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Abstract

In this paper we derive the asymptotic distribution of the test of the efficiency of

the tangency portfolio in high dimensional settings, namely when both the portfolio

dimension and the sample size grow to infinity. Moreover, we propose a new test

based on the estimator for the slope parameter of the efficient frontier in the mean-

variance space when there is a possibility in investing into the riskless asset, and

derive the asymptotic distribution of that test statistic under both the null and

alternative hypotheses. Additionally, we study the finite sample performance of the

derived theoretical results via simulations.
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1 Introduction

Since the introduction of mean-variance theory by Markowitz (1952), a large number

of papers devoted to the optimal portfolio selection have been published and brought

remarkable contributions in different avenues of finance, be it in research or in practice.

Since then, the problem of testing the efficiency of a given portfolio has gained a lot

of attention (Bodnar and Schmid (2008); Bodnar et al. (2019a); Gibbons et al. (1989);

Glombek (2014); Britten-Jones (1999); Muhinyuza et al. (2017)) to just name a few. In

this regard, the aim of the investor is to find an optimal portfolio that minimizes the risk,

i.e, the variance of the portfolio for a given level of the expected return. In the absence

of a risk-free asset, the risk aversion strategy leads to minimal variance portfolio. Merton

(1972) showed that all Markowitz’ optimal portfolios lie on the upper part of the parabola

in the mean-variance space (known as Efficient Frontier(EF)) and its equation is given by

(R−RGMV )2 = s(V − VGMV ) (1)

where

RGMV =
1Σ−1µ

1′Σ−11
, VGMV =

1

1′Σ−11
, and s = µ′Rµ with R = Σ−1 − Σ−111′Σ−1

1′Σ−11
. (2)

Whereas, in the presence of a risk-free asset, the tangency portfolio (TP), i.e, a linear

combination of risky assets and a risk-free asset needs to be considered and the equation

of the efficiency frontier in case of the presence of risk-free asset is given by

(R− rf )2 = λV (3)

where

λ = (µ− rf1)′Σ−1(µ− rf1). (4)

In practice, this investment theory appears to be challenging because of the presence of

the sampling error while estimating the unknown theoretical quantities. A big number of

the literature in this area of research treats the case of classical asymptotics (the sample

size n increases while the size of the portfolio k remains constant). In this situation, the

plug-in estimator (sample estimator) of the optimal portfolio turns to be a good estimator

due to its attractive properties, namely the consistency and asymptotic normality.

Nowadays, in several applications the number of assets k in a portfolio are comparable

to the sample size n, i.e., the portfolio size k and the sample size n grows to infinity at

the same order, that means k
n
→ c ∈ (0,∞). In this situation the traditional asymptotic

theory cannot be applied because of the failure in delivering consistent estimators of the

unknown parameters of the assets returns, namely, the mean vector and the covariance
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matrix. A number of papers treat the high dimensional asymptotics in portfolio the-

ory by the help of the results from random matrix theory (see, e.g.,Frahm and Jaekel

(2008); Glombek (2014); Bodnar et al. (2019b, 2016b, 2018)). Recently, Bodnar et al.

(2019a) studied the distributional properties of the estimated TP weights and suggested

inference procedures in small and high-dimensions. Furthermore, they delivered the high-

dimensional asymptotic distribution of the estimated TP weights and they proposed a

test statistic when both the population and sample covariance matrices are singular. This

paper complements the existing literature in different ways. It provides the asymptotics

of the test statistic for testing the existence of the EF and for testing the efficiency of the

TP under high-dimensional regime.

The rest of the paper is structured as follow: Section 2 discusses the main results

of the two provided tests including the stochastic representations of their test statistics.

These stochastic representations are later used to obtain the high dimensional asymptotic

distributions of the test statistics under both the null and the alternative hypotheses. It

also provides the power functions of the suggested tests for different values of c. Section

3 presents the results of the simulation study, in which we compare the performance of

the two proposed tests, while the concluding remarks are given in the Section 4.

2 Test theory on the location of the TP in high di-

mension

Through out this section, we assume x1, . . . ,xn to be independent k-dimensional sample

of the asset returns, with E(xt) = µ and cov(xt) = Σ, for t = 1, . . . , n, where Σ is

assumed to be positive definite.

2.1 A test on the existence of the EF based on the slope param-

eter

The slope parameter plays an important role in the construction of the efficient frontier.

It shows how the market is profitable, i.e. how large is the increase in the portfolio profit

in relation to the unit increase of the portfolio variance. If the slope parameters is zero,

the population efficient frontier reduces to a straight line. In this case, the GMV portfolio

is the only available investment. If there is a possibility to invest in the risk-free asset

with return rf , a part of the investor wealth may be invested into the riskless asset and

it may reduce the variance, whereas the rest of the wealth can be invested into the risky

assets. In this case, a test for the existence of efficient frontier would be of importance

and its hypotheses are given by
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H0 : λ = 0 against H1 : λ > 0, (5)

where λ is defined in (4). The rejection of the null hypothesis ensures the existence of the

efficient frontier, i.e. it confirms that the positiveness of the slope parameter(λ > 0), and

the investor has a number of investment options to choose from including the TP. On the

other hand, the non rejection of the null hypothesis means that the slope coefficient of

the efficient frontier is equal to zero. In this case the GMV portfolio is the only available

portfolio for investment, and also the allocation of the whole wealth into the riskless asset

could be considered as a suitable alternative.

The test statistic for testing (5) is based on the derivation in Bodnar and Schmid

(2009) and is given by

Tλ =
n(n− k)

(n− 1)k
(µ̂− rf1)′Σ̂−1(µ̂− rf1), (6)

with

µ̂ =
1

n

n∑
t=1

xt and Σ̂ =
1

n− 1

n∑
t=1

(xt − µ̂)(xt − µ̂)′ (7)

are the sample mean vector and the sample covariance matrix, respectively. The distri-

bution of the test statistic Tλ in the equation (6) is given in the following proposition

Proposition 1. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is

assumed to be positive definite. Then it holds that

a) Tλ ∼ Fk,n−k,δT under H1, where δT = nλ with λ as defined in (4);

b) Tλ ∼ Fk,n−k under H0.

Proof of proposition 1. From Theorem 3.1.2 of Muirhead (1982), it follows that

µ̂− rf1 ∼ N
(
µ− rf1,

1

n
Σ
)

and (n− 1)S ∼ Wk(n− 1,Σ),

where Wk(n − 1,Σ) denotes a k-dimensional Wishart distribution with n − 1 degree of

freedom and the parameter matrix Σ. On top of that, (µ̂ − rf1) and (n − 1)S are

independent. Applying the results of Theorem 6.7a.1 in Mathai and Provost (1992), we

get the statement of the proposition. The statement of Theorem 1(b) follows by setting

λ = 0 under the null hypothesis.

Alternatively, one can represent the distribution of Tλ using the stochastic represen-
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tation given below

Tλ =
n− k
k

(
√
nλ+ z1)

2 + ζ1
ζ2

(8)

where z1 ∼ N (0, 1), ζ1 ∼ χ2
k−1 and ζ2 ∼ χ2

n−k. Moreover, z1, ζ1 and ζ2 are independent.

From Proposition 1, it is remarkable that the density function of the statistic Tλ de-

pends on the parameters µ and Σ only over the non-centrality parameter δT . Thus, the

exact power function of the test can be easily computed using any mathematical software

package. However, some numerical difficulties may be encoutered when the power func-

tion of the test is computed for large values of k and n. To address this problem, we

derive the asymptotic distribution of Tλ for high-dimensional setting. This result is given

in Theorem 1.We note that for finite case, this result has been used to test the efficiency

of any portfolio from the efficient frontier with respect to the GMV portfolio(Bodnar and

Schmid (2009); Bodnar and Bodnar (2010)).

We also observe that, because of positive definiteness of the covariance matrix, the situ-

ation under the null hypothesis occurs only if µ = rf1. Moreover, the same test is used

to test the hypothesis H0 : µ1 = · · · = µk(see, e.g., Rencher and Christensen (2012)).

Theorem 1. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is

assumed to be positive definite. Then it holds that

√
k

(
Tλ − 1− n

k
λ

σTλ

)
d→ N (0, 1)

where

σ2
Tλ

= 2 + 4
λ

c
+ 2

c

1− c

(
1 +

λ

c

)2

for k/n→ c ∈ (0, 1) as n→∞. Under the null hypothesis,
√
k (Tλ − 1)

d→ N (0, 2/(1− c))
for k/n→ c ∈ (0, 1) as n→∞.

Proof of Theorem 1. Using the stochastic representation given in equation (8), it holds

that
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Tλ − 1− n

k
λ =

n− k
k

(
√
nλ+ z1)

2 + ζ1
ζ2

− 1− n

k
λ

=
n− k
ζ2

(
ζ1 + nλ+ 2

√
nλz1 + z21

k
−
(

1 +
n

k
λ
)

ζ2
n− k

)

=
n− k
ζ2

(
ζ1 + nλ+ 2

√
nλz1 + z21

k
−
(

1 +
n

k
λ
)

+
(

1 +
n

k
λ
)
−
(

1 +
n

k
λ
)

ζ2
n− k

)

=
n− k
ζ2

(
ζ1
k

+
n

k
λ+ 2

√
nλ

k
z1 +

z21
k
− 1− n

k
λ−

(
1 +

n

k
λ
)(

ζ2
n− k

− 1

))

=
n− k
ζ2

((
ζ1
k
− 1

)
−
(

1 +
n

k
λ
)(

ζ2
n− k

− 1

)
+ 2

√
nλ

k
z1 +

z21
k

)

We then have

√
k
(
Tλ − 1− n

k
λ
)

=
n− k
ζ2

(√
k

(
ζ1
k
− 1

)
−
(

1 +
n

k
λ
)√

k

(
ζ2

n− k
− 1

)
+ 2

√
nλ√
k
z1 +

z21√
k

)

Using Lemma 3 in Bodnar and Reiß (2016) and the proof of Lemma 4 in Bodnar et al.

(2016b), we obtain the following results:

ζ2
n− k

a.s→ 1, 1+
n

k
λ
a.s→ 1+

λ

c
,
√
k

(
ζ1
k
− 1

)
d→ N

(
0, 2

c

1− c

)
and 2

√
nλ√
k
z1

d→ N
(

0, 4
λ

c

)
.

The fact that z1, ζ1 and ζ2 are independent, the application of Slutsky’s lemma (see,e.g.,

Theorem 2.8 in Van der Vaart (2000)) gives us

√
k

(
Tλ − 1− n

k
λ

σTλ

)
d→ N (0, 1)

where

σ2
Tλ

= 2 + 4
λ

c
+ 2

c

1− c

(
1 +

λ

c

)2

The application of Theorem 1 leads to an asymptotic expression of the power function

given by
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P

√k(Tλ − 1)√
2/(1− c)

> z1−α

 = 1− P

√kTλ − 1− n
k
λ

σTλ
≤

√
2/(1− c)z1−α −

√
k n
k
λ

σTλ

(9)

≈ 1− Φ


√

2/(1− c)z1−α −
√
k λ
c

σTλ

 (10)

where z1−α is the (1− α)-quantile of the standard normal distribution.

In Figures 1 and 2 we plot the power function (10) as a function of λ for different

values of c and n as a solid line. We additionally plot the empirical power of the test

for the same values of c and n as dashed line, and it is interpreted as the number of

rejections of the null hypothesis obtained via a simulation study. As it can be seen from

the proof of Theorem 1, instead of generating the huge random matrix of order k × n

of asset returns in each simulation run, we instead simulate three independent random

variables from standard univariate distributions and compute the statistic Tλ for given

values of λ in the stochastic representation given in equation (8). The following algorithm

can be used to compute the asymptotic power:

(i) generate independently z
(b)
1 ∼ N (0, 1), ζ

(b)
1 ∼ χ2

k−1 and ζ
(b)
2 ∼ χ2

n−k;

(ii) For fixed λ, compute

T (b)
s =

n− k
k

(
√
nλ+ z

(b)
1 )2 + ζ

(b)
1

ζ
(b)
2

(iii) repeat steps (i)-(ii) for b = 1, . . . , B and approximate P by

P̂ =
1

B

B∑
b=1

1{z1−α,+∞}

√k (T
(b)
λ − 1)√

2/(1− c)


where 1{A} is the indicator function of set A

In Figures 1 and 2 we observe that the high dimensional expression of the power func-

tion provides a reliable approximation of the true power function. We also note that for

small values of the concentration constant the two power functions are indistinguishable

while a moderate discrepancy is present for large values of the concentration coefficient c.

2.2 Test on the location of the TP on EF in high dimensions

The location of the TP on the EF depends crucially on the relation between the risk-

free rate rf and the expected return of the global minimum variance portfolio(GMVP).

At each time point, the investor wants to check whether holding TP is mean-variance
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Figure 1: Asymptotic power versus empircal power for different values of c as a function
of λ, significance level 5% and n = 250.
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Figure 2: Asymptotic power versus empircal power for different values of c as a function
of λ, significance level 5% and n = 500.
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efficient or it has to be reconstructed. For that reason, this problem can be formalised as

a statistical test problem, with the following hypotheses

H0 : RGMV ≤ rf versus H1 : RGMV > rf (11)

Rejecting H0 in (11), means that the TP is mean-variance efficient while the non rejection

of H0 in (5) does not guarantee the efficiency of the TP. In the case of non rejection of

H0, the investor cannot be sure of the optimality of the TP and the investment in the

risk-free rate could be considered as a suitable alternative.

Muhinyuza et al. (2017) proposed the following test statistics for (11)

T =

√
n− k√
n− 1

R̂GMV − rf√
1 + n

n−1 ŝ
√

V̂GMV

n

(12)

where R̂GMV , V̂GMV and ŝ are the sample estimators for RGMV , VGMV and s given by

R̂GMV =
1′Σ̂−1µ̂

1′Σ̂−11
and V̂GMV =

1

1′Σ̂−11
(13)

and

ŝ = µ̂′R̂µ̂ with R̂ = Σ̂−1 − Σ̂−111′Σ̂−1

1′Σ̂−11
. (14)

Moreover, they provided the distribution of T in form of a density function and a stochastic

representation under both the null and alternative hypotheses(see, Muhinyuza et al. (2017,

Proposition 1,Theorem 1)). The following proposition summarizes the distribution of T .

Proposition 2. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is

assumed to be positive definite. Then

(a) the density of T is given by

fT (x) =
n(n− k + 1)

(k − 1)(n− 1)

∫ ∞
0

ftn−k,δ(y)(x)fFk−1,n−k+1,ns

(
n(n− k + 1)

(k − 1)(n− 1)
y

)
dy (15)

where

δ(y) =

√
n√

1 + n
n−1y

SGMV with SGMV =
RGMV − rf√

VGMV

is the Sharpe ratio of the GMVP. The slope parameter s = µ′Rµ with R = Σ−1 −
Σ−111′Σ−1/1′Σ−11.
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(b) the stochastic representation of T is given by

T
d
=

√
n− k√
ξ

1√
1 +

ξ3+(
√
ns+z1)

2

ξ2

√nSGMV + z2 +

√√√√ξ3 + (
√
ns+ z1)

2

ξ2
z3

 (16)

where z1, z2, z3 ∼ N (0, 1), ξ ∼ χ2
n−k, ξ2 ∼ χ2

n−k+1, ξ3 ∼ χ2
k−2 are mutually indepen-

dent.

It is seen that the distribution of test statistic in equation (12) can be represented

as a mixture of a non-central t distribution with n − k degrees of freedom and a non-

centrality parameter δ(y), or can be given in the form of a stochastic representation as in

the equation (16).

Furthermore, using the results from Proposition 2 the power function of the test can

be easily obtained and it is easy to see that it depends on the parameter µ and Σ through

s and SGMV . However, this approach may encounter some difficulties for the large values

of k and n, since Σ becomes unstable for large values of k. To deal with this problem, we

derive the asymptotic distribution of T in a high-dimensional environment. We assume

that k/n→ c ∈ (0, 1) as n→∞. No further relation is imposed between k and n. Note

that, under high dimensional setting, the usual estimators for the precision matrix(Inverse

of the covariance matrix) performs poorly and are not consistent anymore(Bodnar et al.

(2016a)). Therefore, it is worth to study the behaviour of the test statistic developed by

Muhinyuza et al. (2017) under high dimensional environment and propose an alternative

test which takes into account the correction of the estimated precision matrix.

The next theorem presents the asymptotic distribution of T under double asymptotic

regime.

Theorem 2. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k < n. Σ is

assumed to be positive definite. Let k
n
→ c ∈ (0, 1) as n → ∞. Then, it holds that the

asymptotic distribution of T is given by

(a)

σ−1T

T −√n SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)
 d→ N (0, 1) (17)

where

σ2
T = 1 +

S2
GMV

1 + s

(
1

2
+

1

2

s2 + 2s+ c

(1 + s)2

)
(18)

for k
n
→ c ∈ (0, 1) as n→∞.
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(b) Under the null hypothesis it holds that T ∼ N(0, 1)

Proof of Theorem 2. From the stochastic representation given in (16) and using the prop-

erties of a normally distributed random variable, we have that

T
d
=

√
n− k
ξ

√
nSGMV√
1 + ζ

ξ2

+ z0

√
n− k
ξ

(19)

where z0 = z5√
1+ ζ

ξ2

∼ N (0, 1), ξ ∼ χ2
n−k, ξ2 ∼ χ2

n−k+1, ζ ∼ χ2
k−1,ns, and on top of that

z0, ζ, ξ and ξ2 are mutually independent.

We then have

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
) =

√
n− k
ξ

z0 +
√
n

√
n− k
ξ

SGMV√
1 + ζ

ξ2

−
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)

Adding and subtracting
√
n SGMV√

1+ ζ
ξ2

and factoring out SGMV√
1+ ζ

ξ2

and rearranging we get

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)

=

√
n− k
ξ

z0 +
SGMV√
1 + ζ

ξ2

√n
(√

n− k
ξ
− 1

)
+
√
n

1−

√
1 + ζ

ξ2√
1 + k−1

n−k+1

(
1 + n

k−1s
)



Putting the last expression on common denominator and multiplying the numerator by

its conjugate, we obtain √
1 +

k − 1

n− k + 1

(
1 +

n

k − 1
s
)
−
√

1 +
ζ

ξ2

=

k−1
n−k+1

(
1 + n

k−1s
)
− ζ

ξ2√
1 + k−1

n−k+1

(
1 + n

k−1s
)

+
√

1 + ζ
ξ2

We then have

k − 1

n− k + 1

(
1 +

n

k − 1
s
)
− ζ

ξ2
=

k − 1

n− k + 1

(
1 +

n

k − 1
s− ζ/(k − 1)

ξ2/(n− k + 1)

)
(20)

Putting (20) on common denominator and rearranging it, we get

1 +
n

k − 1
s− ζ/(k − 1)

ξ2/(n− k + 1)
=
n− k + 1

ξ2

[(
1 +

n

k − 1
s
)(

ξ2
n− k + 1

− 1

)
−
(

ζ

k − 1
− 1− n

k − 1
s

)]
(21)
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We also have that

√
n− k
ξ
− 1 =

(√
n− k
ξ
− 1

) √n−k
ξ

+ 1√
n−k
ξ

+ 1
=

n−k
ξ
− 1√

n−k
ξ

+ 1
=

(
1− ξ

n−k

)
n−k
ξ√

n−k
ξ

+ 1
(22)

Considering (21) and (22), we then get

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
) =

√
n− k
ξ

z0 +
SGMV√
1 + ζ

ξ2

√n
(
1− ξ

n−k

)
n−k
ξ√

n−k
ξ

+ 1



+
SGMV√
1 + ζ

ξ2

 k−1
n−k+1

[
n−k+1
ξ2

((
1 + n

k−1s
)√

n
(

ξ2
n−k+1

− 1
)
−
√
n
(

ζ
k−1 − 1− n

k−1s
))]

√
1 + k−1

n−k+1

(
1 + n

k−1s
)(√

1 + k−1
n−k+1

(
1 + n

k−1s
)

+
√

1 + ζ
ξ2

)


Using Lemma 3(a) in Bodnar and Reiß (2016), we obtain

ξ

n− k
a.s→ 1,

ξ2
n− k + 1

a.s→ 1 and
ζ

k − 1
− 1− n

k − 1
s
a.s→ 0⇒ ζ

k − 1
a.s→ 1 +

s

c
(23)

Consequently,

√
1 +

ζ

ξ2
=

√
1 +

ζ

ξ2

k − 1

k − 1

n− k + 1

n− k + 1
=

√
1 +

ζ

k − 1

n− k + 1

ξ2

k − 1

n− k + 1
a.s→
√

1 + s

1− c
(24)

and √
1 +

k − 1

n− k + 1

(
1 +

n

k − 1
s
)

a.s→
√

1 + s

1− c
(25)

By using Lemma 3(b) in Bodnar and Reiß (2016) and the proof of Lemma 4 in Bodnar

et al. (2016b), we get

√
n

(
ξ

n− k
− 1

)
d→ N (0, 2/(1− c)), (26)

(
1 +

n

k − 1
s
)√

n

(
ξ2

n− k + 1
− 1

)
d→ N

(
0,

2

1− c

(
1 +

s

c

)2
)
, (27)

and

√
n

(
ζ

k − 1
− 1− n

k − 1
s

)
d→ N

(
0,

2

c

(
1 + 2

s

c

))
(28)

for k/n→ c ∈ (0, 1) as n→∞.
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We also know that

√
n
(
z0/
√
n
)

d→ N (0, 1) (29)

Since z0, ξ, ξ2 and ζ are independent and taking into account (23),(24),(25), (26),(27),(28)

and (29), we obtain the following asymptotic result

T −
√
n

SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
) d→ z0 +

SGMV√
1+s
1−c

z1
2

+
SGMV√

1+s
1−c

(
c/(1− c) (z2 + z3)

21+s
1−c

)

where z0 ∼ N (0, 1), z1 ∼ N
(
0, 2

1−c

)
, z2 ∼ N

(
0, 2

1−c

(
1 + s

c

)2)
and z3 ∼ N

(
0, 2

c

(
1 + 2 s

c

))
.

Moreover, z0, z1, z2 and z4 are independently distributed.

Finally, the application of Slutsky’s lemma (see,e.g., Theorem 2.8 in Van der Vaart

(2000)) leads to

σ−1T

T −√n SGMV√
1 + k−1

n−k+1

(
1 + n

k−1s
)
 d→ N (0, 1)

with

σ2
T = 1 +

S2
GMV

1 + s
(1− c)

(
1

2(1− c)
+

(1− c)2

4(1 + s)2

(
c2

(1− c)2

(
2

1− c

(
1 +

s

c

)2

+
2

c

(
1 + 2

s

c

))))

= 1 +
S2
GMV

1 + s
(1− c)

(
1

2(1− c)
+

s2 + 2s+ c

2(1 + s)2(1− c)

)

= 1 +
S2
GMV

1 + s

(
1

2
+
s2 + 2s+ c

2(1 + s)2

)

The statement of Theorem 1(b) follows by setting SGMV = 0 under the null hypothesis.

In Figures 3 and 4, we deliver the results of the power functions of the exact test and of

the high-dimensional asymptotic test that was obtained in Theorem 2 for different values

of c ∈ {0.1, 0.4, 0.7, 0.9}, with s = 1 and α = 5%. The dashed black line represents the

power function of the exact test, while the power function of the high-dimensional test is

indicated by a solid black line. A good performance of the asymptotic power is observed

for all considered values of c.
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Figure 3: Asymptotic power versus Exact power for different values of c as a function of
SGMV , significance level 5% and n = 250. We set s = 1.
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Figure 4: Asymptotic power versus Exact power for different values of c as a function of
SGMV , significance level 5% and n = 500. We set s = 1.
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3 Comparison of the tests

In this section we compare the performance of the power function of the test derived in

Section 2.1 and the power function of the statistical test developed in Muhinyuza et al.

(2017) for k/n → c ∈ (0, 1) as n → ∞. Results of both Theorem 2 and Muhinyuza

et al. (2017, Proposition 1) show that the power functions of the tests depend on the

mean vector and the covariance matrix only through the slope parameter s of the efficient

frontier and the Sharpe ratio SGMV of the GMVP. For that reason, we put Σ = Ik, an

identity matrix of dimension k in the simulation study, and consider several values of µ

chosen as follows:

• for µ1, 15% of its first values are 0.1 and the remainder are set to zero;

• for µ2, 20% of its first values are 0.1 and the remainder are set to zero;

• for µ3,25% of its first values are 0.1 and the remainder are set to zero;

• for µ4, 30% of its first values are 0.1 and the remainder are set to zero;

• for µ5, 35% of its first values are 0.1 and the remainder are set to zero.

Table 1 contains several values of s and SGMV obtained using the aforementioned values

of µ and Σ. We note that the values with SGMV = 0 corresponds to the null hypothesis

in (11) and expect the empirical significance level of the test obtained through out the

simulation to be the nominal significance level 0.05. Whereas the other values designate

the alternative hypothesis. In addition we set the risk-free rate to be 0.01 and the portfolio

size is k ∈ {50, 200, 350, 450}. We observe that the slope parameter s becomes larger as k

increases, while the Sharpe ratio SGMV increases when the number of non-zero elements

in the mean vector becomes larger, the increase is also noted when the portfolio size get

larger. On the other hand, we notice that for the values with λ = 0 are the equivalent to

the null hypothesis in (5) while the other values favours the alternative hypothesis. We

also note that λ grows as either k or the number of non-zero elements in the mean vector

become larger.

In Table 2, we present the results from the simulation study of the powers of the tests

for the hypotheses (5) and (11) for different values of k ∈ {50, 200, 350, 450} and n = 500.

Each value of the power function given in the table was obtained by generating 106

independent sample from the corresponding model. All obtained results show a good

performance even for data generated from heavy tailed t-distribution. Moreover, we

observe an increase of the power functions a the number of non-zero elements of the

mean vector becomes larger. To this end, we note that the asymptotic power function of

Tλ grows faster compared to the asymptotic power function of T . We also note that for

both hypotheses, our tests are moderately conservative when data are generated from a
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k s&SGMV µ1 µ2 µ3 µ4 µ5

s 0.0672 0.08 0.0962 0.105 0.1152
50 λ 0.069 0.085 0.109 0.125 0.149

SGMV 0.0424 0.0707 0.1131 0.1414 0.1838
s 0.255 0.32 0.375 0.42 0.455

200 λ 0.26 0.34 0.42 0.5 0.58
SGMV 0.0707 0.1414 0.2121 0.2828 0.3536

s 0.4497 0.56 0.6587 0.735 0.7977
350 λ 0.459 0.595 0.739 0.875 1.019

SGMV 0.0962 0.1871 0.2833 0.3742 0.4704
s 0.5772 0.72 0.8462 0.945 1.0252

450 λ 0.589 0.765 0.949 1.125 1.309
SGMV 0.1084 0.2121 0.3206 0.4243 0.5327

Table 1: Slope parameters s, λ and Sharpe ratio SGMV for the portfolio dimension k ∈
{50, 200, 350, 450} and several values of µ.

Power T Tλ T Tλ T Tλ T Tλ T Tλ
k Distribution µ1 µ2 µ3 µ4 µ5

Normal 0.226 0.823 0.424 0.919 0.768 0.981 0.876 0.994 0.983 1
50 t5 0.148 0.746 0.339 0.863 0.606 0.957 0.786 0.983 0.951 0.994

t10 0.177 0.804 0.39 0.906 0.702 0.969 0.863 0.988 0.971 0.994
Normal 0.302 0.992 0.676 1 0.931 1 0.995 1 1 1

200 t5 0.127 0.973 0.473 0.997 0.777 1 0.952 1 0.992 1
t10 0.221 0.987 0.57 0.997 0.881 1 0.98 1 0.998 1

Normal 0.271 0.981 0.585 1 0.85 1 0.956 1 0.993 1
350 t5 0.109 0.954 0.282 0.991 0.587 0.998 0.805 1 0.945 1

t10 0.169 0.964 0.437 0.996 0.746 1 0.914 1 0.984 1
Normal 0.128 0.735 0.29 0.902 0.493 0.961 0.67 0.984 0.823 0.998

450 t5 0.074 0.65 0.146 0.767 0.285 0.875 0.44 0.937 0.631 0.977
t10 0.114 0.679 0.231 0.839 0.365 0.912 0.562 0.969 0.701 0.991

Table 2: Power function for the portfolio dimension k ∈ {50, 200, 350, 450} and the sample
size n = 500. The nominal significance level of the test is α = 0.05.
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heavy-tailed distribution, since the powers obtained under the t−distribution are in all

cases smaller than the one obtained for the normal distribution.

4 Conclusion

In this paper we focus on the property of the TP in high dimension. Especially, we provide

the high dimensional asymptotic distribution of the test statistic for testing the existence

of the EF and for testing the efficiency of the TP under high-dimensional regime. In either

test the asymptotic distribution is obtained under the null and alternative hypotheses.

With an extensive simulation study, we have shown that both tests are robust to the

violation of the normality assumption and perform well for heavy-tailed t-distribution.
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