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Abstract

A simple “classical“, model for epidemic spread in a finite, but
large, population is studied. The model is a stochastic version of a
deterministic model formulated by Kermack and McKendrick. In the
stochastic version the spread starts when one newly infected individual
enters a totally susceptible population. The aim of this paper is to
describe how an epidemic may develop. We will here collect some well-
known results and provide proofs of basic theorems. The presentation
is focused on situations where the population in which the spread takes
place is large. This makes it possible to use results derived from the
study of branching processes. The discussion is illustrated by simple
examples.
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1 Introduction

We will consider a model for epidemic spread of infections in closed popula-
tions. The model is a stochastic version of a deterministic model introduced
by Kermack and McKendrick (1927). The stochastic formulation is given
in section 2 where basic notation is defined and important, and well-known
properties are summarized. We will, in particular, be concerned with situa-
tions where the population in which the spread occurs is large.

The model is formulated to account for that an infected person is infec-
tious only during a finite random time interval and after infection is immune
to further infections. One fundamental assumption of the model is related
to how much infectivity an infected individual spreads in time after being
infected. This infectivity is according to another assumtion spread randomly
over the susceptible part of the population.

The progress of the epidemic can be divided into three phases. These
phases can be studied with different mathematical techniques.

As long as there is a small proportion of infected persons in the population
the spread can be approximated by a branching process. Section 5 deals
with properties of branching processes which are useful in the study of the
epidemic process. In section 6 connections between the epidemic process and
an approximating branching process are discussed.

When a non-negligible proportion of the population has been infected, if
this ever happens, the branching process approximation is no longer valid.
In this phase there are many active spreaders and there are sufficiently many
susceptible individuals for the epidemic to persist. The process can then be
analysed by mass-action tools, e.g. differential equations. This is discussed
in section 7.

Finally the epidemic enters a fading off phase and will slowly die out, due
to lack of susceptible persons, see section 8.

In section 9 some simple examples are studied and illustrated.

2 The model

We will assume that the population has n members, who initially are all
susceptible to infection. It is assumed that at time ¢ = 0, one recently
infected person enters into a finite totally susceptible population. This may
start a chain of infections that eventually causes an epidemic.

We will focus on results that are asymptotically valid when n is large.
The progress of the epidemic is followed by counting the number of infected
individuals. The counting process, N, (t), tells how many individuals have



been infected up till time ¢. The sub index refers to the size of the population.

The spread, both as regards how large proportion of the population that
is infected and the speed at which the epidemic grows, will depend on the
infectiousness of the infected individuals. After being infected a person is
assumed to have infectious contacts with randomly chosen members of the
population according to a Poisson process with a random intensity h(s).
We will refer to these intensity functions as infectivity functions and assume
that there exists a probability distribution over possible infectivity functions.
The individual infectivity function, of the ¢’th infected is denoted h;, and are
assumed to be stochastically independent of other infectivity functions. A
contact between an infected and a susceptible individual will always result
in a secondary infection.

In order to avoid technical difficulties in the proofs we will make some,
unnecessarily, restrictive assumptions. We assume that the random functions
h are non-lattice and have a common upper bound. We will also assume that

the random variable H(oc0) = Ofoh(s)ds has finite mean and variance.
0

A formal description of the epidemic model can be done through the
intensity of the counting process NV,,. The intensity is

At) = (1—N"(t_>> {/hNn(S)(t—s)dNn(s)+h0(t) L (21)

n

Looking at this representation we see that the process, N,,, can be viewed
as a generalized pure death process where the death intensity at time ¢ de-
pends on the history of previous deaths. This observation will be fruitful
when we consider how large proportion of the population will stay uninfected
during the entire epidemic.

We can also observe that as long as N, (t—)/n ~ 0 we may approximate
the process with a pure birth process where the birth intensity depends on
the history of previous births. This approximation will be used to find out
how fast the epidemic grows initially.

3 Notations and relations

In this section we will introduce parameters and properties of the model that
has been proven important in previous studies. Theoretical results are in this
section cited without proofs. Some proofs will be given or indicated in later
sections.



The following notations are already introduced:

e n: the size of the population.
e N, (t): the number of infected up till time ¢.

e h(s): the individual random infectivity function. The infectivity up
till time s after infection is H(s) = [h(s)ds. The realized infectivity
0
function of the i’th infected is denoted h;.

3.1 The basic reproduction number

The most important parameter deciding the strength of an infection is

e Ry: the basic reproduction number

Ro = E(H(c0)). (3.1)

Ry is often, somewhat loosely, referred to as the mean number of infections
caused by one infected person in a totally susceptible population.

3.2 The final size

An important outcome of an epidemic is the final size, i.e., the proportion of
the population that has been infected when the epidemic comes to an end.
This is obviously a random quantity. It can be expressed as m, = N, (c0)/n.

Heuristically, it is clear that the final size, and its asymptotic properties,
will not depend on how infectivity of the infected are distributed in time.
This means that not the entire random function, h(s) has to be considered
but only the (random) total infectivity, H(oc0).

We are particularly interested in large populations. The asymptotic final
size is a mass action property and will only depend on mean properties of
the model. It turns out that as n — oo, the distribution of m,, tends to a
two-point distribution. Either the epidemic dies out in an early stage and m,
is close to 0 or the epidemic grows large and ends with a positive proportion
of the population infected. We define:

e 7: the asymptotic final size of the epidemic, i.e.,

™= lim N, (00)/n. (3.2)



The final size will solve the equation
—In(1 —7) = Ry, (3.3)

or equivalently
T=1-—¢ o7 (3.4)

If Ry < 1 this equation has the only solution 7 = 0. If Ry > 1 there also
exists a positive solution.

3.3 The probability for a large epidemic

There is a positive probability that the infected individual entering the pop-
ulation will not start a large outbreak. It is thus of interest to find

e p: the asymptotic probability that the epidemic grows large, i.e.

p = lim P(N,(00)/n > 0). (3.5)

Also for this property it is clear that it is not important how the individual
infectivity is distributed in time. This means that the infectivity functions,
h, only influences p through the total infectivity H(oco). The epidemic dies
out early causing only a small number of infected if the first infected are
poor spreaders. Using the same argument as when proving that a branching
process grows large (see Ball and Donnelly (1995)) we can prove that p is the
positive solution of the equation

l—-p= LH(oo)(p)a (36)

where Ly() is the Laplace transform of the random variable H(oo).
This equation has a positive solution if and only if

Ry = E(H(0)) > 1. (3.7)

3.4 The generation time density

To investigate time related properties of the epidemic spread we define

e g: the generation time density. This function is the mean infectivity of
an infected at time ¢ after infection, normed to have total mass 1, see

Svensson (2007) and Tomba et al. (2010). Thus

(3.8)



The corresponding distribution function is

G(t) = / g(t)dt, (3.9)

and the Laplace transform

L9(s) = / e~stg(t)dt. (3.10)
0
We will also need the related function
. 7 dL9
L9(s) = / te~stg(t)dt = — ds(S)' (3.11)
0

3.5 The Malthus parameter

The generation time density is related to the speed at which an epidemic
grows in a large population. When the epidemic is asymptotically large
it grows, in the beginning, at an exponential rate equal to the Malthusian
parameter.

e «; the Malthusian parameter defined as the solution of the equation

1=R, 7exp(—at)g(t)dt = Rol?(a) =E (76_ath(t)dt) . (3.12)

0 0

There will exist a (unique) positive solution to this equation if and only

The Malthus parameter in branching processes is discussed in section
5.1. That it is essential also for the progress of the epidemic is made clear in
section 6.

3.6 The basic mean

Another important number is

1 1
= - = — 5 . (3.13)
O./R()Lg(a) O./R()%Lg(a)
The basic mean is together with the Maltus parameter an important pa-
rameter. In section 6 we prove that the epidemic process in the start is

approximated by a branching process, B. For this process we can prove that

E(B(t)e™"") — M, (3.14)

0

as t — oo.



4 The phases of the epidemic

If the population in which the epidemic takes place is large we can divide the
progress of the epidemic into three phases. Each phase has to be analysed
with different methods.

In the first phase, when N,(t)/n < e where € is a small number, the
probability that an infected individual will have contact with an already
infected and immune person is small. The progress is not slowed down by
the presence of immunity and the epidemic process can be approximated by
a branching process. Such processes have been studied in great detail. In
section 5 we give a short account of results that are relevant for the present
study.

In the next phase € < N,,(t—)/n < m —e. The epidemic has then reached
a level were a non-negligible proportion of the population is infected but
there will also be a large number of active infectors. The process is then
in a mass-action phase where the progress can be analysed using differential
equations. We will call this the epidemic phase. It is discussed in section 7.

Finally there is a fading of phase, cf section 8, when the epidemic has
almost reached it final state, i.e. N,(t—)/n > m — e. In this phase those
still infectious has a small chance of contacting a susceptible individual. The
spread will slowly fade out.

5 The branching process phase

In the start, i.e., before the facts that the population is finite and that the
infection causes immunity influences the spread, we can approximate the
epidemic process with a branching process. In this section we will study a
branching process closely related to the epidemic process defined by 2.1. The
connection between the two processes will be discussed in the next section.

We will define the branching process as a counting process, B, with the
intensity

/ hisgey(t — $)dB(s) + ho(t). (5.1)

The branching process, B, differs from the epidemic process, N, since it is
not influenced by immunity i.e., the term 1 — N, (t—)/n.

The process B is a special case of a so-called Crump-Mode-Jagers-process
(i.e. a CMJ-process), see Crump and Mode (1968), Crump and Mode (1969),
and Jagers (1975). It is usually described in a demographic setting as a model



where individuals have offspring according to a (general) point process during
a, possible, random life time. It is natural to refer to the events in B as
births and to talk of mothers and offspring or children (instead of infectors
and infected). Such a representation causes here linguistic problems since
terminology referring to infections and contacts does not fit well. However
we will use the demographic terminology in this section and assume that the
random infectious functions, h, corresponds to the intensity of giving birth
to children.

Crump-Mode-Jagers-processes have been studied in great detail and much
is known of their properties. In the following subsection we will relate some
useful results.

When this is done we will, in the following section, use the branching
process to construct a related process that have the stochastic properties of
the epidemic process. This will make it possible to use results for branching
processes to derive results for the epidemic process.

5.1 Results for a branching process

Branching process have successfully been studied in great detail and much
is known of their stochastic properties (see e.g. Harris (1963), Kimmel and
Axelrod (2002), and Haccou et al. (2005)). In this paper we will in partic-
ular use two basic theorems. The assumptions made in this paper simplify
derivations of results that are valid in more complex models. Proofs related
to Crump-Mode-Jagers processes under more general conditions can be found
in Doney (1972).
Let
M (t) = E(B(t)). (5.2)

and
Z(t) = B(t)e ™ (5.3)

where « is the Malthus parameter.
The first theorem reveals the importance of the Malthusian parameter.
It follows more generally from results in Feller (1971).

Theorem 5.1

lim B(Z(t)) — ——

lim PNZIE] (5.4)

Proof:
We will use properties of Poisson processes. The development of the
process depends when the initial mother gives birth to children. The function



ho(t) defines the fertility of the first mother

E(ho(t)) = Rog(t), (5.5)

We will first condition on hy. With this conditioning the number of
children of the initial mother up till time ¢, denoted by, R(t), is Poisson
distributed with mean Hy(t). Due to properties of a Poisson process births
occurs, in the interval [0, 1], at R(t) random times that are independent and
distributed according to the density ho(t)/Ho(t)

Due to the regenerative properties of the process (i.e. each birth starts a
new independent stochastically identical process) we have

E<B<t>|h0,R<t>>=R(t>( Hol(t) ( )ho<u>du). (5.6)

The last term equals 0 if Hy(t) = 0.
Removing the conditioning on R(t) we obtain:

t

Ew@|mpﬁ%@+/Mu—m%wmw (5.7)

0

It follows that

mB@»:AﬂwzJ%(G@yg/mgM@—sm%. (5.8)

0

Thus the mean of the branching process is only a function of Ry and the
generation time distribution g.
If we multiply equation (5.7) with exp(—ts) where s > a we obtain

/E Jot) dt = 0= S) 4 RyLi(s /E ') dt. (5.9)
0 5 0
Thus
1— RyL9(s Ryl
TS g /E e!) oL%(s) (5.10)
S — S

The right hand side of this equation tends to RyLy(a)/a = 1/ (see 3.12)

and 1—RyL9 dL9
- RolA(s) |, dL%(a)

0
5 — ds '’

(5.11)



as s — «. Thus

(s—a) | E (B(t)e_(s_o‘)te_at) dt = ———my (5.12)

OéR() ds

as s — a. .
A Tauberian theorem says that r [ Q(t) exp(—rt) — @ as r — 0 if and
0

only if Q(t) — @ as t — oo, This finally proves the theorem.

The above theorem describes how M (t) grows for large ¢. We will later
need an inequality valid for all ¢ > 0.

Corollary 5.1 There exists a constant K such that
M(t) < Ke™ (5.13)
forallt > 0.

The following theorem gives a relation for the Laplace transform of the
limit distribution of B(t)exp(—at). The proof again uses the properties of
Poisson processes. Observe the similarity to results by Harris (1963) for
slightly different models.

Theorem 5.2
Lz(s) = lim E(e™*#"),
satisfies
Lz(s) = E |exp (— / (1— LZ(sea“))h(u)du)] . (5.14)
0

Together with (5.4) this defines Lz(s) and the limit distribution of Z(t) as
t — o0.

Proof: First we analyse what happens conditional on hg. The first mother
has R children, where R is Poisson-distributed with mean Hy(co). The births

occur at times which are independent and distributed according to the density
ho (t)/Ho(OO) Thus

1
H()(OO)

B(e 70 | by, ) = ¢ JEE e hg(wyau] . (5.15)
0

Removing the conditioning, first on R, and hg, and finally letting ¢t — co we
derive the expression (5.14).

10



From equation (5.14) we can derive interesting limit results. E.g.

Lz(o0)=g=1-p (5.16)
where p satisfies

1—p= Lo (p), (5.17)
This gives the probability, ¢ = 1 — p, that the process stays finite, see (3.6).

We can write

Lz(s) = q+pK(s) (5.18)
where K is the Laplace transform of the limit of Z(¢) given that the process
B(t) grows asymptotically large. Inserting (5.18) in (5.14) we obtain:

q+pK(s)=E

exp (—p/(l - K(sea“))h(u)du>] : (5.19)

The asymptotic mean of Z(t) as t — oo is given by theorem 5.2. The
second moment given that the process grows large, can be derived from the
equation:

K"(0) (1 — RoLé(2a)

) =
p(K'(0))2E (( / e_o‘“h(u)du)Q) . (5.20)

0

Here
E(Z | the process grows large) = K'(0) (5.21)
E(Z? | the process grows large) = K”(0) (5.22)
5.2 Remark

It is, in general, difficult to derive an explicit solution of equation (5.19).
However, it is possible in the special case where an infected person is infected
with constant infectivity for random time, X, i.e.

h(t) = M (t < X). (5.23)
Under these assumptions:
H(oo) = A\X, (5.24)
g(t) = W, (5.25)
L9(s) = w (5.26)

11



With the definitions given in section 3 we find that
PA = q, (5.27)

and we can verify that the Laplace-transform

K(s) = (5.28)

satisfies the equation (5.14).
The asymptotic expression of the mean of Z(t) given that it is asymptot-
ically large is
1
V=
paRyLI()
Thus the limit given that the process grows large is exponential distributed
with intensity 1/~.

(5.29)

6 Deriving the epidemic process from the branch-
ing process

Two important features distinguishes the epidemic process from the branch-
ing process:

e The epidemic takes place in a finite population,

e In the epidemic model the growth of the process is slowed down by
immunity.

We will develope an idea from Ball and Donnelly (1995) to generate an
epidemic process by combining the branching process with another indepen-
dent process. In this process we choose random numbers independently and
uniformly from 1,...,n. These numbers, of course, correspond to the in-
dividuals in the population. We will then delete events in the branching
process in such a way that the remaining events corresponds to an epidemic
process. In time sequence we will attach the random integers to the non
deleted events of the branching process. If the number chosen occurs for the
first time we will keep the event. If it has already been chosen before the
event is deleted as well as all offspring in the branch starting from this event.
This is intended to describe the effect of immunity. The events that finally
remains correspond to infections in the epidemic process N,,.

With this construction N,, only jumps when B jumps.

12



Let C7 denote the value of B then it first happens that a person is chosen
for the second time. If B(t) < C7 the processes B and N,, coincides and they
share properties until this happens.

Note that he problem of finding the probability distribution of CT is
analogous to the well-known birthday problem. The problem there is to find
the probability that at least two persons in a group of r persons have the
same birthday (cf Feller (1971)).

r

P(CT >r) = H(l —i/n) =

1=0

(n —n:“)!n’" (6.1)

Applying Stirlings formula we find that the probability P(C}* > r) tends
to 1 asn — oo if r = n®* where a < 1/2. Thus when N, (t) = B(t) < n®
where a < 1/2 the epidemic process has asymptotically the same properties
as the branching process.

We will later need to be able to use the branching process as an approx-
imation for a longer time. To do this we will approximate how many future
births are removed in the procedure described above. Let I]' be an indica-
tor that equals 1 if a number is chosen at the v’th birth has a number that
has been chosen before. Otherwise it will equal 0. The indicators are inde-
pendent of the branching process. Now let B, denote the (sub) branching
process started by the v’th event, then

N, (t) = B(t) — Bz(tj) I"By(t —1,). (6.2)

This representation may be used to construct close approximations of the
epidemic process. However, we will here only use it to study for how long
the branching process is a “good” approximation of the epidemic process.
We start by observing that at the v’th event less than v numbers have
been chosen. Thus v
B(I7) < . (6.3)

The right-hand size is, for fixed ¢, the sum of a random number of random
variables. Using lemma 5.1 we find that for each of the summands

K K
B (I"B,(t — 7,) | 1) < e —petm™) = ey, (6.4)
n n

Removing the conditioning on 7, we find

e_atE ([ng(t - Tv)) S (65)

S‘Nz

13



for some constant K.

Since the event B(t) > v only depends on what happens in the branching
process before time 7, and B,(t — 7,) does not we can apply Wald’s lemma
and find

e ™E(B(t) — N,(t)) < —E(B(t)). (6.6)

“at B(t) Nn(t)
e “(B(t) — Nuo(t)) = ot <1 B ) : (6.7)
It is known that of B(t)exp(—at) converges almost surely, as t — oo,
towards the random variable Z which is positive if the branching process
grows large (see Cohn (1985)). The difference B(t) — N, (t) is always non-
negative and also increasing in ¢. This means that we can apply the Markov
inequality and draw the following conclusions:

Now

Na(t)
B(t)
in probability as n — oo for all ¢ such that B(t) < n® where b < 1.

—1 (6.8)

e for any € > 0 there exists a n such that
Nn(t)

B(t)

as n — oo for all £ such that B(t) < nn.

>1—c¢ (6.9)

6.1 Time in the branching process phase

Assume that the epidemic grows large and a non-negligible proportion are
infected, then at some finite time 7, the number of infected will reach the
level ne. If € is sufficiently small the process N(t) can be well approximated
by a branching process up till that time. After that the process has to be
studied by other methods.

Using the branching process approximation we find that

N(ro)exp(—ar.) = neexp(—art.) ~ Z (6.10)

where Z is a random variable. This implies that

_— O (6.11)

«

where Z is a finite random number.
More exact results (and more rigid analysis) valid in special models can
be found in Barbour (1975) and Svensson (1995).

14



7 The epidemic phase

In this section we will study the epidemic process after it has reached a level
where the branching process is no longer a good approximation.

We start by defining the new counting process N,(s) that counts the
number of infections that take place after 7., i.e., N,(s) = N,(s + 77) —
N, (7*). This new counting process has the intensity

Me) = (e ) L (s — 0)dNa) ()
b o(l—e— ]\%S—)) [ v + 72— w)dN () + hols + 77)

The first right-hand term gives the intensities of infections caused by those
infected after 7" and the second term the intensity caused by those infected
before that time but occurring after 7*. It is thus necessary to investigate
the effect of the remaining infectivity spread by those infected before 7" after
that time.

7.1 Remaining infectivity

We will now consider, using an heuristic argument, how much infectivity has
been spread in the population at time 7', when en individuals have been
infected and how much infectivity is still remaining to be spread after time
7' by those infected before 7.

The infections occurs according to a Poisson process. Thus we can as-
sume that it requires, in mean, a total of infectiousness en to produce en
infections if we can disregard effects of immunity. The first en infected can,
in mean, generate the infectiousness Rgen. Thus, at the time en individuals
has been infected, if that happens, there still remains, in mean, (Ry — 1)en
infectiousness to be spread from those already infected. We will consider how
this infectivity is distributed in time after 7*. This, of course, depends on
when those infected before 77" are infected.

We will try to obtain a useful expression of

/ T ) (5 + 7 — W) AN, (1) + ho(s + 7). (7.2)
0

15



We start by rewriting the expression as
Roe®™ /g(s + 77— w)e WG N, (u) | + ho(s + 7). (7.3)
0

We will use that for large values of u

e N,(u)
~ 1 4
N.(7) e T
since Z(u) converges almost surely, and
dN,(u) = aN,(u)du. (7.5)

Inserting these approximations in (7.3) we find, that the infectivity re-
maining from those infected before time 7.» spread out in time is RoenRem(s)
where

Rem(s) ~ /9(8-1-7'6" —w)e 2 Wady | (7.6)
0

Since 7" — 00 as n — oo according to (6.11) we can use the approxima-
tion

Rem(s) = a/g(s +t)e dt (7.7)

if n is large.
Integrating the second right-hand term of this equation we get

[e.9]

Ry 70Rem(t)dt = Roa/(l —G(t))e ™dt = Ry — 1 (7.8)

0

which corresponds to the calculation of the amount of the remaining infec-
tiousness made at the beginning of the section. Also observe that

RyRem(0) = a. (7.9)

This has to be the case, since the process is assumed to have the Malthus
parameter «.

16



7.2 Differential equation approximation

Now let i
x(t) = NT(:) (7.10)

If we take expectations we find that if n is large

t o]

= Ro/g(t —v)dx(v) + Rgae/g(s +t)e"“dt. (7.11)

=@t +e

If we solve this differential equation and let ¢ — 0 we have an expression
for the deterministic trajectory for the progress of the epidemic in the nearly
deterministic phase provided the population is large or asymptotically as
n — oo.

8 The Fading off phase

In the final phase most contacts taken by an infectious individual will be with
an immune individual and will not result in further spread of the epidemic.
This implies that the process will be essentially random. However we know
from (3.3) that finally the epidemic, if it grows large, will end up with the
proportion, 7, members infected.

The fading-off phase will last from the time, ¢ = 7,_., when N(t) =
(m — €)n, until it stops. Here € can be chosen arbitrarily small if n — oc.

In the start the epidemic behaves as a branching process, which is a birth-
and-death process with, if Ry > 1, a strong bias to births (i.e. new infections).
The final phase the process behave like a birth-and-death process with more
deaths (i.e. individuals becoming non-infectious and immune) than births.
Of course, it is of interest to study the final phase of the epidemic, but it will
not be done in any detail here.

9 Examples

We will illustrate the theory described above and the calculations necessary
by considering different sets of assumptions of the infectivity functions.

In the first two examples the infected individuals are assumed to have
a constant infectivity during the infectious period. A consequence of this
is, according to section 5.2, that N, (t)e”* is asymptotically exponential
distributed. The asymptotic mean of this exponential distribution is My/p.

17



In the third example a random infectious period with constant infectivity
starts after a (random) latent period during which infections is not transmit-

ted. Finally an example with non constant infectivity is considered.

9.1 Constant infectious time

We assume that the infection is spread with constant intensity, A\, during the
non-random time k. Such a process is sometimes referred to as a (continuous

time) Reed-Frost process. Thus

h(t) = M (t < k).

We can now calculate:

Ry = Ak,
I(t < k)
g(t) = T
1—e 5k
L =
(5) = ——,

and

1 —e 5k — ske5k

ig(s) =

s2k
The Malthus parameter, «, solves the equation

M1 —e ) =a.
Furthermore
_a
p - )\7
T™=Dp,
and
1
MO =
1-— Ro + ak
Finally

18
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9.2 Exponentially distributed infectious time

The basic assumptions are that the infectivity is is constant during a expo-
nential infectious period. Thus

h(t) = M(t < X) (9.11)

where X is an exponential distributed random variable with intensity /.
This gives:

A

Ry = 5 (9.12)
g(t) = e, (9.13)

gy B
LI(s) = 515 (9.14)

corn D
LI(s) = CESER (9.15)
a=\—0. (9.16)

Ry A
Moy = Ri-1 a (9.18)
Rem(s) = Oi\ﬁeﬁs. (9.19)
It should be observed that

RoRem(s) = ag(s)/5. (9.20)

This implies that at time 7, there are nea/8 = (Ry — 1)en infectious individ-
uals each being as infective as a newly infected individual. This is, of course,
due to the “lack of memory” property that characterizes the exponential
distribution.
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9.3 Exponentially distributed latent and infectious times

The basic assumptions are that the latent time, Y, is exponentially dis-
tributed with intensity J, and the infectious time, X, is exponentially dis-
tributed with intensity f. X and Y are assumed to be independent. The
infectivity is A\. This gives:

h(t)=X(Y <t<X+Y). (9.21)
Ry = ; (9.22)
o
g(t) = 5_6/8(6_& — e, (9.23)
If B =6 then
g(t) = B*te . (9.24)
o(g) = 9P
L(S>_((5+s)(ﬁ+s)' (9.25)
~ B B+06+2s
LI(s) _56(5+s)2(5+s)2' (9.26)
The Malthus parameter, «, solves the equation
®+ (04 B)a—d6\—p)=0. (9.27)
A — 1
p= )\ﬁ =17 (9.28)
_ Boa e s e 08
Rem(s)_é—ﬁ<ﬁ+a_5+oz>' (9.29)
If B =6 then
_ Bs 1 s
Rem(s) = af’e ((5 oy + I oz) : (9.30)
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9.4 Decreasing infectivity

We assume that the infectious period, X, is exponentially distributed with
intensity (8, and

MQ:AO—;ﬂ@<X) (9.31)

According to this assumption the infectivity decreases linearly during the
infectious period. The following expressions involves exponential integrals:

o0 _tu 0 —u
m@:/inﬁzyﬂ/%ﬂw (9.32)
1 t

For properties of these functions and relations between them see Abramowitz
and Stegun (2012) or The Digital Library of Mathematical Functions NIST

(2019).
Now
A
Fo= 55 (9.33)
=1 1 9.34
p=1-= ﬁo' ( . )
glt) =28 | — pt B/ “du| = 28E(p1), (9.35)
VY. il E RS
L9(s) =2 lﬁ 1 (HB)]’ (9.36)
nd Be+s/p) B
LI(s) = QW — 4§ln(1 +s/05). (9.37)

The Malthus parameter, «, solves the equation

o « a? 1
Furthermore
Rem(s) =205 [Eg(ﬁs) - gEl(ﬂs) + geasEl((ﬂ + a)s) (9.39)
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Figure 10.1: g(¢) for example 1-4

10 TIllustrated examples

To illustrate the models exemplified above we have chosen parameter val-
ues that give the same basic reproduction number and the same Malthus
parameter. We have aimed at the values:

Ro =2,

and
a=1,

The final size does only depend on the basic reproduction number. In this
case the final size is T = 0.7968 (see 3.3). To obtain these values we have to
choose corresponding parameter values in the four different examples.

For each example the generation time densities are illustrated in figure
10.1. The Rem-functions that gives the remaining infectivity to be spread
after time s from those infected before s is presented in figure 10.2.

Figure 10.3 illustrates simulated epidemic functions based on the four
examples. Here the population size, n = 10,000 and the epidemics presented
grows large. This implies that they stop with approximately 100007 = 7968
infected individuals.
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Figure 10.2: Rem from example 1-4

The main differences between the curves depends on the randomness in
the start of the epidemics. Even if the Malthus parameter is the same in the
four cases we know from section that N, (t)e=* for large ¢ is random with
asymptotic mean My/p. In fact in example 1 and 2 its distribution is approx-
imately exponential. This is not the case for example 3 and 4. According
to the expressions in section 5.20 for both this examples the distribution is
over-dispersed, i.e., the standard deviation is larger than the mean.

Beside the differences at the start the epidemic curves are quite similar.
This is, of course, due to the fact that we have chosen parameter values so
that the final sizes, i.e. 7 = 0.7968 are the same in the four examples and
that the initial exponential growth rates, i.e. the Malthus parameters, also
are the same. In figure 10.4 the randomness in the initial phase is taken
away. It shows how the epidemics develop after 10 % of the population has
been infected. In the fading of phase randomness is again considerable.

10.1 Parameter values in the examples

Example 1: In the model with no latent time and constant infectious time
we choose A = 1.255, and k£ = 1.593. This gives the probability for a large
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Figure 10.4: Trajectories for proportion of infected after 10 % of the popu-
lation has been infected in example 1-4
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epidemic
p = 0.7968, (10.1)

and
My = 1.6846. (10.2)

According to the remark in section 5.2 the limit distribution of the ap-

proximating branching process normed by e~ is exponential with mean
My/p = 2.114.

Example 2: In the model with no latent time and exponential distributed
infectious times we choose A =2 and g = 1.
The probability for a large epidemic is

p=0.5, (10.3)
and
My = 2. (10.4)

According to the remark in section 5.2 the limit distribution of the ap-
proximating branching process normed by e~ is exponential with mean
Mo/p = 4.

Example 3: In the model with exponential latent and infectious times we
choose first § =2, A\ =4, and § = 3.
The probability for a large epidemic is

p = 0.5, (10.5)
and
My =1.7143. (10.6)

However the limit distribution of the approximating branching process normed
by e~ has mean M;/p = 3.43. However, it is not exponential distributed
in with these parameter values.

Example 4: In this model the parameter values 5 = 0.6159 and A = 2.463
gives the desired values of Ry and a.
This gives the probability for a large epidemic

p=0.5, (10.7)

and
My = 2.103. (10.8)

The limit distribution of the approximating branching process normed by
e~ has mean My/p = 4.01. However, it is not exponential distributed.
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In figure 10.1 the generation time densities for the four examples are illus-
trated and in figure 10.2 the functions Rem(s) .
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