
Mathematical Statistics

Stockholm University

Statistical Inference for the Beta Coefficient

Taras Bodnar

Arjun K. Gupta

Valdemar Vitlinskyy

Taras Zabolotskyy

Research Report 2019:03

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se



Mathematical Statistics

Stockholm University

Research Report 2019:03,

http://www.math.su.se

Statistical Inference for the Beta Coefficient

April 2019

Taras Bodnara,∗, Arjun K. Guptab, Valdemar Vitlinskyyc and Taras

Zabolotskyyd

a Department of Mathematics, Stockholm University, Roslagsvägen 101, SE-10691 Stockholm, Sweden
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Abstract

The beta coefficient plays a crucial role in finance as a risk measure of a portfolio in

comparison to the benchmark portfolio. In the paper, we investigate statistical properties

of the sample estimator for the beta coefficient. Assuming that both the holding portfolio

and the benchmark portfolio consist of the same assets whose returns are multivariate

normally distributed, we provide the finite-sample and the asymptotic distributions of

the sample estimator for the beta coefficient. These findings are used to derive a sta-

tistical test for the beta coefficient and to construct a confidence interval for the beta

coefficient. Moreover, we show that the sample estimator is an unbiased estimator for the

beta coefficient. The theoretical results are implemented in an empirical study.
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1 Introduction

The method of portfolio selection presented by Markowitz (1952) became very popular through

practitioners and scientists of financial market due to its simplicity and good tractability of the

results. The approach can be presented in two equivalent ways: (i) to maximize the portfolio

expected return under the condition that its variance is equal to a predefined level or (ii)

to minimize the portfolio variance under the condition that its expected return is equal to a

predefined level. The solutions of these two optimization problems constitute a set of mean-

variance optimal portfolios which is a parabola in the mean-variance space and is known as the

efficient frontier (see, e.g., Merton (1972), Bodnar and Schmid (2009), Bauder et al. (2019)).

Several optimal portfolios obtained as solutions of other optimization problems also belong to

the efficient frontier, like the global minimum variance portfolio (Frahm and Memmel (2010),

Bodnar et al. (2018)), the minimum value-at-risk (VaR) and the minimum conditional value-

at-risk (CVaR) optimal portfolios (see, e.g., Alexander and Baptista (2002), Alexander and

Baptista (2004), Bodnar et al. (2012)), the maximum Sharpe ratio portfolio (Sharpe (1994),

Schmid and Zabolotskyy (2008)).

Another important direction of research in portfolio theory is devoted to the explanation

of the dynamics in the stochastic behaviour of the asset returns with the capital asset pricing

model (CAMP) playing a crucial role. The CAPM model was suggested in the seminal papers

of Sharpe (1964), Lintner (1965), Mossin (1966) where the asset returns are assumed to follow

a one-factor model with the return of the market portfolio being the factor. Berk (1997) proved

that one of the necessary conditions for the CAPM is the assumption that the asset returns

follow an elliptical distribution, while Zhou (1993) extended findings of Gibbons et al. (1989)

by applying their test of the validity of the CAPM to elliptically distributed returns. A further

test on the validity of this model was suggested by Hodgson et al. (2002).

The beta coefficient determines the relation between the asset return or the return of the

holding portfolio to the return of the market portfolio and plays the central role in the theory of

the CAPM. In order to calculate the beta coefficient for an individual asset, a linear regression

of the asset return against the market portfolio return should be fitted. In contrast, the portfolio

beta can be computed in one of the following two methods (see, e.g., Damodaran (2012, p.120)):

The beta of the portfolio is determined by either taking the weighted average of the beta

coefficients calculated for each asset included into the portfolio or by regressing the portfolio

return against the return of the market portfolio. Alexander (2001, p.231) pointed out that these

two methods are equivalent by using ordinary least square (OLS) estimator for the parameters

of the linear regression model.

It appears that the portfolio beta is fully determined by the covariance matrix of the asset
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returns which is an unobservable quantity in practice. As a result, it is estimated by using

the historical data of the asset returns. Due to the randomness in the behaviour of the asset

returns, the estimated covariance matrix appears to be random and, consequently, the estimated

portfolio beta is random as well. We contribute in this paper by deriving the exact finite-

sample distribution of the portfolio beta. We show that the estimated beta coefficient follows

a t-distribution. This finding allows us to quantify the estimation error presented in the beta

coefficient in practice as well as to derive a statistical test for the portfolio beta.

The rest of the paper is organized as follows. In the next section, the theoretical findings of

the paper are presented. Here, we derive both the finite-sample and the asymptotic distributions

of the estimated portfolio beta as well as provide its interval estimation. These finding are

applied to real data based on the returns of 30 stocks included into the DAX index in Section

3. Section 4 discusses the robustness of the obtained results to the violation of the normality

assumption used in the derivation of the theoretical findings.

2 Estimated beta coefficient and its distributional prop-

erties

Let the weights of investor portfolio be given by w = (w1, w2, ..., wk)
′ and let wb = (w1b, w2b, ..., wkb)

′

be the weights of the benchmark (market) portfolio. The vector of asset returns at time point

t we denote by Xt = (X1t, X2t, ..., Xkt)
′. Following the CAPM, the beta coefficient is given by

βt =
Cov(Rwt, Rwbt)

Var(Rwbt)
, (1)

where

Rwbt =
k∑
i=1

wibXit = w′bXt

stands for the return of the benchmark portfolio at time point t and

Rwt =
k∑
i=1

wiXit = w′Xt

denotes the return of the investor portfolio with the weights w at time point t.

We assume that the vector of asset returns Xt follows weakly stationary process and denote

by µ = E(Xt) and Var(Xt) = Σ its mean vector and covariance matrix, respectively. Then (1)

can be rewritten by

βt =
Cov(w′bXt,w

′Xt)

Var(w′bXt)
=

w′bΣw

w′bΣwb

= β, (2)

which appears to be independent of t.
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Although (2) provides a simple way how to compute the beta coefficient of the portfolio

with weights w in practice, unfortunately this formula cannot be directly applied in practice

since the parameters of the asset returns distribution involved in (2), namely µ and Σ, are

unknown quantities and have to be estimated by using the historical data of the asset returns.

Given the sample X1, ...,Xn, their estimators become

µ̂ =
1

n

n∑
j=1

Xj and Σ̂ =
1

n− 1

n∑
j=1

(Xj − µ̂)(Xj − µ̂)′ , (3)

which are the sample counterparts of the corresponding population values.

Substituting µ̂ and Σ̂ from (3) in (2), the sample estimator for the β-coefficient is obtained

and it is expressed as

β̂ =
w′bΣ̂w

w′bΣ̂wb

. (4)

2.1 Sample distribution of the estimated beta coefficient

Since X1, ...,Xn are random, we also obtain that the estimator of the beta coefficient is a

random quantity whose computed value based on historical realizations of the asset returns can

considerably deviate from the population value as given in (2). In order to quantify the possible

differences between β and β̂, we derive the exact finite-sample distribution of β in Theorem 1

under the assumption that the asset returns are multivariate normally distributed.

Theorem 1. Let X1, . . . ,Xn be independent and identically distributed random vectors with

X1 ∼ Nk(µ,Σ) and n > k. Then it holds that

√
n− 1

√
w′bΣwb√

w′Σw − (w′Σwb)2/w′bΣwb

(β̂ − β) ∼ tn−1 .

Proof of Theorem 1: Let M = (w,wb)
′ denote 2× k matrix. Since (n− 1)Σ̂ ∼ Wk(n− 1,Σ),

then the application of Theorem 3.2.5 in Muirhead (1982) implies that

(n− 1)MΣ̂M′ =

 w′Σ̂w w′Σ̂wb

w′bΣ̂w w′bΣ̂wb

 ∼ W2(n− 1,MΣM′) . (5)

From (5) and Theorem 3.2.10 of Muirhead (1982) we get

(n− 1)w′bΣ̂wb ∼ W1(n− 1,wbΣw′b) (6)

and

(n−1)w′Σ̂wb|(n−1)w′bΣ̂wb ∼ N
(

w′Σwb

w′bΣwb

(n−1)w′bΣ̂wb;
(
w′Σw− (w′Σwb)

2

w′bΣwb

)
(n−1)w′bΣ̂wb

)
.

(7)
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In using

β =
w′Σwb

w′bΣwb

and β̂ =
w′Σ̂wb

w′bΣ̂wb

,

we get

β̂|(n− 1)w′bΣ̂wb ∼ N
(
β,

1

(n− 1)w′bΣ̂wb

A
)
.

with

A = w′Σw − (w′Σwb)
2

w′bΣwb

.

Let

σ2
b = w′bΣwb.

Then,

fβ̂(x) =

∞∫
0

f
β̂|(n−1)w′

b

ˆΣwb
(x|y)f

(n−1)w′
b

ˆΣwb
(y)dy

=

∞∫
0

1√
2πA

√
ye−

(x−β)2
2A

y 1

2(n−1)/2Γ((n− 1)/2)σn−1b

e−
1
2
σ−2
b
yy(n−3)/2dy

=
1

2n/2
√
π
√
AΓ((n− 1)/2)σn−1b

∞∫
0

yn/2−1e
− 1

2

(
(x−β)2
A

+ 1

σ2
b

)
y

dy.

The application of the equality

Γ(n/2) =
(

1

2

(
(x− β)2

A
+

1

σ2
b

))n/2∞∫
0

yn/2−1e
− 1

2

(
(x−β)2
A

+ 1

σ2
b

)
y

dy

implies

fβ̂(x) =
Γ(n/2)

2n/2
√
π
√
AΓ((n− 1)/2)σn−1b

(
1

2

(
(x− β)2

A
+

1

σ2
b

))−n/2
=

Γ(n/2)

Γ((n− 1)/2)

1
√
π
√
A

1

2n/2σn−1b

2n/2σnb

(
(x− β)2σ2

b

A
+ 1

)−n/2
=

Γ(n/2)

Γ((n− 1)/2)

1√
π

σb√
A

(
(x− β)2σ2

b

A
+ 1

)−n/2
=

Γ(n/2)

Γ((n− 1)/2)

1√
π(n− 1)

σb
√
n− 1√
A

(
1

n− 1
(x− β)2

σ2
b (n− 1)

A
+ 1

)−n/2
.

which is the density of the univariate t-distribution with (n − 1) degrees of freedom, location

parameter β, and scale parameter A
σ2
b
(n−1) .

The results of Theorem 1 possess several important application. First of all, it provides the

exact finite-sample distribution of the estimated beta coefficient. In particular, it shows that
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the β̂ has a shifted and scaled univariate t-distribution which is one of the most widely used

distributions in practice. The application of the properties leads to the observation that

E
(
β̂
)

= β, (8)

that is the sample estimator β̂ is an unbiased estimator of β. Second, it allows to quantify the

uncertainty of the estimated beta. For n > max{3, k} it holds that

Var
(
β̂
)

=
n− 1

n− 3

w′Σw − (w′Σwb)
2

w′
b
Σwb

(n− 1)w′bΣwb

=
1

n− 3

(
σ2

σ2
b

− β2

)
, (9)

where

σ2 = w′Σw and σ2
b = w′bΣwb.

Moreover, (8) and (9) imply that β̂ is a consistent estimator for β.

Finally, since the univariate t-distribution tends to the standard normal distribution when

its degrees of freedom tend to infinity, we also get as a direct consequence of Theorem 1 that

√
n

β̂ − β√
σ2/σ2

b − β2

d→ N (0, 1), (10)

where the symbol
d→ denotes the convergence in distribution.

2.2 Interval estimation and test theory

The results of Theorem 1 provides the finite-sample distribution of β̂ which depends on the

unknown quantities β, σ2 and σ2
b . Although this finding together with asymptotic result (10)

is very useful to assess both the finite-sample and the asymptotic properties of the suggested

estimator β̂ of β, they do not provide the complete information needed to construct a confidence

interval, an interval estimation of β, or to develop a test theory. A further research in this topic

is needed and will be discussed in the current section.

From the view point of asymptotic statistics, a consistent estimator of σ2/σ2
b − β2 would

provide us a possibility to obtain an asymptotic confidence interval for β which can be used

when the sample size is relatively large. The situation is more complicated when an exact

finite-sample confidence interval should be derived. As a starting point of the derivation we

use the duality between the test theory and the interval estimation by considering a test on the

beta coefficient (see, e.g., Aitchison (1964)). Namely, we test the hypotheses

H0 : β = β0 against H1 : β 6= β0 (11)

for some target value β0.
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Let

σ̂2 = w′Σ̂w and σ̂2
b = w′bΣ̂wb.

The results of Theorem 1 motivates the application of the following test statistic

T =
√
n− 2

β̂ − β0√
σ̂2/σ̂2

b − β̂2
=
√
n− 2

√
w′bΣ̂wb√

w′Σ̂w − (w′Σ̂wb)2/w′bΣ̂wb

(β̂ − β0) (12)

The finite-sample null distribution of T is derived in Theorem 2.

Theorem 2. Let X1, . . . ,Xn be independent and identically distributed random vectors with

X1 ∼ Nk(µ,Σ) and n > k. Then it holds that

T ∼ tn−2 .

under the null hypothesis in (11).

Proof of Theorem 2: We define

σ2
b = w′bΣwb and A = w′Σw − (w′Σwb)

2

w′bΣwb

.

and their corresponding sample estimators by

σ̂2
b = w′bΣ̂wb and Â = w′Σ̂w − (w′Σ̂wb)

2

w′bΣ̂wb

.

The application of Theorem 3.2.10 in Muirhead (1982) leads to

(n− 1)Â ∼ W1(n− 2, A) =⇒ (n− 1)Â

A
∼ χ2

n−2,

which is independent of β̂ and σ̂2
b .

From the proof of Theorem 1 we get

β̂|(n− 1)σ̂2
b ∼ N

(
β0,

1

(n− 1)σ̂2
b

A
)
.

and, hence,

(β̂ − β0)σ̂b|(n− 1)σ̂2
b ∼ N

(
0,

1

(n− 1)
A
)
.

Consequently, it holds that

(β̂ − β0)σ̂b ∼ N
(

0,
1

(n− 1)
A
)
.

Since Â is independent of β̂ and σ̂2
b , it is also independent of (β̂ − β)σ̂b and, as a result, we

obtain
(β̂ − β0)σ̂b

√
n− 1/

√
A√

(n− 1)Â/
√
A(n− 2)

=
√
n− 2

σ̂b(β̂ − β0)√
Â

∼ tn−2

which completes the proof of the theorem.
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The application of Theorem 2 leads to the expression of the two-sided (1 − γ) confidence

interval for the beta coefficient β of the portfolio with weights w expressed as

CI1−γ(β) =
[
β̂−t1−γ/2,n−2

√
w′Σ̂w − (w′Σ̂wb)2/w′bΣ̂wb

√
n− 2

√
w′bΣ̂wb

, β̂+t1−γ/2,n−2

√
w′Σ̂w − (w′Σ̂wb)2/w′bΣ̂wb

√
n− 2

√
w′bΣ̂wb

]
,

where t1−γ/2,n−2 stands for the (1 − γ/2) quantile of the t-distribution with n − 2 degrees of

freedom. Similarly, we obtain the one-sided confidence intervals. The lower one-sided (1 − γ)

confidence interval is given by

CI1−γ(β) =
(
−∞, β̂ + t1−γ,n−2

√
w′Σ̂w − (w′Σ̂wb)2/w′bΣ̂wb

√
n− 2

√
w′bΣ̂wb

]
,

while the upper one-sided (1− γ) confidence interval is the following one

CI1−γ(β) =
[
β̂ − t1−γ,n−2

√
w′Σ̂w − (w′Σ̂wb)2/w′bΣ̂wb

√
n− 2

√
w′bΣ̂wb

,+∞
)
.

Moreover, since the univariate t-distribution converges to the standard normal distribution

as the degrees of freedom tend to infinity, we can also use the asymptotic confidence interval

for β. For example, the two-sided asymptotic (1− γ) confidence interval is given by

CI1−γ(β) =
[
β̂−z1−γ/2

√
w′Σ̂w − (w′Σ̂wb)2/w′bΣ̂wb

√
n− 2

√
w′bΣ̂wb

, β̂+z1−γ/2

√
w′Σ̂w − (w′Σ̂wb)2/w′bΣ̂wb

√
n− 2

√
w′bΣ̂wb

]
,

where z1−γ/2 denotes the (1− γ/2) quantile of the standard normal distribution.

Finally, we present the distribution of T under the alternative hypothesis in (11) in Theorem

3.

Theorem 3. Let X1, . . . ,Xn be independent and identically distributed random vectors with

X1 ∼ Nk(µ,Σ) and n > k. Then the density of T under the alternative hypothesis is given by

fT (x) =

∞∫
0

ftn−2(δ
√
y)(x)fχ2

n−1
(y)dy

with

δ =
(β − β0)√
σ2/σ2

b − β2

where fχ2
n−1

(.) denotes the density function of the χ2-distribution with (n−1) degrees of freedom

and f
tn−2(δ

√
(y))

(.) stands for the density of the non-central t-distribution with (n − 2) degrees

of freedom and non-centrality parameter δ
√
y.
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Proof of Theorem 3: Following the proof of Theorem 2 we get

(n− 1)Â ∼ W1(n− 2, A) =⇒ (n− 1)Â

A
∼ χ2

n−2,

and
√
n− 1

(β̂ − β0)σ̂b√
A

|(n− 1)σ̂2
b ∼ N

(
(β − β0)σb√

A
ξ, 1

)
.

where

ξ2 =
(n− 1)σ̂2

b

σ2
b

∼ χ2
n−1

and Â is independent of β̂ and ξ2.

Since ξ2 depends only on σ̂2
b , we get that the conditional distribution of T given σ̂2

b coincides

with the conditional distribution of T given ξ2 and it is given by

T |ξ2 ∼ tn−2(δξ) with δ =
(β − β0)σb√

A
.

Hence, the unconditional density of T is expressed as

fT (x) =

∞∫
0

ftn−2(δ
√
y)(x)fχ2

n−1
(y)dy

where fχ2
n−1

(.) denotes the density function of the χ2-distribution with (n−1) degrees of freedom

and f
tn−2(δ

√
(y))

(.) stands for the density of the non-central t-distribution with (n− 2) degrees

of freedom and non-centrality parameter δ
√
y.

The results of Theorem 3 simplify considerably the study of the power of the suggested

test for the beta coefficient. In particular, these findings lead to the expression of the power

function expressed as

G(δ) = P (|T | > t1−γ/2,n−2) = 1−
t1−γ/2,n−2∫
−t1−γ/2,n−2

( ∞∫
0

ftn−2(δ
√
y)(x)fχ2

n−1
(y)dy

)
dx

= 1−
∞∫
0

(
Ftn−2(δ

√
y)

(
t1−γ/2,n−2

)
− Ftn−2(δ

√
y)

(
−t1−γ/2,n−2

))
fχ2

n−1
(y)dy

= 1−
∞∫
0

(
2Ftn−2(δ

√
y)

(
t1−γ/2,n−2

)
− 1

)
fχ2

n−1
(y)dy

= 2

1−
∞∫
0

Ftn−2(δ
√
y)

(
t1−γ/2,n−2

)
fχ2

n−1
(y)dy

 ,
where the third line follows from the symmetry of the t-distribution (see, e.g., Gupta et al.

(2013)) and the symbol Ftn−2(δ
√
y)(.) denotes the cumulative distribution function of the non-

central t-distribution with (n−2) degrees of freedom and non-centrality parameter δ
√
y. More-

over, it appears that the power function depends on Σ only through δ. As a result, it allows

to assess the power function as a function of δ only for a given value of n.
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Figure 1: Power function for n ∈ {60, 120, 250, 500} and γ = 0.05.

In Figure 1 we plot the power of the suggested test as a function of δ for n ∈ {60, 120, 250, 500}.
We observe that even for a small sample size, like n = 60, the test is able to reject the null

hypothesis already for small deviations from the target value β0. For instance, the power of

the test is larger than 60% when δ is around 0.3 only and it is approximately equal to 1 if

δ = 0.6. Furthermore, the power of the test increases as the sample size becomes larger. For

instance, the power is around 1 already for δ close to 0.3 when n = 250 and for δ around 0.2

when n = 500.

3 Empirical illustration

In this section we implement the theoretical findings of Section 2 to real data based on the daily

returns on the assets included into the DAX index for the period from 01.01.2018 to 31.12.2018

(251 observations). As a benchmark portfolio wb, the DAX index is chosen whose weights are

provided on the official website of the German capital market, namely on www.boerse.de. As

a target portfolio for which we aim to infer the beta coefficient we take the equally-weighted

portfolio of six dimensions, namely k ∈ {5, 10, 15, 20, 25, 30}, which consists of the correspond-

ing first k assets included into the DAX index in the alphabetical order. Using the running

window with length equal to n = 100, we construct confidence intervals for six considered

equally-weighted portfolios at significance level 1 − γ ∈ {90 %, 95 %, 99 %} and plot them in
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Figure 2.
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Figure 2: Sample estimators and confidence intervals for the beta coefficient of the equally-

weighted portfolio constructed for the first k = 5 (top left), k = 10 (top right), k = 15 (middle

left), k = 20 (middle right), k = 25 (bottom left), k = 30 (bottom right) assets included into

the DAX index in the alphabetical order.

In Figure 2 we observe that the beta coefficient of the equally-weighted portfolios does not

deviate considerably from one for almost all of the considered dimensions. The smallest values of
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the beta coefficient are present in the case of the k = 5 dimensional equally-weighted portfolio,

especially at the end of 2018 where the estimated beta coefficient drops to 0.85. In contrast, the

beta coefficient is almost always larger than one for the k = 10 dimensional portfolio. When

the portfolio dimension increases, then the beta coefficient becomes less volatile in time. For

instance, almost all values of β̂ belong to the interval [0.96, 1] when k = 30. Finally, the beta

coefficients of the equally-weighted portfolios drop at the second part of October 2018 which is

in-line with the opinion that October, 2018 was the worst month in more than six years (since

May 2012) for global capital markets since the global financial crisis in 2008. Some events,

like disappointing earnings from big tech companies and a budget row between Italy and the

European Union, seem to have a large influence on the overall performance of the German

capital market.

Finally, confidence intervals constructed for the beta coefficients of the considered equally-

weighted portfolios cover one in almost all of the considered cases with the exception present

during several weeks in October, 2018 – December, 2018 for the k = 5, for the k = 25, and

for the k = 30 dimensional equally-weighted portfolio. At the end of 2018 the estimated beta

coefficients increase and only the confidence intervals constructed for the 5-dimensional portfolio

do not include the value of one.

4 Robustness to the violation of the normality assump-

tion

The theoretical findings of Section 3 were obtained under the assumption that the asset returns

are normally distributed. In this section we investigate how crucial is the assumption of nor-

mality on the performance of the beta estimator and on the distributional properties of the test

statistic T introduced in Section 3.2. The results are obtained via Monte Carlo study by draw-

ing random sample of size n from the k-dimensional multivariate t-distribution with d ∈ {5, 10}
degrees of freedom. Several values of k and n are considered, namely, k ∈ {5, 10, 15, 20, 25, 30}
and n ∈ {60, 120, 250, 500, 1000, 2000}. For each possible choice of (k, n) we draw a sample

from the t-distribution with 5 and 10 degrees of freedom, with the location vector and covari-

ance matrix equal to the sample mean vector and to the sample covariance matrix computed

from the daily returns on the assets included into the DAX index for the period from 01.01.2018

to 31.12.2018 (251 observation). From the simulated data the standardized realization of the

estimated beta coefficient is computed as well as the value of the test statistic T provided in

Section 3.2. Finally, the whole procedure is repeated B = 50000 times for each possible value of

d, k and n. The resulting samples of the standardized estimators of the beta coefficient and of
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Figure 3: Kernel density estimators for n ∈ {60, 120, 250, 500, 1000, 2000} and the asymptotic

density of the standardized estimator for the beta coefficient in the case of the k = 5 (top left),

k = 10 (top right), k = 15 (middle left), k = 20 (middle right), k = 25 (bottom left), k = 30

(bottom right) dimensional equally-weighted portfolio. The asset returns are drawn from the

multivariate t-distribution with 5 degrees of freedom.

the values of the test statistic T are used to estimate their sampling distribution by employing

the kernel density estimator with Epanechnikov kernel.
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Figure 4: Kernel density estimators for n ∈ {60, 120} and the asymptotic density of the

standardized estimator for the beta coefficient in the case of the k = 5 (top left), k = 10 (top

right), k = 15 (middle left), k = 20 (middle right), k = 25 (bottom left), k = 30 (bottom right)

dimensional equally-weighted portfolio. The asset returns are drawn from the multivariate

t-distribution with 10 degrees of freedom.

In Figures 3 and 4 the results are shown for the t-distribution with 5 and 10 degrees of

freedom. In both figures we present the kernel density estimators and the asymptotic density
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of the standardized estimator for the beta coefficient given by

√
n− 1

β̂ − β√
σ2/σ2

b − β2

d→ N (0, 1),

with

σ2 = w′Σw and σ2
b = w′bΣwb.

and note that similar results are also present for the values of the test statistic T . The plots in

the case of T are not included in the paper and are available from the corresponding author on

request. Independently of the sample size, the kernel densities of the standardized estimator for

the beta coefficient are roughly symmetric around zero. Small departures from the asymptotic

distribution, which is the standard normal distribution, are present in the case of kernel densities

computed when the sample size is relatively small and asset returns are generated from the t-

distribution with 5 degrees of freedom. If data are generated from the t-distribution with 10

degrees of freedom, then the convergence of the kernel densities are already observed for a small

sample size equal to 120 and for that reason the kernel densities computed for large sample size

are not present in Figure 4.
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