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Abstract

A constructive distribution-free discrete-time micro model is introduced
which shares the key properties of the models introduced in Verrall et al. (2010)
and Wahl et al. (2019), including multiple payments per claim and separate
RBNS and IBNR reserves. The introduced model class may be thought of as a
sequence of two-stage conditional linear models with general variance structure.
The models are distribution-free in the sense that they only rely on assump-
tions made on the dependence structure and the first two moments. For this
model class it is possible to explicitly compute theoretical reserve predictors as
well as their process variances. Moreover, the introduced model class is pos-
sible to define in terms of differently detailed information, and depending on
the information available at hand, model parameters may be fitted using least
square (LS) techniques or the generalised method of moments (GMM) making
all computable reserve predictors, i.e. the theoretical predictor combined with
actual parameter estimators, unbiased. In particular, if one assumes that de-
tailed data include count and payment data where one keeps track of both time
of reporting and time of payments for individual claims it is possible to ana-
lytically show that the variation of the computable reserve predictors always
will be larger when using parameter estimators based on reduced information.
This relation can also be shown to hold for the analytical mean squared er-
ror approximation estimate introduced in Lindholm et al. (2018). Furthermore,
due to the linear structure of the introduced model class it is easy to construct
bootstrap algorithms based on classical Pearson residuals.

The results are illustrated in a simulation study, which, in particular, high-
lights that it is the covariance structure and dispersion parameter estimates
when using reduced information that is the likely cause of increase of the predic-
tion error. It is also seen that the analytical MSEP-estimates are of comparable
size as to the corresponding bootstrapped ones.
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1 Introduction

This paper develops a distribution-free analog of the “collective reserving model”
(CRM) introduced in Wahl et al. (2019). This model is closely related to (condi-
tional) distribution-free general linear models. In particular the computable reserve
predictor for both the reported but not settled (RBNS) and incurred but not re-
ported (IBNR) reserve can be expressed as linear functions in terms of what cor-
responds to regression parameters. By using this representation it is possible to
(essentially) translate many standard statistical results into a reserving context,
which allows us to make statements concerning optimality of reserve estimators
and the effects on the quality of predictions when using less detailed or aggregated
information.

In Verrall et al. (2010) a micro-structure model, henceforth referred to as the “VNJ”
model, which allows for aggregated data estimation was introduced. This model
relies on a convenient one-payment-per-claim assumption which simplifies various
calculations. In particular, the modelling approach allows for the reserve predictor
to be split into an RBNS and IBNR part, and the predictors themselves allow for
constructive interpretations. Moreover, the VNJ model in itself, without further (ad
hoc) adjustments, allows for prediction outside of the classical claims triangle. It
is, however, believed that the one-payment-per-claim assumption may deter practi-
tioners from using the method. Still, the VNJ model served as the starting point of
the much studied double chain-ladder (DCL) model, see e.g. Miranda et al. (2012).

In order to overcome the weakness with the single payment-per-claim assumption
underlying the VNJ model, the collective reserving model was introduced in Wahl
et al. (2019). This model is based on a discrete time Poisson process approach. The
CRM has an identical (plug-in) reserve predictor as the VNJ model, but with a
different variance structure.

By either using the single payment-per-claim assumption from the VNJ model or
the discrete time Poisson process approach from the CRM it is possible to define
detailed dynamics at the individual level, which allows for controlled aggregation
to the population level, e.g. a sum of Poisson variables is still Poisson. What this
means in practice is that we may define detailed dynamics, motivating aggregate
level predictors based only on aggregated information, whose parameters as well may
be estimated solely based on aggregated data. More specifically, estimation may be
carried out using quasi-maximum likelihood (QML) theory.

In the present paper we will take a slightly different route forward starting from par-
tial sums of payments and claims, which, as it turns out, will result in a distribution-
free analog of the CRM model. For this distribution-free class of models it is possible
to explicitly compute the theoretical reserve predictors and process variances with
more flexibility than the VNJ and CRM models. Moreover, this class of models
may be fitted using least squares (LS) techniques and/or the generalised method of
moments (GMM). Consequently, most results rely on using properties concerning
random vectors, which tends to be tedious, but straightforward, see e.g. (Seber and
Lee, 2012, Ch. 1 – 3) for a comprehensive introduction to the most relevant results.
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The approach adopted will be distribution-free in the same sense as Mack (1993),
i.e. assumptions are only made w.r.t. the first two moments together with a spec-
ification of relevant dependence structures. It is, however, important to note that
the theoretical reserve predictors will coincide with the VNJ/CRM models, but the
actually used computable, so-called “plug-in”, reserve predictors will not coincide –
the VNJ/CRM fit is based on QML theory, which will produce different estimates
than those obtained using LS theory. An advantage with using LS estimators is that
these are explicit and may be obtained without the use of numerical procedures such
as those used for (Q)ML estimation. Moreover, LS estimators are typically robust
and their estimation error distributions are well studied, even for finite sample sizes,
allowing for explicit expressions for their covariances.

Further, as will be shown, the expected payment and count dynamics will only be
functions in terms of parameters which in a standard linear model setting corre-
sponds to regression coefficients. As a consequence of this, and that these parame-
ters are estimated unbiasedly using LS techniques, the expected payment and count
predictors, and, more importantly, the reserve predictors will be unbiased as well.
Another natural question is to consider the prediction error of these estimators, i.e.
the (conditional) mean squared error of prediction (MSEP). As pointed out above,
the covariance structure for LS estimators is well-known, but in order for these to
be computable, there is need to estimate dispersion parameters. Given that this is
possible, one can use the analytical (non-simulation based) conditional MSEP ap-
proximations discussed in Lindholm et al. (2018). Moreover, due to the introduced
model class’ inherent linear structure it is easy to bootstrap models of this type
using the techniques discussed in e.g. England and Verrall (2002).

Another question which has received attention is the effect on reserve prediction
when using reserving methods based on differently detailed information spanning
from micro models such as e.g. Norberg (1993); Antonio and Plat (2014) to more
classical aggregated macro models such as the classical chain-ladder type models, see
e.g. Mack (1993); Renshaw and Verrall (1998). The definition of “detailed” informa-
tion in the present context will correspond to having access to count and payment
data where both (discrete) time points of individual reporting and payments are
known, following the setup of Bühlmann et al. (1980). A nice feature with the ap-
proach is that it is possible to define models using differently detailed information,
and in particular it is possible to express the reserve predictors of less detailed mod-
els as explicit linear transformations of the, in the current context, most detailed
one. This makes it possible to analytically show that computable reserve predictors
estimated using reduced data will produce larger variation than the corresponding
un-reduced data predictor. It is even possible to show that this relation holds for
the analytical MSEP-approximations from Lindholm et al. (2018).

These results are illustrated in a simulation study based on the data from Verrall
et al. (2010). This study indicates that it is the change in covariance structure and
the dispersion parameter estimates which is the likely cause of the increase in the
prediction error when using less detailed data for estimation. Moreover, it is seen that
the analytical MSEP-approximation from Lindholm et al. (2018) is of comparable
size as the corresponding bootstrapped estimates.
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Due to the already mentioned connections between the introduced model class and
distribution-free linear models, the majority of the proofs are based on slight gen-
eralisations of well-known results, resulting in tedious, but elementary calculations.
As a consequence of this, many proofs are omitted or only outlined with references
to relevant literature.

The remainder of the paper is structured as follows: Section 2 defines the structure
of data and introduces relevant notation. Section 3 introduces the distribution-free
class of reserving models and the theoretical reserve predictors and process variances
are derived in Section 4. In Section 5 estimation and properties of the estimators
are discussed when varying the level of granularity in the available data. Section 6
discusses properties of the computable reserve predictor including MSEP and boot-
strapping, in particular w.r.t. when data with different levels of granularity is used
for estimation. The paper ends with a numerical illustration given in Section 7.

2 Data and notation

This section introduces the notation and relevant data used throughout this paper.
The notation is in accordance with that of Wahl et al. (2019), where m denotes
the total number of accident years and where d denotes the maximal delay with
which claims payments are made after being reported. Further, let Xij denote the
incremental aggregated claims payments during development year j ∈ {0, . . . ,m +
d − 1} for accident year i ∈ {1, . . . ,m}. Similarly, let Nij denote the incremental
number of claims incurred in development year j ∈ {0, . . . ,m − 1} from accident
year i ∈ {1, . . . ,m}, but note that this implies that no claims may be reported later
than m years from the date of the accident. By construction, the fully observed data
can be represented in terms of the following rectangles:

N10 . . . N1,m−1
N20 . . . N2,m−1

...
...

Nm0 . . . Nm,m−1

X10 . . . X1,m+d−1
X20 . . . X2,m+d−1

...
...

Xm0 . . . Xm,m+d−1

In accordance with Wahl et al. (2019), the data known “today” and the data used
for prediction consists of the Xij and Nij where (i, j) ∈ A0 where

A0 := {(i, j) ∈ N× N0 : i+ j ≤ m},

which corresponds to the following standard, partially observed, data triangles:

N10 N11 . . . N1,m−2 N1,m−1
N20 N21 . . . N2,m−2

...
. . .

Nm0

X10 X11 . . . X1,m−2 X1,m−1
X20 X21 . . . X2,m−2

...
. . .

Xm0

Another quantity which will turn out to be useful for e.g. estimation purposes,
is Npaid

ij , which corresponds to the total number of payments in (i, j), where j ∈
{0, . . . ,m+ d− 1}.
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Further, as in Wahl et al. (2019), the ultimate goal with the prediction, is to fill in
the lower right trapezoid of Xijs with indices in the set

A∗0 := {(i, j) ∈ N× N0 : i ≤ m, j ≤ m− 1 + d, i+ j ≥ m+ 1}.

Note that A∗0 allows for predictions further into the future than possible for e.g. the
standard chain-ladder technique, which only allows for predictions restricted to the
following set of indices

Ã∗0 := {(i, j) ∈ A∗0 : j ≤ m− 1}.

It will also be convenient to introduce notation for the filtration

N0 := σ{Ni,j : (i, j) ∈ A0},

corresponding to the information generated by the number of claims observed up
until “today”, together with the filtration

N i,j := σ{Ni,k : k ≤ j},

i.e. the information concerning the number of claims observed up until development
period j for accident year i. It will also be convenient to introduce

N 0
•,j := σ{Ni,k : k ≤ j, (i, k) ∈ A0}.

Note that the above quantities do not keep track of payments w.r.t. when the cor-
responding claim was made. Due to this, let Xi,j,k denote payments stemming from
claims that have been reported in (i, j) that are paid k years later, and let F0 denote
the filtration which summarises all available information from the Xi,j,ks and the
Ni,js known up until today. It will also be useful to introduce the following auxiliary
notation: Let

Npaid
i,j.k denote the number of payments from claims that have been reported at (i, j)

that are paid k periods later,

Zi,j,k,l correspond to the number of payments that stem from the lth claim that was
reported in (i, j) and which were paid k periods later,

Yi,j,k,l denote the lth of the Npaid
i,j,k payments.

3 Distribution-free regression models

In Verrall et al. (2010); Wahl et al. (2019) the dynamics of individual claims is
described in a discrete time framework, which allows for estimation and predic-
tion using aggregated data consisting of claim counts and claim payments. Both of
these models rely on certain distributional assumptions. We will now take a slightly
different approach, still using constructive arguments, but were we only make as-
sumptions on the first two moments of the claims dynamics, in this way mimicking
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the distribution-free chain-ladder model, see Mack (1993). Similarly to Mack (1993),
we will obtain a (conditional) distribution-free general linear model structure whose
parameters may be fitted using least squares (LS) and/or (generalized) method of
moments (MM) techniques, see e.g. Seber and Lee (2012) and Mátyás et al. (1999),
respectively. Before going into details about estimation, we will derive two main
conditional general linear models: One model for claim payments, conditional on
observed claim counts, and one model for how claims are observed.

3.1 A distribution-free general linear model for payments condi-
tional on claim counts

We will start by assuming that there exists a model for claim counts and analyse
the implied payment dynamics. The following assumptions will be used:

(A1) all claims are i.i.d.

(A2) all claims are reported no later than development year m− 1,

(A3) the payment pattern for claims is independent of time of reporting, but no
payments are made later than d periods since reporting, and the number of
payments made with different delays for each claim is independent,

(A4) all individual payments are i.i.d. and, hence, independent of time of reporting
and time of payment.

By using the notation from Section 2 allows us to introduce the following construc-
tive representation of the main quantities of interest

Npaid
i,j,k =

Ni,j∑
l=0

Zi,j,k,l, (1)

and that

Xi,j,k =

Npaid
i,j,k∑
l=0

Yi,j,k,l, (2)

and finally

Xi,j =
j∧d∑
k=0

Xi,j−k,k, (3)

which form a natural basis for calculation of various moments.

Before proceeding further, since claims reserving amounts to making predictions of
future payments stemming from already incurred claims based on current informa-
tion, it is natural to consider moment calculations w.r.t. suitable conditionings. The
constructive representation of the payment dynamics given by (1) – (3) is closely
connected to the models introduced in Verrall et al. (2010); Miranda et al. (2012);
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Wahl et al. (2019) which suggests that conditioning ought to be carried out w.r.t.
N0. The intuition behind using this conditioning is that we may treat already ob-
served claim counts as measures of exposure for future payments originating from
already incurred claims. Another alternative is to condition on observed claim pay-
ments, but we argue that it is primarily the number of observed claims that drives
the future payment dynamics, rather than the amounts previously paid – although
the latter, of course, may carry information. We may now state the following result
on moments conditional on N0:

Proposition 1. Assume that Assumption (A1) – (A4) holds, and let E[Zi,j,k,l] = λk,
and Var(Zi,j,k,l) = θ2k, and let E[Yi,j,k,l] = µ, and Var(Yi,j,k,l) = σ2. It then holds
that

E[Npaid
i,j,k | N0] = λkE[Ni,j | N0],

E[Xi,j,k | N0] = ψkE[Ni,j | N0],

E[Xi,j | N0] =
j∧d∑
k=0

ψkE[Ni,j−k | N0],

where ψk := µλk, and that

Var(Npaid
i,j,k | N0) = θ2kE[Ni,j | N0] + λ2k Var(Ni,j | N0),

Var(Xi,j,k | N0) = ν2kE[Ni,j | N0] + ψ2
k Var(Ni,j | N0),

Var(Xi,j | N0) =
j∧d∑
k=0

ν2kE[Ni,j−k | N0] +
j∧d∑
k=0

ψ2
k Var(Ni,j−k | N0)

+ 2
∑
k<l

ψkψl Cov(Ni,j−k, Ni,j−l | N0),

where ν2k := λkσ
2 + µ2θ2k

The proof of Proposition 1 is based on standard variance decomposition and tower
property arguments, faithfully following the steps of the proofs in Wahl et al. (2019),
and is hence omitted.

It is clear that we need to specify a model for the Ni,js in order for Proposition 1
to become useful in practice. Moreover, note that

(i) by replacing N0 in Proposition 1 with N 0
i,j (or N 0

•,j) it holds that E[Ni,j |
N 0
i,j ] = Ni,j , and that Var(Ni,j | N

0
i,j) = 0, which yields{

E[Xi,j,k | N
0
i,j ] = ψkNi,j ,

Var(Xi,j,k | N
0
i,j) = ν2kNi,j ,

and analogously for Xi,j , by noting that also Cov(Ni,j−k, Ni,j−l | N
0
i,j) = 0,

(ii) the relations from (i) holds for all (i, j) ∈ A0.
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Hence, the above observations allows us to introduce the following linear models,
defined conditionally on N i,j , which have the same first two moments as those in (i)

Xi,j,k = ψkNi,j + νk
√
Ni,jδi,j,k, (LM 1)

Xi,j =
j∧d∑
k=0

(ψkNi,j−k + νk
√
Ni,j−kδi,j−k,k), (LM 2)

where the δi,j,ks are random variables with mean 0 and variance 1 that are inde-
pendent of everything else. Thus, the (conditional) general linear models defined
by (LM 1) and (LM 2) are motivated constructively based on Assumptions (A1) –
(A4), together with a certain parametrisation of low order moments. Also note that,
if θ2k = λk, then (LM 2) will have the same variance structure as the (quasi/over-
dispersed) Poisson models from Verrall et al. (2010) and Wahl et al. (2019). Further,
note that we introduced parameters ψk and νk. From now on we will focus on this
more parsimonious parametrisation. This choice is not only based on reducing the
number of parameters to be fitted, but we also believe that by neglecting more
detailed parametric dependencies the model becomes less vulnerable to model mis-
specification. Moreover, note that an equivalent representation of model (LM 2)
w.r.t. the first two moments is the following one:

Xi,j =
j∧d∑
k=0

ψkNi,j−k +

√√√√j∧d∑
k=0

ν2kNi,j−kδi,j , (LM 2′)

where the δi,js are independent random variables with mean 0 and variance 1 that
are independent of everything else. Thus, by comparing model (LM 1) and (LM 2′),
it is clear that having access to less granular data will make it harder to estimate
the individual dispersion parameters ν2k , since we can no longer separate out the in-
dividual payment delay effects directly. That is, model (LM 2) (and model (LM 2′))
will not only have fewer observations, making inference less precise, but the obser-
vations themselves will be less informative, since they are sums of more granular
observations. These complications will be discussed further in Section 5 and 6, also
w.r.t. other types of reductions of data.

Continuing, Proposition 1 is essentially of little practical value unless we specify a
model for claim counts. Further, above we gave constructive arguments based on
Assumptions (A1) – (A4) for how to arrive at the (distribution-free) general linear
models (LM 1) and (LM 2). In the next section we will make further assumptions on
the dynamics of reporting of claims which allows us to provide a similar motivation
of the distribution-free chain-ladder model for counts, which, as already commented
upon above, is another general linear model.

3.2 A distribution-free general linear model for claim counts

When introducing the general linear models (LM 1) and (LM 2) above, we made a
point of that these are conditional models – conditional on observed claim counts. In
the current section we will provide a similarly motivated model for claim counts. In
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order to do so, recall that in the standard distribution-free chain-ladder model there
is no model for the first (or zeroth) development period. Moreover, based on As-
sumption (A2) it follows that all claims shall be reported no later than development
period m−1, which suggests that we should include parameters πj , j = 0, . . . ,m−1
which governs the distribution of how claims are reported, and we may assume that∑
πj = 1. Furthermore, in order for the first development period to carry any in-

formation when conditioned upon, it is clear that there can not be independence
between claims reported in different development periods. For ease of exposition, we
will refer to a claim to be reported in period j as being of type j. We propose the
following conditional dynamics for the claims generating process for each accident
year, given that a total of n̄j claims have been reported up until development period
j, j = 1, . . . ,m− 1:

(A5) a claim of type j is generated independently of everything else with probability
πj , j = 0, . . . ,m− 1,

(A6) claims of all types are generated until the total number of claims of type
l ∈ {0, . . . , j} equals n̄j .

Based on Assumption (A5) – (A6) it is clear that the total number of claims per
accident year is random, conditional on what has been observed. This mechanism
can be described in terms of certain Negative Multinomial distributions, see e.g.
the construction described in (Sibuya et al., 1964, Sec. 3.a). That is, the vector
(U1, . . . , Ur) | U0 = k ∼ NegMult(k, θ1, . . . , θr) has probability mass function given
by

P(U1 = u1, . . . , Ur = ur | U0 = k) =

(
k − 1 +

∑r
i=1 ui

k − 1, u1, . . . , ur

)
(1−

r∑
i=1

θi)
k

r∏
i=1

θuii , (4)

where
∑r
i=0 θi = 1 and θi, ui ≥ 0 and k ≥ 1, see e.g. Sibuya et al. (1964) or (Bishop

et al., 1975, Ch. 13.8) for the mean-value parametrisation. This allows us to the
state the following result:

Proposition 2. Let N i,j denote the total number of claims reported up to and

including development period j, and let πj =
∑j
k=0 πk, with πm−1 = 1, and assume

that Assumption (A5) – (A6) are fulfilled. For j = 1, . . . ,m− 1, it then holds that

(i) (Ni,j , . . . , Ni,m−1) | N i,j−1 ∼ NegMult(N i,j−1, πj , . . . , πm−1),

(ii) Ni,j | N i,j−1 ∼ NegBin(N i,j−1, πj/(πj)),

(iii) E[N i,j | N i,j−1] = N i,j−1
πj

πj−1
,

Var(N i,j | N i,j−1) =
πjπj

π2
j−1

N i,j−1.

The proof of Proposition 2 follows directly from (Sibuya et al., 1964, Eq. (2.5) –
(2.7)) by noting that πj +πj−1 = πj . Note that Proposition 2 does not have a model
for the first (or zeroth) development period, and also note that the negative binomial
model of Verrall (2000) is retrieved.
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A direct consequence of Proposition 2 is the following general linear model, condi-
tional on N i,j−1

N i,j = αjN i,j−1 + βj

√
N i,j−1εi,j , (LM 3)

where αj := πj/πj−1 and β2j := πjπj/π
2
j−1, and where all εi,j are random vari-

ables with mean 0 and variance 1 that are independent of everything else. The
most noteworthy feature of the model defined by (LM 3), apart from fulfilling the
moment conditions from Proposition 2(iii), is that it is a claim count analog of the
distribution-free chain-ladder model, see e.g. Mack (1993). Thus, by combining mod-
els (LM 1) – (LM 3) we obtain a fully distribution-free general linear model analog
of the claim and payment dynamics defined in Verrall et al. (2010); Wahl et al.
(2019) – a model which can be fitted using least squares techniques, see Section 5.
It is, however, clear that the model (LM 3) will produce non-integer valued N i,js,
but this is no problem w.r.t. estimation.

Further, from Renshaw and Verrall (1998) we know that the linear (“plug-in”) pre-
dictor from the over-dispersed chain-ladder model and the distribution-free chain-
ladder model coincides, which, as pointed out in Verrall et al. (2010), implies that
the linear predictor of the IBNR reserve for the models in Verrall et al. (2010);
Wahl et al. (2019) are the same regardless of whether the distribution-free chain-
ladder model or the over-dispersed chain-ladder model is used. This even further
strengthens the connection between the current general linear model approach and
the models in Verrall et al. (2010); Wahl et al. (2019).

Remark 1. Note that by using the general linear model (LM 3) we have discarded
the parametric relationship between the πjs hidden in the αjs and βjs. It is, however,
straightforward to deduce that e.g.

E[N i,m−i+k | N0] = N i,m−i

m−i+k∏
j=m−i+1

αj = N i,m−i
πm−i+k
πm−i

,

and
E[N i,m−i+k | N0]

E[N i,m−1 | N0]
= πm−i+k,

which shows that the standard interpretation of αjs in (LM 3) actually corresponds
to the correct counterpart in terms of πjs. Moreover, one can also note that by
assuming that E[Ni,0] := eiπ0, where ei corresponds to a suitable exposure measure,
it follows that

E[Ni,j ] = E[N i,j −N i,j−1] = eiπj ,

which is equivalent to the expected value in the cross-classified over-dispersed Poisson
chain-ladder model.

Remark 2. Assumptions (A5) and (A6) may feel odd – it is often assumed that
reporting of claims follows a standard multinomial distribution. This assumption,
however, is in the above setting only reasonable conditional on the total number of
claims. Concerning the negative multinomial distribution given by (4), it holds that
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(U1, . . . , Ur) | U0 = k,
∑r
i=1 Ui = u ∼ Mult(u, θ1∑r

i=1
θi
, . . . , θr∑r

i=1
θi

), see e.g. (Sibuya

et al., 1964, Eq. (2.7)), which in some sense is the best we can achieve, given that
we do not have a model for U0. One can also note that the resulting multinomial
distribution is independent of U0 = k.

Remark 3. Note that model (LM 3) does not take into account that N i,j ∈ Z+.
Still, given that all N i,j � 1, it is clear that the difference between using [N i,j ]
(i.e. the integer part of N i,j) and N i,j is negligible. On the other hand, if it is
of great importance to ascertain that the N i,j are integer valued one can use the
estimates of the αjs to obtain estimates of the πjs and e.g. use the negative binomial
structure from Proposition 2. From the perspective of reserve estimation this will not
be a problems, since these estimates will (of course) only be expressed in terms of
parameter estimates, historical observations and moments.

In the next sub-section we continue to explore these connections by analysing the
IBNR and RBNS reserve predictors, together with their variances.

4 Reserve predictors and process variances

When motivating the conditional linear models (LM 1) and (LM 2) the moments
from Proposition 1 were used. These moments are all calculated conditional on N0

and essentially contains all components needed in order to fully specify the reserve
predictor. Further, based on the dynamics of (LM 1) – (LM 3) it follows, in analogy
with Verrall et al. (2010); Wahl et al. (2019), that

(i) the reserve predictor may be split into a reported but not settled (RBNS) and
an incurred but not reported (IBNR) part,

(ii) the model provides predictions for a total of m − 1 + d development periods
ahead.

Rather than directly re-using Proposition 1 we will use the following representation
of the payments related to the RBNS reserve for accident year i, denoted RRi , and
the the payments related to the IBNR reserve for accident year i, denoted RIi :{

RRi :=
∑m−i
j=0

∑d
k=(m−i+1−j)∧dXi,j,k,

RIi :=
∑m−1
j=m−i+1

∑d
k=0Xi,j,k.

(5)

That is, RRi only sums over column indices j belonging to A0, and the summation
over k ascertains that the delay forces the payments to be paid made beyond devel-
opment period m− i, which is the last observed period. Similarly for RIi , where the
summation over column indices j belongs to Ã∗0, i.e. the lower right triangle, thus
making sure that the payments are based on claims observed beyond development
period m − i, and here all k = 0, . . . , j ∧ d, are feasible. Also note that (5) allows
for payments up until development period m− 1 + d. Note that the representation
of the payments relating to RBNS and IBNR reserves given by (5) differs from the
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one given in e.g. (Wahl et al., 2019, Eq. (6) & (7)), although both representations
are equivalent. The reason for using (5) is to facilitate the derivation of the process
variances stated in Proposition 3.

Before stating the results on the moments corresponding to Proposition 1 we intro-
duce the following results on the distribution-free chain-ladder model expressed in
terms of claim counts:

Lemma 1 (Mack (1993); England and Verrall (2002)). The model for claim counts
given by (LM 3) have the following moments

E[N i,j | N0] = N i,m−i

j∏
l=m−i+1

αl, j = m− i+ 1, . . . ,m− 1,

E[Ni,j | N0] = E[N i,j | N0]− E[N i,j−1 | N0]

= N i,m−i(αj − 1)
j−1∏

l=m−i+1

αl, j = m− i+ 1, . . . ,m− 1,

Var(N i,m−1 | N0) = Var(Ni,m−1 | N0)

= α2
m−1 Var(N i,m−2 | N0) + β2m−1E[N i,m−2 | N0]

= E[N i,m−1 | N0]
2

m−1∑
j=m−i+1

β2j /α
2
j

E[N i,j−1 | N0]
.

The proof of Lemma 1 is found in the above mentioned references.

By using the representation (5) together with Proposition 1 and Lemma 1 we may
derive the following result:

Proposition 3. Assume that the claim count and payment dynamics are defined
by (LM 1) – (LM 3). The first two moments of RRi and RIi defined by (5) are then
given by

E[RRi | N0] =
m−i∑
j=0

ψi,jNi,j ,

E[RIi | N0] =
m−1∑

j=m−i+1

ψ•E[Ni,j | N0],

where

ψi,j :=
d∑

k=(m−i+1−j)∧d
ψk, ψ• :=

d∑
k=0

ψk,

and

Var(RRi | N0) =
m−i∑
j=0

ν2i,jNi,j ,

Var(RIi | N0) = ν2•E[N i,m−1 −N i,m−i | N0] + ψ
2
•Var(N i,m−1 | N0),

12



where

ν2i,j :=
d∑

k=(m−i+1−j)∧d
νk, ν2• :=

d∑
k=0

ν2k ,

and where E[Ni,j | N0] and Var(N i,m−1 | N0) are given in Lemma 1.

The proof of Proposition 3 is given in the appendix.

Note that we have not stated the total process variances, but due to independence
between RBNS and IBNR reserve payments, as well as independence between ac-
cident years, this is obtained by summing over all relevant components. Also note
that, as mentioned above, the representation (5) is different, but equivalent, to the
one in e.g. (Wahl et al., 2019, Eq. (6) & (7)). Hence, by rearranging the sums in
Proposition 3 it is clear that the theoretical reserve predictors in the two models are
equivalent, and the same consequently holds for the model in Verrall et al. (2010).
Further, Proposition 3 is a purely theoretical result, which cannot be used in prac-
tice without replacing the unknown parameters with their corresponding estimates.
That is, if we introduce

hRi (θ;N0) := E[RRi | N0](θ), (6)

hIi (θ;N0) := E[RIi | N0](θ), (7)

where θ := (α,β2,ψ,ν2), the reserve predictors that are suggested to be used in
practice are the following ones:

R̂Ri := hRi (θ̂;N0), (8)

R̂Ii := hIi (θ̂;N0). (9)

The computable reserve predictors given by (8) and (9), will be referred to as “plug-
in” estimators. Further, note that (8) and (9) may be expressed according to

R̂Ri := NRi ψ̂, (10)

R̂Ii := N̂
I
i ψ̂, (11)

where

(NRi )k :=
m−i∑

j=(m−i+1−k)∨0
Ni,j , (12)

(N̂
I
i )k :=

m−1∑
j=m−i+1

E[Ni,j | N0](α̂), (13)

and we may, hence, e.g. write

R̂i := R̂Ri + R̂Ii = (NRi + N̂
I
i )ψ̂, (14)
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which is a representation which will prove useful in Section 6 below. Further, note
that the moments from Proposition 3 are only functions of θ and Ni,js. Thus, as-
suming knowledge of the Ni,js needed for computing the moments in Proposition 3,
the only effect on the reserve predictions will be w.r.t. the level of detail in the data
used for estimation of θ.

Before turning to the question of estimation, we end this section with the following
remark:

Remark 4. The derivation of the expressions for the expected value of (5) is based
on standard tower property arguments. Thus, by instead considering the claim count
and payment dynamics defined in terms of

Xi,j,k = ψkNi,j−k + νkw
X
i,jδi,j,k, (LM 1′)

and

N i,j = αjN i,j−1 + βjw
N
i,jεi,j , (LM 3′)

where wXi,j := wXi,j(N0) and wNi,j := wNi,j(N0) corresponds to arbitrary non-negative
weight functions, only defined in terms of Ni,js, it follows that the expressions for
the expected values given in Proposition 3 still hold. This is, however, not the case
with the process variances – in fact, unless the weight functions are chosen with
some care the process variances are not even analytically tractable. With respect to
the constructive argumentation taken in the present paper, it is also less clear how
to interpret other choices of weights than the currently used “

√
Ni,j”-weights. For

examples and further discussion of models of the form (LM 3′) using other choices
of weights, see e.g. Portugal et al. (2018) and the references therein.

5 Estimation — the effect of using data on different
levels of granularity

To start off, note that all (conditional) models of payment dynamics discussed in
the previous sections can be expressed according to

X = Nψ + δ, (LM-X)

where X is an n × 1 vector, N is an n × (d + 1) matrix with known covariates, ψ
is a (d + 1) × 1 vector with unknown parameters, and δ is a random n × 1 vector
with with mean 0 and a covariance matrix depending on both unknown parameters
ν2 and (functions of) N . Without specifying the covariance structure any further,
it is still possible to use the ordinary least squares (OLS) technique, see e.g. (Seber
and Lee, 2012, Ch. 3.10), to obtain the estimator

ψ̂ = (N ′N)−1N ′X =: N+X, (15)
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which satisfies

E[ψ̂ |N ] = E[ψ̂ | N0] = ψ. (16)

Here one can note, that the corresponding estimators of ψ in Verrall et al. (2010);
Wahl et al. (2019) are not unbiased, since the parameter estimators are obtained
using the QML technique. Also note that the unbiasedness (16) holds when using
general weight functions, although other choices of weight functions tend to lack
constructive interpretation. In Section 5.1 we continue the discussion for weighted
least squares estimators, which also provide unbiased estimators.

If we turn to the count models, similarly, these can be expressed as a sequence of
conditional linear models

N j = N j−1αj + δj , (LM-N)

where j = 1, . . . ,m − 1, and where N j and N j−1 are nj × 1 vectors, and where
δj is a random vector with mean 0 and a covariance matrix depending on β2j and

(functions of) N j−1. Note that the sequential structure of model (LM-N) directly
implies that the regression coefficient estimators are (conditionally) uncorrelated:

Lemma 2. Let α̂j denote the OLS estimator of αj , j = 1, . . . ,m − 1, from model
(LM-N). It then holds that

E[α̂kα̂j | N
0
•,k−1] = αkα̂j , j ≤ k,

and that
E[α̂kα̂j ] = αkαj .

The proof of Lemma 2 follows directly from the tower property, see e.g. Mack (1993)
for additional details.

We will now continue to analyse the effect of estimation when using data on different
levels of detail, including estimation of dispersion parameters.

5.1 Estimation using Xi,j,ks

Similarly to the count model situation, when we have access to Xi,j,k-level data we
can use the following representation of model (LM-X): Let Xk and Nk be defined
as follows

Xk =



X1,0,k

X1,1,k
...
X1,m−1,k
X2,0,k
...
Xk,0,m−k


, Nk =



N1,0

N1,1
...
N1,m−1
N2,0
...
Nk,0


,
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and let wk denote a weight vector consisting of functions of Nk and let δk be a
random vector with independent elements with mean 0 and variance 1 analogously
indexed as Nk and Xk. Thus, by letting

W k = diag(wk),

the joint regression model for the Xi,j,ks in Xk may be expressed as

Xk = Nkψk + νkW kδk, (17)

which results in the following weighted least squares (WLS) estimators, see e.g.
(Seber and Lee, 2012, Ch. 3.10):{

ψ̂k = (N ′kΣ
−1
k Nk)

−1N ′kΣ
−1
k Xk,

ν̂2k = 1
|Xk|−1 ê

′
kΣ
−1
k êk,

(18)

where

Σk = W ′
kW k,

êk = Xk −Nkψ̂k.

For WLS estimators it is well-known, see e.g. Fahrmeir et al. (2007), that

(i) E[ψ̂k | N0] = ψk,

(ii) E[ν̂2k | N0] = ν2k ,

(iii) Var(ψ̂k | N0) = ν2k(N ′kΣ
−1
k Nk)

−1.

In particular, when using weights wk corresponding to the elementwise square-root
of Nk, the estimators from (18) simplifies according to ψ̂k =

∑k

i=1

∑m−i−k

j=0
Xi,j,k∑k

i=1

∑m−i−k

j=0
Ni,j

,

ν̂2k = 1
|Xk|−1

∑k
i=1

∑m−i−k
j=0 Ni,j(

Xi,j,k

Ni,j
− ψ̂k)2,

(19)

and that

Var(ψ̂k | N0) = ν2k/
k∑
i=1

m−i−k∑
j=0

Ni,j ,

which are easily implemented in a spreadsheet. Also not the close resemblance be-
tween the WLS-estimators and the classical chain-ladder technique estimators, see
e.g. Mack (1993), but where ψ̂k now corresponds to the average payment per claim.
From (19) it is also clear that if all Ni,j , Xi,j,k ≥ 0 implies that all ψk ≥ 0.

Furthermore, note that, since

E[Xi,j,kXu,v,l | N0] = E[Xi,j,k | N0]E[Xu,v,l | N0]

it follows that
E[ψ̂kψ̂j | N0] = ψkψj , j ≤ k,

i.e. ψ̂k and ψ̂j are conditionally uncorrelated.

16



Remark 5. Note that the count model defined by model (LM 3) may be written on
the form given by (17). Thus, all results on estimation for (17) translates directly
to the model (LM 3).

When turning to the situation with estimation based on less detailed data, the
following vector representation of the detailed data model will turn out to be useful:

X = Nψ +WΞ1/2δ, (20)

where

X =


X0

X1
...
Xd

 , N =


N0 0 0 · · · 0
0 N1 0 0 0
...

...
...

...
0 0 0 0 Nd

 ,

and

Ξ =


ν20 diag(10) 0 0 · · · 0
0 ν21 diag(11) 0 0 0
...

...
...

...
0 0 0 0 ν2d diag(1d)

 ,

W =


W 0 0 0 · · · 0
0 W 1 0 0 0
...

...
...

...
0 0 0 0 W d

 ,

where 1k is a vector of ones with dim(1k) = dim(Nk). Moreover, by using the
representation (20) it follows that

ψ̂ = (N ′Σ−1N)−1N ′Σ−1X, (21)

where Σ = W ′W , with

Cov(ψ̂ | N0) = (N ′Σ−1N)−1N ′Σ−1WΞW ′Σ−1N(N ′Σ−1N)−1

= (N ′Σ−1N)−1N ′ΞΣ−1N(N ′Σ−1N)−1, (22)

where the last equality follows due to that bothW and Ξ are diagonal, i.e.W ′ = W
and ΞΣ−1 = Σ−1Ξ. Furthermore, due to construction, Cov(ψ̂ | N0) from (22) is
diagonal, and it holds that

(N ′ΞΣ−1N)kk = ν2k(N ′Σ−1N)kk,

which gives us that Cov(ψ̂ | N0)kk = Var(ψ̂k | N0) = ν2k(N ′kΣ
−1
k Nk)

−1 as it should.
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5.2 Estimation using Xi,js

The natural starting point for discussing reduced data estimation is to consider
the model formulation given by (LM 2′) and let Xdet denote the vector of Xi,j,ks
from (20) and let Xagg denote the vector of stacked Xi,js, and analogously for all
other quantities referred to as “det” or “agg”. It then holds that there exists a
|Xagg| × |Xdet| “selection” matrix S only consisting of zeros and ones such that

Xagg = SXdet, (23)

which corresponds to that

Xagg = SNdet + SWΞ1/2δdet.

Thus, w.r.t. to equivalence of the first two moments, (LM 2′) (and (LM 2)) may be
represented as

Xagg = Naggψ + W̃δagg, (24)

where Nagg := SNdet and W̃ := (SΞ(W )2S′)1/2 = Cov(Xagg | N0)
1/2, which

is well-defined since it corresponds to the element-wise square-root of a diagonal
matrix, and where δagg is a |Xdet|×1 random vector with independent components
having mean 0 and variance 1. From this definition it is clear that if one assumes
νk = ν for all k the WLS technique may be used since (24) reduces to

Xagg = Naggψ + ν(S(W )2S′)1/2δagg,

and the ψ estimator for this model is again given by (18). In this situation, how-
ever, there is nothing that guarantees that the individual regression coefficients are
uncorrelated.

Further, in the situation where we have dispersion parameters νk that are specific
to different payment delay periods, it is clear that the model (24) is only a more
detailed description of the model (LM-X), and it follows that ψ may be estimated
using the OLS estimator given by (15). This estimator is equivalent to a (generalized)
method of moments, (G)MM, estimator, see e.g. (Mátyás et al., 1999, Ch. 1), and by
using the GMM-technique it is also possible to estimate the dispersion parameters.
By letting Nagg

i,• denote the ith row in Nagg, it is possible to state the following
proposition:

Proposition 4. The parameters in the linear model (24) may be estimated using

ψ̂ = (Nagg)+Xagg,

and
ν̂2 = (Nagg)+û

where

ûi := (Nagg
i,• ψ̂ −X

agg
i )2.
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Further, it also holds that

E[ψ̂ | N0] = ψ,

E[ν̂2 | N0] 6= ν2,

Cov(ψ̂ | N0) = (Nagg)+W̃
2
((Nagg)+)′.

The proof of Proposition 4 is given in the appendix.

Note that Proposition 4 may be seen as a two-stage regression, where one in a first
step regresses X on N , and then, in a second step, regresses the squared residuals
U on N . Moreover, from Proposition 4 we see that the suggested estimator for
the vector with dispersion parameters is biased. It is, however, not possible to make
statements about the asymptotic efficiency of the estimator, without making further
specifications of higher moments. We will not go into more details about this, but
refer the reader to the discussion of asymptotic efficiency of (G)MM estimators found
in e.g. (Mátyás et al., 1999, Ch. 1), but see also White (1980). Still, as will be seen
in Section 6, Proposition 4 contains all relevant building blocks in order to compute
an analytical approximation of the conditional MSEP for the claims reserve using
the techniques from Lindholm et al. (2018). We end this section with the following
remarks.

Remark 6. Compared with the results on estimation of ψ based on Xi,j,k-data,

from Proposition 4 it follows that there is no guarantee that ψ̂k ≥ 0, even though
all Xi,j , Ni,j ≥ 0, or that the regression coefficients are uncorrelated. Moreover, the
estimator of ν2 is also of a least squares type, hence being unconstrained, meaning
that individual ν̂2k could become negative.

Remark 7. One can also note that the cause of complication when estimating the
dispersion parameters ν2 from (24), leading up to Proposition 4, is that the diagonal
elements of W̃ are mixtures of ν2ks and Ni,js. If we assume that all diagonal elements

of W̃ are distinct, which is a reasonable assumption, given the accident year specific
Ni,j weights, an alternative would be to first directly estimate the covariance of ψ̂
without making any parametric assumptions, and based on this estimate, in a second
step, estimate ν2. This corresponds to solving the following equation w.r.t. ν̂2

Ĉov(ψ̂ | N0) = (Nagg)+
̂̃
W

2

((Nagg)+)′

= (Nagg)+ diag((Nagg)ν̂2)((Nagg)+)′,

which is equivalent to solving

diag((Nagg)ν̂2) =
̂̃
W

2

.

Further, a famous consistent estimator of Cov(ψ̂ | N0) is the White-estimator, see
White (1980):

ĈovWhite(ψ̂ | N0) = (Nagg)+ diag(û)((Nagg)+)′,

which immediately gives us that ν̂2White = (Nagg)+û, which coincides with the esti-
mator from Proposition 4.
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Remark 8. Note that the selection matrix S from (23), which only consists of
zeros and ones, may be replaced by an arbitrary transformation matrix S̃, hence
corresponding to an arbitrary data reduction. In the present paper we primarily focus
on S which is a selection matrix corresponding to the mapping from Xi,j,k-level data
to Xi,j-level data because of the natural interpretation of this particular reduction of

data. In Section 6 results are derived which holds for arbitrary transformations S̃ as
long as the transformation preserves unbiasedness of the resulting estimator of ψ.
Concerning estimation using arbitrary S̃ it is clear from the discussion above that
a standard OLS-approach is always feasible.

6 Properties of the computable reserve predictors and
the mean squared error of prediction

One of the main purposes with the current paper is to illustrate the effect of using
data on different levels of granularity. In Section 5 some aspects of this has already
been covered w.r.t. estimation. We will now continue to illustrate how the suggested
estimators introduced in Section 5 will affect the corresponding reserve predictors.

To start off, note that the theoretical reserve predictors, e.g. hRi (θ;N0) and hIi (θ;N0)
from (6) and (7), respectively, are, by definition, N0-measurable functions, whereas
the corresponding computable reserve predictors R̂Ri and R̂Ii from (8) and (9), re-
spectively, are F0-measurable, where N0 ⊂ F0. Further, by using the computable
reserve representation from (10) and (11), i.e.

R̂Ri := NRi ψ̂,

R̂Ii := N̂
I
i ψ̂,

it is possible to formulate the following general result:

Proposition 5. Assume that N̂
I
i is N0-measurable, and ψ̂ is not N0-measurable,

and that

E[N̂
I
i ] = E[NIi ], and E[ψ̂ | N0] = ψ,

it holds that

E[R̂i | N0] = E[R̂Ri + R̂Ii | N0] = (NRi + N̂
I
i )ψ,

and that

E[R̂i] = (NRi + E[NIi ])ψ.

Note that Proposition 5 is a result concerning random vectors. The proof is omit-
ted, but can be found in e.g. (Seber and Lee, 2012, Ch. 3). Moreover, note that

Proposition 5 implies that R̂i is an unbiased estimator of E[Ri | N0], and that N̂
I
i

is an unbiased estimator of E[NIi | N0]. Concerning the particular estimators from
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Section 5, it is known from Mack (1993) that E[N̂
I
i ] = E[NIi ], and all LS-type

estimators of ψ discussed in Section 5 are unbiased, consequently Proposition 5
applies. Another question of interest is to consider the actual values of the com-
putable reserve predictors when using different estimators of ψ. In this situation
it is not possible to order the estimators, since if Xi,j,k-level data is used it holds
that all ψk ≥ 0 if all Xi,j,k, Ni,j ≥ 0, something which cannot be ascertained in the
corresponding situation when using Xi,j-level data, see Remark 6.

When turning to the variation in the computable reserve estimators, one may note
that all unbiased estimators of ψ need to be projections of one another, see e.g.
(Seber and Lee, 2012, Ch. 3). In particular, this allows us to formulate the following
result

Proposition 6. Amongst all estimators of ψ from the model (20) the WLS-estimators
from (21) minimises the variance of

R̂ :=
m∑
i=1

R̂i,

conditional on N0, whose variance is given by

Var(R̂ | N0) =

(
m∑
i=1

(NRi + N̂
I
i )

)′
Cov(ψ̂ | N0)

(
m∑
i=1

(NRi + N̂
I
i )

)
,

with Cov(ψ̂ | N0) from (22). Further, let
̂̃
ψ denote any other unbiased estimator of

ψ, and let
̂̃
R denote the corresponding computable reserve predictor. It then holds

that

Var(
̂̃
R)−Var(R̂)

= E
[(

m∑
i=1

(NRi + N̂
I
i )

)′
(Cov(

̂̃
ψ | N0)− Cov(ψ̂ | N0))

(
m∑
i=1

(NRi + N̂
I
i )

)]
≥ 0.

These relations also hold for the RBNS and IBNR reserves separately.

Note that Proposition 6 merely states that the detailed level estimator is “BLUE”
(best linear unbiased estimator), and the proof follows the usual steps for linear
models: The part of the proof concerning Var(R̂ | N0) follows from a slight gen-
eralisation of Theorem 3.2 in Seber and Lee (2012) re-using the arguments from
(Seber and Lee, 2012, Ch. 3.10), by noting that Ξ from (20) is diagonal with con-
stant ν2k for all rows of N corresponding to Nk, which is the same type of argument
used for the motivation of (22). You may also consult the proof of Proposition 4
for more details on the linear algebra being used. The unconditional variance re-

sult then follows from that Var(R̂ | N0) ≤ Var(
̂̃
R | N0) a.s., together with that

Var(E[
̂̃
R | N0]) = Var(E[R̂ | N0]).

Note that Proposition 6 tells us that all unbiased estimators of ψ other than (21)
will have a higher variance in the reserve predictor, hence covering arbitrary reduced
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data estimators as discussed in Remark 8. This result, hence, does not make any
distinction w.r.t. how a candidate estimator to (21) is obtained; it only tells us that
every other is worse in this respect. This may perhaps seem somewhat disappointing,
since it does not give any guidance to whether e.g. a standard OLS-estimator of ψ
defined in terms of Xi,j,k-level data will outperform an aggregated dito or not. Still,
it is not surprising that it is hard to say more, since one possible detailed estimator
is to e.g. neglect all observations but one for each ψk, which still is an unbiased
estimator defined on a detailed level, but likely with a very large variance. More-
over, note that the unconditional result only tells us that the variance of any other
unbiased estimator will be greater, but in general it is not possible to analytically
compute what the actual variances are. Furthermore, when using arbitrary forms
of data reductions it is neither clear how to estimate the corresponding dispersion
parameters.

Continuing, Proposition 6 tells us about the variation in the computable predictors in
terms of relations which again are functions of the unknown parameters θ. Another
question of interest is to try to quantify the variation in the computable reserve
predictors w.r.t. the true reserve, which can be done using the (conditional) mean
squared error of prediction (MSEP). The conditional MSEP w.r.t. the computable
reserve predictor is defined according to

MSEPF0(R, R̂) := E[(R− R̂)2 | F0], (25)

see e.g. Mack (1993), which in the current context, with parameters θ := (α,β2,ψ,ν2),
is equivalent to

MSEPF0(R, R̂) := E[(R− h(θ̂;N0))
2 | F0]

= E[(R− h((α̂, ψ̂);N0))
2 | F0], (26)

where N0 (⊂ F0) corresponds to the so-called basis of prediction, see Lindholm
et al. (2018), and where θ̂ is some F0-measurable estimator. By using the analytical
MSEP-approximation suggested in (Lindholm et al., 2018, Eq. (6)) it follows that
(26) may be approximated according to

MSEP∗F0
(R, R̂) := Var(R | N0)(θ) + err(θ̂;F0)(θ), (27)

where

err(θ̂;F0)(θ) := ∇h((α,ψ);N0)
′Λ((α̂, ψ̂);F0)(θ)∇h((α,ψ);N0) (28)

which is based on a certain independent copy/re-sampling argument for the F0-
measurable estimator (α̂, ψ̂), together with a Taylor expansion of h(z;N0) around
z = θ, resulting in ∇h((α,ψ);F0), which corresponds to the column vector with
partial derivatives of h(z;N0) evaluated at z = (α,ψ), and where Λ((α̂, ψ̂);F0) is
a function (to be specified) relating to the covariance of (α̂, ψ̂). The form of (27)
relies on that E[θ̂] = θ, which holds for the estimators studied in the present paper.
For more on when this is not fulfilled, see e.g. Lindholm et al. (2018); Wahl et al.
(2019). Further, the MSEP-approximation given by (27) is a theoretical quantity,
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and the natural computable approximation is given by

M̂SEPF0(R, R̂) = MSEPF0(R, R̂)(θ̂)

:= Var(R | N0)(θ̂)

+∇h((α̂, ψ̂);N0)
′Λ((α̂, ψ̂);F0)(θ̂)∇h((α̂, ψ̂);N0), (29)

where the process variances are given in Proposition 3, and the partial derivatives,
∇h(θ̂;N0), are provided in the following proposition which is analogous to (Wahl
et al., 2019, Prop. 10 ):

Proposition 7. The gradients needed to calculate (27) based on the reserve predic-
tors from (8) and (9) are:

∂

∂αl
hIi ((α,ψ);N0) = 1{m−i+1≤l}

m−1∑
k=m−i+1+l

1

αl
(1{k>l}E[Ni,k | N0] + 1{k=l}E[N i,l | N0])ψ•,

∂

∂ψl
hIi ((α,ψ);N0) =

m−1∑
k=m−i+1

E[Nik | N0],

∂

∂ψl
hRi (ψ;N0) =

m−i∑
k=(m−i+1−l)∨0

Nik.

What remains is to define Λ((α̂, ψ̂);F0). As already noted when discussing the
reserve predictors’ variances in Proposition 6 is that the unconditional covariance of
ψ̂ is not analytically tractable, and the same, hence, holds true for α̂. Still, certain
conditional covariances of (α̂, ψ̂) are computable. That is, one suggestion is to use

Λ((α̂, ψ̂);F0) = Λ((α̂, ψ̂);N0) :=

(
Cov(α̂ | N 0) 0

0 Cov(ψ̂ | N0)

)
, (30)

which is motivated by

Cov(α̂i, ψ̂j | N
0
•,i−1,N0) = Cov(α̂i, ψ̂j | N0) = 0,

and where

Cov(α̂ | N 0) :=


Var(α̂1 | N

0
•,0) 0 0 0 0

0 Var(α̂2 | N
0
•,1) 0 0 0

...
...

...
...

...

0 0 0 0 Var(α̂m−1 | N
0
•,m−2)


which is motivated by that Cov(α̂i, α̂j | N

0
•,i−1,N

0
•,j−1) = 0, i 6= j, and which is

in alignment with the arguments in Mack (1993). Also note that this implies that
err(θ̂;F0)(θ̂) = err(θ̂;N0)(θ̂).

Further, for the estimators discussed in the present paper it holds that E[α̂k |
N 0
•,k−1] = αk, E[α̂k | N0] = α̂k, and E[ψ̂ | N0] = ψ, which gives us that

E[Λ((α̂, ψ̂);F0)] =

(
Cov(α̂) 0

0 Cov(ψ̂)

)
.
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That is, Λ((α̂, ψ̂);F0) from (30) is an unbiased estimator of the (analytically in-
tractable) unconditional dito. For a more detailed discussion on having a conditional
or unconditional view on estimation error, see e.g. Lindholm et al. (2018) and the
references therein. We may now state the following result

Proposition 8. The theoretical MSEP-approximation given by (27) defined using
Λ((α̂, ψ̂);F0) from (30) is minimised when using the WLS-estimators of ψ from
(19).

The proof follows by repeating the arguments from the proof of Proposition 6 ver-
batim, since it is the same type of quadratic form appearing in both propositions.

Again, as noted in the discussion of Proposition 6, Proposition 8 is only able to order
the theoretical MSEP approximations, with no clear implications when it comes to
the computable MSEP approximations given by (29) – which is reasonable w.r.t. the
discussion following Proposition 6 concerning Remark 8.

6.1 Bootstrapping

As discussed in Section 4 when using the square-root weight functions it is possi-
ble to compute the process variances analytically, see Proposition 3. These results
are one part of the analytical MSEP-approximation given in (27), where the other
part corresponds to an estimate of the reserve estimation error – corresponding to
the quadratic form in (27) which involves the partial derivatives ∇h(θ;N0) from
Proposition 7.

An alternative approach to estimating the reserve estimation error is to use standard
bootstrapping techniques as those discussed in e.g. England and Verrall (2002),
which is a natural approach due to the linear model structure of both the count
model and the payment model, given counts. This structure suggests the use of an
iterative bootstrap starting with the bootstrapping of N∗i,js, and given the N∗i,js, in
a second step bootstrap X∗i,j,ks or X∗i,j , depending on the available level of detail
in data. Moreover, as the underlying model structure is (conditionally) linear it is
natural to consider the classical (conditional) standardised Pearson residuals:

δ̂Ni,j :=
N i,j − α̂jN i,j−1

β̂j

√
N i,j−1

, (31)

δ̂Xi,j,k :=
Xi,j,k − ψ̂k
ν̂k
√
Ni,j

. (32)

Note that (32) corresponds to detailed data residuals, which may be replaced with
the obvious analogous Xi,j-residuals. Thus, by first drawing δ̂N -residuals with re-

placement, denoted δ̂N,∗, generating

N
∗
i,j = α̂jN

∗
i,j−1 + β̂j

√
N
∗
i,j−1δ̂

N,∗
i,j ,

and in a second step draw δ̂X -residuals with replacement, denoted δ̂X,∗, producing

X∗i,j,k = ψ̂kN
∗
i,j + ν̂k

√
N∗i,j δ̂

X,∗
i,j,k,

24



one generates new N ∗0 and F∗0 which are used to obtain θ̂
∗
. Consequently, by de-

noting the bth bootstrapped estimate of θ with θ̂
∗,b

, it follows that

err(θ̂;F0)(θ̂
boot

) :=
1

nb

nb∑
b=1

(h(θ̂
∗,b

;N0)− h
∗
)2 (33)

where

h
∗

:=
1

nb

nb∑
b=1

h(θ̂
∗,b

;N0).

Also note that the conditional reserve estimation error is used, since N0 is kept
fixed when evaluating the h-functions, which is reasonable due to that the process

variance is calculated conditional on N0. That is, err(θ̂;F0)(θ̂
boot

) from (33) is an-
other approximation which should be comparable to err(θ̂;F0)(θ̂) from (28). Thus,
a bootstrapped estimate of MSEP is obtained by using the plug-in estimates of the

process variances from Proposition 3 combined with err(θ̂;F0)(θ̂
boot

) from (33), i.e.

MSEPN0(R, R̂)(θ̂
boot

) := Var(R | N0)(θ̂) + err(θ̂;F0)(θ̂
boot

). (34)

Remark 9. Note that (31) neglects the fact that the Ni,js are non-negative integers,
see also Remark 3. In practice this is only a potential problem if Ni,j ≈ 1, which typ-
ically only occurs when little remains to be paid and, hence, only having a negligible
effect on the results. The numerical illustration discussed in Section 7 uses simple
rounding of the produced N∗i,js. For more on bootstrap techniques, see England and
Verrall (2002) and the references therein.

7 Numerical illustration

We will now illustrate the main results of the paper using simulation. The starting
point will be the data from Verrall et al. (2010), although this data is not avail-
able at the Xi,j,k-level. Still, by using the count data together with the parameter
estimates from Verrall et al. (2010) it is easy to simulate data which is in agree-
ment with the models introduced in the present paper. As discussed in Section 5.2
(see in particular Remark 8), we may express all reduced data estimators of ψ in
terms of transformations of the detailed Xi,j,k-data. Thus, we will only simulate de-

tailed Xi,j,k-data and transform data into the Xi,j-format, and let θ̂
agg

denote the

corresponding θ-estimator from Proposition 4. Similarly, let θ̂
det

denote the corre-
sponding detailed estimator from (18). In order to stress this we will occasionally

use the notation (θ̂
agg
,N det

0 ) and (θ̂
det
,N det

0 ).

The following procedure will be used to generate data:

• Given a column of Ni,0-values, it is possible to use the negative binomial
recursion from Proposition 2 to generate count data. The parametrisation
used is based on the α̂js from Verrall et al. (2010), which are transformed into
the corresponding π̂js of the negative binomial model from Proposition 2. In
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order to include a model for the first column of Ni,0-values, we let each Ni,0

be Poisson-distributed with mean corresponding to the observed count from
Verrall et al. (2010).

• The number of payments per claim is modelled as negative binomial random
variable with mean 1.5. In Verrall et al. (2010) the total mean and variance
of a claim is estimated to 203 and 3 496 125, respectively. These values are
scaled with the expected number of payments to produce the corresponding
values for a single claim payment, and where each claim payment is modelled
as a log-normal random variable.

• The distribution of claim payments per claim is modelled as a multinomial
distribution parametrised in terms of p0, . . . , p7 given in (Verrall et al., 2010,
Table 5).

By using this procedure we generateNi,j andXi,j,k data corresponding to 10 accident
years that have been observed for at most 10 development years, implying that we
will try to fit αj , j = 1, . . . , 9, and ψk, k = 0, . . . , 9. Note, however, that a simulated
data set may contain a lot of zero observations, in particular for later development
years. This will make it impossible to invert the necessary matrices needed in the
estimation of e.g. ψ. One can, hence, manually remove zero-patterns which will give
rise to this problem, or one can use a pseudo-inverse based on a standard singular
value decomposition. We have chosen to use the latter approach due to that we want
to use automatic re-estimation for each simulated and bootstrapped dataset.

In Figure 1(A) – 1(C) kernel density estimates of the difference between the predicted
IBNR, RBNS and total reserve and the true simulated future payments are shown,
when we use both detailed Xi,j,k-level data (red) and aggregated Xi,j-level data
(black) based on 10 000 simulated complete data sets. From this figure it is clear
that both methods perform satisfactory, e.g. centred around zero, and are very close,

hence, implying that ψ̂
agg ≈ ψ̂det

.

In Table 1 the predicted (plug-in) total IBNR and RBNS reserves are shown for one
simulated dataset, together with the corresponding (plug-in) process variances from
Proposition 3. From Table 1 it is seen that the both the IBNR and RBNS reserves
are close regardless of whether detailed or aggregated data is used for parameter
estimation (but note that the detailed reserve is larger), which is in line with Figure
1(A) – 1(C). This is, however, not the case for the estimated process variances,
hence illustrating that using reduced data estimation may have a large effect on
the precision of your variance parameter estimates and the parameters’ covariance
structure. It is also worth mentioning that ψ̂agg

9 < 0 and that there exists negative
estimates of (ν̂aggk )2, see Remark 6.

Concerning prediction errors, in Table 2 the reserve estimation errors for the IBNR
and RBNS reserves are summarised when calculated using detailed, accumulated
and bootstrapped data, in accordance with (28) and (33), together with the cor-
responding MSEP-values. The bootstrapped estimates are based 10 000 samples
following the procedure described in Section 6.1, and all generated Ni,j-values are
made integer valued using simple rounding, see Remark 9. From the table it is clear
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that the detailed data estimation produces lower variation regardless of the type of
approximation being used and that the analytical approximations are of the same
order of magnitude as the corresponding bootstrapped ones. It is also worth recall-
ing that, at least, the analytical ordering may change, depending on the parameter
estimates actually used – recall the comments following Proposition 8.
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Figure 1: Fig. 1(A)–1(C): From left to right, kernel density estimates of IBNR,
RBNS, and total reserve predictions compared with true simulated future payments
based on 10 000 simulations. Red lines corresponds to estimation of ψ based on
Xi,j,k-data using (19), black lines corresponds to estimation of ψ using Xi,j-data
using the estimator from Proposition 4.

Table 1: Predicted (plug-in) total IBNR and RBNS reserves together with the cor-
responding estimated process variances, based on Proposition 3.

R̂I R̂R
√

Var(RI | N0)(θ̂)
√

Var(RR | N0)(θ̂)

(θ̂
det
,N det

0 ) 202 906 2 742 867 31 709 134 064

(θ̂
agg
,N det

0 ) 202 868 2 738 703 38 714 158 953
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A Proofs

Proof of Proposition 3. We start by considering the RBNS reserve. By combining
(5) and (LM 1) it follows that

RRi =
m−i∑
j=0

d∑
k=(m−i+1−j)∧d

Xi,j,k

=
m−i∑
j=0

d∑
k=(m−i+1−j)∧d

(ψkNi,j + νk
√
Ni,jδi,j,k),

from which it follows that

E[RRi | N0] =
m−i∑
j=0

d∑
k=(m−i+1−j)∧d

ψkNi,j

=
m−i∑
j=0

Ni,j

d∑
k=(m−i+1−j)∧d

ψk

=
m−i∑
j=0

Ni,jψi,j .

By using the same representation of RRi , the process variance of the RBNS reserve
becomes

Var(RRi | N0) = Var

m−i∑
j=0

d∑
k=(m−i+1−j)∧d

(ψkNi,j + νk
√
Ni,jδi,j,k) | N0


= Var

m−i∑
j=0

d∑
k=(m−i+1−j)∧d

νk
√
Ni,jδi,j,k | N0


=

m−i∑
j=0

d∑
k=(m−i+1−j)∧d

ν2kNi,j

=
m−i∑
j=0

d∑
k=(m−i+1−j)∧d

ν2i,jNi,j ,

where the second to last equality follows due to independence.

Similarly, for the IBNR reserve, (5) and (LM 1) yields

RIi =
m−1∑

j=m−i+1

d∑
k=0

(ψkNi,j + νk
√
Ni,jδi,j,k),
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which by conditioning on N i,m−1 gives us that

E[RIi | N0] = E[E[RIi | N i,m−1],N0]

= E

E
 m−1∑
j=m−i+1

d∑
k=0

(ψkNi,j + νk
√
Ni,jδi,j,k) | N i,m−1

 | N0


= E

 m−1∑
j=m−i+1

d∑
k=0

ψkNi,j | N0


=

m−1∑
j=m−i+1

E [Ni,j | N0]
d∑

k=0

ψk

= ψ•

m−1∑
j=m−i+1

E [Ni,j | N0] .

By re-using the same repeated conditioning, the process variance of the IBNR reserve
becomes

Var(RIi | N0) = E[Var(RIi | Ni,m−1) | N0] + Var(E[RIi | Ni,m−1] | N0)

= E

 m−1∑
j=m−i+1

d∑
k=0

ν2kNi,j | N0

+ Var

 m−1∑
j=m−i+1

d∑
k=0

ψkNi,j | N0


= ν2•E

[
N i,m−1 −N i,m−i | N0

]
+ ψ

2
•Var(N i,m−1 | N0),

as stated in the proposition.

Proof of Proposition 4. The estimator of ψ is a standard OLS-estimator, and we
will not discuss it any further.

Concerning the estimator of ν2, recall that by the definition of W and Ξ, it follows
that

ΞW 2 = diag(Ndetν2),

which in turn gives us that

Cov(Xagg | N0) = S diag(Ndetν2)S′.

Thus, by defining

ei := Xagg
i −Nagg

i,• ψ

= 1′i(X
agg −Naggψ)

= 1′i(S diag(Ndetν2)S′)1/2δagg,

where 1i is the |Xagg|× 1 vector consisting of only zeros except for position i where
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there is a 1, it follows that

E[e2i | N0] = 1′i(S diag(Ndetν2)S′)1i

= Si,• diag(Ndetν2)S′i,•

= tr(Si,• diag(Ndetν2)S′i,•)

= tr(S′i,•Si,• diag(Ndetν2))

= 1iN
aggν2

= Nagg
i,• ν

2,

where tr(·) is the trace operator, and where we have used that S′i,•Si,• is a square
matrix whose only non-zero diagonal elements corresponds to the selection pattern
Si,•. That is, a moment estimator of ν2, corresponds to the ν̂2 which solves the
equation system

Naggν̂2 = û,

whose solution is ν̂2 = (Nagg)+û.

Further, in order for ν̂2 to be unbiased, it is clear that

E[û | N0] = Naggν2

must hold. We will now show that this in general is not the case, and we will do
this by considering a single element ûi re-using the arguments from the derivation
of the estimator ν̂2:

E[û2
i | N0] = E[(1′i(X

agg −Naggψ̂))2 | N0]

= E[(1′i(I −Nagg(Nagg)+)Xagg)2 | N0]

= 1′i(I −Nagg(Nagg)+)(S diag(Ndetν2)S′)(I −Nagg(Nagg)+)′1i

= tr(1′i(I −Nagg(Nagg)+)(S diag(Ndetν2)S′)(I −Nagg(Nagg)+)′1i)

= tr(1′iS diag(Ndetν2)S′1i)

+ tr(1′iN
agg(Nagg)+S diag(Ndetν2)S′(Nagg(Nagg)+)′1i)

− tr(1′iN
agg(Nagg)+(S diag(Ndetν2)S′1i)

− tr(1′i(S diag(Ndetν2)S′(Nagg(Nagg)+)′1i)

= Nagg
i,• ν

2 + tr(·)− tr(·)− tr(·)
6= Nagg

i,• ν
2,

which shows that ν̂2 is biased.
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