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Abstract

In this paper we present a novel closed-form estimator for the parameters of the matrix-
variate gamma distribution. The estimator relies on the moments of a transformation of
the observed matrices, and is compared to the maximum likelihood estimator (MLE)
through a simulation study. The study reveals that the suggested estimator outperforms
the MLE, in terms of estimation error, when the underlying scale matrix parameter is
ill-conditioned or when the shape parameter is close to its lower bound. In addition,
since the suggested estimator is closed-form, it does not require numerical optimization
as the MLE does, thus needing shorter computation time and is furthermore not subject
to start value sensitivity or convergence issues. Finally, using the proposed estimator as
start value in the optimization procedure of the MLE is shown to substantially reduce
computation time, in comparison to using arbitrary start values.

1 Introduction

The matrix-variate gamma distribution is a generalization of the univariate gamma distri-
bution to the set of positive-definite and symmetric matrices. It is also a more general form
of the classical Wishart distribution and a popular approach to model e.g. the stochastic
properties of covariance matrices of financial asset returns, which in turn has numerous
important applications. For an overview of the matrix-variate gamma distribution and
some of its properties, see Gupta and Nagar (2000).

We denote a symmetric and positive definite p × p matrix A that follows a matrix-
variate gamma distribution with shape parameter α and symmetric scale matrix Σ as
A ∼ MGp(α,Σ), where α > (p − 1)/2, and Σ > 0. Let A1, . . . ,An be a sample of i.i.d.
observations of the matrix-variate gamma distribution, and let A be its sample mean.
In general, the maximum likelihood method is the most efficient way of estimating the
parameters α and Σ, given such a sample. The maximum likelihood estimates of these
parameters is obtained by solving the following system of equations for α and Σ:

ψp(α) =

∑n
k=1 ln (|Ak|)

n
− ln (|Σ)| (1)

Σ =
A

α
, (2)
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where ψp(·) is the multivariate digamma function1 and | · | denotes the determinant op-
erator. However, as there exists no closed-form inverse of ψp(·), the maximum likelihood
estimate needs to be computed through numerical optimization. These procedures often
have several drawbacks: it can be computationally demanding, increasingly so with ma-
trix dimension p and sample size n; the numerical procedures most often requires a start
value, which can influence what parameter value the procedure converges to; there is a
risk that the optimization procedure does not converge at all. Apart from the drawbacks
associated with the numerical procedure, the maximum likelihood estimator (MLE) for
α and Σ tend to be very imprecise when the true parameter value of the scale matrix Σ
is ill-conditioned and close to singular, or when α is closer to its lower bound (p− 1)/2.2

Such distributions can arise in various situations, for example when estimating covariance
matrices based on small sample sizes, or in the presence of multicollinearity.

Several approaches provide alternative estimators for the univariate and multivari-
ate gamma distributions, see for example Ye and Chen (2017) and Vani Lakshmi and
Vaidyanathan (2015). Regarding the matrix-variate gamma distribution, e.g. Alfelt
(2018) considers parameter estimation under Stein’s loss function, when the parameter
α is known. In this paper, we suggest a new, closed-form, estimator for the parameters
of the matrix-variate gamma distribution. It relies on estimating α based on the rela-
tionship between the moments of the diagonal elements of B1, . . . ,Bn, where Bk is a
transformation of Ak for k = 1, . . . , n. Since this estimator is of closed-form, it is not
affected by any of the numerical issues discussed above. Further, its precision remains
also for ill-conditioned Σ’s and α close to (p− 1)/2, unlike the precision of the MLE. To
investigate the relative performance of the different estimators, we conduct a simulation
study where the estimation errors of the suggested estimator and the MLE are compared
for various α and Σ. The benefits of using the proposed estimator as start value in the
MLE optimization procedure is also considered.

The rest of this paper is organized as follows: Section 2 presents the new closed-form
estimator and derives its asymptotic distribution; Section 3 presents the simulation study;
Section 4 provides a general discussion. Finally, proofs of the presented results can be
found in the Appendix.

2 New estimator

In this section, we will derive a new, closed-form, estimator of the parameters of the
matrix-variate gamma distribution and compute its asymptotic distribution.

From here on, we will consider a sample of n i.i.d. p × p matrices A1, . . . ,An, where
Ak ∼MGp(α,Σ) for k = 1, . . . , n, where α > (p− 1)/2, and Σ > 0. That is, each matrix
Ak follows a matrix-variate gamma distribution with common shape parameter α and
positive-definite scale matrix Σ. One way to produce an estimator in closed form is to
consider the raw moments of the diagonal elements of the sample matrices A1, . . . ,An.
Denoting the element on row i and column j of Σ as σij , we have that E[aii] = ασii and
E[a2ii] = ασ2ii + α2σ2ii for i = 1, . . . , p, since the marginal distribution of aii is univariate
gamma with scale α and shape σii. As such,

E[aii]
2

E[a2ii]− E[aii]2
= α.

By replacing the expected values in the above equation with their corresponding sample
means, for each i = 1, . . . , p, and then averaging over each such expression, we can obtain

1This is the function
∂ ln (Γp(α))

∂α , where Γp(·) is the multivariate gamma function.
2The detailed reasons for the imprecision of the MLE in this case remains to be studied closer.
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an estimator for α as

α̂a =
1

p

p∑
i=1

(
1
n

∑n
k=1 aii,k

)2(
1
n

∑n
k=1 a

2
ii,k

)
−
(
1
n

∑n
k=1 aii,k

)2 , (3)

where aii,k is the i:th diagonal element of Ak. Subsequently, we can obtain the estimate
of Σ by inserting the above estimator of α into the maximum likelihood equation for Σ
presented in Equation (2). As such, we obtain

Σ̂a =
A

α̂a
.

However, when Σ is a non-diagonal matrix there will be a dependency between the
diagonal elements aii, i = 1, . . . , p, resulting in a dependency between the p terms in α̂a.
Hence, with the purpose of decreasing estimator variance, we will consider a transforma-
tion of A1, . . . ,An that ensures independence of each matrix’ diagonal values. To this end,
we derive the following theorem, which is an adaptation of Theorem 3.2.10 in Muirhead
(1982) to the matrix-variate gamma distribution. The proof of this result can be found
in the Appendix.

Theorem 1. Let A ∼ MGp(α,Σ), where α > (p − 1)/2 and Σ > 0 and assume the
following partitions:

A =

[
A11 A12

A21 A22

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where A11 and Σ11 are q × q with q < p. Further, define A11·2 = A11 −A12A
−1
22 A21 and

Σ11·2 = Σ11 −Σ12Σ
−1
22 Σ21. Then the following holds

i) A11·2 ∼MGq(α− (p− q)/2,Σ11·2) and independent of A12 and A22.

ii) The conditional distribution of A12 | A22 is Nq×(p−q)(Σ12Σ
−1
22 A22,

1
2Σ11·2 ⊗A22).

iii) A22 ∼MGp−q(α,Σ22).

Here Nq×(p−q)(M,V) denotes the matrix-variate normal distribution with mean matrix
M and covariance matrix V.

For an observation A, we will now construct a matrix B and, with the aid of Theorem
1, show that its diagonal elements are independent. To this end, first define B(p) = A
and c = p, then apply the following algorithm:

3



Algorithm 1

1) Make the partition

B(c) =

[
B

(c)
11 b

(c)
12

b
(c)
21 b

(c)
cc

]
,

where B
(c)
11 is a (c− 1)× (c− 1) matrix, b

(c)
12 is a (c− 1)× 1 vector, b

(c)
21 = (b

(c)
12 )′,

and b
(c)
cc is a scalar.a

2) Define B(c−1) = B
(c)
11 − b

(c)
12 b

(c)
21 /b

(c)
cc .b

3) Decrease c by one.

4) Repeat steps 1) to 3) above until c = 1.

5) Finally set

B =



b
(1)
11 b

(2)
12 · · · b

(p−1)
12 b

(p)
12

(b
(2)
21 )′ b

(2)
22

...
. . .

(b
(p−1)
21 )′ b

(p−1)
(p−1)(p−1)

(b
(p)
21 )′ b

(p)
pp


.

aAs such, B
(c)
11 contains all the elements of B(c) except the elements in the last row and

the last column.
bAs such, B(c−1) is an (c− 1)× (c− 1) matrix.

Further, for ease of notation, let, for i = 1, . . . , p,

α(i) = α− (p− i)
2

.

Also, let Σ(p) = Σ and,

Σ(i−1) = Σ
(i)
11 −Σ

(i)
12

(
Σ

(i)
22

)−1
Σ

(i)
21 , with

Σ(i) =

[
Σ

(i)
11 Σ

(i)
12

Σ
(i)
21 Σ

(i)
22

]

and where Σ(i) = (σ)
(i)
lm for 1 ≤ l ≤ i, 1 ≤ m ≤ i.

By Theorem 1 i), we have that B(i) is independent of b
(j)
12 , b

(j)
21 and b

(j)
jj , for i =

1, . . . , p− 1 and j = i+ 1, . . . , p. Further, in line with i) in Theorem 1 we have that

B(i) ∼MGi(α
(i),Σ(i)).

Subsequently, the marginal distribution of b
(i)
ii will be univariate gamma with shape pa-

rameter α(i) and scale parameter σ
(i)
ii . Finally, by ii), the conditional distribution of b

(i)
12

given b
(i)
ii will be multivariate normal, since it is a matrix of size (i− 1)× 1, i.e. a vector.

Specifically,

b
(i)
12 | b

(i)
ii ∼ N(i−1)×1

(
Σ

(i)
12

b
(i)
ii

σ
(i)
ii

,Σ(i−1) b
(i)
ii

2

)
. (4)

4



We will refer to the element of B on row l and column m as blm. In accordance with the
above, note that blm is independent of all elements in B except the elements bmax(l,m)i

and bimax(l,m), i = 1, . . . ,max(l,m). Further, all diagonal elements bii, i = 1 . . . , p, follows

a univariate gamma distribution with shape parameter α(i).
Now, given the distribution of bii, i = 1, . . . , p, we obtain that

E [bii]
2

E
[
b2ii
]
− E [bii]

2 +
p− i

2
= α.

This relationship, together with the mutual independence of bii, i = 1, . . . , p, allows us to
develop a new version of the estimator presented by equation (3) as

α̂b =
1

p

p∑
i=1

 (
1
n

∑n
k=1 bii,k

)2(
1
n

∑n
k=1 b

2
ii,k

)
−
(
1
n

∑n
k=1 bii,k

)2 +
p− i

2


=

p− 1

4
+

1

p

p∑
i=1

(
1
n

∑n
k=1 bii,k

)2(
1
n

∑n
k=1 b

2
ii,k

)
−
(
1
n

∑n
k=1 bii,k

)2 , (5)

where bii,k is the element on row i, column i of the matrix Bk, which in turn is a trans-
formation of the observed matrix Ak, k = 1, . . . , n, where the transformation is computed
according to Algorithm 1. Similar to Equation (2), Σ will be estimated by

Σ̂b =
A

α̂b
. (6)

We now present the asymptotic distribution for α̂b and Σ̂b. In Theorem 2, let s =
p(p − 1)/2, y be an (s × 1) vector and Z be an s × s matrix. Further, let h(u) be a
mapping from the u:th row in the vector vech(M) to the row and column indexation of
the equivalent element in M, u = 1, . . . , s. If for example p = 4, then h(6) = (3, 2),
referring to the element m32 in M. Moreover, by Lemma 1 in the Appendix, we have that

C [alm, bii] =

{
α(i)σ

(i)
il σ

(i)
mi, if max(l,m) ≤ i

0, if max(l,m) > i

C
[
alm, b

2
ii

]
=

{
2
(
α(i) + 1

)
α(i)σ

(i)
ii σ

(i)
il σ

(i)
mi, if max(l,m) ≤ i

0, if max(l,m) > i
,

where C[X,Y ] denotes the covariance between X and Y .

Theorem 2. Let A1, . . . ,An be an i.i.d. sample, where Ak ∼MGp(α,Σ), α > (p− 1)/2

and Σ > 0, for each k = 1, . . . , n. Then (α̂b, Σ̂b), defined by Equation (5) and (6), is a
consistent estimator for (α,Σ). Further,

√
n

([
α̂b

vech
(
Σ̂b

) ]− [ α
vech (Σ)

])
d−→ N(s+1)×1(0,C)

as n→∞. Here

C =

(
x y
y′ Z

)
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where, for 1 ≤ u ≤ v ≤ s,

x =
2

p2

p∑
i=1

[(
α(i)
)2

+ α(i)

]

yu =

p∑
i=1

[
2

pασ
(i)
ii

(1 + α(i))C
[
ah(u), bii

]
−

C
[
ah(u), b

2
ii

]
pα(σ

(i)
ii )2

−
2σh(u)α

(i)(α(i) + 1)

p2α

]
.

zuv =
C[ah(u), ah(v)]

α2
+

p∑
i=1

2σh(u)σh(v)

p2α2
(α(i) + 1)α(i)

−
p∑
i=1

2(α(i) + 1)

pα2σ
(i)
ii

(
σh(v)C

[
ah(u), bii

]
+ σh(u)C

[
ah(v), bii

])
+

p∑
i=1

1

pα2
(
σ
(i)
ii

)2 (σh(v)C [ah(u), b2ii]+ σh(u)C
[
ah(v), b

2
ii

])
.

The proof of Theorem 2 can be found in the Appendix. The finite-sample properties
of the proposed estimator (α̂b, Σ̂b), and how they compare to the finite-sample properties
of the MLE will be studied in the next section.

3 Simulation study

As suggested in Section 1 the MLE is in general the most suitable estimator of the matrix-
variate gamma parameters. However, for certain regions of the parameter space, the
estimation error of the estimator proposed in Section 2, given a finite sample of obser-
vations, tend to be significantly smaller. In particular, it seems that (α̂b, Σ̂b) is much
more accurate when α is close to its lower bound (p − 1)/2, or when the scale matrix
Σ is so called ill-conditioned. Such matrices are characterized by a large ratio between
the largest and smallest eigenvalue of the matrix, and are close to singular. This will be
illustrated with a simulation study, comparing the estimates (α̂b, Σ̂b) and (α̂ML, Σ̂ML)
for various parameter values and sample sizes. A small comparison between α̂b and α̂a
is also presented. Furthermore, even in cases where the MLE is preferable, the suggested
estimator is useful. By applying the proposed estimator (α̂b, Σ̂b) as a start value in the
numerical optimization procedure for the MLE, the computation time can be reduced
substantially, in comparison to using an arbitrary start value. This will also be illustrated
by simulation.

In order to compare the magnitude of estimation error between the estimators, for N
samples, define for a parameter θ and an estimator of θ denoted θ̂,

MSE
[
θ̂
]

=
1

N

N∑
j=1

(
θ̂i − θ

)2
, rα =

MSE[α̂ML]

MSE[α̂b]

F
[
θ̂
]

=
1

N

N∑
j=1

||θ̂i − θ||, rΣ =
F
[
Σ̂ML

]
F
[
Σ̂b

]
where θ̂i is the estimate based on sample i and where ||M|| denote the Frobenius norm3

of the matrix M. As such, when rα takes on values above 1, α̂b has a lower mean squared
error (MSE) than α̂ML, and similarly when rΣ is larger than 1, the estimation error of
Σ̂b is smaller than that of Σ̂ML, in terms of the Frobenius norm. Further, let rc denote

3See e.g. page 71 in Golub and Loan (2013).
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the computation time for the MLE divided by the computation time of the suggested
estimator.

In the following simulation study, the parameter Σ is not fixed; instead the eigenvalues
of Σ is fixed, and the matrices of eigenvectors is randomly generated according to the Haar
distribution4. To this end, denote the p eigenvalues of Σ as λ1 ≥ . . . ≥ λp > 0 and the
p×p matrix of eigenvectors as H. Now, the simulation procedure is conducted as follows:

1) Generate H according to the Haar distribution.

2) Compute Σ= H′LH, where L = diag(λ1, . . . , λp).

3) Generate A1, . . . ,An, where Ak ∼MGp(α,Σ), k = 1 . . . , n.

4) Compute (α̂b, Σ̂b) and (α̂ML, Σ̂ML).

5) Repeat step 1) to 4) N times.

The procedure above is implemented for various values of n, p, and α. To account for
various condition numbers on Σ, we set λ1 = 10d, λp = 10−d and λi = 10d(p − i)/p +
10−di/p, where i = 2, . . . , p− 1, for different values of d.

Table 1 compares the above defined measures, and mean values for estimates of α, for
the MLE and the new suggested closed-form estimator, for N = 1000 and different values
of n, p, d and α. Note that the lower bound for α is 0.5 when p = 2 and 2 when p = 5.
Values of rα, rΣ and rc above one is emphasized in bold, indicating a better performance
for the closed-form estimator. Note here that the cases with d = 0 corresponds to Σ
being the identity matrix with probability one, while the cases with d = 7 corresponds
to Σ being nearly singular and ill-conditioned. In the cases when d = 0 and α is not
close to its lower bound, the MLE performs better, as the values of rα and rΣ are below
one. Requiring numerical optimization, however, the MLE computation time is longer.
When d = 0 and α is close to its lower bound (α = 0.501 for p = 2 and α = 2.001 for
p = 5), however, the suggested estimator tends to perform better for larger sample sizes,
indicated by and rα and rΣ above one for sample sizes n = 1000 and n = 10000. For
the cases when d = 7, rα and rΣ are very large, substantially favouring the closed-form
estimator. In terms of estimation error, the closed-form estimator performs similar in
the case of d = 0 and d = 7, suggesting that the estimation error of the MLE increases
drastically when the scale matrix Σ is ill-conditioned. On a general note, rα and rΣ tend
to increase with increasing α (barring when α is close to its lower bound) and sample
size n, but decrease with when the matrix dimension increases. Also, for the cases when
d = 7, the MLE tends to have a substantial upward bias. In addition, further simulations
suggest that the relative performance of the closed-form estimator increases further with
an increasing d.

Moreover, Table 2 compares the performance between (α̂a, Σ̂a) and (α̂b, Σ̂b). It sug-
gests that they perform similarly when d = 0, but that (α̂b, Σ̂b) has a lower estimation
error when d = 7. This is not unexpected, since d = 0 represents the special case when
there is no dependencies between the diagonal elements of the observed matrices, and
the motivation for the estimator (α̂b, Σ̂b) was to decrease the estimate variance in the
presence of such dependencies.

Furthermore, even in cases where observations are generated with parameters that
favors the MLE, the suggested closed-form estimator can be useful. The numerical pro-
cedure used to find the MLE requires some start value, and the choice of this start value
will influence the computation time of the procedure. By inserting the closed-form es-
timate as start value in the numerical optimization procedure, it is possible to decrease
computation time in comparison to using an arbitrary start values. To illustrate this, a
simulation study is conducted as follows:

4See Definition 4.5.1 on page 161 in Andersen (2003).
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1) Generate Σ,ΣRS ∼MGp(p
2, Ip) and α, αRS ∼ U(p−12 , 100p−12 ).5

2) Generate A1, . . . ,An, where Ak ∼MGp(α,Σ), k = 1 . . . , n.

3) Compute the MLE for A1, . . . ,An using (αRS ,ΣRS) as start value for the numerical
optimization procedure6 and record the computation time.

4) Compute (α̂b, Σ̂b) for A1, . . . ,An and then compute the MLE using (α̂b, Σ̂b) as start
value and record the computation time for the two steps combined.

5) Repeat steps 1)-4) 100 times.

As such, the true parameters and random start values are drawn from the same distri-
bution. The summed computation time for the two different approaches, in seconds, is
presented in Table 3, for different values of the matrix dimension p, and where n = 1000.
The results suggest that in each of the considered cases, it is beneficial to use the pro-
posed estimator as start value, compared to using an arbitrary start value. This advantage
increases substantially as the matrix dimension grows large.

p = 2 d = 0 d = 7
n ¯̂αML

¯̂αb rα rΣ rc ¯̂αML
¯̂αb rα rΣ rc

100 0.54 0.54 0.54 0.96 47 2.4 0.54 4.7 · 104 2.4 29
α = 0.501 1000 0.54 0.51 8.3 1.6 113 2.9 0.51 9.6 · 105 7.9 76

10000 0.54 0.50 93 4.5 376 2.0 0.50 6.4 · 106 26 308
100 102 103 0.59 0.81 28 105 103 2.1 1.0 46

α = 100 1000 100 100 0.67 0.83 107 103 100 22 2.6 111
10000 100 100 0.73 0.86 503 104 100 290 8.6 504
100 1012 1030 0.62 0.80 37 1568 1022 775 1.5 56

α = 1000 1000 1001 1003 0.69 0.84 113 1548 1000 1.7 · 104 5.0 131
10000 1000 1000 0.68 0.84 501 1423 998 5.1 · 104 13 505

p = 5 d = 0 d = 7
n ¯̂αML

¯̂αb rα rΣ rc ¯̂αML
¯̂αb rα rΣ rc

100 2.0 2.1 0.08 0.95 138 2.2 2.1 2.2 1.1 47
α = 2.001 1000 2.0 2.0 1.2 1.0 119 2.2 2.0 37 2.3 58

10000 2.0 2.0 16 1.5 87 2.2 2.0 403 6.9 80
100 101 103 0.27 0.62 26 101 103 0.7 0.71 51

α = 100 1000 100 100 0.37 0.68 50 101 100 6.1 1.7 65
10000 100 100 0.35 0.65 77 101 100 59 4.8 84
100 1011 1029 0.29 0.57 33 1148 1031 61 1.8 44

α = 1000 1000 1001 1003 0.32 0.58 49 1137 1002 3515 5.6 65
10000 1000 1001 0.32 0.58 83 1119 999 6517 17.5 83

Table 1: A comparison of estimation errors between the estimators (α̂b, Σ̂b) and (α̂ML, Σ̂ML),
for various combinations of p, d, n and α. Values of rα, rΣ and rc that are larger than one is
emphasized in bold, indicating a superior performance of the closed-form estimator (α̂b, Σ̂b).

5Here U(l, u) denotes the uniform distribution with bounds l and u.
6Applying the Broyden-Fletcher-Goldfarb-Shanno algorithm.
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p = 2 p = 5
d = 0 d = 7 d = 0 d = 7

n MSE(α̂a)
MSE(α̂b)

F(Σ̂a)

F(Σ̂b)

MSE(α̂a)
MSE(α̂b)

F(Σ̂a)

F(Σ̂b)

MSE(α̂a)
MSE(α̂b)

F(Σ̂a)

F(Σ̂b)

MSE(α̂a)
MSE(α̂b)

F(Σ̂a)

F(Σ̂b)

100 1.58 1.04 2.94 1.18 2.04 1.05 2.29 1.07

α ' p−1
2 1000 1.85 1.06 3.56 1.26 2.17 1.04 2.54 1.07

10000 2.00 1.07 3.77 1.27 2.33 1.04 2.71 1.08
100 0.94 0.99 1.87 1.40 0.90 0.97 0.98 1.00

α = 100 1000 1.00 1.00 2.05 1.46 1.00 1.00 1.20 1.09
10000 1.00 1.00 2.08 1.43 1.03 1.01 1.16 1.07
100 0.94 0.99 2.00 1.41 0.89 0.96 0.97 1.01

α = 1000 1000 0.99 1.00 2.16 1.47 0.98 0.99 1.08 1.05
10000 1.00 1.00 1.75 1.31 1.00 1.00 1.21 1.13

Table 2: A comparison of estimation errors between the estimators (α̂a, Σ̂a) and (α̂b, Σ̂b), for
various combinations of p, d, n and α. Values that are larger than one is emphasized in bold,
indicating a superior performance of the closed-form estimator (α̂b, Σ̂b).

p
Start value 2 5 10 50

(α̂RS, Σ̂RS) 8 26 148 22340

(α̂b, Σ̂b) 5 6 9 368

Table 3: A comparison of aggregated computation times, in seconds, for the MLE using random
start values, (α̂RS, Σ̂RS), and using the closed-form estimator (α̂b, Σ̂b) as start value.

4 Discussion

In this paper, we have presented a new closed-form estimator for the parameters of the
matrix-variate gamma distribution. Its performance in terms of estimation error and
computation time is compared to the performance of the maximum likelihood estimator
of said parameters. First off, since the estimator is of closed-form, it does not struggle with
any issues the MLE is subject to due to requiring a numerical optimization procedure.
Second, the MLE tends to be very imprecise when Σ is ill-conditioned or when α is close
to its lower bound, an issue that our suggested estimator does not have.

The simulation study in Section 3 reveals that the presented closed-form estimator
outperforms the MLE, in terms of estimation error, when parameters are such that the
generated observations are near-singular. Further, in these cases, the relative performance
of the closed-form estimator increases with sample size and with increasing α. Similar
results occur when d increases, indicating an increased condition number for the scale
matrix Σ. On the other hand, its relative performance tends to decrease as matrix
dimension p increases. In addition, not requiring any numerical procedures, the suggested
estimator has a considerably shorter computation time in all considered cases. Further
simulations presented in Section 3 reveal that the computation time for the numerical
procedure of the MLE can be substantially reduced by using the proposed estimator as
start value, in comparison to using arbitrary start values. This illustrates that the closed-
form estimator is important even in cases where the MLE has a lower MSE.

A question that arises is in what region of parameter space, more specifically, that
the presented estimator outperforms the MLE, which is something that the considered
simulation studies only hint at. Another topic concerns how to discern from a sample
which of the two estimation procedures that is most appropriate, using for example the
sample mean condition number. It would also be of interest to specify the bias of the

9



estimators in order to correct for it. These important question should be considered in
future research.

Appendix

Lemma 1. Let A ∼ MGp(α,Σ) and let B be defined as in Algorithm 1 in Section 2.
Then, for i = . . . , p,

C [alm, bii] =

{
α(i)σ

(i)
il σ

(i)
mi, if max(l,m) ≤ i

0, if max(l,m) > i
,

C
[
alm, b

2
ii

]
=

{
2
(
α(i) + 1

)
α(i)σ

(i)
ii σ

(i)
il σ

(i)
mi, if max(l,m) ≤ i

0, if max(l,m) > i
.

Proof. First, denote the element on row l, column m of the matrix B(i) as b
(i)
lm, and note

that bii = b
(i)
ii . Then, we have

C [alm, bii] = C
[
alm, b

(i)
ii

]
= E

[
almb

(i)
ii

]
− E [alm]E

[
b
(i)
ii

]
.

Now, in accordance with Algorithm 1, we can write, for any q = 2, . . . , p,

b
(q−1)
lm = b

(q)
lm −

b
(q)
qmb

(q)
lq

b
(q)
qq

.

b
(q)
lm = b

(q−1)
lm +

b
(q)
qmb

(q)
lq

b
(q)
qq

. (7)

Further note that alm = b
(p)
lm , and by repeatedly use the relationship shown in Equation

(7) we obtain

alm = b
(p)
lm

= b
(p−1)
lm +

b
(p)
pmb

(p)
lp

b
(p)
pp

= b
(l)
lm −

p∑
q=l+1

b
(q)
qmb

(q)
lq

b
(q)
qq

.

Now, suppose l > i. Then

E
[
almb

(i)
ii

]
= E

b(l)lm − p∑
q=l+1

b
(q)
qmb

(q)
lq

b
(q)
qq

 b
(i)
ii


= E

b(l)lm − p∑
q=l+1

b
(q)
qmb

(q)
lq

b
(q)
qq

E
[
b
(i)
ii

]
= E [alm]E

[
b
(i)
ii

]
since b

(i)
ii is independent of all the terms and factors within the parenthesis, in accordance

with the results stated following Algorithm 1. Since A is symmetric, the above holds also

10



if m > i, or put differently, if max(l,m) > i. As such, if max(l,m) > i we have that

C
[
alm, b

(i)
ii

]
= E

[
almb

(i)
ii

]
− E [alm]E

[
b
(i)
ii

]
= E [alm]E

[
b
(i)
ii

]
− E [alm]E

[
b
(i)
ii

]
= 0.

If, on the contrary, l ≤ i, we write

alm = b
(i)
lm −

p∑
q=i+1

b
(q)
qmb

(q)
lq

b
(q)
qq

.

Further,

E
[
almb

(i)
ii

]
= E

[
b
(i)
ii b

(i)
lm

]
− E

b(i)ii p∑
q=i+1

b
(q)
qmb

(q)
lq

b
(q)
qq


= E

[
b
(i)
ii b

(i)
lm

]
− E

[
b
(i)
ii

]
E

 p∑
q=i+1

b
(q)
qmb

(q)
lq

b
(q)
qq


= C

[
b
(i)
ii , b

(i)
lm

]
+ E

[
b
(i)
ii

]
E
[
b
(i)
lm

]
− E

[
b
(i)
ii

]
E

 p∑
q=i+1

b
(q)
qmb

(q)
lq

b
(q)
qq


= C

[
b
(i)
ii , b

(i)
lm

]
+ E

[
b
(i)
ii

]
E

b(i)lm − p∑
q=i+1

b
(q)
qmb

(q)
lq

b
(q)
qq


= C

[
b
(i)
ii , b

(i)
lm

]
+ E

[
b
(i)
ii

]
E [alm] (8)

where the second equality holds since b
(i)
ii is independent of all the elements b

(q)
qm, b

(q)
lq and

b
(q)
qq , q = i+ 1, . . . , p. With the aid of Equation (8) we can obtain

C
[
alm, b

(i)
ii

]
= E

[
almb

(i)
ii

]
− E

[
b
(i)
ii

]
E [alm]

= C
[
b
(i)
ii , b

(i)
lm

]
+ E

[
b
(i)
ii

]
E [alm]− E

[
b
(i)
ii

]
E [alm]

= C
[
b
(i)
ii , b

(i)
lm

]
.

Note again that since A is symmetric, this results holds whenever max(l,m) ≤ i. Further,
since B(i) ∼ MGp(α

(i),Σ(i)), in accordance with the covariance of the matrix-variate

gamma distribution, we have that C
[
b
(i)
ii , b

(i)
lm

]
= α(i)σ

(i)
li σ

(i)
mi, completing the proof for the

first expression in the Lemma.
Following the same reasoning as above, whenever max(l,m) > i, we have that C

[
alm, b

2
ii

]
=

0. When max(l,m) ≤ i, again following the above reasoning, we get

C
[
alm,

(
b
(i)
ii

)2]
= C

[
b
(i)
im,
(
b
(i)
ii

)2]
Further, consider first the case when l = i. In accordance with Equation (4), we have that

b
(i)
im | b

(i)
ii ∼ N

(
σ
(i)
imb

(i)
ii

σ
(i)
ii

,
σ
(i−1)
im b

(i)
ii

2

)
.
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As such, we have

C
[
b
(i)
im,
(
b
(i)
ii

)2]
= E

[
b
(i)
im

(
b
(i)
ii

)2]
− E

[
b
(i)
im

]
E
[(
b
(i)
ii

)2]
= E

[(
b
(i)
ii

)2
E
[
b
(i)
im | b

(i)
ii

]]
− E

[
b
(i)
im

]
E
[(
b
(i)
ii

)2]
= E

[(
b
(i)
ii

)3 σ(i)im
σ
(i)
ii

]
− E

[
b
(i)
im

]
E
[(
b
(i)
ii

)2]
=

(
α(i) + 2

)(
α(i) + 1

)
α(i)

(
σ
(i)
ii

)2
σ
(i)
im −

(
α(i) + 1

)(
α(i)
)2 (

σ
(i)
ii

)2
σ
(i)
im

= 2
(
α(i) + 1

)
α(i)

(
σ
(i)
ii

)2
σ
(i)
im,

where the fourth equality is due to the moments of the gamma distribution. Note that
the equivalent result holds if instead m = i, and also if l = m = i. If instead l < i, then

E
[
b
(i)
lm

(
b
(i)
ii

)2]
= E

[(
b
(i−1)
lm +

b
(i)
il b

(i)
mi

b
(i)
ii

)(
b
(i)
ii

)2]

= E
[(
b
(i)
ii

)2
b
(i−1)
lm

]
+ E

[
b
(i)
ii b

(i)
il b

(i)
mi

]
= E

[(
b
(i)
ii

)2]
E
[
b
(i−1)
lm

]
+ E

[
b
(i)
ii E

[
b
(i)
il b

(i)
mi | b

(i)
ii

]]
. (9)

Now, from Equation (4), we can obtain that

C
[
b
(i)
il , b

(i)
mi | b

(i)
ii

]
=

σ
(i−1)
lm

2
b
(i)
ii ,

E
[
b
(i)
il | b

(i)
ii

]
=

σ
(i)
il

σ
(i)
ii

b
(i)
ii and

E
[
b
(i)
mi | b

(i)
ii

]
=

σ
(i)
mi

σ
(i)
ii

b
(i)
ii .

As such,

E
[
b
(i)
il b

(i)
mi | b

(i)
ii

]
= C

[
b
(i)
il , b

(i)
mi | b

(i)
ii

]
+ E

[
b
(i)
il | b

(i)
ii

]
E
[
b
(i)
mi | b

(i)
ii

]
=

σ
(i−1)
lm

2
b
(i)
ii +

σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 (b(i)ii )2
Inserting this into Equation (9) yields

E
[
b
(i)
lm

(
b
(i)
ii

)2]
= E

[(
b
(i)
ii

)2]
E
[
b
(i−1)
lm

]
+
σ
(i−1)
lm

2
E
[(
b
(i)
ii

)2]
+
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [(b(i)ii )3] .
Further, as

E
[(
b
(i)
ii

)2]
E
[
b
(i)
lm

]
= E

[(
b
(i)
ii

)2]
E
[
b
(i−1)
lm

]
+ E

[(
b
(i)
ii

)2]
E

[
b
(i)
il b

(i)
mi

b
(i)
ii

]
,
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we have that

C
[
b
(i)
im,
(
b
(i)
ii

)2]
= E

[
b
(i)
lm

(
b
(i)
ii

)2]
− E

[(
b
(i)
ii

)2]
E
[
b
(i)
lm

]
= E

[(
b
(i)
ii

)2]
E
[
b
(i−1)
lm

]
+
σ
(i−1)
lm

2
E
[(
b
(i)
ii

)2]
+
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [(b(i)ii )3]−
−E

[(
b
(i)
ii

)2]
E
[
b
(i−1)
lm

]
− E

[(
b
(i)
ii

)2]
E

[
b
(i)
il b

(i)
mi

b
(i)
ii

]

=
σ
(i−1)
lm

2
E
[(
b
(i)
ii

)2]
+
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [(b(i)ii )3]− E
[(
b
(i)
ii

)2]
E

[
1

b
(i)
ii

E
[
b
(i)
il b

(i)
mi | b

(i)
ii

]]

=
σ
(i−1)
lm

2
E
[(
b
(i)
ii

)2]
+
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [(b(i)ii )3]−
−E

[(
b
(i)
ii

)2]
E

 1

b
(i)
ii

σ(i−1)lm

2
b
(i)
ii +

σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 (b(i)ii )2



=
σ
(i−1)
lm

2
E
[(
b
(i)
ii

)2]
+
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [(b(i)ii )3]− E
[(
b
(i)
ii

)2]σ(i−1)lm

2
+
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [b(i)ii ]


=
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [(b(i)ii )3]− σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 E [b(i)ii ]E [(b(i)ii )2]

=
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 (E [(b(i)ii )3]− E
[(
b
(i)
ii

)2]
E
[
b
(i)
ii

])

=
σ
(i)
il σ

(i)
mi(

σ
(i)
ii

)2 ((α(i) + 2
)(

α(i) + 1
)
α(i)

(
σ
(i)
ii

)3
−
(
α(i) + 1

)(
α(i)
)2 (

σ
(i)
ii

)3)

= 2
(
α(i) + 1

)
α(i)σ

(i)
ii σ

(i)
il σ

(i)
mi.

The equivalent result holds when m < i and as such whenever max(l,m) < i. This
confirms the second part of the Lemma, which completes the proof.

Proof of Theorem 1:

Proof. Observing that the density of A is

f(A) =
|Σ|−α

Γp(α)
|A|α−(p+1)/2 exp

(
tr
(
−Σ−1A

))
,

the proof of Theorem 1 follows directly from the proof of Theorem 3.2.10 in Muirhead
(1982).

Proof of Theorem 2:

Proof. Let m(v) denote the mean for n samples of the random vector v, a = vech(A),
b = (b11, . . . , bpp), and b2 = (b211, . . . , b

2
pp). In accordance with the Central limit theorem,

we have

√
n

m

 b
b2

a

− E

 b
b2

a

 d−→ N(2p+s)×1(0,K1),
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where

K1 =

 C D C[a,b]
D E C[a,b2]

C[a,b] C[a,b2] C[a,a]

 . (10)

Due to the independence of the elements in b and b2, the p× p matrices C, D and E are
all diagonal, and in accordance with the moments of the gamma distribution,

cii = α(i)
(
σ
(i)
ii

)2
dii = 2

(
α(i) + 1

)
α(i)

(
σ
(i)
ii

)3
eii = 2

(
α(i) + 1

)(
2α(i) + 3

)
α(i)

(
σ
(i)
ii

)4
,

for i = 1, . . . , p. The elements of the s×p covariance matrices C[a,b] are given by Lemma
1. Further, C[a,a] is the covariance matrix for the elements in the matrix-variate gamma
distribution. For the elements alm and auv in A,

C[alm, auv] =
α

2
(σluσmv + σlvσmu).

To show the result stated in the theorem, the Delta method will be applied. To this
end, define the (2p+s)×1→ (s+1)×1 vector function g((x1, . . . , xp, y1, . . . , yp, z1, . . . , zs)

′)
as

g1((x1, . . . , xp, y1, . . . , yp, z1, . . . , zs)
′) =

p− 1

4
+

1

p

p∑
i=1

x2i
yi − x2i

,

gu+1((x1, . . . , xp, y1, . . . , yp, z1, . . . , zs)
′) = zu

(
p− 1

4
+

1

p

p∑
i=1

x2i
yi − x2i

)−1
,

for u = 1, . . . , s. Note that

g

m

 b
b2

a

 =

(
α̂b

vech(Σ̂b)

)
, and

g

E

 b
b2

a

 =

(
α

vech(Σ)

)
.

From the Delta method, we now have that

√
n

g

m

 b
b2

a

− g

E

 b
b2

a

 d−→ N(s+1)×1(0,K),

where

K = ∇g

E

 b
b2

a

K1∇g

E

 b
b2

a

′ ,
where ∇g(E[(b,b2,a)′]) is the (s+ 1)× (2p+ s) gradient of g at the point E[(b,b2,a)′].
For the elements of ∇g(E[(b,b2,a)′]), we have, for i = 1 . . . , p, and v = 1, . . . , s, with the
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argument dropped for easier notation,

∇g1i =
∂g1
∂xi

=
2

p

(
xi

yi − x2i
+

x3i(
yi − x2i

)2
)

=
2

pσ
(i)
ii

(
1 + α(i)

)
:= hi, (11)

∇g1(p+i) =
∂g1
∂yi

= − x2i

p
(
yi − x2i

)2 = − 1

p
(
σ
(i)
ii

)2 := li (12)

∇g1(2p+v) =
∂g1
∂zv

= 0. (13)

Further, for u = 1, . . . , s,

∇g(u+1)i =
∂gu+1

∂xi
= −zu

(
p− 1

4
+

1

p

p∑
i=1

x2i
yi − x2i

)−2
∂g1
∂xi

=

= − 2zu

pα2σ
(i)
ii

(
α(i) + 1

)
:= mui (14)

∇g(u+1)(p+i) =
∂gu+1

∂yi
= −zu

(
p− 1

4
+

1

p

p∑
i=1

x2i
yi − x2i

)−2
∂g1
∂yi

=
zu

pα2
(
σ
(i)
ii

)2 := oui (15)

∇g(u+1)(2p+v) =
∂gu+1

∂zv
=


(
p−1
4 + 1

p

∑p
i=1

x2i
yi−x2i

)−1
= 1

α , if v = u

0, if v 6= u
:= fuv. (16)

Now, let h and l be p × 1 vectors consisting of the elements hi and li, i = 1, . . . , p,
respectively. Further, let M be an s× p matrix consisting of the elements mui, let O be
an s× p matrix consisting of the elements oui, and F be an s× s matrix consisting of the
elements fuv, for i = 1, . . . , p and u, v = 1 . . . , s. Note here that F = 1

αIs. We now have

∇g

E

 b
b2

a

 =

(
h′ l′ 0′s
M O F

)
,

where 0s is an s × 1 vector of zeros. We can now compute the asymptotic covariance
matrix K as

K = ∇g

E

 b
b2

a

K1∇g

E

 b
b2

a

′

=

(
h′ l′ 0′s
M O F

) C D C[a,b]
D E C[a,b2]

C[a,b] C[a,b2] C[a,a]

( h′ l′ 0′s
M O F

)′

:=

(
x y
y Z

)
,

where

x = h′Ch + l′Dh + h′Dl + l′El

y = h′CM′ + l′DM′ + h′DO′ + l′EO′ + h′C[a,b]′F′ + l′C[a,b2]′F′

Z = MCM′ + ODM′ + FC[a,b]M′ + MDO′ + OEO′ + FC[a,b2]O′

+MC[a,b]′F′ + OC[a,b2]′F′ + FC[a,a]F′

15



Inserting the values from Equation (10) and Equations (11) to (16) and carrying out the
computations, we finally obtain, for the elements in x, y and Z, with u, v = 1, . . . , s,

x =
2

p2

p∑
i=1

[(
α(i)
)2

+ α(i)

]

yu =

p∑
i=1

[
2

pασ
(i)
ii

(1 + α(i))C
[
ah(u), bii

]
−

C
[
ah(u), b

2
ii

]
pα(σ

(i)
ii )2

−
2σh(u)α

(i)(α(i) + 1)

p2α

]
.

zuv =
C[ah(u), ah(v)]

α2
+

p∑
i=1

2σh(u)σh(v)

p2α2
(α(i) + 1)α(i)

−
p∑
i=1

2(α(i) + 1)

pα2σ
(i)
ii

(
σh(v)C

[
ah(u), bii

]
+ σh(u)C

[
ah(v), bii

])
+

p∑
i=1

1

pα2
(
σ
(i)
ii

)2 (σh(v)C [ah(u), b2ii]+ σh(u)C
[
ah(v), b

2
ii

])
,

which was to be shown. Finally, since

m

 b
b2

a

 p−→ E

 b
b2

a

 ,
we have through the continuous mapping theorem that

g

m

 b
b2

a

 p−→ g

E

 b
b2

a


(

α̂b
vech(Σ̂b)

)
p−→

(
α

vech(Σ)

)
,

showing that (α̂b, vech(Σ̂b)) is a consistent estimator for (α, vech(Σ)), which completes
the proof.
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