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Abstract

We extend previous results on reverse stress testing under elliptical models to the

broader class of skew-elliptical models. In particular, under the assumption of a linear

Profit and Loss function, we are concerned with finding the most likely scenarios given

that the loss exceeds a given threshold. In the elliptical case, an explicit formula for the

solution is provided. In the skew-elliptical case, we characterize the solution in terms of an

easy-to-implement numerical optimization problem. As a specific example, we investigate

the class of skew-normal models in some detail.
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1 Introduction

Recently the Basel Committee on Banking Supervision has recognized the importance of in-

cluding extreme scenarios as part of an overall stress testing programme:

A stress testing programme should also determine what scenarios could challenge

the viability of the bank (for example by reverse stress testing) and thereby uncover

hidden risks and interactions among risks. (cf. [1, p. 18 ff.])

Thus one of the methods relevant to stress testing is the scenario analysis. The utilized

“[s]cenarios usually involve some kind of coherent, logical narrative or ‘story’ as to why certain

events and circumstances can occur and in which combination and order” [2, p. 9]. Stress

scenarios should reflect an “organizations unique vulnerabilities to factors that affect its ex-

posures, activities, and risks” [2, p. 9]. This however means that an analyst has to select

plausible scenarios based on knowledge about the organization which will invariably introduce

a bias. Furthermore plausibility is a constraint that, based on historical data, can exclude

certain “break the bank” scenarios that can occur during extreme events like the financial crisis

of 2008. One of the main goals of reverse stress testing is to overcome this limitation by “as-

sum[ing] a known adverse outcome ... and then deduc[ing] the types of events that could lead

to such an outcome” [2, p. 9]. To that end the question of what happens to a given collection

of assets (the portfolio under investigation), if a market factor changes in a certain way, is

reversed by asking instead what could cause a certain portfolio event (e.g. a loss exceeding a

certain threshold, cf. [3]). Reverse stress testing is usually based on the density of the Profit

and Loss (P&L) distribution, which has to be estimated for real-world portfolios. Addressing

the arising confounding issue requires “that the distribution that serves as the foundation for

reverse stress tests is consistent with stylized facts of actual tail behavior” [3]. As a matter of

fact, many loss distributions are highly skewed (cf. [4, p. 44]) and thus normality can certainly

not be assumed. The high skewness furthermore means, that even the family of elliptical dis-

tributions is not rich enough. Therefore the normality assumption of [3] as well as the more

general assumption of ellipticity of [5] are not always practical. Therefore we explore some

aspects of the representation of the solution given in [5, Proposition 1] and give conditions

for global optimality. We then extend our results to the more general class of skew-elliptical

distributions.

The rest of the material is structured as follows. In Section 2, we introduce basic notation

and assumptions. Section 3 contains our main results. The specific case of skew-normal models

is investigated in Section 4, and we conclude with a discussion in Section 5.
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2 Preliminaries

2.1 The Profit and Loss function

To formalize the notion of the “distribution of the return” consider the case of a portfolio whose

value linearly depends on the change of value in the individual assets (cf. [4, p. 4]):

Definition 1 (P&L function). Let (Ω,A,P) with P : A → [0, 1] be a probability space where

A is a σ−algebra over Ω and P is a probability measure. Consider an A-measurable random

variable X : Ω→ (Rn,B(Rn)) defined on (Ω,A,P). If

• Xi denotes the change in value of i-th asset of the portfolio over a given holding period

• the change in the value of the portfolio is linear in X and the dependency is given by the

(non-stochastic) portfolio weights c ∈ Rn, c 6= 0,

then the P&L function is given by

v(ω) = cTX(ω) =
n∑
i=1

ciX(ω)i, (1)

and it is a random variable v : Ω→ R on (Ω,A,P).

In the following it will be assumed that the P&L function is of the form (1). Obviously

a more general, non-linear dependence could be considered. However for analytical and / or

numerical tractability a restriction to the linear or quadratic case is often necessary (see e.g.

[6]).

Remark 1. Definition 1 is closely related to [6, Definition 1.3]: Note that the ωi in [6, Defi-

nition 1.3] are related to the Xi in Definition 1 by ωi = Xi − E [Xi]. Consider the special case

where u in [6, Definition 1.3] is a linear and homogenous function (i.e. u(ω) = cTω for some

c ∈ Rn):

u
(
ψ + ω

)
− u

(
ψ
)

= u (ω) = cTX − cTE [X]

The remaining difference stems mostly from the fact, that [6] considers “market rates” whereas

Definition 1 considers the change in value of the assets. Which treatment is more appropriate

depends on the use case. For the mathematical treatment one can simply replace X by X−E[X]

and vice versa.
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2.2 The family of (skew-)elliptical distributions

This section aims to give a short introduction to the family of skew-elliptical distributions as

well as relevant special properties. This exhibition closely follows [7, Chapter 6].

Definition 2 (Elliptical Distribution). Let g : R+ → R+ where R+ := {r ∈ R |r ≥ 0} and let

kn :=
∫ ∞

0
rn−1g

(
r2
)

dr

If kn <∞ then g is called a density generator and

f (x;µ,Σ) :=
Γ
(
n
2

)
2kn

√
πn det (Σ)

g
(
(x− µ)TΣ−1(x− µ)

)
is the density of an elliptical distribution ECn (µ,Σ, g) where µ ∈ Rn and Σ ∈ Rn×n is a positive

definite symmetric matrix.

It is interesting to note that Σ is (in general) not the covariance matrix. It is however always

a scalar multiple of it:

Corollary 1 (to [8, Theorem 2.17]). If X is elliptically distributed according to the preceding

definition and possesses second moments, then the covariance matrix of X is a real multiple of

Σ, i.e. there exists κ > 0 such that Cov (X) = κΣ (cf. [8, Theorem 2.17]).

The generators for common elliptical probability distributions are (see e.g. [9, p. 62 ff.]):

Normal distribution g(u) := exp
(
−u

2

)
Student-t distribution g(u) :=

(
1 + u

cp

)−p
for cp ∈ R, p > 1

2

Logistic Distribution g(u) := e−u

(1+e−u)2

Exponential distribution g(u) := exp (−rus) for r, s > 0

Since it is of great importance for the following section we note that the following holds:

Lemma 1. For the Normal, Student-t, Logistic and Exponential distribution the generator is

strictly decreasing on R+.

The family of elliptical distributions can be extended to allow for skewness by multiplying

elliptical densities with a scaling function (cf. [7, Equation (6.11)]):

Definition 3 (Skew-elliptical distribution). Let f̃ be the density of an elliptical distribution

(cf. Definition 2) and let F be the cumulative distribution function of a univariate elliptical

distribution. Then

f(x;µ,Σ, λ) := 2 · f̃(x;µ,Σ) · F
(
λT (x− µ)

)
is the density of a skew-elliptical distribution.
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3 Reverse Stress Testing in (Skew-)Elliptical Models

Assume that the density of the n-dimensional random vector X is given by f , which is the

density of an elliptical distribution (see Definition 2), and that X is supported on whole Rn.

Consider the P&L function (see Definition 1) given by cTX, where large positive values represent

large losses. For a given loss threshold the goal of a reverse stress test is then, following [5], to

find the most likely loss scenarios x∗(`) given that the loss exceeds `2

x∗(`) = arg max
x∈Rn

f
(
x
∣∣∣cTX ≥ `

)
The first result derived by [5] is that there is a connection to the conditional expectation (which

can be estimated using the empirical likelihood method):

Theorem 1 ([5, Proposition 1]). Assuming appropriate tail behaviour there exists a sequence

{κ`}` (which depends on the tail behaviour) such that κ` → κ ∈ R as `→∞ and

x∗(`) = κ` · E
[
X|cTX ≥ `

]
. (2)

Since the conditional expectation depends on the tail behaviour and so does κ`, the solution

given by (2) could depend on the tail behaviour of the distribution of X. It is therefore

interesting to derive an explicit equation for x∗(`) to gain more insight into its properties. To

this end note that for any (Lebesgue-)measurable A it holds that∫
A
f
(
x
∣∣∣cTX ≥ `

)
dx = P

(
X ∈ A

∣∣∣cTX ≥ `
)

=
P
(
X ∈ A ∩ cTX ≥ `

)
P (cTX ≥ `)

=
1

P (cTX ≥ `)
·
∫
A∩B

f(x) dx

where B :=
{
x ∈ Rn

∣∣∣cTx ≥ `
}

. Hence, it follows that

f
(
x
∣∣∣cTX ≥ `

)
=

1

P (cTX ≥ `)


0 if cTx < `

f(x) otherwise

i.e. the conditional density is zero on the complement of B and proportional to f on B. Thus

finding the maximizer of the conditional density is equivalent to finding a maximizer of the

unconditional density over B. The following theorem shows that the reverse stress testing

problem has a global optimum and gives an explicit expression in terms of the parameters of

the density:

2Note that in the notation of [5] Xn = L is the loss and therefore ci = δi,n = 1{i = n}.
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Theorem 2. A global optimum of the constrained optimization problem

maximize
x

f(x)

subject to cTx ≥ `,
(3)

where f(x) = g
(
(x− µ)TΣ−1(x− µ)

)
is an elliptical density with a decreasing function g is

given by

x∗(`) :=


µ if ` ≤ cTµ,

µ+ (`− cTµ) Σc
cTΣc

otherwise.
(4)

Proof of Theorem 2. Define a = x− µ. Then (3) can be written by

arg max
a

g
(
aTΣ−1a

)
subject to cTa ≥ `− cTµ

(5)

Let

Ωv = {a : cTa = v} for v ∈ [`− cTµ,∞).

Since g is a decreasing function, the solution of (5) is obtained by the following optimization

problem:

min
v≥`−cTµ

min
a∈Ωv

aTΣ−1a

If ` ≤ cTµ, then v = 0 is admissible which implies 0 = a ∈ Ω0 is admissible and therefore

the minimum of aTΣ−1a is attained at a = 0 independently of v and consequently x∗(`) = µ

is the only solution of (3). Otherwise, using that finding the minimum of aTΣ−1a over Ωv is a

quadratic optimization problem under a single linear equality constraint we straightforwardly

get its solution as

av = v
Σc

cTΣc

or

x∗(`) = µ+ v
Σc

cTΣc
(6)

and

min
a∈Ωv

aTΣ−1a =
v2

cTΣc

Hence,

min
v≥`−cTµ

min
a∈Ωv

aTΣ−1a = min
v≥`−cTµ

v2

cTΣc
=

(`− cTµ)2

cTΣc

for v = `− cTµ which together with (6) leads to the statement of the theorem.
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Equation (4) shows that, for fixed `, the solution does not depend on (the tail behaviour of

the generator) g, but only on the parameters of the (elliptical) distribution of X. In practically

relevant applications, the latter parameters will typically not be known. Therefore, the following

remark is insightful.

Remark 2. The solution

x∗(`,Σ) := µ+

(
`− cTµ
cTΣc

)
Σc

does not depend on the scaling of Σ, i.e. for α ∈ R+, α 6= 0 it holds that

x∗(`, αΣ) = µ+

(
`− cTµ
cTαΣc

)
αΣc

= µ+

(
`− cTµ
cTΣc

)
Σc = x∗(`,Σ).

Therefore, assuming existence of second moments of X, the dispersion matrix Σ can be replaced

by the covariance matrix Cov (X). The latter matrix can be estimated from data by standard

techniques.

3.1 Reverse Stress Testing in Skew-Elliptical Models

Next, we derive the solution of (3) in the case of a skew-elliptical model. We start with two

lemmas needed to prove the main result of this section.

Lemma 2. Let f be the density of a skew-elliptical distribution (in Rn for n ≥ 2), i.e.

f(x;µ,Σ, λ) = 2 · f̃(x;µ,Σ) · F
(
λT (x− µ)

)
(7)

where f̃ is the density of an elliptical distribution and F is a cumulative distribution function

of a univariate distribution. Let M be a non-singular matrix. If X is a random vector with

density given by (7), then the density of Y := M(X − µ) is given by

f(y;µ,Σ, λ) = 2 · f̃(y; 0,MΣMT ) · F
(
λTM−1y

)
,

that is Y , is also skew-elliptically distributed with parameters 0, MΣMT , and (M−1)Tλ.

Proof. The statement of lemma follows directly from the application of the change-of-variables

formula which is applied first to the density f(x;µ,Σ, λ) and then to f̃(x;µ,Σ).

Lemma 3. Write X = (X1, X
T
2 )T , where X1 takes values in R. Write analogously x =

(x1, x
T
2 )T for a realization of X. Assume that the density of X is given by

f(x; 0,Ω, λ) = 2 · f̃(x; 0,Ω) · F (x1)
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where f̃ is the density of an elliptical distribution with density generator g̃ and F is a cumulative

distribution function of a univariate distribution. Then, conditionally on X1, X2 is elliptically

contoured distributed with location parameter Ω21
x1
ω11

, dispersion matrix Ω22−Ω21Ω12

ω11
, and density

generator given by

ğ(·|x1) ∝ g̃(ω−1
11 x

2
1 + ·),

where ğ(·|x1) is a decreasing function as soon as g̃ is decreasing.

Proof. Let Ω and B = Ω−1 be partitioned as

Ω =

 ω11 Ω12

Ω21 Ω22

 and B =

 b11 B12

B21 B22

 , (8)

where B12 = BT
21 and b11 > 0. Moreover, using the formula for the inverse of the partitioned

matrix we get

B22 =
(

Ω22 −
Ω21Ω12

ω11

)−1

, B−1
22 B21 = −Ω21

ω11

, b11 −B12B
−1
22 B21 = ω−1

11 .

Then, the application of

xTΩ−1x = xTBx = b11x
2
1 + 2BT

21x2x1 + xT2B22x2

= (x2 +B−1
22 B21x1)TB22(x2 +B−1

22 B21x1) + (b11 −B12B
−1
22 B21)x2

1

= ω−1
11 x

2
1 + (x2 − ω−1

11 Ω21x1)T
(

Ω22 −
Ω21Ω12

ω11

)−1

(x2 − ω−1
11 Ω21x1)

leads to

f̃(x1, x2; 0,Ω, λ) =
Γ
(
n
2

)
kn
√
πn det (Ω)

F (x1)

× g̃

(
ω−1

11 x
2
1 + (x2 − ω−1

11 Ω21x1)T
(

Ω22 −
Ω21Ω12

ω11

)−1

(x2 − ω−1
11 Ω21x1)

)

from which the conditional distribution of X2 given X1 follows as provided in the statement of

the lemma.

In the following we assume that λ 6= 0, since otherwise the results of Theorem 2 can be

applied. Let λ =
(
λ1, λ

T
2

)T
with λ1 6= 0 which can be assumed without loss of generality, since

otherwise the components of the vector x− µ can be rearranged. We define

M =

 λ1 λT2

0n−1,1 In−1

 (9)
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and applying [10, Proposition 2.31, p.45] to M yields

M−1 =

 λ−1
1 −λ−1

1 · λT2
0n−1,1 In−1


from which it follows that, for c =

(
c1, c

T
2

)T
,

(m1,m
T
2 )T = (MT )−1c =

c1

λ1

·

 1

−λ2

+

 0

c2

 ,
i.e. m1 = c1/λ1 and m2 = −c1/λ1 ·λ2 + c2. Define Ω = MΣMT and consider the representation

Σ =

 σ11 Σ12

Σ21 Σ22


of the dispersion matrix. Furthermore, let

Σ1 =

 σ11

Σ21

 and Σ2 =

 Σ12

Σ22

 .
For symmetric Σ, it follows that

Ω =

 ω11 Ω12

Ω21 Ω22

 ,
where ω11 = λTΣλ, Ω22 = Σ22 and ΩT

21 = Ω12 = λTΣ2. In preparation of Theorem 3 we let

k = m1 + ω−1
11 m

T
2 Ω21 =

c1

λ1

·
[
1− λT2 ΣT

2 λ

λTΣλ

]
+
cT2 ΣT

2 λ

λTΣλ
=
cTΣTλ

λTΣλ

A = Ω22 − ω−1
11 Ω21Ω12

Theorem 3. Let f be the density of a skew-elliptical distribution (in Rn for n ≥ 2) in the sense

of Definition 3, with decreasing density generator g̃. Let ω11,Ω21, k be defined as previously.

Then, a global maximum of the constrained optimization problem

maximize
x

f(x;µ,Σ, λ)

subject to cTx ≥ `
(10)

is given by

x∗(`) = µ+M−1

 z1;max(`)

z2;max(`)


where

z1;max(`) ∈


arg max

kz1≥`−cTµ
F (z1) · g̃

(
ω−1

11 z
2
1

)
if c = ηλ

arg max
z1

F (z1) · g̃
(
ω−1

11 z
2
1 + k1 · (max

{
0, `− cTµ− kz1

}
)2
)

otherwise

(11)
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z2;max(`) = ω−1
11 Ω21z1;max(`) + k1 ·max{0, `− cTµ− kz1;max(`)} · Am2

and k1 =


0 if c = ηλ

(mT
2Am2)−1 otherwise

.

Proof. We consider the following transformation given by

z = M(x− µ),

where M is given in (9). Then, from Lemma 2, the density of z = (z1, z
T
2 )T is given by

f(z; 0,Ω, λ) = 2 · f̃(z; 0,Ω) · F (z1) =
Γ
(
n
2

)
kn
√
πn det (Ω)

· F (z1)

× g̃
(
ω−1

11 z
2
1 + (z2 − ω−1

11 Ω21z1)TA−1(z2 − ω−1
11 Ω21z1)

)
,

where Ω is partitioned as in (8).

Furthermore, the condition cTx ≥ ` is equivalent to ((MT )−1c)T z ≥ ` − cTµ or mT
2 z2 ≥

`− cTµ−m1z1. It follows that

max
x:cT x≥`

f(x;µ,Σ, λ)

is equivalent to

max
z1

max
z2:mT2 z2≥`−cTµ−m1z1

F (z1) · g̃
(
ω−1

11 z
2
1 + (z2 − ω−1

11 Ω21z1)TA−1(z2 − ω−1
11 Ω21z1)

)
,

and by Lemma 3 the objective function is, for every fixed z1, the density of an elliptical dis-

tribution with location parameter µ̃ = ω−1
11 Ω21z1 and dispersion matrix Σ̃ = Ω22 − ω−1

11 Ω21Ω12.

If c = ηλ then m2 = 0 and the optimizer is z2 = ω−1
11 Ω21z1. Otherwise let c̃ = mT

2 and

˜̀= `− cTµ−m1z1. Then, by Theorem 2, it follows that, for v = (z2 − ω−1
11 Ω21z1),

z1;max = arg max
z1

max
z2:mT2 z2≥˜̀

F (z1) · g̃
(
ω−1

11 z
2
1 + vTA−1v

)

= arg max
z1

F (z1) · g̃

ω−1
11 z

2
1 +

(max
{

0, `− cTµ− kz1

}
)2

mT
2Am2


where k = m1 + ω−1

11 m
T
2 Ω21 which is attained at

z2;max = ω−1
11 Ω21z1;max + max{0, `− cTµ− kz1;max} ·

Am2

mT
2Am2

.

Finally, using the inverse transformation we get xmax as stated in the theorem.

To derive a more explicit representation of x∗(`) one can verify the following three identities:

M−1

 1

ω−1
11 Ω21

 =
Σλ

λTΣλ

10



M−1

 0

Am2

 = Σc− λTΣc

λTΣλ
Σλ

mT
2Am2 = cT

(
Σc− λTΣc

λTΣλ
Σλ

)

These imply the following corollary.

Corollary 2. Under the assumptions of Theorem 3 it holds that

x∗(`) = µ+


η−1 · z1;max(`) · Σc

cTΣc
if c = ηλ

z1;max(`) · Σλ
λTΣλ

+ max
{

0, `− cTµ− k · z1;max(`)
}

v
cT v

otherwise

where v = Σc− λTΣc
λTΣλ

Σλ and k = λTΣc
λTΣλ

.

Thus x∗(`) depends on ‖λ‖ (for λ 6= 0) only through z1;max(`) · ‖λ‖. The behaviour of

this term is obviously governed by the properties of the density generator g̃ and the cdf F .

Furthermore a quick calculation shows that, for c 6= ηλ, cTx∗(`) = ` if `−cTµ−k ·z1;max(`) ≥ 0.

A simple consequence of equation (11) is the following corollary:

Corollary 3. The number of solutions to (10) is bounded from above by the number of opti-

mizers of the two one-dimensional optimization problems that can be derived from (11).

4 Example: Reverse Stress Testing in (Skew-)Normal

Models

In light of Theorem 3 it is interesting to consider, when a unique solution z1;max(`) of (11) exists.

In this section, we will answer this question for the skew-normal distribution, i.e. for the case

where f is a normal density and F is the cumulative distribution function of the univariate

normal distribution, which we will denote by Φ.

The following lemma is the first step.

Lemma 4. Consider the optimization problem

arg max
q

g
(
η1q

2 + η2q + η3

)
· Φ (q) , (12)

where η1, η2, η3 ∈ R with η1 > 0. The objective function is unimodal and therefore the optimiza-

tion problem always has a unique solution q∗ which satisfies φ
(
− η2

2η1

)
/Φ

(
− η2

2η1

)
≥ q∗+ η2

2η1
≥ 0.

An immediate consequence of Corollary 3 and the preceding Lemma is the following corol-

lary:
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Corollary 4. In the skew-normal case there are at most two solutions to (10).

The next step is to characterize the solution for large losses `:

Corollary 5. Let f be a skew-normal density. Then there exists L such that, for all ` ≥ L and

c, λ not collinear, the solution z1;max(`) of (11) is unique.

Proof. Since g̃ is monotonically decreasing and k1 > 0 it is sufficient to show that there exists

L ∈ R such that, for all ` ≥ L, the solution q∗ of

q∗(`) = arg max
q
F (z1) · g̃

(
ω−1

11 q
2 + k1 · (`− cTµ− kq)2

)
= arg max

q
F (z1) · g̃

(
(ω−1

11 + k1k
2)q2 − 2k1k(`− cTµ)q + (`− cTµ)2

)
(which is unique by Lemma 4) satisfies ` − cTµ − kq∗(`) ≥ 0. Consider the case k > 0 (the

case k < 0 is analogous). Then we need to show that q∗(`) ≤ (`− cTµ)/k which is implied (cf.

Lemma 4) by φ
(
− η2

2η1

)
/Φ

(
− η2

2η1

)
− η2

2η1
≤ (` − cTµ)/k where − η2

2η1
= k1k(`−cTµ)

ω−1
1,1+k1k2

→
`→∞

∞. Since

φ(x)/Φ(x) →
x→∞

0 it is sufficient to show that k1k
ω−1
1,1+k1k2

< 1
k
. But this follows immediately from

the fact that ω11 > 0 and k1 > 0:

k1k

ω−1
1,1 + k1k2

=
1

k
· k1k

2

ω−1
1,1 + k1k2

<
1

k
· k1k

2

k1k2
=

1

k

From a numerical point of view the following approach is well-suited for solving (12):

Remark 3. Noting that the logarithm is monotonically increasing on R+ and since

log
(
g
(
η1q

2 + η2q + η3

)
· Φ (q)

)
= −1

2

(
η1q

2 + η2q + η3

)
+ log (Φ (q))

the optimization problem (12) can be rewritten as

arg max
q

− 1

2

(
η1q

2 + η2q + η3

)
+ log (Φ (q)) ,

which is numerically more suitable since exp grows very quickly. Because the objective function

is differentiable it is sufficient to find the unique root of the derivative, which is given by

∂

∂q

(
−1

2

(
η1q

2 + η2q + η3

)
+ log (Φ (q))

)
= −η1q −

η2

2
+
φ(q)

Φ(q)
.

In order to apply Newton’s method, also the second derivative is of interest. To this end, note

that the derivative of φ(q)/Φ(q) is given in [7, Equation (2.20)]; see the quantity ζ2 there.
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It is now possible to illustrate the behaviour of the solution to the reverse stress testing

problem in the skew-elliptical model. Only the case that ` is large enough, such that Corollary

5 holds, is depicted:

Example 1. To illustrate how the selected scenario in the skew-normal model (cf. Theorem 3)

differs from that without skewness (cf. Theorem 2) consider the points

λϕ =

cosϕ

sinϕ


for ϕ ∈ (0, 2π)\{π/2} which lie on the unit circle in Rn. Denote by xϕ the scenario for λ = λϕ

and c = λπ/2. Furthermore denote by x the scenario for λ = 0 (i.e. the setting of Theorem 2)

for the same portfolio weights c.

Figure 1 considers four different cases for the covariance structure:

(a) Negative correlation and equal variances Σ =

 1 −0.5

−0.5 1



(b) Positive correlation and equal variances Σ =

 1 0.5

0.5 1



(c) Uncorrelated and equal variances Σ =

1 0

0 1



(d) Uncorrelated and unequal variances Σ =

1 0

0 5


As can be seen in Figure 1 the covariance structure does not significantly alter the qualitative

behaviour: If λϕ points approximately in the direction of c, then the difference is comparatively

small (since both vectors have norm 1).

A numerical visualization can be done in the case that X takes values in R3, by considering

points on the unit sphere and plotting the distance against the scalar product. The results for

two random covariance matrices are shown in Figure 2. Noting that the scalar product is zero if

the vectors are orthogonal it is clear that the qualitative results are very similar to those in R2.

For comparison Figure 3 contains the plots against the scalar product in the R2 case. Finally,

Figure 4 compares the run times and the accuracy of our proposed methods with those of the

all-purpose constrained optimization routine constrOptim in R.
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(a) Negative correlation and equal variances (b) Positive correlation and equal variances

(c) Equal variances and uncorrelated (d) Unequal variances and uncorrelated

Figure 1: Distance between the selected scenario in the skewed normal and non-skewed model

in R2 where norm(x) :=
√
xTx is the usual Euclidean norm. The dashed vertical lines mark

the ’direction’ (as well as its opposite) in which c points. For further details see Example 1.

14



Figure 2: Distance between the selected scenario in the skewed normal and non-skewed model

in R3 where norm(x) :=
√
xTx is the usual Euclidean norm. In each of the four sub-figures,

the covariance matrix was chosen randomly. For further details see Example 1.
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(a) Negative correlation and equal variances (b) Positive correlation and equal variances

(c) Equal variances and uncorrelated (d) Unequal variances and uncorrelated

Figure 3: Distance between the selected scenario in the skewed normal and non-skewed model

in R2 where norm(x) :=
√
xTx is the usual Euclidean norm. For the details see Example 1.

The difference to figure 1 is, that the horizontal axis refers to the scalar-product and not the

angle.
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Figure 4: Comparison of the run time and achieved objective value when the dimensionality of

n of the optimization problem increases. We compared our solution to a naive implementation

using R’s constrOptim method. In the right sub-figure, we calculated the difference of the value

of the logarithmic objective function obtained with our method minus the corresponding value

obtained by constrOptim. Positive values are in favour of our method.

5 Conclusion

Reverse stress testing is a highly relevant task in the context of bank regulation. Therefore, it

is essential that reliable and numerically stable methods are available. With the present work,

we have contributed (i) an explicit solution for the most likely scenario x∗(`) given that the

loss exceeds ` under the scope of elliptical models, and (ii) a characterization of x∗(`) in terms

of a numerically stable and easy-to-implement optimization problem under the broader scope

of skew-elliptical models.

Potential extensions of our work would be to consider more general (non-linear) P & L

functions as well as different distributional models, for instance by utilizing copula theory. A

statistical task, which will be pursued in future research, is to estimate the loss distribution

from data and to quantify the uncertainty which propagates from the latter estimation to the

obtained value of x∗(`).

Computer programs, with which all results of the present paper can be reproduced, are

available from the first author upon request.
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Appendix

Proof of Lemma 1. For the normal distribution it holds that g(u) := exp
(
−u

2

)
and since

g′(u) = −1

2
exp

(
−u

2

)
< 0

the generator is strictly decreasing.

For the Student-t distribution it holds that g(u) :=
(
1 + u

cp

)−p
for cp ∈ R, p > 1

2
. Since it

holds that

g′(u) = −
p
(
1 + u

cp

)−1−p

cp

and, noting that the integrability condition of definition 2 is only fulfilled for cp > 0, it is

immediate thate the generator is strictly decreasing since g′ < 0.

For the Logistic distribution it holds that g(u) := e−u

(1+e−u)2
. By the quotient rule

g′(u) =
−e−u (1 + e−u)

2
+ 2e−u (1 + e−u)

(1 + e−u)4

=
e−u (1 + e−u) · (−1− e−u + 2)

(1 + e−u)4

=
e−u (1 + e−u) · (1− e−u)

(1 + e−u)4

Since 1 < e−u for u > 0 it follows that g′(u) < 0 on R+ and therefore g is strictly decreasing

on R+.

For the Exponential distribution it holds that g(u) := exp (−rus) for r, s > 0. Furthermore

g′(u) = − exp (−rus) rsus−1

and thus for u > 0 it holds that g′(u) < 0 and consequently g is strictly decreasing on R+.

Proof of Lemma 4. First note that the objective function ϕ(q) := g (η1q
2 + η2q + η3)·Φ (q) looks

very similar (cf. [7, Equation (2.1)]) to the density of an univariate skew-normal distribution.

It is indeed possible to generalize [7, Proposition 2.6] to functions like ϕ: Showing that the

second derivative of logϕ(q) is still strictly negative will (as in the proof of [7, Proposition 2.6])
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imply log-concavity which in turn will imply that ϕ has a unique mode which is the desired

result. Let ζ1, ζ2 be given as in [7, Equation (2.20)]. Then it holds that

∂2

∂q2
logϕ(q) =

∂2

∂q2

[
−1

2

(
η1q

2 + η2q + η3

)
+ log (Φ (q))

]
=

∂

∂q

[
−η1q −

η2

2

]
+ ζ2(q)

= −η1 − ζ1(q) [q + ζ1(q)]

The first summand is negative by the assumption η1 > 0 and by [7, Equation (2.21)] the second

summand is negative, too. Thus ∂2

∂q2
logϕ(q) < 0. Furthermore from the first order conditions

it follows that

0 =
∂

∂q
logϕ(q∗) = −η1q

∗ − η2

2
+
φ(q∗)

Φ(q∗)

≥ −η1q
∗ − η2

2

from which the lower bound follows directly. Furthermore this implies (since x 7→ φ(x)/Φ(x)

is strictly decreasing)

0 = −η1q
∗ − η2

2
+
φ(q∗)

Φ(q∗)
≤ −η1q

∗ − η2

2
+
φ
(
− η2

2η1

)
Φ
(
− η2

2η1

)

which implies q∗ ≤ − η2
2η1

+
φ

(
− η2

2η1

)
Φ

(
− η2

2η1

) .
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