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Abstract

This paper considers properties of the micro-model analysed in Antonio and Plat
(2014). The main results are analytical expressions for the moments of the outstand-
ing claims payments subdivided into IBNR claims and individual RBNS claims. These
moments are possible to compute explicitly using the discretisation scheme for estima-
tion and simulation used in Antonio and Plat (2014) since the expressions then do not
involve any integrals that, typically, would require numerical solutions. Other aspects
of the model that are investigated are properties of the maximum likelihood estimators
of the model parameters, such as bias and consistency, and a way of computing predic-
tion uncertainty in terms of the mean squared error of prediction that does not require
simulations. Moreover, a brief discussion is given on how to compute moments or risk-
measures of the claims development result (CDR) using simulations, which based on
the results of the present paper can be done without any nested simulations. Based
on this it is straightforward to compute the one-year Solvency Capital Requirement,
which corresponds to the 99.5% Value-at-Risk of the one-year CDR. Finally, a brief
numerical illustration is used to show the theoretical performance of the maximum
likelihood estimators of the parameters in the claims development process under this
model using a realistic set-up based on the case-study of Antonio and Plat (2014).

JEL: G22.

Keywords: Stochastic claims reserving; risk; solvency; loss reserving; Poisson process.

1 Introduction

In the present paper, we consider properties of the model analysed in Antonio and Plat
(2014). In that paper, the authors perform an extensive case study of a model that falls
under the general class of models introduced in Norberg (1993), which is a class of models
for individual claims in non-life insurance. These types of models are usually referred to
as micro-models. They carry out full likelihood estimation within this framework and sim-
ulate the reserve together with the full reserve loss distribution. An observation regarding
the reserve part of their work is that there is no need to simulate to obtain the reserve.
Our main results in the present paper are analytical expressions for the moments of the
outstanding claims payments under this particular model, which is valuable in computing,
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for instance, the best estimate reserve. The moments are computed using the discretisa-
tion scheme used for estimation and simulation in Antonio and Plat (2014) since one then
acquires analytical expressions not involving any integrals. It is of course also possible to
compute moments without the discretisation, although the moments are then in terms of
integrals that, typically, need to be solved numerically.

Other aspects of the model that we investigate are properties of the parameter estimators,
such as bias and consistency, and a way of computing prediction uncertainty in terms of the
mean squared error of prediction (MSEP) that does not require simulations. We also give
a brief discussion on how to compute moments or risk-measures of the claims development
result (CDR) using simulations, which based on the results of the present paper can be
done without any nested simulations. This would be necessary if one had also to simulate
to compute the moments themselves, see e.g. Sigmundsdóttir and Lindholm (2017) where
this type of nested simulations are used to assess one-year non-life insurance risks. From the
simulations, it is straightforward to compute the one-year Solvency Capital Requirement
(SCR), which corresponds to the 99.5% Value-at-Risk of the one-year CDR.

Several papers have been written on micro-models — for instance, the seminal works of Arjas
(1989) (using martingales) and Norberg (1993) (using a marked Poisson process approach).
The approach of Norberg (1993) is further investigated in, for instance, Norberg (1999),
Antonio and Plat (2014) and, in a Bayesian framework, in Haastrup and Arjas (1996). For
a textbook introduction to this class of models, see Mikosch (2009).

When using micro-models, it is challenging to acquire easily computable moments of the
outstanding claims payments. Perhaps partly for this reason, quite a body of work has
accumulated in the area of discrete-time micro-models (usually modelled on the aggregate
level), see, e.g. Verrall et al. (2010), Miranda et al. (2011, 2012) and Wahl et al. (2019).
Discrete-time here meaning that the assumptions are made in discrete time for the individual
claims. Similar to these works, other authors use aggregated data based on models built from
the ground up, but not necessarily based on the individual claims, see, e.g. Bühlmann et al.
(1980), Norberg (1986) and Lindholm et al. (2017). The present paper is the first paper giving
easily computable, analytical moments, that do not involve integrals, of a quite general class
of (continuous time) micro-models. Hopefully, these moments will help make micro-models
more accessible.

The remainder of the paper is organised as follows: In Section 2 we give a brief introduction
to the model class analysed in this paper. Section 3 describes the assumption of piecewise
constant hazard rates for the event generating processes that are part of the development of
a claim, i.e. the discretisation scheme. Section 4 and its subsections contain the main results
consisting of moments of the outstanding claims payments split on IBNR and RBNS claims.
In Section 5 we take a closer look at the maximum likelihood estimation of the parameters
in the model. In particular, given some weak assumptions, we give a proper motivation
for the use of the normal distribution as an approximation when considering parameter
uncertainty. Based on Section 5, we move on in Section 6 to show how to assess prediction
uncertainty (together with parameter uncertainty) using a semi-analytical approximation of
the conditional MSEP. Section 7 gives a brief discussion on the computation of the moments
and risk-measures of the CDR, and also the SCR. Finally, in Section 8, we provide a short
numerical illustration of the performance of the estimators of the rates of the development
process using some realistic parameter values and sample sizes based on the case study of
Antonio and Plat (2014).

2



2 Model

For a given accident year, we assume that there is some exposure measure w(t), given which,
claims are collectively generated by a non-homogeneous Poisson process with rate w(t)λ(t).
The claims occurrence times generated by this process will be denoted by Ti. Each claim,
once occurred, is then reported to the insurance company a random time Ui later according
to a distribution PU |t.

Where the set-up of Antonio and Plat (2014) differs from the more general set-up in Norberg
(1993) is in regards to the development of a claim. Once reported, a claim develops according
to a process constructed by three mutually independent non-homogeneous Poisson processes:
one generating payments at rate hp(t), one generating settlements at rate hse(t), and one
generating settlements with payments at rate hsep(t). The development process records the
payment events that occur up until the first settlement event, at which point the processes
are all stopped. For the ith claim, this yields payment times Vij and a settlement time Vi.
For each of these payment times, a distribution Pp generates payment severities. In the
present paper, as in Antonio and Plat (2014), this distribution is allowed to depend on the
time of the accident and the reporting delay. More generally, we allow it to depend on some
set of covariates that are known, at the latest, at reporting. Further, it is assumed that all
claims are independent and, moreover, all payment severities are mutually independent and
independent of the number of payments.

3 Assumption on the rates

As stated in Section 2, let he(t) denote the rate with which events of type ’e’ occur, where
e ∈ {se, sep, p}, corresponding to ’settlement without payment’, ’settlement with a payment
at the same time’ and ’payment without settlement’, respectively. In Antonio and Plat
(2014) these are also referred to as type 1, 2 and 3 events. As is done for estimation and
simulation purposes in Section 4.3 in Antonio and Plat (2014), we introduce a finite partition
T := {t0, t1, . . . , tr} of R+ on which the hazard rates of the three event types are piecewise
constant, i.e.

he(t) = he,l, t ∈ [tl−1, tl), l = 1, . . . , r,

for e ∈ {se, sep, p}. In Section 4, the moments of the outstanding claims payments will
be computed given this discretisation scheme. Without the discretisation, the moments
are expressed in terms of integrals that are generally not analytically tractable. To get
analytically tractable expressions, one has to make assumptions on the rates, such as this
particular discretisation. The usefulness of this discretisation scheme is of course not only in
terms of calculating moments but also in terms of estimation. Estimating the rate function
of a non-homogeneous Poisson process by assuming it to be piecewise constant on a set
of intervals is an established heuristic that Henderson (2003) showed yields a consistent
estimator if one shrinks the interval lengths at an appropriate rate when more data is
available.

Based on the partition T , it is natural to introduce the differences

∆tl := tl − tl−1.

To ease the notational burden, as well as to increase interpretability, we will also define the
two intensities

h̄sl := hse,l + hsep,l,

h̄pl := hp,l + hsep,l,
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corresponding to the rates at which settlement events (with or without payment) and pay-
ment events (with or without settlement) occur, respectively.

We will denote the cumulative hazard rates by the corresponding capital letter, i.e.

He(t) :=

∫ t

0

he(s)ds,

which, with the discretisation, is

He(t) = (t− tκ(t)−1)he,κ(t) +

κ(t)−1∑
l=0

∆tlhe,l,

where κ(t) := inf l{l : tl ≥ t, tl ∈ T }. We define the corresponding quantities H̄s(t) and
H̄p(t) in the same way.

Remark 1. For our purposes, the partition T is finite. The results in this paper are straight-
forward to generalise to an infinite partition. However, the practical usefulness of this is
questionable and therefore left out.

4 Moments of the outstanding claims payments

In this section, we calculate the first two conditional moments of the outstanding claims
payments split on IBNR and RBNS claims. We begin in Section 4.1 by calculating the mean
and variance of one single RBNS claim. Given these moments, together with assuming
that the claims are all (conditionally) independent, the corresponding quantities of the
total outstanding claims payments from all RBNS claims will be a sum of the individual
contributions. After computing the moments of the RBNS part, we move on in Section 4.2
to the moments of the IBNR part. The results in that section are in large part based on the
results of the RBNS claims, since one can note that an IBNR claim will behave as an RBNS
claim once reported. There will, however, be a random number of them and the developments
of the claims will have random future starting times, adding a bit of complexity. Once we
have both the RBNS and the IBNR moments, we have the moments of the total outstanding
payments, since the RBNS and IBNR claims constitute two independent marked Poisson
processes (as noted in, for instance, Norberg 1993). Therefore, both the mean and the
variance of the total outstanding claims payments will be a sum of the RBNS and the IBNR
part, i.e.

E[R|Fτ ] = E[RI |Fτ ] + E[RR|Fτ ], (1)

Var(R|Fτ ) = Var(RI |Fτ ) + Var(RR|Fτ ), (2)

where RI and RR are the outstanding claims payments from IBNR and RBNS claims,
respectively, making up the total outstanding claims payments R. Moreover, Fτ denotes the
information available at the present time, τ .

The moments of the total outstanding claims payments are the main results, but we also
touch upon computing moments of cash flows in specific time intervals. For the RBNS claims,
it is possible to calculate such moments, and we do so in Section 4.1.1. For the IBNR claims,
however, this is not possible. In Section 4.2.1 we discuss why this is the case.

4.1 Moments of the total outstanding payments from RBNS claims

In this section, we compute the conditional expectation and variance of the total outstanding
payments from RBNS claims. By the assumption of independent claims, the expectation
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and variance of the total outstanding payments from all RBNS claims is the sum of all the
expectations and variances of the individual contributions of each separate RBNS claim, i.e.

E[RR|Fτ ] =

NR∑
i=1

E[RRi |Fτ ], (3)

Var(RR|Fτ ) =

NR∑
i=1

Var(RRi |Fτ ), (4)

where RRi is the outstanding payments from the ith RBNS claim, and NR is the number
of RBNS claims. Therefore, we begin by computing the moments of one arbitrary RBNS
claim, the result of which we summarise in Proposition 1 at the end of the present section.

For a given accident year, at the present time τ , we consider one arbitrary RBNS claim, say
claim i, where i = 1, . . . , NR. Let τi denote the present time measured since reporting for
this claim. By definition, settlement of this (RBNS) claim has not yet occurred, i.e. Vi > τi.

Let Bi(s, t) denote the payments made in the interval [s, t), where time is measured from
reporting and let κi := κ(τi). We will be particularly interested in the intervals [tl−1, tl) for
l = κi+1, . . . , r as well as the interval [τi, tκi

) since the rates are constant on these intervals.
For notational brevity, we let

Bil :=


Bi(tl−1, tl) for κi < l ≤ r,
Bi(τi, tκi

) for l = κi,

0 otherwise.

(5)

Given this definition, the total outstanding payments, RRi , can be written as

RRi = Bi(τi, tκi
) +

r∑
l=κi+1

Bi(tl−1, tl) =

r∑
l=κi

Bil. (6)

This relation can be further broken down into

Bi(s, t) =

Ni(s,t)∑
j=1

Yij(s, t), (7)

where Ni(s, t) is the number of payments made in [s, t) and Yij(s, t) is the size of the jth of
these payments. For notational brevity, again, we define Nil in the same way as Bil in (5).

As mentioned in Section 2, the quantities on the right-hand side of (7) are all assumed
to be mutually independent. Moreover, we assume that the payment size distribution only
depends on covariates that are Fτ -measurable (i.e. covariates known at reporting), as is the
case in Antonio and Plat (2014). Given this assumption, we can write

E[Yij(s, t)|Fτ ] = µi,

Var(Yij(s, t)|Fτ ) = σ2
i .

In Antonio and Plat (2014), µi and σi depend on the development year and the initial reserve
category, both of which are known at reporting, as required. Given this, together with the
independence of Yij(s, t) and Ni(s, t), it follows from (7) together with an application of
iterated expectations that

E[Bi(s, t)|Fτ ] = µiE[Ni(s, t)|Fτ ], (8)
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and with a variance decomposition that

Var(Bi(s, t)|Fτ ) = σ2
i E[Ni(s, t)|Fτ ] + µ2

i Var(Ni(s, t)|Fτ ). (9)

Moreover, for two disjoint intervals [s, t) and [s′, t′), a covariance decomposition yields

Cov(Bi(s, t), Bi(s
′, t′)|Fτ ) = µ2

i Cov(Ni(s, t), Ni(s
′, t′)|Fτ ). (10)

Taking (6) together with (8), (9) and (10) it is clear that

E[RRi |Fτ ] =

r∑
l=κi

E[Bil|Fτ ] = µi

r∑
l=κi

E[Nil|Fτ ], (11)

and

Var(RRi |Fτ ) =

r∑
l=κi

Var(Bil|Fτ ) + 2

r−1∑
l=κi

r∑
k=l+1

Cov(Bil, Bik|Fτ )

= σ2
i

r∑
l=κi

E[Nil|Fτ ] + µ2
i

r∑
l=κi

Var(Nil|Fτ )

+ 2µ2
i

r−1∑
l=κi

r∑
k=l+1

Cov (Nil, Nik|Fτ ) . (12)

We therefore see that to calculate the expectation and variance of the outstanding payments,
we must compute E[Nil|Fτ ] and Var(Nil|Fτ ) for all l ≥ κi and Cov(Nil, Nik|Fτ ) for all
k > l ≥ κi. The computations of these quantities are left for the appendix, and we now
conclude this section by stating a proposition giving the ingredients needed to compute the
conditional expectation and variance of the total outstanding RBNS claims payments. The
proof of the proposition can be found in Appendix A together with the computations of the
above quantities.

Proposition 1. The conditional expectation of the total outstanding claims payments from
the ith RBNS claim is

E[RRi |Fτ ] = µi

r∑
l=κi

h̄pl
h̄sl

(
1− e−h̄sl∆til

)
e−(H̄s(tl−1)−H̄s(τi)), (13)

and the variance is

Var(RRi |Fτ ) =

r∑
l=κi

(σ2
i ail + µ2

i ail(ail + bil)) + 2µ2
i

r−1∑
l=κi

r∑
k=l+1

aik(cil − ail),

where

ail :=
h̄pl
h̄sl

(
1− e−h̄sl∆til

)
e−(H̄s(tl−1)−H̄s(τi)) (14)

bil := 1 + 2
h̄pl
h̄sl
− 2hp,l∆ti,l

e−∆ti,lh̄sl

1− e−∆ti,lh̄sl
(15)

cil := ∆tilhp,l, (16)

and

∆tij :=

{
tj − tj−1 if j > κi,

tκi
− τi if j = κi.
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Moreover, given the discretisation, we have

H̄s(tl−1)− H̄s(τi) =

l−1∑
j=κi

h̄sj∆tij .

A thing to note from the proof of Proposition 1 is that without the discretisation the
expressions for the moments contain integrals. To be more specific, to compute the expected
value for a general set of hazard rates we need to swap the terms

h̄pl
h̄sl

(
1− e−h̄sl∆til

)
in (13) with an expression acquired by adding (43) and (46) of the proof together. The
integrals in these equations are not generally solvable unless we specify the functional form
of the hazard rates. This problem illustrates part of the convenience of performing the
discretisation scheme introduced in Antonio and Plat (2014), since, as we see from the
proposition, we then acquire explicit expressions while keeping a quite general hazard rate
(given a fine enough partition).

4.1.1 Cash flows of RBNS claims payments

For the RBNS claims, it is possible to calculate moments of cash flows in specific time
intervals [s, t) for some time points s < t measured since reporting, which we denote by
RRi (s, t). To compute these, take the time points we want to consider and add them to the

partition T . Denote the resulting set by T̃ , then the calculations of the previous section
are still valid for this (finer) partition since the hazard rates are constant on the intervals
it produces. This fact is what we will make use of in this section. It is important to note,
however, that this is for prediction and not to be done for estimation.

For a specific time interval [s, t), with τi ≤ s < t and s, t ∈ T̃ , it holds that

RRi (s, t) =

κ̃(t)∑
l=κ̃(s)

Bil,

where κ̃(t) := inf l{l : tl ≥ t, tl ∈ T̃ }, and therefore we get, as before, that

E[RRi (s, t)|Fτ ] = µi

κ̃(t)∑
l=κ̃(s)

E[Nil|Fτ ],

Var(RRi (s, t)|Fτ ) = σ2
i

κ̃(t)∑
l=κ̃(s)

E[Nil|Fτ ] + µ2
i

κ̃(t)∑
l=κ̃(s)

Var(Nil|Fτ )

+ 2µ2
i

κ̃(t)−1∑
l=κ̃(s)

κ̃(t)∑
k=l+1

Cov (Nil, Nik|Fτ ) .

Based on these equations, we get the following proposition in the same way as Proposition 1:

Proposition 2. The conditional expectation of the total outstanding claims payments from
the ith RBNS claim in the interval [s, t) measured since reporting, with s, t ∈ T̃ , is

E[RRi (s, t)|Fτ ] = µi

κ̃(t)∑
l=κ̃(s)

h̄pl
h̄sl

(
1− e−h̄sl∆til

)
e−(H̄s(tl−1)−H̄s(τi)),
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and the variance is

Var(RRi (s, t)|Fτ ) =

κ̃(t)∑
l=κ̃(s)

(σ2
i ail + µ2

i ail(ail + bil)) + 2µ2
i

κ̃(t)−1∑
l=κ̃(s)

κ̃(t)∑
k=l+1

aik(cil − ail),

where ail, bil and cil are given by (14)–(16), and ∆til is understood to be the differences

produced by T̃ . Furthermore, for s, t, s′, t′ ∈ T̃ with s < t < s′ < t′, the covariance terms
are

Cov(RRi (s, t), RRi (s′, t′)|Fτ ) = µ2
i

κ̃(t)∑
l=κ̃(s)

κ̃(t′)∑
k=κ̃(s′)

aik(cil − ail).

If on the other hand s < s′ < t < t′, then

Cov(RRi (s, t), RRi (s′, t′)|Fτ ) = Var(RRi (s′, t)|Fτ )

+ Cov(RRi (s, s′), RRi (s′, t)|Fτ )

+ Cov(RRi (s′, t), RRi (t, t′)|Fτ ).

Note that, technically, Proposition 1 is a corollary to Proposition 2, but to not obfuscate
the main result for RBNS claims, which is the moments of the total outstanding payments
given in Proposition 1, it is presented here as a separate result.

Proposition 2 gives the first two moments for one RBNS claim. The moments of the out-
standing payments from all RBNS claims, made in the time interval [s, t) measured since
the beginning of the accident year, is then

E[RR(s, t)|Fτ ] =

NR∑
i=1

E[RRi (s− τi, t− τi)|Fτ ],

Var(RR(s, t)|Fτ ) =

NR∑
i=1

Var(RRi (s− τi, t− τi)|Fτ ).

Note here that for RR, time is measured since the start of the accident year while it is
measured since reporting for RRi .

4.2 Moments of the total outstanding payments from IBNR claims

In this section, we calculate the expectation and variance of the outstanding payments from
IBNR claims. We compute these by noting that an IBNR claim behaves as an RBNS claim
once reported. Therefore, we can make use of the results from Section 4.1. We may also
note that the outstanding payments from IBNR claims are independent of Fτ and any
conditioning will therefore disappear. Moreover, in Section 4.1 the payments had a mean
and variance depending on the index i. For the IBNR claims, we will consider a finite number
of possible means and variances. Each claim will then be given an initial reserve category Ci,
as in Antonio and Plat (2014), determining which mean and variance the payment severities
from this claim will have. We assume that these categories are randomly generated with
probabilities qc = P(Ci = c). We denote the mean and variance of the payment severities
from a claim of category c by µ(c) and σ2

(c), respectively.

We begin by noting that the total number of IBNR claims is distributed according to

NI ∼ Po

(∫ τ

0

wtλt(1− PU |t(τ − t))dt
)
, (17)
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see, e.g. Norberg (1993) and Antonio and Plat (2014). For notational brevity, we introduce
the notation:

Λτ :=

∫ τ

0

wtλt(1− PU |t(τ − t))dt.

Let RI,c denote the outstanding payments from an IBNR claim belonging to reserve category
c. The expectation of the outstanding payments from IBNR claims is then

E
[
RI
∣∣Fτ ] = E

NI∑
i=0

RIi

 = E
[
NI
]
E
[
RIi
]

= E
[
NI
] m∑
c=1

qcE
[
RI,c

]

= Λτ

(
m∑
c=1

qcµ(c)

)∑
l≥0

h̄pl
h̄sl

(
1− e−h̄sl∆tl

)
e−H̄s(tl−1)

 ,

where we have made use of Proposition 1 together with the fact that τi = 0 by definition
for the IBNR claims once reported. Moreover, by a variance decomposition, the variance is

Var
(
RI
∣∣Fτ) = E

[
NI
]
E
[(
RIi
)2]

= E
[
NI
] m∑
c=1

qcE[(RI,c)2]

= Λτ

m∑
c=1

qc

(
m∑
l=0

(
σ2

(c)al + µ2
(c)al(2al + bl)

)
+ 2µ2

(c)

r−1∑
l=0

r∑
k=l+1

akcl

)
,

with

al :=
h̄pl
h̄sl

(
1− e−h̄sl∆tl

)
e−H̄s(tl−1), (18)

bl := 1 + 2
h̄pl
h̄sl
− 2hp,l∆tl

e−∆tlh̄sl

1− e−∆tlh̄sl
, (19)

cl := ∆tlhp,l. (20)

We summarise the above in the following proposition:

Proposition 3. The conditional expectation of the total outstanding claims payments from
IBNR claims is

E
[
RI
∣∣Fτ ] = Λτ

(
m∑
c=1

qcµ
(c)

)∑
l≥0

h̄pl
h̄sl

(
1− e−h̄sl∆tl

)
e−H̄s(tl−1),

and the variance is

Var
(
RI
∣∣Fτ) = Λτ

(
m∑
l=0

(
σ̃2al + µ̃2al(2al + bl)

)
+ 2µ̃2

r−1∑
l=0

r∑
k=l+1

akcl

)
,

with al, bl and cl as in (18)–(20), and

µ̃2 :=

m∑
c=1

qcµ
2
(c),

σ̃2 :=

m∑
c=1

qcσ
2
(c).
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4.2.1 Cash flows of IBNR claims payments

The cash flows in specific time intervals is a lot less straightforward for the IBNR claims. To
see why this is the case, let T Ii denote the time of reporting for the ith of the (unordered)
IBNR claims. A well-known result, which is straightforward to prove, is that

P(T Ii ≤ s|NI = n) =
Λs
Λτ

. (21)

The specific form of this probability is not essential for our purposes. Instead, we merely
note that it is indeed possible to derive the density of T Ii |NI = n, which we denote by g.
This density can then be used to compute

E[RI(s, t)] = E[NI ]E[E[RIi (s− T Ii , t− T Ii )|NI ]],

where

E[RIi (s− T Ii , t− T Ii )|NI ] = E[E[RIi (s− T Ii , t− T Ii )|T Ii ]|NI ]

=

∫ τ

0

E[RIi (s− T Ii , t− T Ii )|T Ii = u]g(u)du

=

∫ τ

0

E[RIi (s− u, t− u)]g(u)du.

The RBNS-result in Proposition 2 gives the expectation in the integral above

E[RIi (s− u, t− u)] = µ̃

κ(t−u)∑
l=κ(s−u)

h̄pl
h̄sl

(
1− e−h̄sl∆til

)
e−H̄s(tl−1),

where ∆til is taken over the partition T̃ which includes the points s−u and t−u, from which
we see that the integral, while technically computable, is (likely) not analytically tractable.

5 Likelihood Estimation and properties of the parame-
ter estimators

In this section, we take a closer look at the maximum likelihood estimation of the parameters
in the model. We focus mainly on the parameters of the development process, showing
asymptotic properties of the parameter estimators, such as consistency and asymptotic
normality. Additionally, we show finite sample properties such as whether the estimators
are biased or not. For the occurrence process and the reporting delays, we are not able to
get as precise results unless we make certain assumptions about PU |t. One such assumption
that we discuss in this section is that it forms an exponential family. We do not discuss the
parameters, and their parameter estimators, of the payment severities since these entirely
depend on the choice of the distribution Pp, and not on any other parts of the model.
Using the results of this section, we are also able to motivate the method used in Antonio
and Plat (2014) of taking parameter uncertainty into account when quantifying prediction
uncertainty, i.e. approximating the parameter uncertainty through the asymptotic normality
of the parameter estimators.

Let (T oi , U
o
i ) denote the ith pair of the observed occurrence times and reporting delays and

let No denote the total number of observed/reported claims. For RBNS claims, τi denoted
the current time in previous sections. In agreement with this, for all reported claims, settled
or not settled, τi now denotes (τ − Ti − Ui) ∧ Vi, which is consistent with the previous
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definition, and with Antonio and Plat (2014), since it corresponds to the current time for
the RBNS claims.

The complete likelihood of the observed claims is, see for instance (5) in Antonio and Plat
(2014),

L(λ,α,h,γ;Fτ ) =

{
No∏
i=1

w(T oi )λ(T oi )PU |t(τ − T oi ;α)

}

· exp

(
−
∫ τ

0

w(t)λ(t)PU |t(τ − t;α)dt

)
·

{
No∏
i=1

PU |t(dUoi ;α)

PU |t(τ − T oi ;α)

}

·
No∏
i=1

{∏
j

∏
e

hδijee (Vij)

· exp

(
−
∫ τi

0

(hse(u) + hsep(u) + hp(u)) du

)}

·
No∏
i=1

∏
j

Pp(dPij′ ;γ), (22)

where δije is a Kronecker delta in the last two indexes, equal to 1 if the jth event in the
development of claim i is of type e ∈ {se, sep, p}, and 0 otherwise. Here α denotes the
parameter vector of the distribution of the reporting delay Ui, γ the one for the payment
severity distribution, and h the vector of the hazard rate functions of the development
process. The first three rows of (22) correspond to the occurrence times and the reporting
delay, the fourth and fifth rows correspond to the development process, and the sixth row
corresponds to the payment severities. These three parts of the likelihood may be optimised
separately since there is no overlap in the dependence of the parameters. However, the first
and second row cannot be optimised separately. This fact seems to be overlooked in Antonio
and Plat (2014) where, based on Section 4.1, it appears as if the (truncated) distribution
of the reporting delays are directly fitted to the data {Uoi }N

o

i=1. This fact is also commented
upon in Section 4 of Sigmundsdóttir and Lindholm (2017).

Based on (22), it is straightforward to conclude that the log-likelihood is proportional to

l(λ,α,h,γ;Fτ ) ∝
No∑
i=1

log λ(T oi )−
∫ τ

0

w(t)λ(t)PU |t(τ − t;α)dt

+

No∑
i=1

logPU |t(dUoi ;α)

+

No∑
i=1

∑
j

∑
e

δije log he(Vij)

−
No∑
i=1

∫ τi

0

(hse(u) + hsep(u) + hp(u)) du

+

No∑
i=1

∑
j′

logPp(dPij′ ;γ). (23)
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In addition to the discretisation scheme of the rates of the development process, Anto-
nio and Plat (2014) discretise λ(t) and w(t), something we also consider here. Let D :=
{d0, d1, . . . , dm} be a finite partition of R+. On the intervals made up by this partition, let
λ(t) and w(t) be piecewise constant according to

λ(t) = λi, t ∈ [di−1, di), i = 1, . . . ,m,

w(t) = wi, t ∈ [di−1, di), i = 1, . . . ,m. (24)

Given this and the previously introduced discretisation scheme, the log-likelihood in (23)
becomes

l(λ,α,h,γ;Fτ ) ∝
m∑
i=1

No
i log λi −

m∑
i=1

wiλi

∫ di

di−1

PU |t(τ − t;α)dt

+

No∑
i=1

logPU |t(dUoi ;α)

+

m∑
i=1

(
No
sep,i log hse,i +No

se,i log hsep,i +No
p,i log hp,i

)
−

No∑
i=1

m∑
j=1

(hse,j + hsep,j + hp,j)

∫ tj

tj−1

1{u≤τi}du

+

No∑
i=1

∑
j′

logPp(dPij′ ;γ), (25)

where No
i is the observed number of claims that occurred in [di−1, di) and No

e,i is the number
of observed events of type e in [ti−1, ti). Moreover, λ is a vector containing the piecewise
constant rates λi and h now denotes the vector containing the rates he,k.

Based on this log-likelihood, we can conclude that the maximum likelihood estimators of
the piecewise constant hazard rates are

ĥe,k =
No
e,k∑No

i=1

∫ tk
tk−1

1{u≤τi}du
, (26)

for e ∈ {p, se, sep} and k = 1, . . . , r. Moreover, the Hessian of the log-likelihood is block-
diagonal

J =

Jλ,α 0 0
0 Jh 0
0 0 Jγ

 ,
where, firstly, Jγ is the Hessian of the log-likelihood corresponding to the payment severities,
and therefore wholly depends on the choice of Pp. Secondly,

Jλ,α =



∂2l
∂λ2

1
0 . . . 0 [∇α

∂l
∂λ1

]′

0 ∂2l
∂λ2

2
. . . 0 [∇α

∂l
∂λ2

]′

0 0
. . . 0

...

0 0 . . . ∂2l
∂λ2

m
[∇α

∂l
∂λm

]′

∇α
∂l
∂λ1

∇α
∂l
∂λ2

. . . ∇α
∂l
∂λm

Jα


,

where ∇α denotes the gradient taken with respect to α and Jα is the Hessian of the log-
likelihood with respect to α. Thirdly and finally, Jh is the Hessian of the log-likelihood

12



with respect to the components of h, which is a diagonal matrix consisting of the diagonal
elements

∂2

∂h2
e,l

l(λ,α,h;Fτ ) = −
No
e,l

h2
e,l

,

for l = 1, . . . , r and e ∈ {se, sep, p}. These are all negative, and therefore, since Jh is
diagonal, the log-likelihood of the development process is concave, and thus the parameter
estimators ĥe,l are unique. Based on the above Hessian, the observed Fisher information
of the likelihood function of the development processes is a diagonal matrix with diagonal
elements

No
e,k

h2
e,k

. (27)

The expected Fisher information matrix, I(h), is then acquired by taking the expectation
of these elements. These are however difficult to compute, although we can note by taking
(35) together with (40), (50) and (52) from the proof of Proposition 1 in Appendix A, that

E

[
No
e,k

h2
e,k

∣∣∣∣∣No, {γi}

]
=

No∑
i=1

1{γi>tk−1}

he,kh̄sk

(
1− e−h̄sl(tk∧γi−tk−1)

)
e−H̄s(tk−1), (28)

where γi := τ−T oi −Uoi . The matrix consisting of these as its elements, normalised by No, is
a consistent estimator of the expected Fisher information matrix in the exposure measure,
i.e. as wl → ∞. To see that this is the case we can use the WLLN together with, e.g. part
(iii) of Theorem 8.2 on page 302 in Gut (2005) since No a.s.→ ∞ as wl → ∞. Of course,
the observed Fisher information matrix is also a consistent estimator of the expected Fisher
information, however, in (28) we are conditioning on more of the structure than if we were
to use the observed Fisher information. It is however not entirely clear whether one should
prefer the observed or the expected Fisher information when, for instance, approximating
the variance of an estimator by the asymptotic variance (expected Fisher information), see
for instance Efron and Hinkley (1978) for a discussion and a frequentist justification for
using the observed over the expected Fisher information. Using the conditional elements
in (28) can be motivated heuristically by the so-called conditionality principle since the
likelihood in (22) factorises into the components described below (22), without dependence
between the parameters in the resulting parts. However, we are considering all variables in
the likelihood, and therefore the conditionality principle is not entirely applicable. For a
detailed presentation of the conditionality principle, see Birnbaum (1962).

For the estimators in (26), it is possible to state the following proposition dealing with bias:

Proposition 4. For all k = 1, . . . , r it holds that

E[ĥp,k] = hp,k,

and, for e ∈ {se, sep}, that

E[ĥe,k] > he,k,

i.e. the estimators of the hazard rates of pure payment events are unbiased, while there is
an upwards bias of the estimators of the hazard rates of the settlement events.

The proof of Proposition 4 is given in Appendix A. While there is an upwards bias of the
estimators, it is possible to state the following proposition dealing with consistency and
asymptotic normality:
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Proposition 5. Assume either that wt = ww̃t or that the discretisation of (24) holds, i.e. if
the discretisation does not hold that the exposure is proportional to a scale factor w. Then,
for e ∈ {p, se, sep}, it holds that

ĥe,k
p→ he,k

as either w → ∞ or wl → ∞ for at least one l = 1, . . . ,m, i.e. the parameter estimators
ĥe,k are consistent in terms of the exposure measure. Moreover,

√
No
(
ĥ− h

)
d→ N

(
0, [I(h)]−1

)
,

as either w → ∞ or wl → ∞ for at least one l = 1, . . . ,m, i.e.
√
No
(
ĥ− h

)
is asymp-

totically normal with mean vector zero and covariance matrix [I(h)]−1, where I(h) is the
expected Fisher information of the part of the log-likelihood in (25) corresponding to the
development process.

The proof of Proposition 5 is given in Appendix A. We can conclude from Proposition 5 that
while the estimators are biased, they are at least asymptotically unbiased, something that
will be useful in the next section. A thing to remark on is that it is possible to generalise
the assumption on the non-discretised exposure in Proposition 5. This, however, obscures
the result and is therefore left out. For other assumptions, it is straightforward to change
the first part of the proof to see if the results still hold. Moreover, the assumption in the
proposition is thought to capture most real-world scenarios.

What now remains to consider are the estimators of the λis and α. These do not have closed
form solutions. However, we can make some assumptions on PU |t such that λ̂i and α̂ have
attractive properties. For an example of a case when these maximum likelihood estimators
are unique, consider the case when the distribution of the reporting delay belongs to an
exponential family. Some examples of standard distributions that are exponential families
are the exponential, gamma and log-normal distributions. A family of distributions is said
to form an exponential family if the distributions have densities of the form

fU (u;α) = g(u) exp {η(α)′T (u)−B(α)} , (29)

with respect to some common measure. The vector η(α) is usually referred to as the canon-
ical parameter vector and T (u) the sufficient statistic. For more on exponential families, see
Chapter 1.5 of Lehmann and Casella (1998).

Taking the logarithm of (29) and inserting it into the log-likelihood of the occurrence times
and reporting delays yields a quantity proportional to

m∑
i=1

No
i log λi −

m∑
i=1

wiλi

∫ di

di−1

PU |t(τ − t;α)dt

+

No∑
i=1

log g(Uoi ) + η(α)′
No∑
i=1

T (Uoi )−
m∑
i=1

No
i B(α).

The second term depends only on the parameters, the third term only on data, while the
other terms depend on both data and parameters. From this, we see that this belongs to an
exponential family with canonical parameter vector

(log λ1 −B(α), . . . , log λm −B(α),η(α)) ,

and sufficient statistic (
No

1 , . . . , N
o
m,

No∑
i=1

T (Uoi )

)
.
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Therefore, the MLE in this parametrisation, if it exists, is unique, see, e.g. Example 6.3 of
Section 6.6 in Lehmann and Casella (1998). Moreover, by Theorem 5.1 in Lehmann and
Casella (1998), the conditions of which are shown to hold in the example mentioned above,
the MLE is consistent, and, when multiplied by the square root of No, asymptotically
normal. These convergences are, as in Proposition 5, in terms of the exposure measure.
However, the theorem is in terms of the sample size, which in our situation is random.
Nevertheless, we may use the same method as at the beginning of the proof of Proposition 5
to show that the convergences hold in terms of the exposure measure. Now, from the theorem,
we know that the asymptotic variance-covariance matrix of the estimator of the parameter
vector is the inverse of the expected Fisher information. In the canonical parametrisation, the
expected Fisher information is the same as the observed Fisher information. This equality is
a well-known result that can be seen to hold by taking the logarithm of (29) and computing
the Hessian with respect to the canonical parameter vector η, noting that the resulting
matrix does not depend on data. Calculating this quantity by hand is tedious and not very
illuminating, resulting in an expression involving integrals of PU |t(τ−t;η). Since the observed
and expected Fisher information coincide, the most straightforward way of acquiring them
is through standard methods when numerically maximising the log-likelihood.

Above we have shown that there are situations when it is motivated to assume that the
asymptotic distribution of the parameter estimators is normal, as is assumed in Antonio
and Plat (2014). We will comment more on this, and make use of the results in the present
section, in Section 6.

6 Assessment of prediction uncertainty

An essential part of reserving is the assessment of prediction uncertainty taking estimation
error into account. The standard method of doing this that is always applicable is the boot-
strap, which can be either parametric or non-parametric. Antonio and Plat (2014) describe
how to perform a parametric bootstrap for the model we consider in the present paper.
In Section 5.3 they describe how to take parameter uncertainty into account by simulat-
ing from the asymptotic (normal) distribution of the parameter estimators, something we
motivate in Section 5 of the present paper. Since there is not much more to add to this simu-
lation/bootstrap approach, this section will focus on another way of assessing the prediction
uncertainty (taking estimation error into account).

The method we consider here is that of the semi-analytical approximation of the condi-
tional mean squared error of prediction (MSEP) introduced in Lindholm et al. (2018). This
method is not necessarily more accurate than a bootstrap since it rests on an approxima-
tion. However, it has other redeeming qualities such as it requiring no simulations, and it
is straightforward to implement relying only on standard output from a regular numerical
maximum likelihood estimation. Since it requires no simulations, it has no Monte-Carlo er-
ror, there is no question of convergence of estimates (as would be the case in a bootstrap
approach), and it is quick to compute. For another paper using this method, see Wahl et al.
(2019) where it is applied to the models considered in Verrall et al. (2010), Miranda et al.
(2011, 2012) and to the model introduced in the paper itself. For similar results to Lindholm
et al. (2018) applied particularly to the distribution-free chain ladder model, see Diers et al.
(2016), Röhr (2016) and Buchwalder et al. (2006).

To define the conditional MSEP, we introduce a random variable X, a σ-algebra F , and a
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F-measurable predictor X̂. The conditional MSEP is then defined as

MSEP(X, X̂) = E[(X − X̂)2|F ]

= Var(X|F) + (E[X|F ]− X̂)2.

The approach in Lindholm et al. (2018) uses a re-sampling/bootstrap argument which results
in the following approximation of the conditional MSEP:

M̂SEP(X, X̂) = Var(X | F)(θ̂) +∇E[X|F ](θ̂)′Ĉov(θ̂)∇E[X|F ](θ̂). (30)

The result relies on three assumptions: (i) the parameter estimator is unbiased; (ii) the
process variance is computable; (iii) the covariance of the parameter estimator is computable.
Based on Proposition 1 and 3, it is clear that (ii) holds. By Proposition 4, (i) does not hold.
In the case of the estimators being biased, a correction term

Bias(θ̂)′∇E[R|Fτ ](θ̂)∇E[R|Fτ ](θ̂)′Bias(θ̂) (31)

must be added to the approximation. The bias is not quantifiable in our setting and comput-
ing this expression is therefore not possible analytically. However, by Proposition 5 together
with assuming that the reporting delay distribution follows an appropriate distribution, e.g.
one that is part of an exponential family, we know that the estimators are consistent (and
therefore asymptotically unbiased). In Section 8 we investigate this approximate unbiased-
ness through a numerical example for the parameter estimators of the discretised rates of
the development process. There we see that the bias given by Proposition 4 is too small to
be of any practical significance.

Consequently, we may approximate the MSEP by disregarding this (likely) small contribu-
tion. Assumption (iii) does not technically hold, especially not for the parameter estimators

of the parameters in the occurrence part of the model, but neither is the variance of ĥe,k
in (26) computable. We may, however, approximate the covariance matrix by the asymp-
totic variance, which is the inverse Fisher information matrix. Since it is not computable for
all parts of the likelihood, we may use the observed Fisher information, which we can ob-
tain from a standard numerical maximum likelihood estimation through the negative of the
Hessian of the log-likelihood evaluated at the maximum likelihood estimator. However, as
mentioned before in Section 5, it is not entirely clear whether one should prefer the expected
or the observed Fisher information, see Efron and Hinkley (1978).

In the setting of the present paper, when considering the total outstanding payments, the
approximation in (30) is

M̂SEP(R, R̂) = Var(R | Fτ )(θ̂) +∇E[R|Fτ ](θ̂)′Ĉov(θ̂)∇E[R|Fτ ](θ̂), (32)

where θ̂ here denotes the vector containing all parameter estimators considered in Section 5,
and the moments of the outstanding payments R are given in Section 4, see (1) and (2)
together with (3), (4), and Proposition 1 and 3. Note that we could consider any other
range of quantities using this approximation. For instance, we could exchange R for the
number of RBNS payments made in the future and R̂ for its prediction.

Instead of considering the rates ĥe,k, we consider the transformed rates ˆ̄hek since this sim-
plifies computations of the gradients a bit. This transformation is a simple linear transfor-
mation, and therefore the asymptotic variance is L[I(h)]−1L′ where L is the matrix defining
the linear transformation from the rates he,k to the rates h̄ek.

We end this section by including a proposition giving all the necessary gradients needed
to calculate (32). The proof is a simple exercise in taking derivatives and keeping track of
indices and is therefore left out.
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Proposition 6. The gradients needed to calculate (32) for the RBNS part are

∂

∂h̄pk
E[RR|Fτ ] =

NR∑
i=1

µiaik
h̄pk

,

∂

∂h̄sk
E[RR|Fτ ] =

NR∑
i=1

µi

(
aik∆tik

e−∆tikh̄sk

1− e−∆tikh̄sk
− aik
h̄sk
−∆tik

r∑
l=k+1

ail

)
,

∂

∂µi
E[RR|Fτ ] =

NR∑
i=1

1

µi
E[RRi |Fτ ],

where the aiks are defined by (14). The gradients needed to calculate (32) for the IBNR part
are

∂

∂µ(c)
E[RI |Fτ ] =

qc∑m
c=1 qcµ(c)

E[RI |Fτ ]

∂

∂qc
E[RI |Fτ ] =

µ(c)∑m
c=1 qcµ(c)

E[RI |Fτ ]

∂

∂h̄sk
E[RI |Fτ ] = Λτ

(
m∑
c=1

qcµ(c)

)(
ak∆tk

e−∆tkh̄sk

1− e−∆tkh̄sk
− ak
h̄sk
−∆tk

r∑
l=k+1

al

)
∂

∂h̄pk
E[RI |Fτ ] = Λτ

(
m∑
c=1

qcµ(c)

)
ak
h̄sk

∂

∂λk
E[RI |Fτ ] =

E[RI |Fτ ]

Λτ

∂

∂λk
Λτ

∇αE[RI |Fτ ] =
E[RI |Fτ ]

Λτ
∇αΛτ ,

where ak is given by (18) and ∇α denotes the gradient taken w.r.t. α.

7 One-Year Reserve Risk and a comment on simulation

This section is closely related to Section 6.1 of Sigmundsdóttir and Lindholm (2017) where
it is described how to simulate to get the Solvency Capital Requirement (SCR). Their
method requires nested simulations and is quite computationally expensive. Here we use
the formulas acquired in the present paper for the conditional moments of outstanding
payments to simplify this to require only one layer of simulations, which should increase the
computation speed drastically.

Under the Solvency II-directive, insurers must compute the SCR, which is supposed to
”ensure all quantifiable risks to which an insurance or reinsurance undertaking is exposed
are taken into account”. It corresponds to the 99.5% Value-at-Risk of the CDR over a
one-year period, see Article 101(3) of European Commission (2015) and, for more on the
one-year risk perspective, see Ohlsson and Lauzeningks (2009). The one-year CDR is the
realised difference between the prediction of the ultimate claims payments made today and
in a year, i.e. it is

CDR := E[U |Fτ ](θ̂(τ);Fτ )− E[U |Fτ+1](θ̂(τ+1);Fτ+1)

where U is the ultimate claims payments, and θ̂(t) is the Ft-measurable estimator of the
parameter vector θ based on the observations available at time t. Here we see that one has

17



to take re-estimation into account. Based on this quantity, the one-year SCR according to
the Solvency II-directive is

SCR := VaR0.995(CDR),

where VaRα is the 100× α% Value-at-Risk.

Given the moments acquired in Section 4, computing the SCR through simulations is a
simple matter. Proceed as follows:

1. Compute the expected value of the outstanding payments based on the data available
today, i.e. calculate

E[R|Fτ ](θ̂(τ);Fτ ).

2. Simulate one-year ahead n times to acquire a sample of datasets

{F (i)
τ+1}ni=1.

3. For each i = 1, . . . , n, estimate θ̂
(i)

(τ+1) and compute

E[R|Fτ+1](θ̂
(i)

(τ+1);F
(i)
τ+1).

4. The sample of CDRs is then

CDR(i) := E[R|Fτ ](θ̂(τ);Fτ )− P(i)(τ, τ + 1)− E[R|Fτ+1](θ̂
(i)

(τ+1);F
(i)
τ+1),

where P(i)(τ, τ + 1) is the total payments made in the interval [τ, τ + 1) based on the
ith simulation.

5. An estimator of the SCR is then

ŜCR := V̂aR0.995({CDR(i)}ni=1),

where V̂aRα(·) is the 100 × α% empirical Value-at-Risk function (i.e. the empirical
quantile function applied to the negative amounts).

Given the above procedure, it is straightforward to extend the computations to any other
risk measure.

Simulation of the new datasets can be done in the same way as is described in Antonio and
Plat (2014). It should, however, be noted that there is a slight error in the way Antonio
and Plat (2014) simulates IBNR claims in steps (a) and (b) of Section 5.1. In step (a),
they simulate the total number of IBNR claims in an interval [dl−1, dl), denoted here NI(l),
according to

NI(l) ∼ Poisson

(
λlwl

∫ dl

dl−1

(1− PU |t(τ − t))dt

)
. (33)

Given this number they say that ”the occurrence times of the claims are uniformly distributed
in [dl−1, dl)”. This statement is not true in general, although for a narrow enough interval it
might hold approximately. Instead, it is the case that the reporting times (i.e. the occurrence
times plus the reporting delay) are distributed according to a slight modification of (21) given
NI(l). More precisely, for s ∈ [dl−1, dl) it is distributed according to∫ s

dl−1
(1− PU |t(τ − t))dt∫ dl

dl−1
(1− PU |t(τ − t))dt

(34)
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on [dl−1, dl). If we assume that the payment severities do not depend on the occurrence
times and the reporting delays, we can note that given a set of simulated reporting times
there is no need to invert to find the separate occurrence times and reporting delays since
these are then of no particular interest, i.e. step (b) would be redundant.

Instead of simulating IBNR claims using (33) and (34), a perhaps more straightforward (but
less efficient) method is to simulate the whole process from time 0 up until at least one year
from now (i.e. time τ + 1) and then only keep those claims that were IBNR at the current
time τ . This way we only need to simulate from a (piecewise) homogeneous Poisson process
and then for each occurrence simulate a reporting delay according to PU |t. However, if there
are relatively few IBNR claims compared to RBNS claims at time τ , this will be highly
inefficient.

8 Numerical Illustration

In this section, we simulate the development process using parameter values inspired by
Antonio and Plat (2014). The purpose is to investigate the size of the biases of the parameter
estimators in the development process part of the model to see if it is appropriate to disregard
the bias correction in the semi-analytical approximation of the MSEP given in Section 6.
We do not illustrate the MSEP approximation itself, nor do we illustrate other results of
this paper such as the CDR computations in Section 7. Illustrating these methods would
require us to simulate from the complete model, requiring us to make assumptions on all the
different parts of the model. To make the illustration convincing we would need to make a
quite extensive simulation study, preferably calibrated to realistic parameter values, which
is outside the scope for this paper. We therefore limit ourselves to the development process
and the results in Section 5 regarding the parameter estimators of the development process
parameters. For the interested reader, see Wahl et al. (2019) for a paper implementing the
MSEP approximation of Lindholm et al. (2018), and Sigmundsdóttir and Lindholm (2017)
for an implementation of the CDR computations in Section 7.

Instead of simulating the whole development process, we simulate one single interval. Any
subsequent interval will behave similarly, but with a (random) smaller sample size since some
claims will be settled. We therefore also investigate some different sample sizes to see the
effect of having a small number of active claims in a particular interval of the development
process. Even though there will be a smaller sample size available for intervals further from
reporting, the importance of correctly estimating the rates in these intervals will become
smaller the further out one gets since, out there, there are relatively fewer claims.

We use the case study of Antonio and Plat (2014) in order to pick realistic parameter values
and sample sizes. In Section 2.3 they state that there are 491,912 claims in total. These
claims are split into two types, material damage (’material’) and bodily injury (’injury’). To
keep this illustration conservative sample size wise, based on Figure 3 in Antonio and Plat
(2014), we assume that there are 40,000 material claims and 900 injury claims since these
are the numbers available the last accident year (2008). Apart from being conservative, it
might be the case that claims reported in 2008 (the last year in their data), compared to the
claims reported in 1998 (the first year in their data), are more representative of the claims
that are not yet settled. To investigate the behaviour in intervals further out from reporting
we use 10% of these numbers, i.e. 4000 material claims and 90 injury claims.

For the rates, we use Figure 10 of Antonio and Plat (2014). We pick values that are close
to the first piecewise constant estimate of the three types of events, both for material and
injury claims. This choice is somewhat arbitrary, but most of the rates are, in any case, of
the same magnitude. The rates we use are summarised in Table 1.
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Lastly, we have to specify the length of the intervals to simulate over. These we choose
according to the length of the interval for the first piecewise constant hazard given in Antonio
and Plat (2014), see Section 4.3, i.e. four months for material claims and six months for
injury claims.

Table 1: Parameter values used for simulation.
Claim type hse hsep hp

Injury 0.08 0.02 0.3
Material 0.45 0.35 0.15

Based on the above we simulate one million times for both the injury and material claims.
The result of this is visualised in Figure 1 where kernel density estimators (KDE) of the
simulated estimators of the rates given in Table 1 are shown for both the full and the
conservative sample sizes, together with vertical lines indicating the parameter values used
when simulating the data for comparison. We omit drawing vertical lines corresponding to
the sample means of the simulated estimators since these coincide with the true parameter
values to such an extent as to be indistinguishable, see Table 2 for the per mille differences.
It is clear that the biases that the parameter estimators of the rates of the settlement events
have according to Proposition 4 quickly becomes negligible, which motivates approximating
the MSEP in Section 6 by neglecting the bias correction given by (31).

A final thing to note here is that even though the sample size is quite tiny for the conservative
case for material claims (90 claims), the widths of the distributions of the estimators are
not strikingly large.

Table 2: Per mille differences of the sample mean of the estimators compared to the (true)
parameter values used for the simulations.

Sample size Claim type hse hsep hp
Full Injury 0.8 0.9 0.04

Conservative Injury 7.0 6.6 0.009
Full Material 0.009 0.02 0.0006

Conservative Material 0.23 0.25 0.05

9 Conclusion

In this paper, we have analysed the model considered in Antonio and Plat (2014), which
is based on the model class of Norberg (1993) and Haastrup and Arjas (1996). We have
computed moments of the outstanding payments, split on IBNR and RBNS claims. Based
on this, we have shown how it is straightforward to simulate to acquire the moments of the
CDR. This method requires only one layer of simulations and is therefore quick to run, and
convergence is convenient to assess since there is no need for nested simulations. We had
a closer look at the maximum likelihood estimation, showing, for instance, the asymptotic
normality of the parameter estimators (under weak assumptions), which motivates the use
of the normal distribution when assessing parameter uncertainty, as is done in Antonio and
Plat (2014). Based on Lindholm et al. (2018) and the asymptotic results for the parameter
estimators, we have given a semi-analytical approximation of the conditional MSEP as
a convenient method of assessing prediction uncertainty taking parameter uncertainty into
account. This method requires no simulations and only uses standard output from numerical
maximum likelihood estimation. Finally, we have shown that the estimators of the rates in
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Figure 1: Kernel density estimators (KDE) of the estimators of the rates of the development
process given in Table 1 based on 106 simulations. The top figure corresponds to the injury
claims while the bottom figure to the material claims. The red solid KDE corresponds to
using the full sample size (40,000 for material and 900 for injury claims), the blue dashed
KDE corresponds to using the convervative sample size (10% of the full sample size), and
the black dashed-dotted vertical lines are the true parameter values. The sample means of
the parameter estimators are not shown in the figures since these cannot be visually distin-
guished from the true parameter values, see Table 2 for the per mille differences between
the sample means of the estimators and the true parameter values.
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the development process are well behaved given some realistic parameter values and sample
sizes based on the work in Antonio and Plat (2014).
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A Proofs

Proof of Proposition 1. To calculate the expectation and variance of the outstanding pay-
ments, we must compute E[Nil|Fτ ] and Var(Nil|Fτ ) for all l ≥ κi and Cov(Nil, Nik|Fτ ) for
all k > l ≥ κi. The following will be useful for this purpose: For τi ≤ s < t and all k ∈ N+

it holds that

E[Nk
i (s, t)|Fτ ] = E[Nk

i (s, t)|Vi > τi] = E[Nk
i (s, t)|Vi > s]P(Vi > s|Vi > τi), (35)

from which it follows that

Var(Ni(s, t)|Fτ ) = E[N2
i (s, t)|Vi > s]P(Vi > s|Vi > τi)

− E[Ni(s, t)|Vi > s]2P(Vi > s|Vi > τi)
2. (36)

Moreover, for τi < s < t < s′ < t′, the covariance terms are given by

E[Ni(s, t)N(s′, t′)|Fτ ] = E[Ni(s, t)N(s′, t′)|Vi > τi]

= E[Ni(s, t)|Vi > s′]E[Ni(s
′, t′)|Vi > s′]P(Vi > s′|Vi > τi), (37)

where we can conclude that, for [s, t] ⊂ [tl−1, tl) for some l ≥ κi,

E[Ni(s, t)|Vi > s′] = (t− s)hp,l, (38)

since the conditioning implies no settlement in the interval [s, t) and therefore Ni(s, t)
is equivalent to the Poisson process counting only the payments without settlement, not
stopped by a settlement event, which has the given expectation. In (35)–(37) we have made
use of the fact that the only information in Fτ that is relevant for the event processes
is whether settlement has occurred or not since the three event generating processes are
mutually independent (non-homogeneous) Poisson processes that stop if a settlement event
occurs. Therefore, conditioning on Fτ is equivalent to conditioning on the event Vi > τi.

The probabilities in (35) and (36) are, for s < t, given by

P(Vi > t|Vi > s) =
P(Vi > t, Vi > s)

P(Vi > s)

=
P(Vi > t)

P(Vi > s)
.

Since events occur according to mutually independent Poisson processes and settlement
occurs if any of the two settlement processes has an event, these probabilities are given by

P(Vi > s) = P(No event with settlement in [0, s])

= exp

{
−
∫ s

0

(hse(t) + hsep(t)) dt

}
. (39)

Therefore, for s < t it holds that

P(Vi > t|Vi > s) = exp

{
−
∫ t

s

(hse(t) + hsep(t)) dt

}
. (40)

What now remains to compute in (35) is E[Nk
i (s, t)|Vi > s] for k = 1, 2, and s, t ∈ [tl−1, tl).

To do this, we first note using (39), that the probability density function of Vi conditioned
on Vi > s, is

fVi|Vi>s(t) =
fVi(t)

1− FVi
(s)

= h̄s(t)e
−(H̄s(t)−H̄s(s)). (41)
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Define Ni,e(s, t) to be the number of events of type e ∈ {p, se, sep} for the ith claim in the
interval [s, t) when settlement stops the processes. We are interested in the moments of the
total number of payments, i.e. of

Ni(s, t) := Ni,p(s, t) +Ni,sep(s, t). (42)

For this, define Mi,e(s, t) to be the Poisson process generating events of type e, not stopped
by settlement events. To acquire the moments of the number of payment (without settle-
ment) events we note that, conditional on Vi, Mi,p is still a Poisson process on the interval
[0, Vi) since Mi,p is independent of Mi,e for e ∈ {se, sep}. Therefore

E[Ni,p(s, t)|Vi > s] = E[Mi,p(s, t ∧ Vi)|Vi > s]

= E[Hp(t ∧ Vi)−Hp(s)|Vi > s]

=

∫ ∞
s

(Hp(t ∧ u)−Hp(s)) fVi|Vi>s(u)du

=

∫ t

s

(Hp(u)−Hp(s)) fVi|Vi>s(u)du

+ (Hp(t)−Hp(s))P(Vi > t|Vi > s), (43)

and

E[N2
i,p(s, t)|Vi > s] = E[M2

i,p(s, t ∧ Vi)|Vi > s]

= E[Ni(s, t)|Vi > s] + E[(Hp(t ∧ Vi)−Hp(s))
2 |Vi > s], (44)

where

E[(Hp(t ∧ Vi)−Hp(s))
2 |Vi > s] = (Hp(t)−Hp(s))

2 P(Vi > t|Vi > s)

+

∫ t

s

(Hp(u)−Hp(s))
2
fVi|Vi>s(u)du. (45)

For the moments of the settlement events, let V ei denote the first time the Poisson process
generating events of type e has an event. For e ∈ {se, sep} we note that Ni,e(s, t)|Vi > s is
a Bernoulli random variable with probability parameter

P(Ni,e(s, t) = 1|Vi > s) = E[1{V e
i

=Vi<t}|Vi > s]

= E
[
he(Vi)

h̄s(Vi)
1{Vi<t}

∣∣∣∣Vi > s

]
=

∫ t

s

he(v)

h̄s(v)
fVi|Vi>s(v)dv, (46)

where we have made use of iterated expectations with

E[1{V e
i

=Vi<t}|Vi] =
he(Vi)

h̄s(Vi)
1{Vi<t}. (47)

This last equality can be seen to be the case by the following standard result: Take dt > 0
and note that

P(Ni,e(t, t+ dt) = 1|Vi ∈ (t, t+ dt)) =
P(Ni,e(t, t+ dt) = 1)

P(Vi ∈ (t, t+ dt))

=
he(t)dt+ o(dt)

h̄s(t)dt+ o(dt)
,
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for e ∈ {se, sep}. Since Ni,e(s, t)|Vi > s is a Bernoulli random variable, the probability in
(46) is the sought after first two moments of Nie(s, t)|Vi > s.

Finally, we acquire the first moment of (42) by adding together (43) and (46), while the
second moment is acquired by computing

E[N2
i (s, t)|Vi > s] = E[N2

i,p(s, t)|Vi > s] + E[N2
i,sep(s, t)|Vi > s]

+ 2E[Ni,p(s, t)Ni,sep(s, t)|Vi > s], (48)

where

E[Ni,p(s, t)Ni,sep(s, t)|Vi > s] = E[Mi,p(s, Vi)1{V e
i

=Vi<t}|Vi > s]

= E
[
(Hp(Vi)−Hp(s))

he(Vi)

h̄s(Vi)
1{Vi<t}

∣∣∣∣Vi > s

]
=

∫ t

s

(Hp(v)−Hp(s))
he(v)

h̄s(v)
fVi|Vi>s(v)dv, (49)

where we have made use of the independence between the processes.

Now we move on to computing the moments given the discretisation scheme introduced in
Section 3. Taking s, t ∈ [tl−1, tl) for some l ∈ {1, . . . , r}, we get from (43) that

E[Ni,p(s, t)|Vi > s] =

∫ t

s

hp,l (u− s) h̄sle−h̄sl(u−s)du+ (t− s)hp,le−h̄sl(t−s)

=
hp,l
h̄sl

(
1− e−h̄sl(t−s)

)
, (50)

and, together with (45), that

E[N2
i,p(s, t)|Vi > s] =

hp,l
h̄sl

(
1− e−h̄sl(t−s)

)(
1 + 2

hp,l
h̄sl

)
− 2

h2
p,l

h̄sl
(t− s)e−h̄sl(t−s). (51)

Moreover, from (46) it holds for e ∈ {se, sep} that

E[N2
i,e(s, t)|Vi > s] = E[Ni,e(s, t)|Vi > s] =

he,l
h̄sl

(
1− e−h̄sl(t−s)

)
. (52)

Finally, from (49) we get

E[Ni,p(s, t)Ni,sep(s, t)|Vi > s] =
hp,lhsep,l
h̄sl

(
1− (1 + h̄sl(t− s))e−h̄sl(t−s)

)
. (53)

Therefore, from (50) and (52) it holds that

E[Ni(s, t)|Vi > s] =
h̄pl
h̄sl

(
1− e−h̄sl(t−s)

)
, (54)

and from (51)–(53) together with (48) that

E[N2
i (s, t)|Vi > s] =

h̄pl
h̄sl

(
1 + 2

h̄pl
h̄sl

)(
1− e−h̄sl(t−s)

)
− 2

h̄plhp,l
h̄sl

(t− s)e−h̄sl(t−s). (55)

The proof is finished by taking the probability in (40) together with the moments in (54) and
(55) and inserting these into (35) and (36). Taking these together with (37) and inserting
them into (11) and (12) yields the result.
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Proof of Proposition 4. Let γi := τ − T oi − Uoi so that τi = γi ∧ Vi. All expectations in
this proof are conditional on σ((T oi , U

o
i )N

o

i=1), but we suppress this to keep expressions less
cumbersome. Therefore, we treat γi as a constant.

Beginning with the estimators of the hazard rates of pure payment events, we have

E[ĥp,k] = E
[∑

iNi,p(s ∧ τi, t ∧ τi)∑
i(τi ∧ t− τi ∧ s)

]
= E

[∑
iMi,p(s ∧ τi, t ∧ τi)∑
i(τi ∧ t− τi ∧ s)

]
= E

[∑
iHp(t ∧ τi)−Hp(s ∧ τi)∑

i(t ∧ τi − s ∧ τi)

]
= hp,lE

[∑
i(t ∧ τi − s ∧ τi)∑
i(t ∧ τi − s ∧ τi)

]
= hp,l,

showing that the estimators are unbiased.

For the corresponding quantities for settlement events, let I = {i = 1, . . . , No
e,k : γi > s}

and V := σ({Vi}i∈I). Moreover, for notational brevity, let s := tk−1 and t := tk. Finally, for
i ∈ I, let Ai be the event that Vi ∈ (s, t ∧ γi) (i.e. Aci is the event Vi > t ∧ γi). We begin by
the following computation for e ∈ {se, sep} where we make use of (47):

E[ĥe,k] = E
[
E
[∑

i∈IMi,e(s ∧ Vi, t ∧ Vi ∧ γi)∑
i∈I(Vi ∧ γi ∧ t− Vi ∧ s)

∣∣∣∣V]]
=
he,k
h̄sk

E
[ ∑

i∈I 1Ai∑
i∈I(Vi ∧ γi ∧ t− Vi ∧ s)

]
.

Now define A := σ((1A1
, . . . , 1ANo

e,k

)), then

E[ĥe,k] =
he,k
h̄sk

∑
i∈I

E

[
1Ai∑

j∈I(t ∧ γj − s)1Ac
j

+
∑
l∈I(Vl − s)1Al

]

=
he,k
h̄sk

∑
i∈I

E

[
E

[
1∑

j∈I(t ∧ γj − s)1Ac
j

+
∑
l∈I(Vl − s)1Al

∣∣∣∣∣A
]∣∣∣∣∣Ai

]
P (Ai)

≥ he,k
h̄sk

∑
i∈I

E

[
1∑

j∈I(t ∧ γj − s)1Ac
j

+
∑
l∈I 1Al

E [Vl − s|Al]

∣∣∣∣∣Ai
]
P (Ai)

≥ he,k
h̄sk

∑
i∈I

P (Ai)

E
[∑

j∈I\{i}(t ∧ γj − s)1Ac
j

+
∑
l∈I 1Al

E [Vl − s|Al]
∣∣∣Ai] ,

where, using (39) together with

fVi|Ai
(v) =

fVi
(v)

FVi(t)− FVi(s)
,

we have

E [Vi − s|Ai] =

∫ t∧γi

s

(v − s) h̄ske
−h̄sk(v−s)

1− e−h̄sk(t∧γi−s)
dv

=
1

h̄sk
− t ∧ γi − s

1− e−h̄sk(t∧γi−s)
e−h̄sk(t∧γi−s).
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Next, note that

1Ai
|γi > s ∼ Bernoulli(pi)

with probability parameter

pi := P(Ai) = P(Vi ∈ (s, t ∧ γi)) = 1− e−h̄sk(t∧γi−s).

Using this together with the fact that

− log(1− pi) = h̄sk(t ∧ γi − s),

we have that

E[ĥe,k]

he,k
≥
∑
i∈I

pi

E
[∑

l∈I 1Al

(
1 + 1−pl

pl
log(1− pl)

)
−
∑
j∈I\{i} 1Ac

j
log(1− pj)

∣∣∣Ai]
=
∑
i∈I

pi∑
l∈I\{i} pl

(
1 + log(1−pl)

pl

)
+ 1 + log(1−pi)

pi
−
∑
j∈I log(1− pj)

=
∑
i∈I

pi∑
l∈I\{i} pl + 1 + log(1−pi)

pi
− log(1− pi)

=
∑
i∈I

pi

1 + 1−pi
pi

log(1− pi) +
∑
l∈I\{i} pl

>
∑
i∈I

pi
1− (1− pi) +

∑
l∈I\{i} pl

= 1,

where the last (strict) inequality holds since

1− x
x

log(1− x) < −(1− x),

for all x ∈ (0, 1).

Proof of Proposition 5. To prove the results of the proposition, we make use of Theorem 5.1
on page 463 in Lehmann and Casella (1998). To use this theorem, we must verify that some
regularity conditions hold. However, before that, we must verify that it is OK that the log-
likelihood in (25) has a random number of terms, No. For the observed claims we know,
in the same way as for the IBNR claims in (17), that the number of them is distributed
according to

No ∼ Po

(∫ τ

0

wtλtPU |t(τ − t)dt
)
,

see, e.g. Norberg (1993) and Antonio and Plat (2014). For notational brevity, let

Λ̃τ :=

∫ τ

0

wtλtPU |t(τ − t)dt.

We know by the same well-known result giving us (21), that

P(T o ≤ t|No = n) =
Λ̃t

Λ̃τ
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Therefore, it is the case that, conditional on No, the terms of the log-likelihood are all i.i.d.,
and, moreover, the distribution of the terms does not depend on the value of No.

Furthermore, by assuming that wt = ww̃t, it holds that

No

w̃t

p→
∫ τ

0

w̃tλtPU |t(τ − t)dt,

as w → ∞. We may, therefore, apply (a special case of) Anscombe’s Theorem, see e.g.
Theorem 3.2 on page 346 in Gut (2005), to the proof of Theorem 5.1 in Lehmann and
Casella (1998) to see that part (b) and (c) of the theorem applies to our situation of a

random number of terms in the log-likelihood. Additionally, since No a.s.→ ∞ as w → ∞,
it holds by, e.g. part (iii) of Theorem 8.2 on page 302 in Gut (2005), that part (a) of the
theorem also applies in our situation.

We now move on to prove the proposition by verifying the assumptions of the theorem. The
assumptions (A0)-(A2) are trivially satisfied. Therefore, we move on to check assumptions
(A)-(D).

The log-density corresponding to the development process of the ith claim is

log f(h) =

m∑
j=1

∑
e

(
Ni,e(tj−1, tj) log he,j − he,j

∫ tj

tj−1

1{u<τi}du

)
,

where we have suppressed the dependence on the data for notational convenience. The third
partial derivatives of this log-density are

∂3

∂he,j∂he′,k∂he′′,l
log f(h) = 2

Ni,e(tj−1, tj)

h3
e,j

1{e=e′=e′′}1{j=k=l},

and thus f(h) satisfies Assumption (A). Moreover, Assumption (D) is fulfilled since

E
[∣∣∣∣ ∂3

∂he,j∂he′,k∂he′′,l
log f(h)

∣∣∣∣] = 2
E[Ni,e(tj−1, tj)]

h3
e,j

1{e=e′=e′′}1{j=k=l} <∞.

To show that Assumption (B) holds, we first note that

∂

∂he,j
log f(h) =

Ni,e(tj−1, tj)

he,j
−
∫ tj

tj−1

1{u<τi}du. (56)

Since

E

[∫ tj

tj−1

1{u<τi}

∣∣∣∣∣γi
]

= E [Vi ∧ γi ∧ tj − tj−1|Vi > tj−1, γi]P(Vi > tj−1)1{γi>tj−1}

=
1{γi>tj−1}

h̄sj

(
1− e−h̄sj(tj∧γi−tj−1)

)
P(Vi > tj−1)

= E
[
Ni,e(tj−1, tj)

he,j

∣∣∣∣γi] ,
where the second equality follows from computing the expectation using the density in (41),
and the last equality follows from (50) and (52), it holds that

E
[

∂

∂he,j
log f(h)

]
= 0. (57)
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What remains to show for Assumption (B) is that

E
[
− ∂2

∂he,j∂he′,k
log f(h)

]
= E

[
∂

∂he,j
log f(h)

∂

∂he′,k
log f(h)

]
. (58)

For this, we take the partial derivatives of (56) and note that

E
[
− ∂2

∂he,j∂he′,k
log f(h)

∣∣∣∣γi] = E

[
Ni,e(tj−1, tj)

h2
e,j

∣∣∣∣∣γi
]

1{e=e′}1{j=k},

We must, therefore, show that the right-hand side of (58) is equal to this expression. By
using (56), we see that it holds for j < k that

E
[

∂

∂he,j
log f(h)

∂

∂he′,k
log f(h)

]
= E

[
∂

∂he,j
log f(h)

∣∣∣∣Vi > tk−1

]
E
[

∂

∂he′,k
log f(h)

∣∣∣∣Vi > tk−1

]
P(Vi > tk−1)

= 0

since the second expectation is 0 by (57), showing that the expectation of the right-hand
side of (58) is zero if j 6= k. To show that the expectation of the product is zero if e 6= e′,
we take e ∈ {se, sep} and then first compute the following

E
[

∂

∂hp,j
log f(h)

∂

∂he,j
log f(h)

]
= E

[
E
[

∂

∂hp,j
log f(h)

∂

∂he,j
log f(h)

∣∣∣∣V]]

= E

hp,j ∫ tjtj−1
1{u<τi}du

hp,j
−
∫ tj

tj−1

1{u<τi}du

 ∂

∂he,j
log f(h)


= 0,

where the second equality comes from the fact that

E[Ni,p(tj−1, tj)|V] = hp,j

∫ tj

tj−1

1{u<τi}du, (59)

which follows by the same reasoning as the motivation for (38). Secondly, similar to in the
proof of Proposition 4, define Aei to be the event that V ei ∈ (s, t ∧ γi), then

E
[

∂

∂hse,j
log f(h)

∂

∂hsep,j
log f(h)

]
= E

[(
1Ase

j

hse,j
−
∫ tj

tj−1

1{u<τi}du

)(
1Asep

j

hsep,j
−
∫ tj

tj−1

1{u<τi}du

)]

= E

−( 1Ase
j

hsep,j
+

1Asep
j

hse,j

)∫ tj

tj−1

1{u<τi}du+

(∫ tj

tj−1

1{u<τi}du

)2


= E

−2
1{Vi∈(tj−1,tj)}

h̄sj

∫ tj

tj−1

1{u<τi}du+

(∫ tj

tj−1

1{u<τi}du

)2


= 0, (60)
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where the third equality is acquired by (47) and the last equality with zero from computing
the expectation using the density in (41). What remains are the squared terms where both
indexes are the same in the product. These are:

E

[(
∂

∂hp,j
log f(h)

)2
]

= E

(Ni,p(tj−1, tj)

hp,j
−
∫ tj

tj−1

1{u<τi}du

)2


= E

N2
i,p(tj−1, tj)

h2
p,j

−

(∫ tj

tj−1

1{u<τi}du

)2


= E

[
Ni,p(tj−1, tj)

h2
p,j

]
,

where the second equality comes from expanding the square and using (59) and the last
equality follows from (44); and for e ∈ {se, sep}

E

[(
∂

∂he,j
log f(h)

)2
]

= E

(N2
i,e(tj−1, tj)

h2
e,j

−
∫ tj

tj−1

1{u<τi}du

)2


= E

[
Ni,e(tj−1, tj)

h2
e,j

]
,

where the last step follows by expanding the square and then using the last step in (60),
and thus it is clear that (58) holds.

Finally, we must show Assumption (C). Doing this is straightforward since the expected
Fisher information is a diagonal matrix with diagonal elements given by the expectation of
the elements in (27), which are all non-negative, implying it is positive semi-definite.

Therefore, all assumptions of Theorem 5.1 on page 463 in Lehmann and Casella (1998) are
fulfilled, and the proof is thus complete.
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