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Abstract

The two-type Richardson model describes the growth of two competing infection types on
the two or higher dimensional integer lattice. For types that spread with the same intensity,
it is known that there is a positive probability for infinite coexistence, while for types with
different intensities, it is conjectured that infinite coexistence is not possible. In this paper
we study the two-type Richardson model in the upper half-plane Z × Z+, and prove that
coexistence of two types starting on the horizontal axis has positive probability if and only
if the types have the same intensity.

1 Introduction

In 1998, Häggström and Pemantle [8] introduced a model for competing growth on Z2 known as
the two-type Richardson model. Two competing entities, here referred to as type 1 and type 2
infection, initially occupy one site each of the Z2 nearest-neighbor lattice. As time evolves each
uninfected site is occupied by type i at rate λi times the number of type i neighbors. An infected
site remains in its state forever, implying that the model indeed defines a competition scheme
between the types.

Regardless of the values of the intensities, both types clearly have a positive probability of
winning by surrounding the other type at an early stage. Attention hence focuses on the event
C that both types simultaneously grow to occupy infinitely many sites; this is referred to as
coexistence of the two types. Deciding whether or not C has positive probability is non-trivial
since it cannot be achieved on any finite part of the lattice. By time-scaling and symmetry
we may restrict to the case λ1 = 1 and λ2 = λ > 1. The conjecture, due to Häggström and
Pemantle [8], then is that C has positive probability if and only if λ = 1. The if -direction of
the conjecture was proved in [8], and extended to higher dimensions independently by Garet and
Marchand [6] and Hoffman [10], using different methods. As for the only if -direction, Häggström
and Pemantle [9] showed in 2000 that coexistence is possible for at most countably many values
of λ. Ruling out coexistence for all λ > 1 remains a seemingly challenging open problem.

In this paper we study the analogous problem in the upper half-plane Z×Z+ = {(x, y) : y > 0}
with (0, 0) initially occupied by type 1 and (1, 0) initially occupied by type 2, and show that
coexistence has positive probability if and only if λ = 1. That coexistence is possible for λ = 1
follows from similar arguments as in the full plane, so the novelty lies in proving the only if -
direction.

Theorem 1. Consider the two-type Richardson model on Z× Z+ with (0, 0) and (1, 0) initially
of type 1 and 2, respectively. Then we have that P(C ) > 0 if and only if λ = 1.

Some readers might suspect that the arguments used to prove this result could be adaptable
to settle the Häggström-Pemantle conjecture in the full plane. This however is most likely not



the case. It is known that, on the event of coexistence in the full plane, the speed of the growth
is determined by the weaker type; see e.g. [9, Proposition 2.2]. This means that, in order not
to grow too fast, the stronger type must survive by maintaining a meandering path surrounded
by the weaker type. In fact, it can be shown that the fraction of the infected sites occupied
by the stronger type is vanishing; see [7]. The crucial point in our half-plane argument is that
infinite survival for the stronger type implies that it must occupy all sites along the positive
horizontal axis. We use this to show that it will thereby grow fast enough to eventually surround
the weaker type. Note that the role of the initial configuration is important for this argument.
We have not been able to adapt the argument to rule out coexistence in the half-plane when
the initial position of the stronger type is not connected to the horizontal axis. Indeed, working
with general initial configurations seems to make the problem as hard as in the full plane. We
remark that, in the full plane, it is shown in [5] that the initial configuration is irrelevant for the
possibility of infinite coexistence, but that argument does not apply here.

One way of constructing the two-type process is by independently assigning a unit exponential
random weight τ(e) to each nearest-neighbor edge e of the lattice. The time required for type
1 to traverse an edge e is then given by the associated weight τ(e), and the time for type 2
is λ−1τ(e). Indeed, this construction provides a coupling of the two-type models for all λ > 1
simultaneously. The curious partial result of [9] is derived based on this coupling by showing
that, in the probability measure underlying the coupling, there is almost surely at most one value
of λ for which coexistence may occur. That coexistence occurs with positive probability for at
most countably many λ > 1 is an easy consequence of this.

There are a number of proofs of coexistence for the case when the types have the same
intensities, and (at least some of) these arguments can be adapted to prove the if -direction
of Theorem 1. We shall however offer an alternative proof, since it is a simple by-product of
the arguments required to prove the only if -direction of the theorem. To rule out coexistence
for λ > 1, we shall develop an argument inspired by the work of Blair-Stahn [4], and that
incorporates elements of Busemann functions introduced by Hoffman [10, 11]. Nevertheless, the
proof will be a self-contained and elementary deduction from standard results in first-passage
percolation.

The two-type Richardson model can be viewed as a two-type version of first passage per-
colation with exponential edge weights. One of the most fundamental results for first passage
percolation is the shape theorem, asserting that the infected set at time t converges on the scale
t−1 to a deterministic convex set A. In order to describe the structure of the proof of Theo-
rem 1, let θ denote the maximal angle between any supporting line of A in the first coordinate
direction and the vertical supporting line in the same coordinate direction; see Figure 1 (left
picture). Then θ equals zero in case the shape is differentiable in the coordinate directions,
and θ is at most π/4, which occurs if the shape is a diamond. Given ε > 0 and n ∈ Z, we
partition the upper half-plane Z × Z+ into two regions Lε(n) and Rε(n) as follows: Consider
the semi-infinite line through (n− 1/2, 0) with angle θ + ε to the vertical line through the same
point (see Figure 1, right picture), and write Lε(n) for the part of the upper half-plane to the
left of this line, excluding points on the line, and Rε(n) for the part to the right of the line,
including points on the line. Finally, define the strips Sk := {(x, y) ∈ Z2 : 0 6 y 6 k} and
S+
k = {(x, y) ∈ Z2 : x > 0, 0 6 y 6 k}.
The proof of the only if -direction of Theorem 1 can roughly be divided into three steps,

where the first one may be considered the most fundamental:

Step (i) Show that, for every λ > 1 and ε > 0, if type 2 survives indefinitely, then almost surely
type 2 reaches Rε(n) before type 1 for infinitely many n > 1.
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Step (ii) Show that, for every λ > 1 there exists ε > 0 such that, if type 2 comes first to Rε(n),
then for each each k > 1 there is a positive probability (uniform in n) that type 2 occupies
all vertices in Sk ∩Rε(n).

Step (iii) Show that, if type 2 conquers all but finitely many vertices in S+
k for k large, then it

will eventually almost surely defeat type 1.

Combining steps (i) and (ii) (or in fact a slight rephrasing of these claims) one obtains that,
if type 2 survives indefinitely, then for all k > 1 it will almost surely conquer all but finitely
many sites in the strip S+

k along the horizontal axis. According to step (iii), this means that
type 1 will eventually become surrounded by type 2, ruling out coexistence.

θ

(n− 1/2, 0)

θ+εLε(n) Rε(n)

Figure 1: Illustration of θ and the regions Lε(n) and Rε(n) in the case that the shape
is an octagon. The shape and the region Rε(n) are shaded.

The angle θ used to define the region Rε(n) can be motivated as follows: On one hand the
claim in step (ii), which will be a consequence of the shape theorem, cannot hold for any angle
larger than θ. On the other hand, while the claim in step (i) certainly could be correct also
for angles smaller than θ (assuming that θ > 0), proving such a thing would require detailed
understanding of the structure of infinite one-sided geodesics in the half-plane setting. The
information needed would go beyond our current understanding for the analogous objects in the
full-plane. Of course, since we believe that the shape is differentiable (at least in coordinate
directions) we consequently believe that θ = 0, and in this case we cannot do better that having
Rε(n) defined as an ε-tilted vertical line.

The rest of the paper is organized so that relevant background on one-type first passage
percolation is given in Section 2. In Section 3 we use Busemann functions to control the evolution
of the one-type process to obtain a statement that will establish step (i). Section 4 is devoted to
step (ii), which is essentially a consequence of the shape theorem. Finally, the proof of Theorem
1 is completed in Section 5, where step (iii) is established by an adaption of an argument from [9].

2 Preliminaries

In standard first passage percolation each edge e of some underlying graph is independently
equipped with a non-negative random variable τ(e) from some common distribution. Throughout
this paper, we shall assume that the underlying graph is the upper half-plane Z× Z+, equipped
with edges between nearest-neighbors, and that the weights {τ(e)} are unit exponentials. Note
that {λ−1τ(e)} are then exponentials with parameter λ. Given a path Γ, we let Tλ(Γ) :=∑
e∈Γ λ

−1τ(e) and define the passage time between two sets Φ,Ψ ⊂ Z× Z+ in the environment
{λ−1τ(e)} as

Tλ(Φ,Ψ) := inf
{
Tλ(Γ) : Γ is a path in Z× Z+ connecting Φ to Ψ

}
,
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To simplify the notation, we write T1(Γ) = T (Γ), T1(Φ,Ψ) = T (Φ,Ψ), and Tλ(x, y) for the
passage time between {x} and {y} for x, y ∈ Z2. It is immediate from the construction that
Tλ(Φ,Ψ) = λ−1T (Φ,Ψ) for all λ > 1.

The above construction gives rise to a simultaneous coupling of the two-type processes for all
λ > 1, where type 1 requires time τ(e) to traverse an edge e while type 2 requires time λ−1τ(e).
The passage time T (0, z) then denotes the time at which type 1 arrives at the site z, unless
z is already reached by type 2 by then, and Tλ(1, z) similarly denotes the time it would take
type 2 to reach z, unless impeded by type 1 along the way.1 In the case that λ = 1, whether
or not a site z is eventually occupied by type 2 can be read out directly from T ; it will in the
case that T (1, z) < T (0, z). Understanding the evolution in the two-type Richardson model thus
leads us to recall some basic results for one-type first-passage percolation. Due to the relation
Tλ(x, y) = λ−1T (x, y), we focus in the remainder of this section on the case λ = 1; corresponding
results for λ > 1 are obtained by a simple scaling argument.

Although first passage percolation in half-planes has been studied before, e.g. in [1, 2, 16], the
vast majority of the literature is concerned with the two and higher dimensional nearest-neighbor
lattices. It will be convenient to survey some of the results here. In analogy with the notation
in the half-plane, we shall denote by T (Φ,Ψ) the passage time between the two sets Φ,Ψ ⊂ Z2,
where the infimum is now taken over paths in Z2 connecting Φ and Ψ.

A first crucial observation is that T defines a metric on Z2. In particular, it is subadditive in
the sense that

T (x, y) 6 T (x, z) + T (z, y) for all x, y, z ∈ Z2.

Using subadditive ergodic theory [13, 14], one can establish the existence of a time constant
µ ∈ (0,∞) specifying the asymptotic inverse speed of the growth along the axes. Specifically, we
have that

lim
n→∞

T (0,n)

n
= µ almost surely and in L1.

This can be extended to an arbitrary direction in the first octant, and hence by symmetry of
Z2, to any arbitrary direction: For α ∈ [0, π/4], let uα denote a unit vector with angle α to
the x-axis, that is, uα = (cosα, sinα). Also, for x, y ∈ R2, define T (x, y) := T (x′, y′), where x′

and y′ are the points in Z2 closest to x and y, respectively. Then there exists a directional time
constant µα ∈ (0,∞) such that

lim
n→∞

T (0, nuα)

n
= µα almost surely and in L1. (1)

By definition, we have µ0 = µ.
Since T defines a (random) metric on Z2 it is natural to investigate the shape of large balls

in this metric. The fundamental shape theorem, dating back to the work of Richardson [15, 12],
states that the set of sites that can be reached from the origin within time t converges almost
surely on the scale t−1 to a deterministic shape A, that is, with probability one, we have for
every ε > 0 that W (t) := {x ∈ R2 : T (0, x) 6 t} satisfies

(1− ε)A ⊂ W (t)

t
⊂ (1 + ε)A for all large t.

The asymptotic shape A can be characterized as the unit ball in the norm defined by µ(x) =
limn→∞

1
nT (0, nx) for x ∈ R2. It is thus known to be compact and convex, with non-empty

interior, and it inherits all symmetries of Z2. Apart from this, very little is known about the
1Throughout the paper, we shall let bold letters like n be short for the horizontal vectors (n, 0).
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properties of the shape. It has been studied by aid of simulations in [3], where the results indicate
that it is close to, but not identical to, a Euclidean disk. We remark that there is no theoretical
support for A being a Euclidean disk, and in large dimension it is known not to be a Euclidean
ball. We further mention that, as a consequence of the shape theorem, passage times to lines
rather than single points obey similar asymptotics. For instance, with ¯̀(n) denoting the vertical
line through n, we have that 1

nT (0, ¯̀(n)) converges to µ almost surely.
When restricting the growth to a strip Sk := {(x, y) ∈ Z2 : 0 6 y 6 k} for some k > 1, the

speed of progression decreases. However, the thicker the strip, the smaller is the effect. To be
precise, let T (k)(Φ,Ψ) denote the passage time between Φ ⊂ Sk and Ψ ⊂ Sk, where the infimum
is taken over paths Γ ⊂ Sk connecting Φ and Ψ. Again, the subadditive ergodic theorem shows
that 1

nT
(k)(0,n) converges (almost surely and in L1) to some constant µ(k) ∈ (0,∞). Moreover,

µ(k) ↘ µ as k →∞; (2)

see e.g. [1, Proposition 8]. A similar statement holds for directions other than the axes directions.
As a consequence, one can show that a shape theorem holds also for first passage percolation
in the upper half-plane Z × Z+, and that the asymptotic shape in this case is the half-plane
restriction of the shape A arising in the full-plane growth; see [1, Proposition 15].

We shall occasionally need a stronger version of the half-plane shape theorem. Somewhat
vaguely, the stronger version says that not only is a large ball in the metric T centered around
the origin well approximated by the asymptotic shape, but for every y ∈ Z × Z+ the ball
{z ∈ Z × Z+ : T (y, z) 6 t} centered around y is well approximated by the asymptotic shape,
at least for t larger than a small multiple of |y|. The precise statement can be formulated as
follows: For every ε > 0 we have, almost surely, for all but finitely many pairs of vertices (y, z)
in Z× Z+ that ∣∣T (y, z)− µ(z − y)

∣∣ < εmax{|y|, |z − y|}, (3)

where µ is the time constant as determined by T . The stronger version of the shape theorem
can, for instance, be obtained as a consequence of [1, Theorem 9], which says that the probability
that T (0, z) differs from µ(z) by as much as t decays faster than any polynomial in t (at least
for t larger than a small multiple of |z|). A dubble summation argument will then show that
the expected number of pairs (y, z) for which (3) fails is finite, so the result follows via the
Borel-Cantelli lemma.

3 A one-type lemma

The aim of this section is to take the first and most fundamental step towards a proof of our
main theorem. It will be crucial for ruling out coexistence in the case when λ > 1, but we will
use it also to give a short proof of coexistence in the case when λ = 1. The result is a statement
for the one-type process on Z× Z+.

Lemma 2. For every ε > 0 there exists γ > 0 such that

P
(
T (−n,0) < T (−n,Rε(0)\{0}) for all n > 1

)
> γ.

Key to the proof of the lemma will be the notion of Busemann functions. Define, for all n > 1
and sites u, v in the half-plane, the Busemann-like function

Bn(u, v) := T (−n, u)− T (−n, v).
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Lemma 2 can be rephrased to say that with positive probability Bn(0, v) < 0 for all v ∈ Rε(0) \
{0} and n > 1. We shall first show that, almost surely, Bn(0, v) < 0 may fail for some n
for at most finitely many v. A local modification argument will then show that with positive
probability it does not.

A key observation is that, for fixed m > 1, the sequence {Bn(0,m)}n>1 is almost surely
increasing. The limit

B(0,m) := lim
n→∞

Bn(0,m)

hence exists almost surely. Indeed, this turns out to be true for all u and v, see [2], but we shall
not need this fact. Instead, we shall make use of the following asymptotic property.

Lemma 3. For all m > 1, we have that E[B(0,m)] = −µ ·m, and

lim
m→∞

1

m
B(0,m) = −µ almost surely.

Proof. A useful property of Bn is that it is additive. The additivity carries over in the limit as
n→∞ and for B this implies that

1

m
B(0,m) =

1

m

m−1∑
j=0

B(j, j + 1), (4)

where B(j, j + 1) := limn→∞Bn(j, j + 1). Due to invariance with respect to horizontal shifts,
sending m to infinity in (4), the ergodic theorem yields the almost sure limit E[B(0,1)]. By
additivity, it only remains to identify E[B(0,1)] with −µ.

To this end, we rephrase B(0,1) as a limit of partial averages, and obtain

E[B(0,1)] = E
[

lim
n→∞

1

n

n−1∑
j=0

Bj(0,1)
]

= lim
n→∞

1

n

n−1∑
j=0

E[Bj(0,1)],

where extraction of the limit is allowed by dominated convergence, since |Bj(0,1)| 6 T (0,1).
Due to invariance with respect to horizontal shifts, we have further that

E[B(0,1)] = lim
n→∞

1

n

n−1∑
j=0

E[T (0, j)− T (0, j + 1)] = lim
n→∞

1

n
E[−T (0,n)] = −µ,

as required.

Let ∂Rε(n) denote the set of sites in Rε(n) that have at least one neighbor in Lε(n).

Lemma 4. There exists δ > 0 such that, with probability one, for all but finitely many v ∈
∂Rε(0), we have that

B(0, v) < −δ|v|.

Proof. Note that, by convexity of the shape and the definition of θ, there exists δ > 0 such that
for each v ∈ ∂Rε(0) there is m = m(v) such that

µ(v −m) 6 (1− δ)µ(m);

see Figure 2 (left picture). Indeed, m can be chosen to roughly equal c|v| for some c > 0.
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Figure 2: Geometry in the proofs of Lemmas 4 and 2.

Together with subadditivity and the strong version of the shape theorem stated in (3), it follows
that almost surely for all but finitely many v ∈ ∂Rε(0) we have that

B(m, v) 6 T (m, v) 6 (1 + δ)µ(v −m) 6 (1− δ2)µ(m).

Moreover, by Lemma 3 we have, almost surely, for all large m that

B(0,m) 6 −(1− δ2/2)µ(m).

Combining the two estimates we conclude that almost surely, for all but finitely many v ∈ ∂Rε(0),
we have that

B(0, v) = B(0,m) +B(m, v) 6 −(δ2/2)µ(m) < 0.

Since µ > 0 and m is roughly c|v| for some c > 0, the lemma follows.

Proof of Lemma 2. Let (xn, yn) be the point in Rε(0) with the smallest passage time to −n.
Recall that Bn(0, v) 6 B(0, v) for all v and n > 1, so by Lemma 4 the sequence (yn)n>1 is almost
surely bounded. Fix ` large so that, with probability at least 3/4, we have yn 6 ` for all n. Then
pick some finite path Γ, connecting the origin to a point in ∂Rε(0) of the form (x, `+ 1), which
except for its endpoints is contained in Lε(0); see Figure 2 (right picture). Next, take t large
so that, with probability at least 3/4, the total passage time T (Γ) is at most t. Note that any
path contained in Lε(0) connecting −n to a point (x, y) ∈ ∂Rε(0) with 1 6 y 6 ` must cross
Γ before reaching (x, y). Let vn be the site on Γ at least distance from −n, and let Γ′ denote
the concatenation of the time minimizing path from −n to vn and the segment of Γ from vn to
the origin (see Figure 2, right). We then have for all n > 1, on the intersection of the above two
events, that

T (−n,0) 6 T (Γ′) 6 T (−n,Rε(0)) + T (Γ) 6 T (−n,Rε(0)) + t. (5)

Write U`′ for the set of sites (x, y) ∈ ∂Rε(0) with y > `′. Due to Lemma 4, we may pick `′ > `
such that T (−n, U`′) > T (−n,0) + 2t for all n > 1 with probability at least 3/4. Define C to be
the intersection of all three events above. That is, let

C :=
{
yn 6 ` for all n

}
∩
{
T (Γ) 6 t

}
∩
{
T (−n, U`′) > T (−n,0) + 2t for all n

}
,

and note that P(C) > 1/4.
Let Λ`′ denote the set of edges connecting sites (x, y) ∈ ∂Rε(0) \ {0} with y 6 `′ to sites in

Lε(0); see Figure 2 (shaded area in the right picture). We complete the proof by arguing that, on
the event C, a configuration where the origin is the closest point in ∂Rε(0) to −n for all n > 1
is obtained by increasing the weight of all edges in Λ`′ to 2t. Indeed, since T (Γ′) is unaffected
by the raise, it follows by (5) that the time minimizing path from −n to Rε(0) will then not hit
a point (x, y) ∈ Rε(0) for y = 1, . . . , `′. It will also not hit Rε(0) for y > `′, since it will take at
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least time 2t from the moment when Γ is hit to reach that level, whereas the origin is reached in
time t.

To formalize this, we define another i.i.d. family of edge weights {τ̂(e)}, where τ̂(e) = τ(e)
for e 6∈ Λ`′ and where τ̂(e) is sampled independently of τ(e) for e ∈ Λ`′ . Denoting by Q the event
{τ̂(e) > 2t for all e ∈ Λ`′}, and distances with respect to {τ̂(e)} by T̂ , the above reasoning gives
that

P
(
T̂ (−n,0) < T̂ (−n,Rε(0)\{0}) for all n > 1

)
> P

(
C ∩Q

)
= P(C)P(Q) > 0,

due to independence of the two configurations on Λ`′ . Since the two configurations are equal in
distribution, the lemma follows.

4 A two-type lemma

The next lemma concerns the two-type process with an unbounded initial configuration. It
applies when type 2 is strictly stronger than type 1, and is derived as a geometric consequence of
the shape theorem. Recall that S+

k = {(x, y) ∈ Z2 : x > 0, 0 6 y 6 k}. Note also that for small
enough values of ε > 0, the origin is the only site on the horizontal axis contained in ∂Rε(0).

Lemma 5. For every λ > 1 there is ε > 0 such that if initially 0 is occupied by type 2 and all
sites in ∂Rε(0)\{0} are occupied by type 1, then, for every k > 1, there is a positive probability
that type 2 occupies all initially uninfected sites in the half-strip S+

k .

Proof. Fix λ > 1. Note that it suffices to prove the lemma for large k, since if type 2 occupies
all uninfected sites in S+

k , then this is trivially the case also for all k′ 6 k. By (2) we thus pick
k large so that

λ−1µ 6 λ−1µ(k) < µ.

Let δ = (µ− λ−1µ(k))/4 and set ρ = λ−1µ(k) + 2δ.
It follows from the half-plane shape theorem (the version stated in (3)), convexity of the

shape and the definition of Rε(0) that, almost surely, for large n we have that

T (∂Rε(0), (n, k)) > (µ− δ′)n

for some δ′ = δ′(ε) > 0, with δ′ → 0 as ε → 0; see Figure 3 (left). Hence, for ε > 0 small,
µ− δ′ > ρ+ δ. Moreover, almost surely, we have that

T (k)

λ (0, (n, k)) < (ρ− δ)n

for all large n. Finally, write T̃ (k)

λ (0, (n, k)) for the above passage time in the process based
on {λ−1τ(e)}, when sites in ∂Rε(0) cannot be used, and note that this clearly obeys the same
asymptotics. (Here the assumption that ε > 0 is small comes in, so that the origin is not ‘blocked’
by other sites in ∂Rε(0).)

For m > 1 now define

Dm := {T (∂Rε(0), (n, k)) > (ρ+ δ)n for all n > m},
D′m := {T̃ (k)

λ (0, (n, k)) < (ρ− δ)n for all n > m},

and pick m large so that P(Dm ∩ D′m) > 3/4. Let Ωm denote the set of edges consisting of
all edges connecting an initially type 1 infected site to a neighbor in S+

k , and all vertical edges
connecting a site (j, k + 1) in Rε(0) with j 6 m to (j, k). Hence Ωm consists of all edges up to
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(n, k)

k

m

Ω′m

Ωm

Figure 3: For small ε > 0, the distance from (n, k) to ∂Rε(0) is not much shorter than
the distance to the origin (left). The regions Ωm (shaded) and Ω′m (right).

the level x = m through which type 1 can enter the strip; see Figure 3 (right). Also, let Ω′m
denote the set of edges connecting initially uninfected sites in S+

k up to level x = m, and note
that Ωm and Ω′m are disjoint.

Next, let
Em,t := {τ(e) > tkm for all e ∈ Ωm},
E′m,t := {λ−1τ(e) < t for all e ∈ Ω′m}.

Since P(E′m,t)→ 1 as t→∞, we can pick t large so that P(Dm ∩D′m ∩ E′m,t) > 1/2. We claim
that, on Dm ∩D′m ∩Em,t ∩E′m,t, type 2 occupies all initially uninfected sites in S+

k . To see this,
note that Em,t∩E′m,t ensures that type 1 cannot enter the strip at a site (j, k) with j < m, since
any such site can be reached from the origin by a path in Ω′m with weight at most mkt. The
event Dm ∩D′m then guarantees that type 1 cannot enter the strip at a site (j, k) with j > m,
since type 2 is faster to all such sites once it has access to the initial piece of the strip.

It remains to prove that P(Dm ∩D′m ∩ Em,t ∩ E′m,t) > 0. To this end, write

P(Dm ∩D′m ∩ Em,t ∩ E′m,t) = P(Dm ∩D′m ∩ E′m,t|Em,t)P(Em,t).

The events D′m and E′m,t involve only edges in Ω′m while Em,t involves only edges in Ωm. Hence,
since Ω′m and Ωm are disjoint, the conditioning on Em,t does not affect D′m and E′m,t. As for Dm,
the event Em,t stipulates that the passage times on certain edges are large. This clearly increases
the probability of Dm so that, in summary, P(Dm∩D′m∩E′m,t|Em,t) > P(Dm∩D′m∩E′m,t). The
desired conclusion follows by noting that P(Em,t) > 0 since Ωm is finite and t fixed.

5 Proof of Theorem 1

In this section we prove Theorem 1. As mentioned, there are a number of proofs in the literature
showing that coexistence is possible on Z2 when λ = 1, and some of these are easily adapted
to show the same statement in the half-plane. However, this can also be obtained by a short
argument based on Lemma 2.

Proof of the if-direction of Theorem 1. Take λ = 1. Let F denote the event in Lemma 2, and let
F̄ denote its reflection in the vertical axis. Let further F̄m denote the translate of F̄ along the
vector m. We observe that, on F , type 1 will be first to all sites along the negative horizontal
axis. Similarly, on F̄1, type 2 will be first to all sites along the positive horizontal axis. Although
there is no guarantee that the intersection of the two events occurs with positive probability, since
F̄m occurs with a density (due to the ergodic theorem), we may fix m > 1 so that P(F ∩ F̄m) > 0.
To guarantee coexistence, it then remains to show that, on F ∩ F̄m, there is positive probability
for type 2 to reach (m, 0) before type 1 reaches Rε(m).
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Let O denote the event that each edge adjacent to the origin has weight at least δ, and note
that P(F ∩ F̄m ∩ O) > 0 for small δ > 0. Let O′ denote the event that the sum of the weights
on the edges along the axis connecting 1 to m is at most δ/2. Note that, on O ∩O′, type 2 will
reach m before type 1 takes its first step. Since F , F̄m and O are independent of the state of
the edges defining O′, it follows that

P(C ) > P(F ∩ F̄m ∩O ∩O′) = P(F ∩ F̄m ∩O)P(O′) > 0,

as required.

We proceed with the only if -direction, and start by combining Lemmas 2 and 5 into a
statement for the two-type process.

Lemma 6. For every λ > 1 and k > 1, if type 2 occupies infinitely many sites in the two-type
model on Z× Z+, then type 2 will almost surely occupy all but finitely many vertices in S+

k .

Proof. Fix λ > 1 and k > 1. Write F for the event in Lemma 2, and let Fm denote the translate
of F along the vector m. Also, let G denote the event in Lemma 5, and let Gm denote the
translate of G along the vector (m, 0). Each of the two events F and G occur with positive
probability. Moreover, F is determined by edges between sites in Lε(0) ∪ ∂Rε(0) involving at
least one site in Lε(0), while G is determined by edges between pairs of sites in Rε(0). Hence,
the two events are independent and P(F ∩G) > 0. By the ergodic theorem, Fm ∩Gm will occur
for infinitely many m > 1, almost surely.

It remains to prove that, on the event Fm ∩ Gm ∩ {type 2 survives}, where m > 1, type 2
occupies all but finitely many vertices in S+

k . For this, clearly it suffices to see that, if type 2
survives indefinitely, then Fm implies that type 2 reaches m before any other site in ∂Rε(m) is
reached by type 1. To this end, let Γ denote the time minimizing path from the origin to m.
Note that, if type 2 survives indefinitely, then m must be occupied by type 2 in the two-type
process. Let v denote the first (in time) point on the path Γ that is occupied by type 2 in the
two-type process. The fastest way to get from v to Rε(m) is to follow Γ and, doing this, type 2
will arrive at m before any other site in Rε(m) is infected, as desired.

The last ingredient we need in order to prove the only if -direction of Theorem 1 is a half-
plane version of a result from [9, Proposition 2.2]. More precisely, we need to show that, if type
2 conquers a wide half-strip, then type 2 will end up surrounding type 1. The argument will be
similar to that of [9], but the geometric construction is easier in our case and the proof consists
of applying the ideas in Lemmas 5 and 6 in non-axis directions. We shall therefore be brief.

Lemma 7. For every λ > 1, there is k > 1 such that, if type 2 occupies all but finitely many
sites in S+

k , then almost surely type 1 will occupy only finitely many sites.

Proof. If type 2 occupies all but finitely many sites in the half-strip S+
k for k sufficiently large,

then the type 2 speed along the axis in S+
k will be strictly larger than the speed of type 1. As we

shall see, type 2 will then be strictly faster than type 1 also in direction α, for some small α > 0.
This can be used to show that type 2 occupies all but finitely many vertices in an α-cone. By
repeating the argument we then show that type 2 will also occupy almost all sites in a 2α-cone,
etc.

Recall the definition, in (1), of the time constant µα in direction α based on unit rate
exponential edge weights. The time constant in direction α based on exponential edge weights
with parameter λ is then given by λ−1µα. As is well-known, the directional time constant µα is
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Lipschitz continuous, since µ defines a norm. In particular, there exists a constant c > 0 such
that, for any α0, α ∈ [0, 2π], we have that

µα0+α 6 µα0(1 + cα).

It follows that, uniformly in the choice of α0, we have λ−1µα0+α 6 µα0 if α is sufficiently small.
By picking α even smaller, we further obtain that λ−1µα0+α < µα0 cosα. For the remainder of
this proof we fix α > 0 so that for all α0 ∈ [0, 2π] we have

λ−1µα0+2α < µα0 cos(2α). (6)

Let `α(0) denote the semi-infinite line starting at the origin with angle α to the horizontal
axis. In a first step, we argue that if type 2 occupies all sites in a thick strip, then type 2
will almost surely occupy all but finitely many sites below the line `α(0). Pick k large so that
λ−1µ(k) < µ, which is possible by (2). Let Hm be the event that type 2 eventually occupies the
site (m, k), and that at the time at which this occurs type 1 has not yet reached the vertical line
L(m) = {(x, y) ∈ Z2 : x = m}. The choice of k assures that, given that type 2 captures all but
finitely many sites in the strip S+

k , the probability of Hm tends to one as m tends to infinity.
Write `2α(m, k) for the semi-infinite line starting at the point (m, k) with angel 2α to the

horizontal line through (m, k). By (6), we have that λ−1µ2α < µ cos(2α), and hence that the
asymptotic type 2 time from (m, k) to a point on `2α(m, k) far from (m, k) is strictly smaller
than the type 1 passage time from L(m) to the same point; see Figure 4. (Here, we say that a

k

m

`2α(m, k)

2α

x

x cos(2α)

Figure 4: The line `2α(m, k).

point z ∈ R2 is infected when the closest point in Z2 is infected.) Let G2α
m denote the event that,

starting from a configuration in which (m, k) is of type 2 and the rest of the line L(m) is of type
1, every point along the line `2α(m, k) is eventually captured by type 2. A similar argument as
that used to prove Lemma 5 then shows that G2α

m occurs with positive probability. The ergodic
theorem implies that G2α

m occur for a positive density of all m > 1, almost surely, and since the
conditional probability that Hm occurs, given that type 2 takes the strip, tends to one, their
intersection will occur for some (large) value of m almost surely. The occurrence of Hm ∩ G2α

m

guarantees that type 2 captures the whole line `2α(m, k), and consequently that the whole area
below the line `2α(m, k) is captured by type 2. Since `α(0) eventually enters this region, we
conclude that if type 2 captures all but finitely many sites in S+

k (and k is large), then almost
surely type 2 captures all but finitely many sites in the cone below the line `α(0).

In a second step we show that for any α0 > 0, if type 2 occupies all but finitely many vertices
in the α0-cone below the line `α0(0), then the same is true for the (α0 + α)-cone below the line
`α0+α(0), almost surely. Since α0 is arbitrary, this will complete the proof of the lemma. We
repeat the argument above, and let vm denote the point on `α0(0) at distance m from the origin,
write `α0

2α(m) for the semi-infinite line starting at vm with angel 2α to `α0(0), and let ¯̀
α0(m) be

11



`α0(0)

¯̀
α0(m)

α0

`α0
2α(m)

2α

Figure 5: Lines through the point vm.

the line through vm that is orthogonal to `α0(0); see Figure 5. Now, if type 2 occupies all but
finitely many vertices in the α0-cone, then its asymptotic speed in direction α0 is determined by
λ−1µα0 . Hence, if type 2 occupies all but finitely many vertices in the α0-cone, then the event
Hα0
m that type 1 has not yet reached ¯̀

α0(m) when type 2 reaches vm has probability tending to
one as m→∞.

Furthermore, by (6) it again follows that the type 2 time from vm to a point far along the
line `α0

2α(m) is with high probability strictly smaller than the type 1 passage time from ¯̀
α0(m) to

the same point. Again repeating the argument in the proof of Lemma 5, we may show that the
event Gα0,2α

m that the whole line `α0
2α(m) is captured by type 2, when starting from a configuration

where vm is of type 2 and the rest of the sites on or to the left of the line ¯̀
α0(m) is of type 1,

occurs with positive probability. Appealing to the ergodic theorem we again find that, given
that type 2 takes all but finitely many sites in the α0-cone, the event Hα0

m ∩ Gα0,2α
m will occur

for some (large) m, almost surely, and so type 2 will occupy all but finitely many sites in the
(α0 + α)-cone below the line `α0+α(0). Since α0 was arbitrary, this completes the proof.

Proof of only if-direction of Theorem 1. The only if -direction of Theorem 1 is an immediate con-
sequence of Lemmas 6 and 7.

References

[1] Ahlberg, D. (2015): Convergence towards an asymptotic shape in first-passage percolation
on cone-like subgraphs of the integer lattice, J. Theoret. Probab. 28, 198–222.

[2] Auffinger, A., Damron, M. and Hanson, J. (2015): Limiting geodesics for first-passage
percolation on subsets of Z2, Ann. Appl. Probab. 25, 373-405.

[3] Alm, S.E. and Deijfen, M. (2015): First passage percolation on Z2 – a simulation study, J.
Stat. Phys. 161, 657-678.

[4] Blair-Stahn, N. (2012): A geometric perspective on first-passage percolation, Ph.D. Disser-
tation in Mathematics, University of Washington, arXiv:1212.6254.

[5] Deijfen, M. and Häggström, O. (2006): The initial configuration is irrelevant for the pos-
sibility of mutual unbounded growth in the two-type Richardson model, Comb. Probab.
Computing 15, 345-353.

[6] Garet, O. and Marchand, R. (2005): Coexistence in two-type first-passage percolation mod-
els, Ann. Appl. Probab. 15, 298-330.

12



[7] Garet, O. and Marchand, R. (2007): First-passage competition with different speeds: posi-
tive density for both species is impossible, Electron. J. Probab. 13, 2118-2159.

[8] Häggström, O. and Pemantle, R. (1998): First passage percolation and a model for com-
peting spatial growth, J. Appl. Probab. 35, 683-692.

[9] Häggström, O. and Pemantle, R. (2000): Absence of mutual unbounded growth for almost
all parameter values in the two-type Richardson model, Stoch. Proc. Appl. 90, 207-222.

[10] Hoffman, C. (2005): Coexistence for Richardson type competing spatial growth models,
Ann. Appl. Probab. 15, 739-747.

[11] Hoffman, C. (2008): Geodesics in first passage percolation, Ann. Appl. Probab. 18, 1944-
1969.

[12] Kesten, H. (1973): Discussion contribuiton, Ann. Probab. 1, 903.

[13] Kingman, J.F.C. (1968): The ergodic theory of subadditive stochastic processes, J. Roy.
Statist. Soc. Ser. B 30, 499-510.

[14] Liggett, T.M. (1985): An improved subadditive ergodic theorem, Ann. Probab. 13, 1279-
1285.

[15] Richardson, D. (1973): Random growth in a tessellation, Proc. Cambridge. Philos. Soc. 74,
515-528.

[16] Wehr, J. and Woo, J. (1998): Absence of geodesics in first-passage percolation on a half-
plane, Ann. Probab. 26, 358-367.

13


