The modelling approach taken in the present paper is based on a certain class of non-Gaussian
HMMs, as described in Section 2.1. In this section, the fitting of such models using maximum
likelihood and particle filters is discussed. For easy comparison with the literature on HMMs, we
will adopt the standard notation x0:n = (x0, . . . , xn).

As defined in Section 2.1, the following parameters are to be fitted: Υ, µ,Γ and Σ. Concerning,
µ0 and Σ0, these will be set to large deterministic values. For more on how this may be done, see
the numerical illustration in Section 6. Letting ψ = (µ,Γ,Σ) the complete data likelihood can be
defined as

pΥ,ψ(x0:n, d0:n) = v(x0)gΥ(d0 | x0)
n∏
t=1

fψ(xt | xt−1)gΥ(dt | xt), (3)

where 
v(x0) = (2π)−

p
2 |Σ0|−

1
2 exp{−1

2(x0 − µ0)′Σ−1
0 (x0 − µ0)},

gΥ(dt | xt) =
∏k
a=1 exp

{
−ea,te(Υxt)a

} (ea,te(Υxt)a)
da,t

da,t!
,

fψ(xt | xt−1) = (2π)−
p
2 |Σ|−

1
2 exp{−1

2(xt − Γxt−1 − µ)′Σ−1(xt − Γxt−1 − µ)}.

(4)
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Note that v(x0) is the density of the starting point X0, which we have assumed to be known. In
practice this is set to a Gaussian density with large variance. Moreover, since x0:t corresponds to
unobservable, stochastic, state vectors, the likelihood function that we want to maximize is the one
given by

pΥ,ψ(d0:n) =

∫
pΥ,ψ(x0:n, d0:n)dx0:n, (5)

which in general is hard to evaluate. The present paper makes use of particle filter techniques and,
in particular, the stochastic approximation EM algorithm (SAEM) which is based on approximating
(5) using simulation, see e.g. (Cappé et al., 2006, Ch. 11.1.6). Apart from this, the SAEM-procedure
is closely related to the standard EM-algorithm, and will in this context correspond to iterating
between sampling unknown states and updating of parameter estimates. A more detailed description
of the particle filter techniques and sampling of unknown states is given in Section 3.2 – 3.4. Provided
that the complete data likelihood will produce low-dimensional sufficient statistics, the SAEM
method can be described as a simple updating procedure in terms of these sufficient statistics. This
is a nice feature of the method since it avoids the need to store all simulated trajectories. Therefore,
before describing the SAEM technique in more detail, which is done in Section 3.5, the properties
of the complete data likelihood will be discussed.

First, one can note that the complete data likelihood from (3) may be written according to

pΥ,ψ(x0:n, d0:n) = gΥ(d0:n | x0:n)fψ(x0:n),

where

gΥ(d0:n | x0:n) := gΥ(d0 | x0)
n∏
t=1

gΥ(dt | xt), (6)

fψ(x0:n) := v(x0)
n∏
t=1

fψ(xt | xt−1). (7)

From the definition of gΥ(d0:n | x0:n) it is clear that gΥ(d0:n | x0:n) is a concave function in terms of
Υ (see Lemma 3.2), but there is no low-dimensional statistic available for estimating Υ. Hence, the
estimation of Υ is not suitable for inclusion in the SAEM-algorithm. Note, however, that the role
of Υ may be thought of as a non-parametric basis function used in order to introduce dependence
across ages in Xt and to reduce the dimension of the problem. Thus, excluding the estimation of
Υ from the SAEM-algorithm and estimating Υ in isolation can be seen as conducting a generalized
principal component analysis (GPCA). This is described in more detail in Section 3.1. Consequently,
the SAEM-algorithm is used to estimate ψ by optimizing p

Υ̂,ψ
(d0:n) via the corresponding complete

data likelihood p
Υ̂,ψ

(x0:n, d0:n). Moreover, the Gaussian part of p
Υ̂,ψ

(x0:n, d0:n), that is fψ(x0:n),

will produce estimators and low-dimensional statistics that can be written explicitly:

Lemma 3.1. In both Model (M1) and (M2) the joint distribution of x0:n and d0:n defines a curved
exponential family. The complete data maximum likelihood estimate, conditional on x0:n and d0:n,
can therefore be expressed in terms of low-dimensional sufficient statistics.

The proof of Lemma 3.1 is given in Appendix A.2, where explicit formulas for the MLEs can be
found. Recall from the beginning of Section 3 that µ0 and Σ0 are being treated as constants, hence
being outside of the estimation procedure. For more on how to assign values to µ0 and Σ0, see
Section 6.
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3.1 Dimension reduction using Generalized principal component analysis – es-
timating Υ

As mentioned in Section 2.1 and Section 3, the matrix Υ may be thought of as a non-parametric
choice of basis functions, i.e. Υ is a matrix of factor loadings. The approach to estimate Υ in the
present paper is closely connected to standard principal component analysis (PCA), but adapted to
count data. The method which will be used consists of optimizing the Poisson part of the complete
data likelihood, i.e. gΥ(d0:n | x0:n) from (6). Recall, from Section 2.1, that both Υ and x0:n are
unobservable quantities. One way of tackling this is to estimate Υ and x0:n jointly, given d0:n, by
maximizing gΥ(d0:n | x0:n). This is what is referred to as generalized principal component analysis
(GPCA), and was introduced in Collins et al. (2001). One can, however, note the close connection
to the approach taken in Brouhns et al. (2002), where a similar procedure is suggested within a
Poisson GLM. A completely different interpretation of the approach from Collins et al. (2001) is
to view the problem in a Bayesian setting and treat x0:n as having an improper (“flat”) prior, i.e.
constant density, which is independent of Υ:

LΥ,x0:n(d0:n) ∝ gΥ(d0:n | x0:n).

Regardless of the interpretation of the objective function gΥ(d0:n | x0:n) in the GPCA-optimization,
it is possible to show the following:

Lemma 3.2. The function − log gΥ(d0:n | x0:n), is convex in Υ given x0:n, and convex in x0:n given
Υ, but not jointly (globally) convex in both Υ and x0:n.

The proof of Lemma 3.2 is given in Appendix A. Too see the effect of Lemma 3.2, one can note that
e.g. gΥ/c(d0:n | cx0:n) = gΥ(d0:n | x0:n) for all c ∈ R+. Note that the above “marginal” convexity
property corresponds to so-called “bi-convexity”, see e.g. Gorski et al. (2007, Def. 1.1,1.2). Moreover,
in Gorski et al. (2007) conditions are given for when minimization of a bi-convex function using so-
called alternate convex search (ACS) methods, which is a special case of cyclic coordinate (CCM)
methods, will converge, see (Gorski et al., 2007, Thm. 4.7, 4.9, Cor. 4.10). For more on cyclic
coordinate methods and convergence, see e.g. Bazaraa et al. (2013, Ch. 8.5).

Before ending this section, note that as opposed to classical PCA, the GPCA components are not
orthogonal. Therefore, when increasing the number of components all the components may change.

3.2 Particle filtering

Having estimated Υ, as explained in the previous section, it remains to estimate ψ. Since the
likelihood pψ(d0:n) is not directly computable, approximations are needed. In the present paper,
this will be done using simulation techniques, in particular, using particle filtering and smoothing.
For more detailed accounts of these methods, see e.g. the book by Cappé et al. (2006) or the survey
by Kantas et al. (2015).

In this section it is assumed that all parameters are known, so that the task is to, for 0 ≤ t ≤ n,
find the filtering distribution

p(x0:t | d0:t),

and, in the next section, the smoothing distribution

p(x0:t | d0:n).
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To start off, the filtering recursion equation can be written as,

p(x0:t | d0:t) = p(x0:t−1 | d0:t−1)
g(dt | xt)f(xt | xt−1)

p(dt | d0:t−1)
∝ p(x0:t−1 | d0:t−1)g(dt | xt)f(xt | xt−1).

Further, assume that an approximation of p(x0:t−1 | d0:t−1) of the form

p̂(x0:t−1 | d0:t−1) =
r∑
i=1

wit−1δXi
0:t−1

(x0:t−1), (8)

where wit−1 are the weights and where δ is the Kronecker-delta function, is available. Moreover, let
q(xt | dt, xt−1) denote an importance distribution function from which it is possible to draw samples
from. It then follows that

p̂(x0:t | d0:t) ∝
g(dt | xt)f(xt | xt−1)

q(xt | dt, xt−1)
q(xt | dt, xt−1)p̂(x0:t−1 | d0:t−1).

As the above approximate recursion is iterated, the weights in (8) will be multiplied. Therefore
the variance of the method will increase rapidly with t. A partial remedy for this is to include an
additional resampling step. That is, by introducing X0:t−1, denoting the random sample drawn
from p̂(x0:t−1 | d0:t−1), the following approximation is obtained

p̂(x0:t−1 | d0:t−1) =
r∑
i=1

δ
X

i
0:t−1

(x0:t−1).

The recursion outlined above corresponds to the so-called sequential importance sampling resam-
pling (SISR) algorithm, which is summarized in Algorithm 1. For more details concerning the
derivation of this algorithm, see e.g. (Cappé et al., 2006, Ch. 9.6) and Kantas et al. (2015).

Algorithm 1 SISR

• At time t = 0, for all i ∈ {1, . . . , r}:

1. Sample: Xi
0 ∼ qm(· | d0).

2. Compute: wi0 =
g(d0|Xi

0)ν(Xi
0)

qm(Xi
0|d0)

.

3. Resample: X
i
0 ∼

∑r
i=1w

i
0δXi

0
(·).

• At time t ≥ 1, for all i ∈ {1, . . . , r}:

1. Sample: Xi
t ∼ qm(· | dt, X̄i

t).

2. Append: Xi
0:t = (X̄i

0:t−1, X
i
t).

3. Compute: wit =
g(dt|Xi

t)f(Xi
t |X̄i

t−1)

q(Xi
t |dt,X̄i

t−1)
.

4. Resample: X
i
0:t ∼

∑r
i=1w

i
tδXi

0:t
(·).

• Xi
0:t is an approximate sample from p(x0:t | d0:t).

Note that as a by product of using the SISR-algorithm, it follows that the likelihood may be
estimated according to

p̂(d0:n) =
n∏
t=0

1

r

r∑
i=1

wit, (9)

see e.g. Kantas et al. (2015).
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3.3 Particle smoothing

In Section 3.2, the SISR algorithm for obtaining the filtering distribution was described. Here one
can recall that this algorithm was derived from Bayes’ rule as a recursion going forward in time.
Likewise, one could just as well consider similar recursive relationships based on that the time is
reversed. This is what will be used in order to obtain the smoothing distribution.

p(x0:n | d0:n).

First note that an application of Bayes’ rule yields the following relation:

p(x0:n | d0:n) = p(xT | d0:n)p(x0:n−1 | d0:n, xn) = p(xn | d0:n)p(x0:n−1 | d0:n−1, xn)

= p(xn | d0:n)p(xn−1 | d0:n−1, xn)p(x0:n−2 | d0:n−2, xn−1)

= p(xn | d0:n)
N−1∏
k=0

p(xk | d0:k, xk+1),

where

p(xk | d0:k, xk+1) =
f(xk+1 | xk)p(xk | d0:k)

p(xk+1 | d0:k)
∝ f(xk+1 | xk)p(xk | d0:k).

Recall from Section 3.2 that Algorithm 1 produces an approximation of p(xk | d0:k). Thus, a com-
bination of these observations suggests Algorithm 2 for sampling from the approximate smoothing
distribution, which is the forward filtering backward sampling (FFBS) algorithm from Godsill et al.
(2004).

Algorithm 2 FFBS

• For t = n:

1. Sample: X̃n ∼
∑r
i=1w

i
nδX̄i

n
(·).

• For all t = n− 1, n− 2, . . . , 1:

1. Compute: wit|t+1 ∝ w
i
tf(X̃t+1 | X̄i

t) .

2. Sample: X̃t ∼
∑r
i=1w

i
t|t+1δXi

t
(·).

• X̃0:t is an approximate sample from p(x1:t | d1:n).

3.4 Choosing the importance distribution

Recall that the particle filter algorithms, Algorithm 1 and 2, assume that there is an importance
distribution q(xt | dt, xt−1) from which it is possible to draw random samples. How to choose such a
distribution is what will be discussed next. In order for Algorithm 1 and 2 to have small variances,
the importance distribution should be chosen to be a close approximation of g(dt | xt)f(xt | xt−1).
One way of doing this is as follows: Recall that as a byproduct of the GPCA estimation of Υ̂ an
estimated state vector x̂0:n is produced. Given the estimated state vector, one can make a second-
order Taylor expansion of log g(dt | xt) in xt around x̂0:n. For model (M1) this approach results in
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the following approximation

log g(dt | xt) ≈ log g(dt | x̂t) + (xt − x̂t)′D log g(dt | x̂t) +
1

2
(xt − x̂t)′D2 log g(dt | x̂t)(xt − x̂t)

= log g(dt | x̂t) +
1

2
(xt − x̂t)′Ht(xt − x̂t)

∝ 1

2
(xt − x̂t)′Ht(xt − x̂t), (10)

where “∝” corresponds to removing normalization constants not depending on xt, and where Ht :=
Ht(dt, x̂0:n, Υ̂) denotes the Hessian, which typically is obtained as a byproduct from the GPCA
optimization. Further, note that from Section 3.1 it follows that −Ht is positive semi-definite. Thus,
(10) is the un-normalized log-density, with xt as argument, of a multivariate Gaussian distribution
with mean x̂0:n and covariance (−Ht)

−1. Finally, by combining the above, the approximation of
log(g(dt | xt)f(xt | xt−1)) becomes

log
(
g(dt | xt)f(xt | xt−1)

)
≈ log g(dt | x̂t)−

1

2
(xt − x̂t)′(−Ht)(xt − x̂t)−

1

2
(xt − Γxt−1 − µ)′Σ−1(xt − Γxt−1 − µ)

∝ −1

2

(
xt −

(
−Htx̂t + Σ−1 (Γxt−1 + µ)

))′ (
−Ht + Σ−1

)(
xt −

(
−Htx̂t + Σ−1 (Γxt−1 + µ)

))
∝ log(q(xt | dt, xt−1)),

where q(xt | dt, xt−1) is the density of a multivariate Gaussian distribution with mean −Htx̂t +
Σ−1 (Γxt−1 + µ) and covariance (−Ht + Σ−1)−1.

Analogously, for Model (M2) the approximation of log
(
g(dt | xt)f(xt, kt | xt−1, kt−1)

)
instead be-

comes

log
(
g(dt | xt)f(xt, kt | xt−1, kt−1)

)
≈ log g(dt | x̂t)−

1

2
(xt − x̂t)′(−Ht)(xt − x̂t)

− 1

2
(xt − Γxt−1 − kt−1 − µ)′Σ−1(xt − Γxt−1 − kt−1 − µ)

− 1

2
(kt − ΓKkt−1)′(ΣK)−1(kt − ΓKkt−1)

∝ −1

2

( xt
kt

)
−
(
νt
νKt

)′( −Ht + Σ−1 0
0 (ΣK)−1

)( xt
kt

)
−
(
νt
νKt

)
∝ log(q(xt, kt | dt, xt−1, kt−1)),

where q(xt, kt | dt, xt−1, kt−1) is the density of a multivariate Gaussian distribution with mean
ν̃t = (νt, ν

K
t )′ and covariance Σ̃ given by

ν̃t =

(
−Hx̂t + Σ−1 (Γxt−1 + kt−1 + µ)

ΓKkt−1

)
,

Σ̃ =

(
−Ht + Σ−1 0

0 (ΣK)−1

)−1

.

In practice, to ensure a finite variance, a t-distribution with 3 degrees of freedom with location
vector ν̃t and shape matrix Σ̃ is used instead.
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3.5 Parameter estimation

As described in the beginning of Section 3, given that it is possible to obtain approximate samples
from the smoothing distribution p(x0:t | d0:n), the suggested approach to fit the parameter vector ψ is
to use the stochastic approximation expectation maximization (SAEM) algorithm. The description
of this method outlined below is primarily based on Cappé et al. (2006), where further references
can be found.

To start off, recall the EM-algorithm: At step l:

1. E-step: Q(ψl, ψ) =
∫

log pψ(x0:n, d0:n)pψl
(x0:n | d0:n)dx0:n.

2. M-step: ψl+1 = argmaxψ Q(ψl, ψ).

Under certain conditions, the sequence ψl is guaranteed to converge to the maximum likelihood
estimate of ψ, see e.g. (Cappé et al., 2006, Ch. 10.5). Here pψ(x0:n, d0:n) is given by (3). Therefore,
disregarding terms not depending on ψ,

Q(ψl, ψ) =

∫ n∑
t=0

log fψ(xt | xt−1)pψl
(x0:n | y0:n)dx0:n.

Recall that the models in the current paper have multivariate Gaussian densities f(xt | xt−1),
belonging to the exponential family, which makes it possible to write the M-step explicitly using the
ML estimators from Lemma 3.1. That is, the M-step can be written in terms of a low dimensional
sufficient statistic S(x0:n).

To obtain a better estimate Q̂(ψl, ψ) one could draw a large number of replicates of X0:n. This is
often referred to as the Monte Carlo EM algorithm.

An alternative is to combine a stochastic approximation algorithm with the EM algorithm, which is
known as the SAEM algorithm. In practice this leads to an algorithm where the sufficient statistic
is updated in each step by taking a weighted average of the current value and the sufficient statistic
obtained by sampling from the smoothing distribution given the current estimates. The SAEM-
algorithm is described in Algorithm 3.

Algorithm 3 SAEM

• Initialize ψ = ψ0, and Ŝ0 = 0. Do for l = 1, 2, . . .:

1. Sample: X l,i
0:n ∼ pψl−1

(· | d0:n), i = 1, 2, . . . ,m.

2. Compute: Ŝl = Ŝl−1 + cl
[

1
r

∑r
i=1 S(X l,i

0:n)− Ŝl−1
]

.

3. New estimate: Using Ŝl, calculate ψl according to Lemma 3.1.

• ψl approximates the MLE of ψ.

There cl ≥ 0,
∑
l cl = ∞ and

∑
l c

2
l < ∞. Under certain assumptions, ψl is guaranteed to almost

surely converge to a stationary point of the log likelihood, as l → ∞, see e.g. Cappé et al. (2006,
Ch. 11.1.6) for details.
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4 Model validation

Recall from Lemma 2.1 that one may think of the data as coming from an experiment where a
Poisson process is observed for a fixed time e, the exposure-to-risk, during which d deaths occur.
This is used when fitting the model and may also be used when evaluating the model. Therefore,
when validating our model, the exposure-to-risk will be thought of as a fixed quantity, corresponding
to a sample size. Then the observed d will be compared to the predictive distribution of the number
of deaths in a Lexis square, denoted by P . In this setting it is natural to consider splitting the
data into a training and validation part, where parameters and state vectors are estimated based
on the training data and the model evaluation is based on the out-of-sample performance in the
validation part of the data. That is, the out-of-sample performance is evaluated, given that the
exposure-to-risk is assumed to be known.

On the other hand, when forecasting future values, the exposure-to-risk is yet to be observed, the
situation is different and this problem is discussed in Section 5.

In the present paper the predictive distribution will be evaluated using (proper) scoring rules, see
e.g. Gneiting and Raftery (2007); Czado et al. (2009). That is, loosely speaking, a scoring rule is
a function which assigns a numerical value to the quality of a candidate predictive distribution, P ,
w.r.t. observed data, d. A scoring rule is said to be “proper” if there exists a unique optimal value,
and it is “strictly proper” if the optimal value is attained for a unique P . It can be noted that many
of the classical loss functions used for model evaluation are scoring rules. One such which will be
used in the present paper is the absolute error

AE(P, d) := |d− µ|,

where µ is a point prediction based on P . Observe that this is a proper, but not strictly proper,
scoring rule since any predictive distribution with the same point forecast, e.g. median, will give the
same absolute error. Note that AE is a negatively oriented scoring rule, i.e. the aim is to minimize
AE. A more informative measure, which is a proper, negatively oriented, scoring rule is the interval
score (IS) defined according to

ISγ(P, d) := (u− l) +
2

γ
(l − d)1{d<l} +

2

γ
(d− u)1{d>u},

where l and u denote lower and upper 100(1− γ)% percentiles, respectively, of the distribution P ,
see e.g. Gneiting and Raftery (2007). The IS measure is a generalization of the standard probability
coverage measure. In practice the average of these losses will be analyzed, corresponding to the
“Mean AE” (MAE) and “Mean IS” (MIS), and it is, hence, clear that reducing MAE and MIS
still corresponds to improving model performance compared with observed data. Moreover, both
measures may be used for model selection purposes based on both in-sample (training) and out-of-
sample (validation) performance.

Furthermore, recall that the parameters in model (M1) (and model (M2)) are estimated by maxi-
mizing the log-likelihood, which is equivalent to maximizing the logarithmic score (see e.g. Gneiting
and Raftery (2007); Czado et al. (2009))

logs(P, d) := logP (d),

where P (d) is the probability mass of the observation d in a predictive distribution, which is as
proper scoring rule. That is, maximizing the likelhood is equivalent to maximizing

l(d0:n) =
∑
S

logs(PS , dS),
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which is a proper scoring rule. Here one can note that compared with (M)AE and (M)IS, where the
optimal value is 0, the logarithmic score only tells us that a higher value is better. Still, scaling and
translation of a proper scoring rule using constants, is still a proper rule. One choice of scaling and
translation of the logarithmic score suggested in Cameron and Windmeijer (1996) which produces
an R-squared like measure is the following:

R2
Dev :=

∑
S logs(PS , dS)−

∑
S logs(PS , dS)∑

S logs(P̂S , dS)−
∑
S logs(PS , dS)

,

where “Dev” refers to that both the numerator and the denominator are deviance residuals. Further,
P̄ denotes the likelihood in a model with only a constant intercept. In the present case this will be
taken as the model with one constant death rate per age. The likelihood P̂ is the saturated model,
i.e. where the number of parameters are equal to the number of observations. The sums are taken
over all the observed lexis squares. Note that it is clear that R2

Dev ≤ 1, but unlike a standard R2 it
is not certain that R2

Dev ≥ 0, since this will depend on whether P̄ is a sub-model of P or not.

Moreover, R2
Dev is possible to calculate both on the training and the validation part of the data, by

calculating the model likelihood, PS , according to Equation (9). From the calculation of PS using
(9) it follows that this can only be done easily for the total likelihood. That is, it is not possible
to calculate logs or R2

Dev for e.g. a particular age or calendar year – something which often is of
interest when assessing predictive model performance. In order to, at least partly, overcome this
shortcoming, the following scoring rule is suggested

logs∗(P, d) := EX|D[logP (X, d)],

which is equivalent to the “E”-step of the EM-algorithm, described in Section 3.5. The core of
the EM-algorithm is that by improving logs∗(P, d) it follows that logs is improved as well, see e.g.
Dempster et al. (1977) or (Cappé et al., 2006, Ch. 10.1.2). Moreover, logs∗ is easy to calculate
for e.g. a single age or calendar year, since it only amounts to drawing approximate samples from
p(x0:t | d0:n), where t ≤ n′, with n′ being the last observed year in the validation data and n being
the last observed year in the training data, i.e. n ≤ n′. Here it is important to note that the
influence of d0:n on xt, n < t ≤ n′ is via the evolution of xn′+1:t based on the state vector x0:n′ –
an evolution entirely governed by the dynamics of the latent Gaussian Xt-process. Furthermore, by
using logs∗ it is natural to introduce

R2,∗
Dev :=

∑
S logs∗(PS , dS)−

∑
S logs(PS , dS)∑

S logs(P̂S , dS)−
∑
S logs(PS , dS)

,

which follows by noting that logs∗(·) = logs(·) unless P is used, and again note that R2,∗
Dev ≤ 1, but

R2,∗
Dev may be smaller than 0, due to the same reasons as for R2

Dev.

5 Forecasting

The main goal of the present paper is to forecast mortality. In this section a number of complications
related to this are discussed. The specifics of the forecast depends on what is assumed to be known
and what one wants to forecast. E.g.

1. The perhaps most basic quantity of interest when forecasting, regardless of the size of the
population, is the mean or (distribution) of MSa,t .
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2. When making forecasts for subpopulations, e.g. individuals in an insurance portfolio, the
actual number of deaths is of interest and not only the mortality rate. In this situation the
randomness from the Poisson process should be taken into account. Here, typically, individual
level information is available.

3. When forecasting mortality in larger populations the actual number of deaths may also be of
interest, e.g. when making country level demographic forecasts. In this situation, however,
information on individual level may not be available or may be impractical to incorporate.

Having fitted the model and obtained the filtering distribution of the state variables at present time,
forecasting the state variables is simple. One may either use Monte Carlo simulation to iterate the
recursion equation for the state variables, starting at the particle approximation of the present time
filtering distribution, to obtain approximations of the distribution at a future time. Or, since the
state variables are Gaussian, conditioned on each particle, the forecast will also be Gaussian for
each particle, with mean and covariance recursively calculable. In this way it is possible to obtain
the predictive distribution of future MSa,t , which covers Case 1 above.

Considering Case 2, assume that a forecast of MSa,t = mSa,t has been produced, and the corre-
sponding forecasted death count will be conditioned on this value. Further, recall that the current
modelling approach is motivated by the structure of a Lexis diagram. This means that a single
individual of age a ≥ 1 at year t, can experience one of the following three events during year t:

(a) With probability pa
a,t, die while being of age a.

(b) With probability pb
a,t, live until becoming of age a+ 1, but die before the end of year t.

(c) With probability pc
a,t, live throughout the entire year t.

Concerning the age a = 0, it is clear that pa
0,t = 1 − pc

0,t. Further, note that an individual i,
born at calendar time bi, which is a years old at the start of year t, was born in calendar year
yi = bbic = t− (a+ 1). Thus, the time point during year yi at which individual i was born is given
by ui = bi − yi = bi − t+ (a+ 1) ∈ [0, 1]. That is, in order to specify pa

a,t, p
b
a,t and pc

a,t explicitly, it
suffices to know a ∈ N, t ∈ N, u ∈ [0, 1], and mSa,t :

Lemma 5.1. The probabilities for a single individual born at time b = t − (a + 1) + u, calculated
under the assumptions underlying Lemma 2.1, conditional on mSa,t and u, are given by

pa
a,t(mS , u) = 1− e−umSa,t ,
pb
a,t(mS , u) = e−umSa,t (1− e−(1−u)mSa+1,t ),

pc
a,t(mS , u) = e−umSa,te

−(1−u)mSa+1,t ,

for a ≥ 1. For a = 0 it holds that

pa
0,t(mS , u) = 1− e−umS0,t ,

and pc
0,t(mS , u) = 1− pa

0,t(mS , u).

The proof is a simple application of the probabilities used in the derivation of Lemma 2.1.

Therefore, given Lemma 5.1, it follows that an individual which is a years old at the start of calendar
year t that experiences event (a) will contribute to the death count of a year olds. But if the same
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individual instead experiences event (b), will contribute to the death count of a+1 year olds. Thus,
if Da,t denotes the total number of deaths in age group a during year t it follows that

Da,t | mS ∼
na,t∑
i=1

Be(pa
a,t(mS , ui)) +

na−1,t∑
i=1

Be(pb
a−1,t(mS , ui)), (11)

where na,t is the number of a year old individuals alive at January 1st of year t. Note that this
forecast is only applicable for one year ahead forecasts. After that, the number of individuals
alive becomes random. But it is straightforward to implement multi-year forecasts either by doing
bookkeeping of which individual is alive after each forecasted year, or by forecasting each individual’s
path in the Lexis diagram separately.

In Case 3 we do not assume complete information on each individual, and we are also only interested
in the aggregate number of deaths each year. However, one needs to make assumptions on the
distribution of time of birth of the individuals. A simplification commonly used in this situation
is to assume that all individuals are born mid year, i.e. ui ≡ 0.5 for all individuals i. Another
possible simplification is to assume that individuals are born uniformly during each year, see e.g.
Wilmoth et al. (2017, Sec. 2). These assumptions can of course be questioned, but are in many
situations satisfactory approximations. By assuming that the stochastic birth time during a year,
U , is uniform, i.e. U ∼ U(0, 1), it follows that pa

a,t and pb
a,t from Lemma 5.1 simplifies to

p̃a
a,t(mS) = E[pa

a,t(mS , U) | mS ] = 1− 1
mSa,t

(
1− e−mSa,t

)
,

p̃b
a,t(mS) = E[pb

a,t(mS , U) | mS ] = 1
mSa,t

(
1− e−mSa,t

)
− 1

mSa,t−mSa+1,t

(
e
−mSa+1,t − e−mSa,t

)
.

(12)

Note that for mt � 1 it follows that

p̃a
a,t(mS) ≈ pa

a,t(mS , 1/2) ≈ 1

2
mSa,t ,

p̃b
a,t(mS) ≈ pb

a,t(mS , 1/2) ≈ 1

2
mSa+1,t ,

by using a Taylor expansion. Both approximations are therefore approximately equal.

Further, another observation is that, by plugging in the expressions for p̃a
a,t and p̃b

a,t into relation
(12), it follows that

Da,t | mS ∼ Bin(na,t, p̃
a
a,t(mS)) + Bin(na−1,t, p̃

b
a−1,t(mS)). (13)

For each simulated trajectory of MS-values, it is possible to forecast death counts, given the number
of individuals alive. Note that the structure of (13) only relies on that all birth-times are i.i.d., but
not necessarily uniformly distributed.

We end this section by commenting on how to simulate in order to gain information on exposure-
to-risk or when one wants to use analytically intractable assumptions on birth times. In these
situations one may use the following simulation procedure to simulate (a), (b), and (c):

(0) If the individual birth-time of individual i is unknown, initialize individual i by drawing a
random birth-time Bi from a suitable distribution.

(1) Draw a Ta,t ∼ Exp(mSa,t)-distributed random variable.
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(a) If Ta,t ≤ Bi individual i died being of age a, and contributed with Ta,t to the exposure-
to-risk, Ea,t.

(b) If Ta,t > Bi individual i has survived age a during year t and contributes with Bi to the
exposure-to-risk Ea,t.

(2) Draw a Ta+1,t ∼ Exp(mSa+1,t)-distributed random variable.

(b) If Ta+1,t ≤ 1 − Bi, individual i died being of age a + 1, and contributed with Ta+1,t to
the exposure-to-risk, Ea+1,t.

(c) If Ta+1,t > 1−Bi individual i has survived age a+ 1 during year t and contributes with
1−Bi to the exposure-to-risk Ea+1,t.

6 Numerical illustration

The aim with the current section is to illustrate how the proposed class of state space models
defined by (M1) performs when calibrated to Swedish and US mortality data. All data have been
collected from the Human Mortality Database (HMD), see Human Mortality Database (2018). The
purpose of this section is not necessarily to find the best model for the analyzed data, but merely to
illustrate how the models and methods introduced in the present paper applies. Still, we will focus
our attention on model (M2), which explicitly allows for a random drift term, a situation treated
in e.g. Pedroza (2006).

Concerning parameter estimation, the particle filter techniques described in Section 3.2 - 3.4, and
the SAEM-algorithm, Section 3.5, have been used with the following configuration:

1. Run the FFBS-algorithm, see Algorithm 2, with 50 particles and use the SAEM-algorithm,
see Algorithm 3, with 50 iterations with ci := 1, i = 1, . . . , 50.

2. Use the estimated parameters from Step 1 as starting values for a second run of the FFBS-
algorithm using 350 – 500 particles for 100 iterations of the SAEM-algorithm, using ci :=
i−0.6, i = 1, . . . , 100, where we used 350 particles for 1-3 GPCA components and 500 particles
for 4 and 5 GPCA components.

The idea with using Step 1 is to hopefully avoid getting stuck close to possibly poor starting values.

Regarding the choice of starting values, recall the non-uniqueness of the estimates of Υ and the
corresponding state vector x̂0:t from the GPCA, see the comments following Lemma 3.2. This
suggests to do as follows: Let Σ̂ denote the empirical p × p-dimensional covariance matrix of x̂0:t,
and make a Cholesky factorization of Σ̂ expressed in terms of σ̂, i.e. Σ̂ = σ̂σ̂′. Then, set

̂̂
Υ := Υ̂σ̂,

and ̂̂x0:t := (σ̂′)−1x̂0:t,

that is,

Υ̂x̂0:t =
̂̂
Υ̂̂x0:t,

but ̂̂x0:t will now have an empirical covariance which is a p × p-dimensional identity matrix. Note
that this procedure is a slight violation of the original GPCA-optimization: The suggested scaling
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Figure 2: Estimates of ψl from the SAEM-algorithm, Algorithm 3, fitted to Swedish male data from
1930 to 1960.

does not affect the value of the loss function used in the optimization, but it will affect its derivative.
As a compromise, we propose to re-fit Υ̂, given ̂̂x0:t. By using this re-parametrization all covariance
matrices are assumed to be diagonal: The covariance matrix Σ is assumed to be an identity matrix
and Σ0 a diagonal matrix with the value 100 along the diagonal. The initiation of Σ0 is chosen in
order to reduce the influence of a possibly bad starting value, and to avoid the optimization getting
stuck near to such a value. Concerning the other starting values, all matrices are set to identity
matrices and all mean vectors are set to 0.

Concerning the data to be used, there are known differences between female and male mortality, and
our initial focus will be on Swedish males. In Figure 3(a)–3(c) the first three GPCA components
are shown for Swedish males when the model has been fitted on data from 1930-1960. As seen
from the figures, the behavior of the GPCA-components becomes increasingly irregular where the
first component is the smoothest. This observed increase in irregularity is the reason for using
more particles in the analyses of models containing more GPCA-components. The convergence
of ψi in the SAEM-algorithm, Algorithm 3, is illustrated in Figure 2 for the situation with three
GPCA-components fitted on Swedish male data from 1930 to 1960. From Figure 2 there are no
obvious signs of poor convergence of the SAEM-algorithm, and we continue the analysis using the
estimated ψ. In Figure 3(e) and 3(f) it is seen that both MAE and MIS favours increasing the
number of GPCA-components to be used for all ages. Note that the increase in MAE and MIS with
increasing age is not surprising, since the mortality rate increases with age. This suggests that one
instead could consider analysing MAE and MIS scaled with e.g. the expected or observed number
of deaths. When turning to R2,∗

Dev from (4), again, the measure is improved when increasing the

number of GPCA-components, see Figure 3(d). It is, however, clear that according to R2,∗
Dev, the

performance is poorer for ages in the interval 45-65. This indicates that the performance of model
(M2) does not outperform the constant mean mortality model, P̄ from (4), for these ages during
the years 1930-1960. On the other hand, recall that R2,∗

Dev is an approximation of R2
Dev from (4),
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Table 1: Calculated values of R2
Dev for model (M2) fitted to Swedish male data for the years 1930-

1960.

No. GPCA 1 2 3 4 5

R2
Dev 0.9817 0.9953 0.9960 0.9964 0.9965

introduced in order to be able to assess model performance within e.g. specific ages, whereas R2
Dev

only is possible to calculate over all ages and time periods in total. In Table 1 R2
Dev is calculated

for Swedish male data from 1930-1960, where it is seen that the in-sample performance is very good
seen as a whole, and increases when increasing the number of GPCA-components being used, as
expected.

The measures MAE, MIS, and R2,∗
Dev are all calculated using the model (M2), which is a model for

death counts, whilst many practitioners are more used to considering models for mortality rates.
Thus, from now on our focus will be on the latent M -process and the simulated mortality rate
process M∗ obtained according to

M∗S =
D∗S
eS

. (14)

It is possible to compare M∗ from (14) with the observed crude estimates m̂S from (2), that is,

m̂S =
dS
eS
,

and in particular, it is possible to decompose the observed variation into a population (“Poisson”)
variation and variation stemming from the latent M -process (“signal”):

Var(M∗S) = E[Var(M∗S |MS)]︸ ︷︷ ︸
=“Poisson”

+ Var(E[M∗S |MS ])︸ ︷︷ ︸
=“signal”

.

In Figure 3(g) this is illustrated for Swedish males of age 40, from which it is seen that essentially
all variation seen in M∗a,t stems from the population part of the underlying process. Another way
of illustrating this is given in Figure 3(h) and 3(i) where the m̂a,t is compared with M∗a,t and Ma,t,
respectively. From these figures it is evident that the variation in the M -process does not capture
the variation seen in the m̂:s – which is reasonable since the M -process is independent of population
size. Moreover, this suggests that Lee-Carter type models will overestimate the mortality rate risk
in these situations.

Regarding the out-of-sample performance in the period 1961-2016, Figure 4(a) - 4(c) show, as
expected, that the MAE, MIS and R2,∗

Dev favors fewer GPCA components, where 2 or 3 GPCA

components seem to be the best compromise for all ages. One can, however, note that R2,∗
Dev

indicates a very poor out-of-sample performance for ages 40 - 80. For easier comparison with
the corresponding in-sample performance, see Figure 4(d), where R2,∗

Dev is plotted for model (M2)
using three GPCA-components. Upon closer inspection, the lack of performance is due to a drastic
decline in mortality occurring around the year 1980 in the mentioned age span, see Figure 4(g) for
the model performance of 80 year old Swedish males when using three GPCA-components. Thus,
in light of Figure 4(g) the poor model performance is to be expected. Further, Figure 4(h) shows
the model performance when the model with three GPCA-components has been fitted to data from
1930-1990, hence including the discussed mortality decline for ages 40-80. Even if the out-of-sample
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performance still is poor, one can note that the model behaves as expected: The first ten years of the
sharp decline in the mortality rates for ages 40-80 is now included in the data being used for fitting,
and the model reacts to these values as if they are part of a temporary observed anomaly, since the
predictions strive to return to an evolution similar to the historical trend. Moreover, by inspecting
R2,∗

Dev in Figure 4(d) it is also seen that by including parts of the mortality decline in the data
used for fitting, the overall in-sample performance is improved, but at a cost of poorer predictive
performance for a wider span of ages. In Figure 4(i) the model with three GPCA-components has
been fitted to the period 1970-2000, and it is now clear that the model has been able to adapt
to the change in the observed mortality patterns. Still, the in-sample performance is somewhat
poorer in general, but descent as a whole, see Figure 4(d). Concerning the out-of-sample R2,∗

Dev from

Figure 4(d), the behaviour is highly erratic, but here one shall keep in mind that each R2,∗
Dev value

is only calculated as an average of 16 years. In Figure 5(a) - 5(c) the simulated total, in-sample
and out-of-sample, trajectories for Swedish males of age 10, 40, and 80 are shown, using three
GPCA-components, fitted to the years 1970-2000, and it is seen that the overall performance is
satisfactory. One can also note that R2

Dev from (4) increases, compared to using data from 1930-
1960, when fitting the models to data from 1930-1990 and 1970-2000 – attaining the highest value
for the latter time period.

Continuing, in Figure 5(d) - 5(f) the model performance for Swedish females of ages 10, 40, and
80, is illustrated for model (M2) with two GPCA components fitted on data from 1950-1980, and
Figure 5(g) - 5(i) shows the same situation for US females when using model (M2) with three
GPCA-components. From the figures for the Swedish females it is seen that there is a similar
decline in mortality for age 40, but less pronounced than the one seen in Figure 4(g) for Swedish
male 80 year olds. Also note that no sudden drop in mortality is seen for Swedish female 80 year
olds. Concerning the US females the mortality pattern is more irregular, and there are signs of a
change in trend around 1990 where the mortality seems to increase, which is something not captured
by the model. Moreover, when inspecting US female 80 year olds the in-sample variation seems to
be too small.

To summarize the above numerical illustration, we have seen the importance of using predictive
measures for model selection, as well as the importance of assessing model performance based on
death counts or scalings thereof (i.e. m̂ versus M∗). We have also described in detail how model (M2)
may be used in practice, and shown that the model is able to capture most of the relevant dynamics
observed in the analysed historical data. Moreover, we have also seen that the model behaves as
expected when data used for fitting contains drastic changes in mortality trends. Another important
observation is that the analyses imply that by not explicitly accounting for the Poisson part of the
variation too much variation may be attributed to the latent mortality rate process. This may,
hence, be a problem for Lee-Carter type models.

7 Conclusions

In the present paper it has been argued for using a Poisson state space model for mortality forecast-
ing. The Poisson part of the model arises naturally from the mortality dynamics of a continuous
time Lexis diagram. The unobservable state process corresponding to a mortality rate process is
modelled as a multivariate Gaussian process inspired by the Lee-Carter model and its extensions, see
e.g. Booth and Tickle (2008); Haberman and Renshaw (2011). The suggested model class provides
models for death counts, as opposed to e.g. Lee-Carter like models, which are models for mortality
rates. Furthermore, most Lee-Carter like models are fitted in a two step procedure, where first
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raw mortality estimates are obtained according to e.g. (2), and then, in a second step, a stochastic
process is fitted to the raw mortality rates. By using the suggested Poisson state space models es-
timation may be done coherently in a single step using particle filter techniques and the stochastic
approximation EM-algorithm. Moreover, since all model parameters are estimated using maximum
likelihood theory it is argued that it is natural to use versions of logarithmic scores for model per-
formance assessment. In particular, an R2-like measure is introduced, which is closely connected
to the “E”-step in the SAEM-algorithm. This measure is possible to calculate both in-sample and
out-of-sample for specific ages and time periods, and is a proper scoring rule.

A large number of numerical illustration is also provided, where the necessary steps to fit the model
and make forecasts have been discussed. In this numerical illustration it was also shown that by using
the Poisson state space model for death counts it is possible to decompose the observed variability
in terms of “population” (or Poisson) variation and “signal” (or mortality rate) variation. For the
Swedish data sets it is clear that the Poisson part of the variation is dominating. This suggests that
Lee-Carter type models will overestimate the mortality rate risk in these situations.
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Figure 3: Fig. 3(a)–3(c): First three GPCA components, Swedish males, 1930-1960. In Fig. 3(d) –
3(f), the number of GPCA components, 1 – 5, are indicated by lines that are solid, short dashed,
dotted, dash-dotted, and long dashed, respectively. Fig. 3(d) – 3(f) shows, from left to right, R2,∗

Dev,
MAE, and MIS, calculated in-sample for the period 1930-1960 for Swedish males. Fig. 3(g): In-
sample variance produced by the model for simulated mortality rates, Swedish males, age 40, three
GPCA components; total variance (solid line), population variance (dashed line). Fig. 3(h): 95%
yearly confidence levels for the simulated mortality rates M∗ for Swedish males using three GPCA
components (grey area), median (solid line), observed mortality rates, m̂, (circles). Fig. 3(i): Same
as in Fig. 3(h), but for the simulated latent M -process.
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Figure 4: Fig. 4(a) – 4(c) shows the out-of-sample analog of Fig. 3(d) – 3(f), where all parameters
have been estimated based on Swedish male data from 1930-1960, and the predictions are made
for the period 1961-2016. Fig. 4(d) – Fig. 4(f): R2,∗

Dev where solid lines corresponds to in-sample
performance and dashed lines corresponds to out-of-sample performance when using three GPCA-
components – models fitted using data from 1930-1960, 1930-1990, and 1970-2000, respectively. Fig.
4(g)–4(i): 95% yearly confidence/prediction intervals (grey area) for simulated mortality rates M∗,
Swedish males, age 80, three GPCA components, median (solid line), observed mortality rates, m̂,
(circles) – models fitted using data from 1930-1960, 1930-1990, and 1970-2000, respectively.

24



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

0e+00

1e−04

2e−04

3e−04

4e−04

5e−04

1970 1980 1990 2000 2010
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(a)

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

0.001

0.002

0.003

1970 1980 1990 2000 2010
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(b)

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.04

0.06

0.08

0.10

1970 1980 1990 2000 2010
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(c)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00

2e−04

4e−04

6e−04

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(d)

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

0.0005

0.0010

0.0015

0.0020

0.0025

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(e)

●

●

●

●

●

● ●

● ●

●

● ●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
● ●

● ●
●

●

●

●

●

●

● ● ●

● ●
●

● ●
●

●

●

●

●

●

● ●

● ● ●

●

●

● ●

0.050

0.075

0.100

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(f)

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

● ●

● ●

●
1e−04

2e−04

3e−04

4e−04

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(g)

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
● ●

●

●
● ●

●

● ●

●

● ●
●

●

●
● ●

● ●

●

● ● ● ●
●

●

0.0010

0.0015

0.0020

0.0025

0.0030

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(h)

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

●
●

●

●
●

●

●

● ● ● ● ● ●
●

●

● ●

●

●
●

●

●
●

● ● ● ● ●
●

●
●

0.04

0.06

0.08

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(i)

Figure 5: In all figures, 95% confidence/prediction intervals for the simulated centralized mortality
rates (dashed lines), median (solid line), observed centralized mortality rates (circles). In all figures,
from left to right, age 10, age 40, and age 80, respectively. Fig. 5(a)–5(c): Swedish males, three
GPCA components, model fitted using data from 1970-2000. Fig. 5(d)–5(f): Swedish females, five
GPCA components, model fitted using data from 1950-1980. Fig. 5(g)–5(i): US females, three
GPCA components, model fitted using data from 1950-1980.

25



Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society. Series B (methodological), pages
1–38.

Durbin, J. and Koopman, S. J. (2012). Time series analysis by state space methods. Number 38.
Oxford University Press.
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A Proofs and mathematical motivations

A.1 Proof of Lemma 2.1

Following standard theory of counting processes with multiplicative intensity processes, see e.g.
Andersen et al. (1993); Aalen et al. (2008): Let t̃i denote the last time point when individual i was
observed to be alive, bi ≤ t̃i ≤ qi, let δi = 1 if individual i died at t̃i and 0 otherwise. If we further
assume that all individuals are independent, we get that the log-likelihood function is given by

l(m) ∝
n∑
i=1

δi logm(ai(t̃i), t̃i)−
n∑
i=1

∫ t̃i

t
λi(t)dt

=
n∑
i=1

δi logm(t̃i − bi, t̃i)−
n∑
i=1

∫ t̃i

t
m(t− bi, t)Yi(t)dt.

Thus, if we consider the situation with constant hazard rates on yearly Lexis-squares, i.e. M ={
mS | S ∈ S̄

}
, it follows that

l(M) ∝
n∑
i=1

∑
S∈S̄

δi1{(ai ,̃ti)∈S} logmS −
n∑
i=1

∑
S∈S̄

mS

∫ t̃i

t
Yi(t;S)dt

=
∑
S∈S̄

(dS logmS − eSmS),

which is exactly the result from Lemma 2.1.

A.2 Proof of Lemma 3.1

These are standard results for VAR processes, see e.g. Hamilton (1994), which are included for the
sake of completeness. This section is split into two parts, one for model (M1), and one for model
(M2).

Here we use that for matrices X and Y , of suitable dimensions,

∂

∂X
log |detX| = (X ′)−1,

∂

∂X
tr(XY ) = Y ′.
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Model (M1)

By combining (7) and (4),

fψ(x0:n) = v(x0)
n∏
t=1

fψ(xt | xt−1)

∝|Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(xt − Γxt−1 − µ)′Σ−1 (xt − Γxt−1 − µ)

}
.

That it is an exponential family is clear since it is multivariate normal and that it is curved follows by
finding the natural parameters and sufficient statistics. Since the quadratic form in the exponential
function is a scalar and

tr(AB) = tr(BA) = tr(A′B) = vec(A) · vec(B),

it follows that

− 1
2

n∑
t=1

(xt − Γxt−1 − µ)′Σ−1 (xt − Γxt−1 − µ)

= vec


Σ−1

−2Σ−1Γ
Γ′Σ−1Γ
−2µ′Σ−1

µ′Σ−1Γ

 · vec



∑n
t=1 xtx

′
t∑n

t=1 xt−1x
′
t∑n

t=1 xt−1x
′
t−1∑n

t=1 xt∑n
t=1 xt−1

+ nµ′Σ−1µ.

We see that the dimension of the natural parameter is larger than that of ψ, and so the exponential
family is curved. Let us denote the sufficient statistic as

S(x0:n) =


S1(x1:n)
S2(x0:n)
S3(x0:n−1)
S4(x1:n)
S5(x0:n−1)

 =



∑n
t=1 xtx

′
t∑n

t=1 xt−1x
′
t∑n

t=1 xt−1x
′
t−1∑n

t=1 xt∑n
t=1 xt−1

 . (15)

Towards finding the ML estimators, define

ε̂t := xt −
[
µ̂ Γ̂

] [ 1
xt−1

]
.

The log-likelihood as a function of Γ and µ is, ignoring constants, given by

−2l(Γ, µ) =
n∑
t=1

xt − [µ Γ
] [ 1
xt−1

]′Σ−1

xt − [µ Γ
] [ 1
xt−1

]
= tr

Σ−1
n∑
t=1

ε̂tε̂
′
t

+ tr

Σ−1
n∑
t=1

[µ̂− µ Γ̂− Γ
] [ 1
xt−1

][µ̂− µ Γ̂− Γ
] [ 1
xt−1

]′


+ 2 tr

Σ−1
n∑
t=1

ε̂t
[
1 x′t−1

] [µ̂′ − µ′
Γ̂′ − Γ′

] .
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If Γ̂ is such that the third term above is 0, it is clear that Γ = Γ̂ is a minimum. Therefore, the
condition for a minimum is that

n∑
t=1

ε̂t
[
1 x′t−1

]
=

n∑
t=1

xt − [µ̂ Γ̂
] [ 1
xt−1

][1 x′t−1

]

=
[
S4 S′2

]
−
[
µ̂ Γ̂

] [ n S′5
S5 S3

]
= 0,

with solution [
µ̂ Γ̂

]
=
[
S4 S′2

] [ n S′5
S5 S3

]−1

. (16)

Consequently, the log-likelihood as a function of Σ−1, evaluated at Γ̂ and µ̂, is given by

−2l(Σ−1; Γ̂, µ̂) = −n log | Σ−1 | + tr Σ−1
n∑
t=1

ε̂tε̂
′
t,

which yields
d

dΣ−1

[
−2l(Σ−1; Γ̂, µ̂)

]
= −nΣ +

n∑
t=1

ε̂tε̂
′
t,

resulting in the following MLE

Σ̂ =
1

n

n∑
t=1

ε̂tε̂
′
t =

1

n

n∑
t=1

xt − [µ̂ Γ̂
] [ 1
xt−1

]xt − [µ̂ Γ̂
] [ 1
xt−1

]′

=
1

n

S1 −
[
S4 S′2

] [µ̂′
Γ̂′

]
−
[
µ̂ Γ̂

] [S′4
S2

]
+
[
µ̂ Γ̂

] [ n S′5
S5 S3

] [
µ̂′

Γ̂′

] . (17)

Model (M2)

By using analogous arguments as those used for model (M1) the MLE of ΓK is given by

Γ̂K = S′2(k0:n)S−1
3 (k0:n−1),

and of ΣK by,

Σ̂K =
1

n

(
S1(k1:n) + Γ̂S3(k0:n−1)Γ̂′ − S′2(k0:n)Γ̂′ − Γ̂S2(k0:n)

)
.

For ΓX and µ, the condition for the MLE is that

n∑
t=1

xt − kt−1 −
[
µ̂ Γ̂X

] [ 1
xt−1

][1 x′t−1

]

=

([
S4(x1:n) S′2(x0:n−1)

]
−
[
S5(k0:n−1)

∑n
t=1 kt−1x

′
t−1

])
−
[
µ̂ Γ̂X

] [ n S′5(x0:n−1)
S5(x0:n−1) S3(x0:n−1)

]
= 0,

with solution[
µ̂ Γ̂X

]
=

([
S4(x1:n) S′2(x0:n−1)

]
−
[
S5(k0:n−1)

∑n
t=1 kt−1x

′
t−1

]) [ n S5(x0:n−1)′

S5(x0:n−1) S3(x0:n−1)

]−1

(18)
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The MLE of Σ is then

Σ̂ =
1

n

n∑
t=1

xt − kt−1 −
[
µ̂ Γ̂

] [ 1
xt−1

]xt − kt−1 −
[
µ̂ Γ̂

] [ 1
xt−1

]′

=
1

n

S1(x1:n) + S3(k0:n−1) +
[
µ̂ Γ̂

] [ n S′5(x0:n−1)
S5(x0:n−1) S3(x0:n−1)

] [
µ̂′

Γ̂′

]
(19)

−
n∑
t=1

xtk
′
t−1 −

n∑
t=1

kt−1x
′
t −

[
S4(x1:n) S′2(x0:n)

] [µ̂′
Γ̂′

]
−
[
µ̂ Γ̂

] [S′4(x1:n)
S2(x0:n)

]
(20)

+
[
S5(k1:n)

∑n
t=1 kt−1x

′
t−1

] [µ̂′
Γ̂′

]
+
[
µ̂ Γ̂

] [ S′5(k1:n)∑n
t=1 xt−1k

′
t−1

]. (21)

A.3 Proof of Lemma 3.2

We will now show that − log gΥ(d0:n | x0:n) is bi-convex in Υ and x0:n in the sense of (Gorski et al.,
2007, Def. 1.2), but not jointly convex in (Υ, x0:n).

First, note that Υ ∈ Rm×p and xt ∈ Rp, t = 0, . . . , n, are both elements of convex sets. Further,
note that

− log gΥ(d0:n | x0:n) = −
n∑
t=0

log gΥ(dt | xt),

can be decomposed into a sum of terms of the form

h(z; k, d) = kez − dz,

where k > 0 and d > 0 are constants, that is

− log gΥ(dt | xt) =
k∑
i=1

h((Υxt)i; (et)i, (dt)i).

By straightforward differentiation it is clear that h(z; k, d) is convex in z, but not monotone. More-
over, let xt := (xt, . . . , xt) ∈ Rm×p and let 1i denote the mp×mp matrix whose off-diagonal elements
are 0 with a diagonal consisting of zeros and ones defined so that the following relation holds

vec(Υ)′1i vec(xt) = (Υxt)i ∈ R.

By using this representation it follows that

vec(Υ)′1i vec(xt) =: AΥ,i vec(xt)

=: Axt,i vec(Υ),

and, in particular,

− log gΥ(dt | xt) =
k∑
i=1

h((Υxt)i; (et)i, (dt)i)

=
k∑
i=1

h(AΥ,i vec(xt); (et)i, (dt)i)

=
k∑
i=1

h(Axt,i vec(Υ); (et)i, (dt)i),
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which corresponds to compositions of affine mappings of a convex function. This shows that
− log gΥ(dt | xt) is convex in Υ given xt, as well as, convex in xt given Υ, see e.g. (Boyd, 2004, Ch.
3.2). The argument can be repeated to show that − log gΥ(d0:n | x0:n) is bi-convex w.r.t. Υ and
x0:n.

The following counter example shows that − log gΥ(d0:n | x0:n) is not jointly convex:

h
(
(pu1 + (1− p)u2)(pv1 + (1− p)v2); k, d

)
> ph

(
u1v1; k, d

)
+ (1− p)h

(
u2v2; k, d

)
,

when k = d = 1, p = 0.8 and (u1, v1) = (−1.5, 1), (u2, v2) = (−0.5, 1.5).

Consequently, − log gΥ(d0:n | x0:n) is bi-convex in Υ and x0:n separately, but not jointly convex in
both Υ and x0:n.
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