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1 Introduction and preliminaries

Dependencies among data points are present in virtually all modern statistical applica-

tions. This holds especially true for studies with multiple endpoints which are all mea-

sured for the same observational units. For example, consider the case of a gene expression

study. In that context, expression levels of m genes are measured for n individuals. The

goal of the study typically is to detect statistically significant expression differences, either

in a two-groups model or in a one-group model under different experimental conditions.

Due to biological and technological reasons, the expression levels will typically exhibit

strong dependencies, at least for genes which are functionally related; cf. [67]. We will

discuss multiple tests which take such dependencies explicitly into account. Such multiple

tests are called multivariate multiple tests, because they rely on joint distributions or on

approximations thereof.

1.1 Motivation

Example 1. As a simple motivating example for utilizing a multivariate multiple test,

consider the case of m = 2 simultaneous tests for Gaussian means. Let Z = (Z1, Z2)>

denote an observable R2-valued random vector which follows the bivariate normal distri-

bution with an unknown mean vector µ = (µ1, µ2)>, but a known covariance (and corre-

lation) matrix Σ =

1 ρ

ρ 1

, where |ρ| < 1. Consider the two (one-sided) null hypotheses

Hj = {µj ≤ µ∗j}, j = 1, 2, for a given vector µ∗ = (µ∗1, µ
∗
2)> ∈ R2. The corresponding

alternative hypotheses are given by Kj = {µj > µ∗j}, j = 1, 2. This is a typical setup for a
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Figure 1: Realized FWER in the case of two simultaneous Z-tests, where the two test

statistics are jointly normally distributed with correlation coefficient ρ. Details are pro-

vided in Example 1.

multiple test for superiority in a clinical study concerning two endpoints. Let αloc denote

a local significance level, meaning that the two tests ϕ1 and ϕ2 for testing H1 and H2 are

carried out at level αloc each. It is canonical to use ϕj = 1(c,∞)(Zj − µ∗j), j = 1, 2, with

c = Φ−1(1− αloc) denoting the (1− αloc)-quantile of the univariate standard normal dis-

tribution. The Bonferroni correction for family-wise error rate (FWER) control at level

α would advise us to take αloc = α/2.

Figure 1 displays the effect of choosing αloc = 5% for varying values of the correlation

coefficient ρ in the case that µ = µ∗, implying that both null hypotheses H1 and H2 are

true. For strong negative correlations among Z1 and Z2 (ρ → −1), the realized FWER

tends to α = 10% = 2αloc, meaning that the Bonferroni inequality becomes an equality for

ρ → −1. On the other hand, for positive ρ the realized FWER is below α, and it even

monotonically decreases to αloc = 5% = α/2 for ρ → +1, meaning that in the extreme

case of perfect positive correlation among Z1 and Z2 no adjustment for multiplicity would

be necessary at all.

Since ρ is assumed to be known here, the exhaustion of the FWER level α and, hence,

the power of the multiple test could be improved by choosing αloc by means of a quantile
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of the bivariate joint distribution of T = (T1, T2)> under µ = µ∗, where Tj = Zj − µ∗j ,
j = 1, 2. Denoting the joint cumulative distribution function (cdf) of T under µ∗ by

F2, one possibility is to search for the constant cα such that F2(cα, cα) = 1 − α. The

corresponding (exact) local significance level is then given by αloc = 1 − Φ(cα). If an

unequal weighting (for importance) of the two null hypotheses is desired, one can search

for a solution of the form F2(c(1)
α , c(2)

α ) = 1− α for c(1)
α 6= c(2)

α .

Section 2 will deal with straightforward generalizations of Example 1 to arbitrary

dimensions m ≥ 2, to more general types of null hypotheses, and to more general test

statistics which are assumed to be (asymptotically) jointly normally distributed, at least

under the global null hypothesis.

1.2 Preliminaries

Throughout the paper, we will assume a finite family Hm = (H1, . . . , Hm) of m ∈ N
null hypotheses which are to be tested simultaneously under one and the same statistical

model (Y ,F , (Pϑ : ϑ ∈ Θ)) with sample space Y and parameter ϑ taking values in the

parameter space Θ. It is convenient to interpret each Hj as a subset of Θ, i. e., we will

write Hj ⊂ Θ, 1 ≤ j ≤ m. The corresponding alternative hypotheses will be denoted

by Kj = Θ \ Hj, 1 ≤ j ≤ m. Then we call (Y ,F , (Pϑ : ϑ ∈ Θ),Hm) a multiple test

problem. A (non-randomized) multiple test ϕ = (ϕ1, . . . , ϕm)> for Hm is a (measurable)

mapping from the sample space Y to {0, 1}m, where ϕj(y) = 1 means that we reject Hj

in favor of Kj on the basis of the observed data y, for 1 ≤ j ≤ m and y ∈ Y . For

given ϑ ∈ Θ, let I0(ϑ) ⊆ {1, . . . ,m} denote the index set of true null hypotheses under

ϑ, meaning that exactly those Hj are true for which j ∈ I0(ϑ). For type I error control

of ϕ, we will consider the two random variables Vm =
∑
j∈I0(ϑ) ϕj and Rm =

∑m
j=1 ϕj.

The random variable Vm denotes the (random) number of type I errors of ϕ (under ϑ)

and the random variable Rm denotes the total number of rejections of ϕ (under ϑ). Two

important type I error measures, which we will consider in this paper, are the FWER and

the false discovery rate (FDR). For a given value of ϑ ∈ Θ, they are given by

FWERϑ(ϕ) = Pϑ(Vm > 0) = Pϑ

 ⋃
j∈I0(ϑ)

{ϕj = 1}

 , (1)

FDRϑ(ϕ) = Eϑ[FDPϑ(ϕ)] = Eϑ
[

Vm
max(Rm, 1)

]
. (2)

The random variable FDPϑ(ϕ) = Vm/max(Rm, 1) appearing in (2) is called the false

discovery proportion (FDP) of ϕ (under ϑ), where the max in the denominator is to avoid

an expression of the form 0/0.

Let H0 =
⋂m
j=1 Hj denote the global (null) hypothesis in Hm, meaning that all m null

hypotheses H1, . . . , Hm are true for any ϑ ∈ H0. The multiple test ϕ is said to control
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the FWER at level α ∈ (0, 1) in the weak sense, if FWERϑ(ϕ) ≤ α for all ϑ ∈ H0.

It is said to control the FWER at level α in the strong sense, if FWERϑ(ϕ) ≤ α for

all ϑ ∈ Θ. Clearly, strong FWER control implies weak FWER control. The reverse

implication (i. e., equivalence of weak FWER control and strong FWER control) holds

true, if the statistical model, the system Hm of null hypotheses, and the multiple test ϕ

are such, that the FWER of ϕ becomes largest for parameter values in H0. In Sections 2

- 5 below, we will mainly study the FWER behavior of certain multiple tests under H0,

meaning that we design procedures for weak FWER control (in the first place). However,

the application of the closed test principle allows one to utilize multiple tests with weak

FWER control also for the purpose of strong FWER control. Namely, such tests have to

be applied to every intersection hypothesis appearing in the closure of Hm. We will not

elaborate further on this strategy in this paper. It has been explained in detail, among

many others, in [57], in [9], and in [53], where the latter article also contains applications

to real data in a medical context. We note in passing that the concept of weak FDR

control is not of independent interest, because FDR and FWER coincide if H0 holds true.

Hence, FDR control always has to be considered in the strict sense.

We assume, that every marginal test ϕj is carried out in terms of a real-valued test

statistic Tj or a (random) p-value Pj taking values in [0, 1], respectively, where 1 ≤ j ≤ m.

Our goal is to utilize the joint null distribution (or an approximation thereof) of the

random vector T = (T1, . . . , Tm)> or P = (P1, . . . , Pm)>, respectively, in the calibration

of ϕ for type I error control.

The rest of the material in this paper is structured as follows. In Section 2, we will

consider linear hypotheses testing in the presence of (asymptotically) jointly normally

distributed test statistics T1, . . . , Tm. Here, a quantile of the full m-variate (asymptotic)

distribution of T under H0 is taken as the critical value for FWER control of the multiple

test. Sections 3 and 4 deal with the case, that only k-th order marginal distributions

of T under H0 are available, for some k < m. This leads to the utilization of proba-

bility bounds / approximations (see Section 3), which can be expressed in terms of the

”effective number of tests” (see Section 4). The methods in these two sections can be

used under (asymptotic) joint normality of T under H0, but they are not restricted to

this distributional assumption. In Section 5, non-Gaussian dependencies are considered,

which can conveniently be expressed in terms of so-called copula functions. Here, a point

on the contour line of the copula of the test statistics (or their distributional transforms,

respectively) determines the local significance level(s) for FWER control. In Section 6, we

review some multivariate approaches to FDR control, mainly in terms of an adjustment

of the nominal FDR level in the very popular Benjamini-Hochberg procedure. Finally,

Section 7 provides some conclusions and practical recommendations.
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2 Methods based on multivariate normal distribu-

tions

In this section, we will discuss simultaneous test procedures in the sense of [29] and [35].

Let ϑ with values in Rk for k ∈ N denote the statistical parameter of interest. In

many applications, multiple test problems concerning ϑ can be formalized as systems of

so-called linear hypotheses. To this end, let C ∈ Rm×k denote a given matrix (the so-

called contrast matrix) and d ∈ Rm a given vector, where m ∈ N denotes the number of

null hypotheses to be tested simultaneously, as outlined in Section 1.2. Then, the system

Hm = (H1, . . . , Hm) of (two-sided) linear hypotheses regarding ϑ, which is defined by C

and d, can be written as

Cϑ = d, (3)

where we interpret (3) as a system of m null hypotheses. This means, that we define

Hi by line i of the system of equations in (3), where 1 ≤ i ≤ m. Each Hi encodes one

linear restriction concerning (components of) ϑ. It is also possible to consider inequality

relations in (3), leading to one-sided null hypotheses as in Example 1.

Example 2.

(a) Assume that we want to test, which of the components of ϑ are different from zero.

We let m = k, C = Ik (the identity matrix in Rk×k), and d = 0 ∈ Rk. Then, line i

of (3) encodes the i-th null hypothesis Hi = {ϑi = 0}, for 1 ≤ i ≤ k.

(b) Assume that we want to compare all components ϑi for 1 ≤ i ≤ k − 1 with the

component ϑk. This has the interpretation, that the component ϑk corresponds to

a ”control group / treatment” against which all other groups / treatments shall be

compared. We let m = k − 1, d = 0 ∈ Rk−1, and C = CDunnett ∈ Rk−1×k. The

contrast matrix CDunnett is Dunnett’s contrast matrix with k− 1 rows and k columns,

where in each row j the j-th entry equals +1, the k-th entry equals −1 and all other

entries are equal to zero.

Now, assume for the moment that an (at least asymptotically for large sample sizes)

unbiased and normally distributed estimator ϑ̂ of ϑ is at hand. Then, it is near at hand

to employ the vector T = Cϑ̂−d of test statistics for testing Hm defined by (3). If ϑ̂ (ap-

proximately) follows a normal distribution with mean ϑ and covariance matrix Σ ∈ Rk×k

(where Σ is functionally independent of ϑ), then (under standard regularity assump-

tions) T (approximately) follows a centered normal distribution with covariance matrix

CΣC> ∈ Rm×m under the global hypothesis H0 =
⋂m
i=1Hi of Hm. A simultaneous test

procedure (STP) based on the vector T chooses a suitable quantile of the (approximate)

distribution Nm(0, CΣC>) of T under H0 as the rejection threshold cα for each individual
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test statistic Ti (which is the i-th component of T or its absolute value, respectively). The

i-th null hypothesis Hi gets rejected at FWER level α iff Ti exceeds cα.

Remark 1.

(a) Exemplary model classes under which asymptotically unbiased and normally dis-

tributed estimators are available (under certain regularity conditions) have been dis-

cussed, among others, in [35], [8], [34], [42], and Section 4.2 of [12]. They comprise,

for example, analysis of variance models, multiple linear regression models, gener-

alized linear models, survival models, and various time series models.

(b) Strong FWER control at (asymptotic) level α of the multiple contrast test defined by

T and cα can be established under the (asymptotic) ”subset pivotality” condition (see

Section 2.2.3 in [64]). Detailed calculations can be found, for example, in Section

III of [16] and in Lemma 3.1 of [20].

(c) The multivariate normal distribution can be replaced by a suitable multivariate

Student’s t distribution, if there is uncertainty about the marginal variances of

T1, . . . , Tm under H0 and Studentization techniques are applied; see Example 3 for

an application in the context of the analysis of variance.

Example 3 (ANOVA1). Under the balanced, homoscedastic one-factorial analysis of

variance (ANOVA) model with k ≥ 3 groups, two important multiple test problems are

”all pairwise multiple comparisons” (MCA) and ”all multiple comparisons with a control

group” (MCC). Here, ϑ ∈ Rk is the vector of the group-specific population means, which

is estimated by the vector ϑ̂ of the group-specific sample means. The error variance is

assumed to be unknown. In the context of multiple contrast tests, MCA leads to the so-

called Tukey contrast matrix and the Tukey test, respectively (see [62]), while MCC leads

to the so-called Dunnett contrast matrix and the Dunnett test, respectively (see [22] and

[23]). These are classical multiple tests which have been treated, for instance, in [34].

The following source code in R demonstrates how the critical values for the Tukey test

can be derived (i) based on the general theory of multiple contrast tests, and (ii) based on

the built-in R routine qtukey(). One has to notice, that the R routine qtukey() actually

computes quantiles of the closely related Studentized range distribution. To obtain these

quantiles, the critical values of the Tukey test have to be multiplied by
√

2.

library("mvtnorm");

library("multcomp");

###############################################

# ANOVA1 with k groups, "all pairs" contrasts #

###############################################
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n <- c(11,11,11,11); #group-specific sample sizes

k <- length(n); #number of groups

C <- contrMat(n, type = "Tukey");

M <- diag(1/n);

combis <- combn(1:k, 2);

D <- diag(sqrt((n[combis[1, ]] * n[combis[2, ]]) /

( n[combis[1, ]] + n[combis[2, ]])));

#correlation matrix of the test statistics

R <- D %*% C %*% M %*% t(C) %*% D;

alpha <- 0.1;

my_df <- sum(n) - k;

my_Tukey_quantile <- qmvt(p=1-alpha, tail="both.tails",

df=my_df, corr=R)$quantile;

my_StudRangeQuantile <- my_Tukey_quantile*sqrt(2);

my_Tukey_quantile;

my_StudRangeQuantile; my_df; k; alpha;

# In agreement with Table 8 on page 408 of

# Hochberg and Tamhane (1987)!

R_Tukey_quantile <- qtukey(p=1-alpha, nmeans=k, df=my_df);

R_Tukey_quantile;

Table 1 tabulates some numerical values of quantiles of the Studentized range distri-

bution. All values in Table 1 are in very good agreement with Table 8 on pages 408 - 409

in [34].

Remark 2.

(a) Explicit formulas and R code for multiple contrast tests under many other model

classes can be found in [8]. Applications in nonparametric multiple comparisons,

together with R code, have been worked out in [37] and [38].

(b) While in the specific case of the Tukey test the utilization of the R routine qtukey()

appears more convenient than the more involved code referring to the general multiple

contrast test methodology, one has to keep in mind that the setup of the latter has

a much broader scope. As a very simple example, consider the case of unequal

group-specific sample sizes under Example 3 (i. e., an unbalanced design). In that

case, the (scaled) Studentized range distribution is not the correct null distribution
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Table 1: Some quantiles of the Studentized range distribution. The FWER level is denoted

by α, k denotes the number of groups, n denotes the sample size per group, and ν =

k(n − 1) denotes the resulting degrees of freedom. The column ”Contrast” contains the

solution based on the general methodology of multiple contrast tests, and the column

”qtukey” the one obtained by the built-in R routine qtukey().

α k n ν Contrast qtukey

0.05 3 10 27 3.506 3.506

0.05 3 20 57 3.403 3.403

0.05 3 50 147 3.348 3.348

0.05 5 10 45 4.018 4.018

0.05 5 20 95 3.932 3.933

0.05 5 50 245 3.887 3.887

0.05 10 10 90 4.592 4.588

0.05 10 20 190 4.528 4.528

0.05 10 50 490 4.493 4.495

0.1 3 10 27 3.030 3.030

0.1 3 20 57 2.962 2.962

0.1 3 50 147 2.925 2.925

0.1 5 10 45 3.591 3.590

0.1 5 20 95 3.531 3.531

0.1 5 50 245 3.498 3.499

0.1 10 10 90 4.215 4.212

0.1 10 20 190 4.170 4.168

0.1 10 50 490 4.141 4.145
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for the maximum of the test statistics anymore. However, the code referring to the

general multiple contrast test methodology still delivers the correct quantile, if the

group-specific sample sizes at hand are entered in its first line.

(c) One further important generalization of the presented methodology is to extend the

scope of multiple contrast test to the case of flexible study designs with several stages;

see, e. g., [39] and the references therein.

3 Methods based on higher-order probability bounds

Let m ∈ N denote the number of null hypotheses to be tested simultaneously, and assume

that real-valued test statistics T1, . . . , Tm are at hand, which tend to larger values under

alternatives. For calibrating a multivariate STP ϕ based on T = (T1, . . . , Tm)> or for

calculating corresponding multiplicity-adjusted p-values, respectively, we have to evaluate

expressions of the following form:

Fm(x) = P0

 m⋂
j=1

{Tj ≤ x}

 , (4)

or equivalently

F̄m(x) = 1− Fm(x) = P0

 m⋃
j=1

{Tj > x}

 , x ∈ R, (5)

where P0 denotes some probability measure under the global null hypothesis H0 =⋂m
j=1 Hj. The quantities in (4) or (5), respectively, can often not be evaluated exactly.

Reasons for this can be (i) lacking information about the full m-variate null distribution

of T , or (ii) computational infeasibility. For example, the R package mvtnorm (compu-

tation of multivariate normal / Student’s t probabilities and quantiles) which is based

on [31] gives an error message whenever m exceeds 1000. Therefore, two basic ideas for

approximating Fm(x), which only require the computation of lower-dimensional marginal

distributions, i. e., Fk(x) for some k < m, are given by sum-type and product-type

probability bounds / approximations.

Lemma 1.

a) (Bonferroni inequalities, sum-type probability bounds (STPBs).)

Let A1, . . . , Am be arbitrary events, and let P denote any probability measure. Then

∀p ≥ 1 :
2p∑
k=1

(−1)k−1Sk ≤ P

 m⋃
j=1

Aj

 ≤ b2p−1 :=
2p−1∑
k=1

(−1)k−1Sk, (6)

where

Sk =
∑

1≤j1<j2<...<jk≤m
P(Aj1 ∩ Aj2 ∩ . . . ∩ Ajk) (7)
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for 1 ≤ k ≤ m, and Sk = 0 for k > m. See Section 4.7 of [10] and [30] for proofs,

related results, and further references. A bivariate variant of the aforementioned

upper Bonferroni bounds is due to [65] and is given by

P

 m⋃
j=1

Aj

 ≤ b2 :=
m∑
j=1

P(Aj)−
m−1∑
j=1

P(Aj ∩ Aj+1). (8)

For our purposes we have to consider the events Aj = {Tj > x} and the probability

measure P = P0, so that the probability expression in (6) and on the left-hand side

of (8) equals F̄m(x).

b) (Product-type probability bounds (PTPBs).)

Define the events Oj := {Tj ≤ x} = Acj for 1 ≤ j ≤ m. Due to chain factorization,

it holds for any 1 ≤ k ≤ m− 1 that

Fm(x) = P0(O1, . . . , Om) = P0(O1, . . . , Ok)
m∏

j=k+1

P0(Oj|Oj−1, . . . , O1).

Now assume that T is sub-Markovian of order k ≥ 2 (SMk) in the sense of Definition

2.2 in [20] under H0. Then it holds for all k ≤ j ≤ m that

P0(Oj|Oj−1, . . . , O1) ≥ P0(Oj|Oj−1, . . . , Oj−k+1) (9)

and, consequently,

Fm(x) ≥ βk := P0(O1, . . . , Ok)
m∏

j=k+1

P0(Oj|Oj−1, . . . , Oj−k+1). (10)

Occasionally, we will write b`(x) or βk(x), respectively, instead of b` or βk, respectively,

to indicate the argument x at which the approximations are evaluated. Furthermore, we

refer to ` and k, respectively, as the order of these (sum- or product-type) approximations.

Remark 3.

a) We note that the complexity of computing the sums Sk in (7) is high, because
(
m
k

)
k-dimensional marginal probabilities have to be evaluated. On the other hand, (6)

always holds true, regardless of the dependency structure among T1, . . . , Tm. A com-

putationally inexpensive alternative is the utilization of b2 from (8). Under certain

structural assumptions, sum-type bounds of higher order can be improved. For ex-

ample, the derivations in [43, 44] are based on geometric or topological arguments.

b) In the general case the inequality relation in (9) is not fulfilled; cf., among oth-

ers, [4] and [32]. However, βk often yields a good approximation of Fm(x) already

for k ∈ {2, 3}; see, for example, Section 4 of [59] for numerical results pertaining

to multivariate chi-square probabilities. In the remainder, we refer to βk as the
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product-type probability approximation (PTPA) of order k to Fm(x). The word ”ap-

proximation” instead of ”bound” indicates, that the inequality in (10) may fail if T

is not SMk under H0.

c) The vector T is called positive lower orthant dependent (PLOD) under H0, if for all

t = (t1, . . . , tm)> ∈ Rm, it holds that

P0(T1 ≤ t1, . . . , Tm ≤ tm) ≥
m∏
j=1

P0(Tj ≤ tj).

This entails, in particular, that

Fm(x) ≥
m∏
j=1

P0(Tj ≤ x) =: β1. (11)

Calibrating a multivariate multiple test by means of (11) leads to a so-called Šidák

test, see [54]. If T1, . . . , Tm are jointly independent under H0, we obtain equality in

(11).

Based on the aforementioned considerations, the following multiplicity- and dependency-

adjusted p-values have been proposed in [57].

Definition 1. For a given order ` or k, respectively, the procedure MADAM from [57]

transforms the observed values t1, . . . , tm of the test statistics T1, . . . , Tm into one of the

following multiplicity- and dependency-adjusted p-values:

pΣ,j = b`(tj), (12)

pΠ,j = 1− βk(tj), (13)

for all 1 ≤ j ≤ m. The subscript Σ in (12) indicates, that a STPB is utilized, and the

subscript Π in (13) indicates, that a PTPA is utilized.

For (approximate) FWER control at level α, the p-values from (12) or (13), respec-

tively, may simply be thresholded at α.

4 Effective numbers of tests

The STPBs b` for ` ≥ 2 as well as the PTPAs βk for k ≥ 2 utilize information about the

dependency structure among T1, . . . , Tm under H0 by incorporating `-variate or k-variate

marginal distributions, respectively, of T = (T1, . . . , Tm)> under H0. The bounds b1 and

β1 only utilize univariate marginal distributions. One question of practical interest is,

how much gain in FWER exhaustion and, consequently, power can be achieved by the

exploitation of higher-order marginal distributions. This may also aid in selecting the

appropriate order ` or k, respectively. On the one hand, the order should be chosen

11



as large as possible in order to exhaust α as tightly as possible. On the other hand,

as mentioned in Remark 3, the computational complexity of computing the bounds /

approximations increases with increasing order.

One way to quantify the aforementioned gain is to compute the effective number of

tests (see [20] and the references therein) corresponding to b` or βk, respectively. To this

end, assume that FWER control at a given level α is targeted and that the αloc-quantile

of Tj under H0 is chosen as the critical value for the marginal test ϕj, where 1 ≤ j ≤ m.

Due to multiplicity, it is immediately clear that αloc ≤ α. For b1 or β1, respectively,

the value of αloc can be calculated straightforwardly. Namely, we obtain the (first-order)

Bonferroni correction αloc ≡ αloc(b1) = α/m in the case of b1 and the Šidák correction

αloc ≡ αloc(β1) = 1− (1− α)1/m in the case of β1.

By equating b` or βk, respectively, for ` or k larger than one with α (where x = xj

is chosen as the αloc-quantile of the distribution of Tj under H0), we can (numerically)

determine αloc(b`) or αloc(βk), respectively. The effective number of tests of order ` or k,

respectively, which we will denote by M
(`)
eff or M

(k)
eff , is now found by (numerically) solving

M
(`)
eff αloc(b`) = α or (14)

(1− αloc(βk))M
(k)
eff = 1− α, (15)

respectively. This means, that we write αloc(b`) in the form of a univariate Bonferroni

correction with m replaced by M
(`)
eff or that we write αloc(βk) in the form of a Šidák cor-

rection with m replaced by M
(k)
eff , respectively. Now, if the effective number of tests is

smaller than m, we interpret this as ”effectively” having to correct for only M
(`)
eff or M

(k)
eff

comparisons instead of m ones. This reduction / relaxation of the ”effective” multiplicity

correction is due to the fact that we exploit dependencies among the tests (or test statis-

tics), such that not every marginal test ”fully counts” in M
(`)
eff or M

(k)
eff , because of certain

similarities between them.

Example 4. Let m = 50 and assume that the vector T = (T1, . . . , T50)> follows under the

global hypothesis H0 a centered m-variate normal distribution. The correlation matrix of

T is assumed to be an equi-correlation matrix, such that all non-diagonal elements of it

are identical and equal to ρ, where ρ ranges from 0 to 0.9 in steps of 0.1. In Table 2, we

display the local significance levels and the effective numbers of tests resulting from three

different calibration methods for a target FWER level of α = 5%: (i) Exact calibration (up

to numerical inaccuracies) by means of the full 50-variate null distribution of T . We have

used the R-routine qmvnorm() for this purpose. (ii) Approximate calibration by means of

the STPB b2 from (8). (ii) Approximate calibration by means of the PTPA β3 from (10).

For the marginal variances of each Tj, 1 ≤ j ≤ m, we have chosen the value 1/n for

n = 30. This mimics the case of a multiple test for Gaussian means (in the case of a unit

error variance), where the sample size for each marginal test problem equals n = 30.
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Table 2: Local significance levels and effective numbers of tests corresponding to

qmvnorm(), b2 from (8), and β3 from (10), respectively, assuming jointly normally dis-

tributed test statistics under the global null hypothesis. Their covariance matrix equals

Σ = n−1 (ρ1 + (1− ρ) I), where 1 denotes the matrix with every entry equal to one and

I is the identity matrix. The parameter ρ is the equi-correlation coefficient. The values

of αqmvnorm
loc and Mqmvnorm

eff are based on the full m-variate joint distribution of the test

statistics. The global FWER level was chosen as α = 0.05, the number of hypotheses

equals m = 50, and the marginal variances are all equal to 1/n, for n = 30. The values

of Mqmvnorm
eff have been computed according to (14).

ρ αqmvnorm
loc Mqmvnorm

eff αb2loc M b2
eff αβ3

loc Mβ3

eff

0 0.001025 48.78 0.001001 49.95 0.001026 49.97

0.1 0.001070 46.73 0.001003 49.85 0.001027 49.92

0.2 0.001161 43.07 0.001007 49.65 0.001038 49.39

0.3 0.001321 37.85 0.001015 49.26 0.001067 48.05

0.4 0.001573 31.79 0.001030 48.54 0.001140 44.97

0.5 0.001991 25.11 0.001057 47.30 0.001288 39.80

0.6 0.002609 19.16 0.001106 45.21 0.001575 32.54

0.7 0.003756 13.31 0.001194 41.88 0.002137 23.98

0.8 0.005900 8.47 0.001371 36.47 0.003259 15.71

0.9 0.011086 4.51 0.001836 27.23 0.006695 7.64
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The numerical values displayed in Table 2 are very much in line with the FWER be-

havior of the multiple test discussed in our simple motivating Example 1: The stronger

the positive correlation among the test statistics, the larger αloc and, consequently, the

smaller Meff. In the setting studied here, the PTPA β3 delivers a conservative approxima-

tion, which is much closer to the exact value (both in terms of αloc and in terms of Meff)

than the STPB b2.

Remark 4. The concept of effective numbers of tests is very popular in the context of

genetic association studies; see [13], Chapter 9 in [12], Section 4.1 in [20], Section 5 in

[59], and Section 5.1 in [14] for details and many references. In that context, m contin-

gency tables (one per considered genetic locus) have to be analyzed simultaneously with

respect to association of a (typically binary) phenotype and the genotype at the respective

locus. In this, m can be a very large number of an order of magnitude of up to 105 or

106 in the case of a genome-wide association study. Typically, at least in the presence of

large sample sizes, a chi-square test statistic Tj is computed for each contingency table j,

1 ≤ j ≤ m. Due to the biological mechanism of inheritance (and due to technical aspects

of the measurements), there exist pronounced dependencies among the Tj’s, and the vec-

tor T = (T1, . . . , Tm)> follows a multivariate (central) chi-square distribution under the

global hypothesis of independence of the phenotype of interest and the genotype at all m

loci under investigation. The computation of multivariate chi-square probabilities is rather

involved (see [18], [59], and the references therein), and it seems that up to date explicit

analytical formulas only exist for two-, three- and four-variate chi-square probabilities.

Therefore, the utilization of PTPAs of order 2 − 4 has been proposed in this context in

[20] and [59]. Another multivariate approach to addressing the multiplicity problem in

genetic association analyses is to combine multiple test procedures with (inherently mul-

tivariate) statistical learning methods like support vector machines; see [41] and [15] for

details.

5 Copula-based methods

Again, we assume that m ∈ N null hypotheses are to be tested simultaneously, and that

real-valued test statistics T1, . . . , Tm are at hand, each tending to larger values under

the alternative. As discussed around (4), the joint cdf Fm under a fixed parameter value

ϑ∗ ∈ H0 is needed in order to calibrate a multivariate STP based on T = (T1, . . . , Tm)> for

FWER control (under ϑ∗). The idea in this section is, to decompose Fm into the marginal

cdfs of the Tj’s and the dependency structure among the Tj’s. To this end, denote by Gj

the marginal cdf of Tj under ϑ∗, for 1 ≤ j ≤ m. Then, we have the following result.

Theorem 1 (Sklar’s Theorem, see [55, 56].). There exists a function CT : [0, 1]m → [0, 1],
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called the copula (function) of T , such that for all t = (t1, . . . , tm)> ∈ R̄m, it holds

Fm(t) = CT (G1(t1), . . . , Gm(tm)). (16)

If Gj is a continuous function for all 1 ≤ j ≤ m, then the copula CT is unique.

Equation (16) formalizes the decomposition of Fm into the marginal cdfs G1, . . . , Gm

and the dependency structure among T1, . . . , Tm, which is mathematically described by the

copula (or: dependence function) CT . The advantages of working with (16) are threefold:

(i) The transformation with the marginal cdfs leads to a distributional standardization

under H0, meaning that by the principle of quantile / probability integral transformation,

we have that Gj(Tj) is uniformly distributed on [0, 1] under ϑ∗ in the case of a continuous

Gj, 1 ≤ j ≤ m. Of course, the same holds true for the corresponding (random) p-value

Pj = 1 − Gj(Tj). The random variable Gj(Tj) is often referred to as the distributional

transform of Tj, cf. [50]. If all Gj’s are strictly increasing on their supports, then the

copula of the distributional transforms coincides with CT . (ii) By means of (16), we ob-

tain a very high degree of modeling flexibility. Namely, the marginal models referring to

G1, . . . , Gm can be coupled with any copula CT . For example, in the case of marginal tests

for means, univariate normal cdfs G1, . . . , Gm can be coupled with a non-Gaussian cop-

ula, to describe situations where univariate normality of marginal arithmetic means can

(approximately) be assumed, but multivariate normality of the vector T (under ϑ∗) may

be questionable. (iii) Modeling dependencies by means of copula functions has meanwhile

become a standard tool in applied multivariate statistics and quantitative risk manage-

ment; see, e. g., [45], [36], [33], [24], and Chapter 5 of [40]. There exists a rich and ever

growing body of literature on appropriate copula models for many applications. By means

of (16), these models are available for multiple testing.

The following result connects Sklar’s Theorem with FWER control under ϑ∗ ∈ H0.

Lemma 2 (Theorem 2 in [16], Lemma 3.5 in [46].). Under the assumptions of Theorem

1, assume that G1, . . . , Gm are known and fixed, at least asymptotically for large sample

sizes. Furthermore, assume that CT does not depend on ϑ. Let critical values cj(α) for

1 ≤ j ≤ m be given, such that the j-th null hypothesis Hj is rejected at FWER level α by

the STP ϕ iff Tj exceeds cj(α). Finally, let α
(j)
loc = 1−Gj(cj(α)) denote a local significance

level for the j-th marginal test problem, 1 ≤ j ≤ m. Then we have that

FWERϑ∗,CT
(ϕ) = 1− CT

(
1− α(1)

loc , . . . , 1− α
(m)
loc

)
.

Lemma 2 shows, that the multiplicity-adjusted local significance levels α
(1)
loc , . . . , α

(m)
loc

or, equivalently, the multiplicity-adjusted critical values c1(α), . . . , cm(α) can be deter-

mined by means of the contour line of the copula CT at contour level 1−α. In practice, it

is convenient to carry out the resulting multiple test ϕ in terms of the (realized) p-values

pj = 1 − Gj(tj), where tj denotes the observed value of Tj, 1 ≤ j ≤ m. We reject Hj at
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Figure 2: Copula-based calibration of a local significance level. The solid line displays

the contour line of a specific bivariate copula at contour level 0.7, corresponding to an

FWER level of α = 0.3. The dashed line corresponds to an equal weighting of the two null

hypotheses to which the p-values p1 and p2 refer. By projecting the point of intersection of

the dashed line and the contour line of the copula onto the coordinate axes, we obtain an

equi-coordinate local significance level of 1− 0.82 = 0.18 > 0.15 = α/2. The dash-dotted

line corresponds to a case in which the first null hypothesis gets a higher weight than

the second one. We obtain a local significance level of 1 − 0.75 = 0.25 for the first null

hypothesis and a local significance level of 1− 0.9 = 0.1 for the second null hypothesis.

FWER level α, iff pj is smaller than α
(j)
loc. Figure 2 is an adapted and extended version of

Figure 2 in [16] and depicts this construction in the bivariate case (m = 2). Figure 2 also

shows how a possible weighting for importance of the null hypotheses is automatically

incorporated in the methodology.

Remark 5. Lemma 2 refers to a given, fixed copula CT . In practice, the dependency

structure among the test statistics T1, . . . , Tm will however often not be known exactly.

In such cases, CT has to be (pre-)estimated. In [58], parametric estimation methods

for copula functions and their impact on the FWER behavior of multivariate STPs have

been studied. In particular, the authors provide a method to derive confidence regions

for the realized FWER in the case that there is estimation uncertainty about CT . In

[46], analogous results have been obtained for certain nonparametric copula estimators, in

particular so-called Bernstein copula estimators.

Example 5. Let us assume that the test statistics or their distributional transforms, re-
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Table 3: Comparison of the local significance levels αSidak
loc = 1− (1− α)1/m and α

Frank(η)
loc

calibrated under the Frank copula with parameter η. The global FWER level equals

α = 0.05 and the number of null hypotheses equals m = 50. The line η = 0 corresponds

to joint independence.

η αSidak
loc α

Frank(η)
loc

0 0.00103 0.00101

2 0.00103 0.00107

4 0.00103 0.00113

6 0.00103 0.00116

8 0.00103 0.00122

10 0.00103 0.00129

12 0.00103 0.00135

14 0.00103 0.00142

spectively, follow under the global hypothesis H0 an m-variate Frank copula with parameter

η. Denoting this copula by Cη, it holds that

Cη(u1, . . . , um) = ψη

 m∑
j=1

ψ−1
η (uj)

 ,
where uj ∈ [0, 1] for all 1 ≤ j ≤ m. The function ψη is called the generator function of

Cη, and it is given by

ψη(t) = −1

η
log

(
1− 1− exp(−η)

exp(t)

)
, t ∈ [0, 1].

For η → 0, the model tends to the case of joint independence, while the degree of positive

dependency increases with increasing η > 0.

Table 3 compares the equi-coordinate local significance levels resulting from Lemma 2

(applied to CT = Cη with varying values of η) with the local significance level of the Šidák

test (which is exact under H0 when assuming joint independence of the test statistics

or p-values, respectively). In the case of η = 0 and η = 2, the two local significance

levels are very similar. For larger values of η, however, the copula-based (multivariate)

calibration method exploits the positive dependencies among the test statistics, and it leads

to a markedly larger local significance level than the Šidák method. All values in Table 3

refer to m = 50 and an FWER level of α = 0.05.
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6 Multivariate multiple tests for control of the false

discovery rate

Up to date, the still by far most popular multiple test procedure for control of the FDR

is the linear step-up test ϕLSU, which had been proposed in the seminal paper [1] by

Benjamini and Hochberg. The multiple test ϕLSU is also often referred to as the Benjamini-

Hochberg procedure or simply the FDR procedure. In our notation, the decision rule of

ϕLSU may be written as follows.

(i) Let p1:m, . . . , pm:m denote the ordered values of the m (random) p-values P1, . . . , Pm.

(ii) Determine

k = max{1 ≤ j ≤ m : pj:m ≤ jα/m}, (17)

where α denotes the target FDR level.

(iii) If the maximum in (17) does not exist, retain allm null hypothesesH1, . . . , Hm. Oth-

erwise, reject exactly H1:m, . . . , Hk:m, where H1:m, . . . , Hm:m denote the re-ordered

null hypotheses in Hm, according to the ordering of the corresponding p-values.

Early results on FDR control of ϕLSU dealt with the case of jointly independent p-

values (or test statistics); see [1] and [28]. However, since the beginning of the 21st century

several authors have analyzed the FDR behavior of ϕLSU and related stepwise rejective

multiple tests under (positive) dependency; cf., e. g., [2], [51], [25], [52], [5], [6], [7], [26],

and references therein.

Let ϑ denote the parameter of the statistical model under consideration, denote by

Pϑ the distribution of the data sample under ϑ, and let P1, . . . , Pm denote the (random)

p-values on which ϕLSU operates. In [2], Benjamini and Yekutieli proved the following

result (see also Section 4 in [27] for slightly more general calculations).

Lemma 3 (see Equation (10) in [2].). Assume that exactly m0 ≡ m0(ϑ) out of the m null

hypotheses that are to be tested simultaneously are true under ϑ. Without loss of generality,

assume that Hi is true for 1 ≤ i ≤ m0, and that Hi is false for m0 + 1 ≤ i ≤ m. Then it

holds for the FDR of ϕLSU under ϑ, that

FDRϑ

(
ϕLSU

)
=

m0∑
i=1

m∑
k=1

1

k
Pϑ(Pi ≤ qk ∩ C(i)

k ), (18)

where qj = jα/m, 1 ≤ j ≤ m, and C
(i)
k denotes the event that exactly k−1 null hypotheses

additionally to Hi are rejected by ϕLSU.

Clearly, the probability expression on the right-hand side of (18) refers to the joint

distribution of P1, . . . , Pm under ϑ. Hence, it is possible to employ the multivariate
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approaches from our earlier sections to calculate / bound the FDR of ϕLSU under well-

defined dependency structures among P1, . . . , Pm. This can for instance be used to adjust

the nominal FDR level α. Namely, if the FDR of ϕLSU (or an upper bound for it) under

the assumed dependency structure exceeds α, we may replace the nominal value of α

by some smaller value such that the FDR is controlled. For example, Benjamini and

Yekutieli showed in [2] that replacing α by α/ (
∑m
i=1 i

−1) in the definition of ϕLSU always

controls the FDR, no matter the dependency structure among P1, . . . , Pm. On the other

hand, in [6] it has been shown that the FDR of ϕLSU is typically strictly smaller than α if

the copula of P1, . . . , Pm is an Archimedean copula with a completely monotone generator

function (which does not depend on ϑ), and the authors derived an adjustment factor by

which the nominal level α can be increased in order to exhaust the FDR level and, hence,

optimize the power of ϕLSU by exploiting the (positive) dependencies among P1, . . . , Pm.

Both of these proposals follow the general construction method (exploitation of FDR

bounds) which has been mentioned on page 81 of [12]. However, it has to be mentioned

that the calculations referring to the right-hand side of (18) can become rather tedious,

due to the complicated structure of the event {Pi ≤ qk ∩C(i)
k }. Furthermore, as indicated

for instance in [25] and in [3], the false discovery proportion (FDP) is typically not well

concentrated around its expectation (the FDR) under dependency. Hence, many authors

consider it more appropriate to control exceedance probabilities (over some given thresh-

old) of the FDP under dependency rather than its mean; cf. also [11] and the references

therein. The distribution of the FDP relies on the joint distribution of all m (random)

p-values, too; cf. [3], [63], and the references therein.

7 Conclusions and practical recommendations

We have presented multivariate approaches to the calibration of multiple tests for control

of the FWER and the FDR, respectively. Multivariate statistical models and result-

ing multiple tests have several advantages over generic procedures which only take into

account univariate marginal distributions of test statistics or p-values: (i) Multivariate

statistical models are often more realistic, because they take into account the depen-

dencies in the data. Such dependencies are ubiquitous in nowadays’ (high-throughput)

measurements, because of the underlying (neuro-)biological or technological mechanisms.

Hence, data from such experiments typically exhibit strong temporal, spatial, or spatio-

temporal dependencies. (ii) Especially in the presence of positive dependencies, the power

of the multiple test can be enhanced by explicitly modeling and incorporating marginal

distributions of higher order into the decision rule of the multiple test. This has been

demonstrated by numerical examples in Sections 4 and 5. Disadvantages of the presented

methods are a potentially high computational effort, and the need for information about

the kind of dependencies among the test statistics or p-values, leading to a higher model
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complexity than in the case of univariate marginal approaches. Therefore, it is recom-

mendable in practice to apply multivariate techniques whenever computationally feasible,

given that the type of dependency structure among the test statistics is known. In the

case of a totally unknown dependency structure among T1, . . . , Tm, nonparametric copula

(pre-)estimation methods may be applied, but the methodology of [46] at least requires

that the copula of T is a nuisance parameter in the sense that it does not depend on the

parameter ϑ to which the null hypotheses H1, . . . , Hm refer.

One different class of multivariate multiple tests, which has not been treated in this

paper, is constituted by resampling-based procedures. Such procedures implicitly take into

account the aformentioned dependencies by employing appropriate resampling schemes

which approximate the (joint) null distribution of the entire vector of test statistics or

p-values, respectively. Resampling-based multiple tests for FWER control have been

worked out for instance in [64], [60], [48], [49], and [9]. Resampling-based methods for

FDR control have been derived, among others, in [66], [61], [47], and [21].

Of course, it is also possible to combine explicit multivariate modeling of the data

and resampling-based calibration of a multiple test for control of the FWER or FDR,

respectively. For example, a model-based bootstrap procedure for multiple specification

tests in dynamic factor models has been theoretically derived in [17] and implemented

and applied in [19].
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