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Abstract

Identification of taxa can be significantly assisted by statistical
classification in two major ways. First, one may use a statistical
model to determine taxon of subjects based on various characteris-
tics or traits. Secondly, when faced with a collection of subjects with
common traits measured, one may determine combinations of traits
that signify each taxon in question. To this end, we present a general
Bayesian approach to classification of observations based on traits,
whose measurements follow some (latent) multivariate Gaussian dis-
tribution, but might be truncated or even missing and allow for the
traits to depend on covariates. It is inspired by liability threshold
modelling and Bayesian Quadratic Discriminant Analysis. The ap-
proach is paired with two decision rules: one for which classification is
forced, and one that allows for uncertainty of classification, including
all categories whose posterior probability ratio, compared to the most
likely taxon, exceeds a given threshold. Both of these decision rules
are evaluated using blockwise Gibbs sampling. Then we show how
the reward function corresponding to these two rules can be used for
model selection in terms of blockwise cross validation. Finally, we ex-
amplify our approach on a data set over four morphologically similar
Acrocephalus-genus warblers.



1 Introduction

Modern approaches to classification, which can be used for prediction, of-
ten utilize machine learning methods, such as Neural Networks (Goodfellow
et al., 2016), Support Vector Machines (Cristianini et al., 2000) or Gaus-
sian Processes (Rasmussen and Williams, 2006). This is for good reason;
they are highly flexible modelling tools geared towards prediction, the main
task of machine learning. A few, albeit not omnipresent, drawbacks with
the aforementioned methods are the general need for large data sets, access
to large computing power and lack of parameter estimate interpretability.
Sometimes, prediction is not the sole interest of a researcher or technician,
as it is coupled with an interest in learning about the studied subjects. For
the latter purpose, interpretability is instrumental.

The main idea of this paper is to provide a general modelling approach
that is a classifier while still being informative about the study subjects, un-
der as many types of imperfect observation as possible, and with controllable
caution in the decision making. To achive this, we employ the idea of lia-
bility threshold modelling (LTM), where categorical responses are viewed as
discrete approximations of a latent liability with a (multivariate) Gaussian
distribution (Albert and Chib, 1993), and pair it with a rather flexible deci-
sion rule, while also accounting for missing data in various ways. Thereby,
we fill a gap between the basic classification procedure of LTM and the ef-
ficient but black-box-like machine learning methods. In particular, pairing
LTM with flexible decision rules enables new types of models to be fitted,
which are related to Bayesian Quadratic Discriminant Analysis (Srivastava
et al., 2007). Although the Gaussian distribution is not neccessarily latent
in our setting, it simplifies computations.

Our focus is on situations where we have access to data where the cate-
gories of the observations are known. This is often referred to as supervised
learning (Russell and Norvig, 2016). Thus, our modelling approach is espe-
cially suitable to develop a fast and cheap kind of classification, which can
complement a more expensive, but more accurate method, such as consulting
an expert.

In Sections 2 and 3, we will set up our classification model for the case
where we observe continuous trait measurement vectors and then extend it to
the case of incomplete or truncated data, where our trait measurement vector
may contain a mixture of continuous, integer-valued and ordered categorical
values. Essentially, this entails going from an observable to a latent Gaussian
distribution of the traits. It turns out that while making this transition, we
can introduce a unified approach to handling missing values and the various
types of trait measurements, using the truncation concept in various ways.
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In order to encompass uncertainty of classification we introduce set-valued
reward functions, defined for all possible subsets of categories. In Section 4,
an intuitive reward function, which leads to a classifier that simply picks the
category with the largest posterior probability, is presented at first. Fur-
thermore, we introduce the indecisive region Λ, which is the set of trait and
covariate values for which our classifier does not single out any particular
category. We illustrate this with a second reward function with a tuning
parameter ρ, that governs the conservativeness of our classifier, and hence
the size of the indecisive region. Another tuning parameter τ is introduced,
with which we can restrict the region in which we trust our classifier. Then,
in Section 5 we demonstrate how the reward functions can be used for model
selection in terms of blockwise cross-validation.

In Section 6, we test run our method on simulated data. Then, in Section
7, we examplify usage of our method on a data set over four bird species,
with only truncated observations available, and evaluate our decision rule.
We also visualize the indecisive region Λ. It should be noted that this method
is applicable to practically any classification problem where the trait measure-
ments of the study subjects are ordered in some way. Population ecology,
as an example, relies heavily on correct identification of taxa, i.e. correct
classification, and if traits are shared between taxa, classification is typically
harder. This is one potential area of application of our method. We conclude
the paper with a discussion (Section 8) on possible extentions and general-
izations of the presented method. Some of the mathematical details are put
into the appendices.

2 Model formulation, complete data

Suppose we have N different categories, contained in the set N = {1, . . . , N},
with prior probabilities π = (π1, . . . , πN). With full data we measure q traits
and p covariates of each subject. Let Yijk be the measurement of trait k for
subject j in category i, where 1 ≤ i ≤ N , 1 ≤ j ≤ ni, 1 ≤ k ≤ q and ni is
the number of subjects in category i. We assume that

Yij = (Yij1, . . . , Yijq) ∼ N (mij,Σij)

are independent random vectors having a multivariate normal distribution,
with

mij = (mij1, . . . ,mijq) and Σij = (Σijkl)
q
k,l=1

being the mean vector and the covariance matrix of subject j of category i.
Let also

xij = (1, xij1, . . . , xijp) = (xijm)pm=0
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be the covariate vector of subject j of category i. Trait vectors and covariate

vectors of category i are rows in the matrices Yi =
(
Y >i1 , . . . , Y

>
ini

)>
and Xi =(

x>i1, . . . , x
>
ini

)>
respectively. We now proceed by formulating a multivariate

and multiple regression model

Yi = XiBi + Ei (1)

for category i, where Bi = (Bimk;m = 0, . . . , p; k = 1, . . . , q) is the regression
parameter matrix, whose first row consists of intercepts for the q traits, mij

is the jth row of XiBi, and Ei =
(
E>i1, . . . , E

>
ini

)>
is an error term matrix

with rows Eij ∼ N(0,Σij).
For use in the construction of a joint prior, and later the derivation of

the marginal posterior distributions of the parameters, the vectorized form of
our regression model is needed. Denote the operation of appending columns
of a matrix by vec(·) (note that we may do the inverse operation vec−1(·) on
column vectors) and rewrite (1) as

Ui = vec(Yi) = Ziβi + vec(Ei) (2)

with βi = vec(Bi). Denoting an identity matrix of rank q with Iq and using
the matrix tensor product ⊗,

Zi = Iq ⊗Xi =


Xi 0 · · · 0

0 Xi
. . .

...
...

. . . . . . 0
0 · · · 0 Xi

 (3)

is a block-diagonal matrix with q blocks along the diagonal.
Now suppose we have A covariance classes α = 1, . . . , A for category i

such that
Σij = Σα

i if xij ∈ X α, (4)

where X = X 1 ∪ . . . ∪ X α is a disjoint decomposition of the predictor
space X . Assuming a prior on each of the columns of Bi, and letting it
be N

(
(bik0, . . . , bikp)

> = bik,ΣBi

)
for k = 1, . . . , q, implies the prior

N
((
b>i1, . . . , b

>
iq

)>
= βi0, Iq ⊗ΣBi

= Σβi

)
on βi. Further, assuming prior in-

dependence and imposing an Inverse-Wishart distribution Σα
i ∼ IW (ν0,V0)

on the covariance matrices in (4) for α = 1, . . . , A, we get the joint prior

p(βi,Σ
1
i , . . . ,Σ

A
i ) = p(βi)

A∏
α=1

p(Σα
i ) (5)

for the parameters of category i.
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2.1 Estimation

Let θi =
(
Bi,Σ

1
i , . . . ,Σ

A
i

)
represent all parameters of category i. In the

following, we assume that θ1, . . . , θN are independent random vectors with
probability densities p(θ1), . . . , p(θN) defined in (5). Introducing dependen-
cies is of course possible, and may be important for specific problems, for
which we refer the reader to Section 8. From Bayes’ Theorem we get an
aposteriori density

p(θi | Di) = p(θi)C(Di)
ni∏
j=1

f (yij;xij, θi)

= p(θi)C(Di)L(θi;Di)
∝ p(θi)L(θi;Di)

of θi given the complete training data set Di = {(xij, Yij); j = 1, . . . , ni} =
{Xi,Yi} for category i. The function L (θi;Di) = p (Yi | Xi, θi) is the
likelihood. In the last step we removed the normalizing factor C(Di) =
(
∫
p(θi)L(θi;Di) dθi)

−1, since it does not depend on θi. The Maximum Apos-
teriori (MAP)-estimator of θi is

θ
(MAP)
i = arg max

θi

p(θi | Di)

= arg max
θi

p(θi)L(θi;Di),

whereas the Bayes’ estimator of θi is

θ
(Bayes)
i = E [θi | Di]

=
∫
θip(θi | Di) dθi

= C(Di)
∫
θip(θi)L(θi;Di) dθi.

Finally, given a new observation Dnew = (x, Y ), define the posterior proba-
bility of the new observation belonging to category i as

pi = P(I = i | D,Dnew) =
πiωi

π1ω1 + . . .+ πNωN
, (6)

where

ωi =
∫
f(Y ;x, θi)p(θi | Di) dθi

= C(Di)
∫
f(Y ;x, θi)p(θi)L(θi;Di) dθi

are the posterior category weights given Dnew for all categories, before the
prior probabilities πi have been taken into account.
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2.2 Monte Carlo Approximations

It is usually difficult to evaluate the normalizing constants C(Di) for high-

dimensional data sets, and hence also θ
(Bayes)
i and ωi. However, it is possible

to estimate θ
(Bayes)
i and ωi by Monte Carlo simulation, with

θ̂
(Bayes)
i =

1

Ri

Ri∑
r=1

θir (7)

and

ω̂i =
1

Ri

Ri∑
r=1

f(Y ;x, θir) (8)

respectively, if θi1, . . . , θiRi
are Ri replicates drawn from the posterior distri-

bution p(θi | Di), with θir =
(
βir,Σ

1
ir, . . . ,Σ

A
ir

)
.

We will generate θi1, . . . , θiRi
by blockwise Gibbs sampling, and for this

we need the conditional posterior distributions of βi and Σα
i for α = 1, . . . , A.

To derive those, we need some additional notation. Let Zα
i , Xα

i , Yα
i and Uα

i

denote the submatrices of Zi, Xi, Yi and Ui corresponding to covariance
class α. Recall also that Bi = vec−1(βi), meaning that we know Bi if we
know βi, and vice versa. Using this notation, we may express the conditional
posterior of the regression parameters

βi | Ui, {Σα
i }

A
α=1 ∼ N(β̃, Σ̃)

where

Σ̃ =

[
Σ−1β +

A∑
α=1

(Σα
i )−1 ⊗

(
(Xα

i )>Xα
i

)]−1
,

and

β̃ = Σ̃×
[
Σ−1β β0 +

A∑
α=1

(
(Σα

i )−1 ⊗ (Xα
i )>

)
Uα
i

]
.

Meanwhile, the conditional posteriors of the covariance matrices are

Σα
i | Bi,Y

α
i ,X

α
i ∼ IW (ν0 + nαi ,V0 + Sαi ),

where nαi denotes the number of observations in the covariance class α for
category i and

Sαi = (Yα
i −Xα

i Bi)
> (Yα

i −Xα
i Bi) + (Bi −B0)

>ΣB (Bi −B0) .

For the derivation of the marginal posterior distributions and a detailed de-
scription of the specific Monte Carlo-algorithm, we refer to Appendices A
and B respectively.
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Having computed ω̂1, . . . , ω̂N , forDnew, we may compute the Monte Carlo-
estimated aposteriori probability of Dnew being in category i as

p̂i = P̂(I = i | D,Dnew) =
πiω̂i

π1ω̂1 + . . .+ πN ω̂N
,

where D = D1 ∪ . . . ∪ DN is the complete training data set. We will return
to these aposteriori probabilities in Section 4.

3 Model Formulation, obfuscated data

Overall our setup is the same as in Section 2, but we now suppose we only
have partial information about the complete training data set D. Due to
some obfuscation, which could be rounding, grouping, categorization or lost
measurements of some traits, we only know that

Yij ∈ Sij = Sij1 × · · · × Sijq,

i.e. the complete trait vector Yij for subject j of category i is contained in
a hyperrectangle Sij, whose sides are given by {Sijk}qk=1. The sides are sets,
ranging in possible size from singletons to infinite intervals of R, and are
given by

Sijk =

Yijk, k /∈ Kij,

(cijk, dijk] , k ∈ Kij,

where Kij = {k; 1 ≤ k ≤ q; Yijk obfuscated}. The obfuscations are of three
main types. First, if a trait Yijk is unobserved, written as Yijk = NA, the k:th
side to Sij is of infinite length; e.g. cijk = −∞, dijk = ∞, and we let the
interval be open. That is, the interval Sijk equals R. Secondly, a trait may
be obfuscated in such a way that interval limits are observed. Rounding is
a typical example of this; consider a measurement of a trait yijk ∈ R+ that
has been rounded to zijk ∈ Z+. We put cijk = zijk − τ and dijk = zijk + τ ,
which constitute the limits of the interval. Generally, we assume rounding
to the midpoint of an interval. We can always scale so the interval is of unit
length, which would be equivalent to τ = 1/2. Lastly we have the case when
we observe an ordered categorical random variable Zijk. We assume there
is an underlying normally distributed variable Yijk, and that each category
zijk corresponds to an interval of possible values of yijk. Count data can be
treated as a case of this type of obfuscation, i.e. a trait may be measured
in counting occurences of something, and we can handle that type of data
similarily as ordered categorical data.
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We can treat all types of obfuscations uniformly in the following way.
Suppose trait k of subject j of category i is imperfectly observed, i.e. k ∈
Kij. Let gk be the number of categories of this trait, which we number as
0, 1, . . . , gk − 1. The observed category is zijk ∈ {0, 1, . . . , gk − 1}, where
gk = 2 for binary data and gk = ∞ for count data. The corresponding side
of Sij is

Sijk =


(
−∞, 1

2

]
, if zijk = 0,(

zijk − 1
2
, zijk + 1

2

]
, if 1 ≤ zijk ≤ gk − 2,(

gk − 3
2
,∞

)
, if zijk = gk − 1.

Here, a useful trick would be to add auxiliary categories, that never were
observed, to take the place of zijk = 0 and zijk = gk − 1. That ensures all
observed intervals are of unit length, although we may let intervals vary in
length if there is reason to construct such a model. We also write

Zijk = z(Sijk) =


0, if Sijk =

(
−∞, 1

2

]
,

cijk+dijk
2

, if Sijk is bounded,

gk − 1, if Sijk =
(
gk − 3

2
,∞

]
,

for the center point of a finite or half-open, infinite Sijk, whereas z (Sijk) =
Yijk when Yijk = Sijk is perfectly observed. We may write the actually
observed training data set as

Dobs = {(xij, Sij) ; i = 1, . . . , N, j = 1, . . . , ni} .

Finally, we remark on the importance (or lack thereof) of taking rounding
into account. Consider rounding a Gaussian trait Yijk to zijk ∈ Z for some
k, i = 1, . . . , N and j = 1, . . . , ni. Suppose we have no covariates and that
Yijk ∼ N(µk, σ

2
k) for j = 1, . . . , ni. An unbiased estimator of µk is the average

Ȳ , whereas Z̄ is a biased estimator of µk. One can quantify the size of the
bias using σk and the width of the rouding interval w = ησk (Tricker, 1984).
In short, the larger w is relative to σk, the larger our bias will become, as
measured by η. Already when σ = w = 1, the bias of the magnitude 10−9,
and hence, unless we need an extremely precise mean estimate, the bias is
small compared to the estimate uncertainty. Therefore, one might permit
oneself to use rounded values as true values, if the bias is small enough.
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3.1 Estimation

Using Dobs
i = {(xij, Sij); j = 1, . . . , ni}, the posterior distribution of θi be-

comes

p(θi | Dobs
i ) = p(θi)C(Dobs

i )
ni∏
j=1

p(Sij;xij, θi)

= p(θi)C
(
Dobs
i

)
L(θi;Dobs

i ) (9)

where the normalizing factor C
(
Dobs
i

)
is(

C
(
Dobs
i

))−1
=
∫
p(θi)L(Dobs

i ; θi) dθi

and

p(Sij, xij; θi) =

f(Yij;xij, θi), Kij = ∅,∫
Sij
f(yij;xij, θi)

∏
k∈Kij

dyijk, Kij 6= ∅.
(10)

Thus, with perfect observations (Kij = ∅), we evaluate the density of the
trait vector f at the observed point Yij and the model is exactly as specified
in Section 2. Otherwise, we construct a |Kij|-dimensional integral over f and
the contribution to the likelihood is this integral, with the function evaluated
exactly at the remaining perfectly observed traits, if any exist. In particular,
if all traits are imperfectly observed, the integral is q-dimensional. We may
approximate the integral in (10) by

|Sij| f (z(Sij), xij; θi) =
∏
k∈Kij

|Sijk| · f (z(Sij1), . . . , z(Sijq), xij; θi)

whenever all |Sijk| < ∞ for k ∈ Kij, which is the case when employing the
trick with auxiliary categories.

Since p(Sij, xij; θi) potentially contains integrals of a multivariate Gaus-
sian density function and there in general is a lack of a CDF on closed form
for this distribution, the integrals need to be solved numerically. However,
in the case of |Kij| = 1, with Sijk = (cijk, dijk], the integral is univariate and
thus1

p(Sij, xij; θi) = f(Yij(−k), xij; θi)

[
Φ

(
dijk −mijk(yij(−k))

σijk

)
(11)

− Φ

(
cijk −mijk(yij(−k))

σijk

)]
,

1The notation with subscript (−k) means dropping element k from a vector; dropping
row k from a matrix when not being the last index of a matrix; and dropping column k
when being the last index.
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where mijk(yij(−k)) = mijk + Σijk(−k)Σ
−1
ij(−k)(−k)(yij(−k) −mij(−k)) is the con-

ditional expectation of Yijk given that Yij(−k) = (Yijk′ ; k
′ 6= k) = yij(−k),

σijk =
√

Σijkk −Σijk(−k)Σ
−1
ij(−k)(−k)Σij(−k)k is the conditional standard devi-

ation of Yijk given any value of Yij(−k), and Φ is the CDF of the univariate
Gaussian distribution with mean 0 and standard deviation 1.

Using Dobs
i , we find from (9) that the estimators θ

(MAP)
i and θ

(Bayes)
i are

θ
(MAP)
i = arg max

θi

p(θi | Dobs
i )

= arg max
θi

p(θi)L(Dobs
i ; θi)

and

θ
(Bayes)
i = E

[
θi | Dobs

i

]
=
∫
θip(θi | Dobs

i ) dθi

= C
(
Dobs
i

) ∫
θip(θi)L(Dobs

i ; θi) dθi (12)

respectively. Furthermore, redefining Dnew := (x, S) for a new observation
and observing the corresponding set K, leads to the posterior category weights

ωi =
∫∫

S
f(y;x, θi)

∏
k∈K

dyk p(θi | Dobs
i ) dθi

= C(Dobs
i )

∫∫
S
f(y;x, θi)

∏
k∈K

dyk p(θi)L(Dobs
i ; θi) dθi (13)

of this observation.

3.2 Monte Carlo Approximations

The integral over S in (13) is, as mentioned in conjunction with (11), po-
tentially impossible to compute analytically, but could also be well behaved.
We can in theory approximate θ

(Bayes)
i in (12) as in (7) by sampling θi from

p(θi | Dobs) a total of Ri times. However, this entails a large number of
numerical evaluation of integrals, see (9)-(10). Similarly, we may estimate ωi
for 1 ≤ i ≤ N in (13) through

ω̂i =
1

Ri

Ri∑
r=1

∫
S
f(y;x, θir)

∏
k∈K

dyk, (14)

which in addition to previously presented integrals, involves computation
of an integral over S. As an alternative way of computing (12) and (14),
we also present an approach where complete data is sampled, based on the
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obfuscated data, as a step in the Monte Carlo algorithm; the parameters are
sampled as another step in the same algorithm. This allows us to estimate
all θ

(Bayes)
i and ωi under widespread obfuscation, given that we are able to

sample Yi, i = 1, . . . , N . Overall, we want to generate

{θir, Yijkr, 1 ≤ j ≤ ni, k ∈ Kij;Ykr, k ∈ K}Ri

r=1 (15)

from

p(θi|Dobs
i )

ni∏
j=1

f
(
yijKijr | xij, Sij, θi

)
f (yKr, | x, YK{ ; θi)

where θir =
(
βir,Σ

1
ir, . . . ,Σ

A
ir

)
, yijKijr = (yijkr; k ∈ Kij), yKr = (ykr; k ∈ K)

and YK{ = (Yk; k /∈ K). Note that we do not condition on S in the conditional
density of the unobserved traits, as this would introduce a bias in the Monte
Carlo estimate of ωi below.

The details of the specific Gibbs sampling approach we use are presented
in Appendix B. Having generated a sample θi1, . . . , θiRi

, we may compute the
estimated category weights of Dnew as

ω̂i =
1

Ri

Ri∑
r=1

f (YK{ ;x, θir)1{YKr∈×k∈K Sk}, (16)

where YK{ is as above, and YKr = (Ykr; k ∈ K). For every θir, one could
generate many YK and replace the indicator with an average of the indicators
for each sampled YK.

A potentially more efficient method would be to define {yt}Tt=1, where
yt = (yt1, . . . , ytq) with ytK{ = YK{ and ytK ∈×k∈K Sk, in such a way that

{ytk, k ∈ K} is a grid approximation of×k∈K Sk. Then we can estimate ωi
through

ω̂i =

∏
k∈K|Sk|
TRi

Ri∑
r=1

T∑
t=1

f (yt;x, θir) . (17)

If we use the trick with auxiliary categories, we can choose yt uniformly at
random on×k∈K Sk, as long as we do not have any missing observations, since
those are represented with an infinite interval. Thus, (17) is potentially more
effcient than (16), but comes at a cost of generality, since (16) is applicable
to any new observation.

Finally, the Monte Carlo-estimated aposteriori probability of Dnew =
(x, S) being of category i is

p̂i = P̂(I = i | Dnew,Dobs) =
πiω̂i

π1ω̂1 + . . .+ πN ω̂N
(18)

and we may apply (13) with replacement of ωi by (16) for prediction. If (17)
is inserted into (18) we notice that

∏
k∈K|Sk| and T cancel out, and in case

Ri = R for i = 1, . . . , N , also R cancels out.
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4 Classification

4.1 Classification with at least one category as output

Let N = P(N) \ ∅ denote the collection of all non-empty subsets of N. Let
I ∈ N be the true but unknown category of a future observationDnew = (x, Y )
and let Î ∈ N be a classifier with |̂I| ≥ 1. In order to define Î we introduce a
reward function N × N 3 (I, I) 7→ R(I, I) for all I ∈ N and put

Î = arg max
I

E
[
R(I, I) | Dobs,Dnew

]
= arg max

I

N∑
i=1

R(I, i)pi

as the optimal Bayesian classifier, with Dobs = (Dobs
1 , . . . ,Dobs

N ) as the com-
plete training data set and pi is as in (6). So, Î is the set in N that maximizes
the expected posterior reward. Each classifier Î = Î(Dobs,Dnew), viewed as a
function of Dnew, partitions the test data space into decision regions

ΩI = {(x, Y ); Î = I}

for all I ∈ N . This gives rise to an indecisive region

Λ =
⋃
|I|>1

ΩI ,

where we cannot distinguish one particular category with acceptable confi-
dence, only eliminate some of the categories with low degree of belief.

There is considerable freedom in choosing the reward function R and we
will examine two particular choices. Let

R(I, I) =

0; I /∈ I
1/|I|; I ∈ I

which has expected posterior reward

E
[
R(I, I) | Dobs,Dnew

]
=

1

|I|
∑
i∈I

pi

and optimal classifier

Î = {(N)} = arg max
i

πiωi (19)
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where p(1) < . . . < p(N) are the ordered posterior category probabilities. No-
tice that Λ = ∅, i.e. this reward function leads to a consistent, but potentially
overzealous, classifier.

Our second reward function

R(I, I) = 1{I∈I} − ρ|{i ∈ I; i 6= (N)}|p(N)

has expected posterior reward

E
[
R(I, I) | Dobs,Dnew

]
=
∑
i∈I

pi − ρ
(
|I| − 1{(N)∈I}

)
p(N)

which is maximized by

Î =
{
i; pi ≥ ρp(N)

}
=
{
i; πiωi ≥ ρπ(N)ω(N)

}
. (20)

Thus we can tune the conservativeness by picking ρ adequately, as it specifies
an upper bound on the fraction of the largest category probability other
category probabilities may attain and still be excluded. If we choose ρ = 0,
we get the classifier Î = N which means P(I ∈ Î) = 1 for all new observations,
but that prediction method does not provide any information at all. The
other extreme, choosing ρ = 1, leads to Î = {(N)}, and thus our classifier
will be the same as (19). In conclusion, our first classifier is a special case of
the second.

Since (19) and (20) are both functions of ωi, it suffices to estimate ωi
by Monte Carlo according to (8), (16) or (17) in order to get Monte Carlo
estimates of Î and {ΩI , I ∈ N}.

4.2 Classification allowing for empty outputs

If none of the N categories support test data Dnew we would like to include
∅ as a possible output of the classifier Î, so that Î ∈ P(N). To this end,
we denote the posterior weight of (13) as ωi(x, S) in order to emphasize the
dependence on the test data set Dnew = (x, S). Then let

ω̄i(x, S) =
∫∫

p(θi | Dobs
i )p(S′, x; θi) dθidS

′ (21)

where the outer integral is taken over all S′ such that ωi(x, S
′) ≤ ωi(x, S). We

interpret ω̄i(x, S) as a p-value of test data (x, S) for category i, i.e. the prob-
ability of observing an obfuscated trait vector S′ of category i with covariate
vector x, whose posterior weight ωi(x, S

′) is at most as large as that of (x, S).
As such, it is a measure of the degree of outlyingness of Dnew. Then, for a
given value of ρ, we generalize the classifier (20) to

Î =
{
i; πiωi ≥ ρπ(N)ω(N) ∧ πiω̄i ≥ τ

}
(22)
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where ω̄i = ω̄i(x, S). Notice that (20) is as special case of (22) with τ = 0.
For perfectly observed data S′ = Y ′ we may approximate (21) by

ω̄i(x, Y ) ≈
∫
p
(
Y ′, x; θ

(Bayes)
i

)
dY ′ (23)

where the integral is taken with respect to all Y ′ such that ωi(x, Y
′) ≤

ωi(x, Y ). Since
Y | x, θi ∼ N(xBi,Σ

α
i ) (24)

and using the same type of approximation as in (23), it follows from (24)
that

ωi(x, Y ) ≈ 1

(2π)q/2 det
(
Σ̂
α(x)
i

)1/2 · (25)

· exp
{
−1

2
(Y − xB̂i)

(
Σ̂
α(x)
i

)−1
(Y − xB̂i)

>
}

where B̂i and Σ̂
α(x)
i refer to the Bayes estimators of respective parameter.

Now, (Y − xB̂i)
(
Σ̂
α(x)
i

)−1
(Y − xB̂i)

> has a χ2(q)-distribution with distri-

bution function F , say. Therefore (23)-(25) imply

ω̄(x, Y ) ≈ 1− F
(

(Y − xB̂i)
(
Σ̂
α(x)
i

)−1
(Y − xB̂i)

>
)

which indeed can be interpreted as a p-value for (x, Y ) to be an outlier, with
the currently chosen τ .

4.3 Choosing ρ and τ

Choosing ρ is intentionally a subjective matter. In the case of a known cost
of misclassifications, and a known cost of having a large indecisive region,
one could certainly compute which ρ to use, to have the minimal expected
cost. However, many applications are more vague, where the user may only
believe that it is worse to misclassify, i.e. predict a category which the
observation is not, than to not be precise, i.e. only rule out categories with
sufficiently low degrees of belief, without being able to put a value on the
cost. Together with the choice of prior category probabilitis (π1, . . . , πN) a
user may completely accomodate the prior beliefs about the classification
problem at hand. Indeed, (π1, . . . , πN) captures the apriori belief about how
expected an observation from each category is relative the others and ρ is
intended to represent the user’s idea of the cost of misclassification, and
finally τ represents how much outlyingness we accept without losing trust in
out classifier.
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A potential risk for misclassification is observing a subject of a category
not even considered for classification. To allow for mitigation of this, we
introduced τ as a cut-off value for the trait distributions. Indeed, the value
of τ determines how large deviations in trait measurements we accept without
becoming suspicious that we actually observe a subject from an unconsidered
category. Choosing τ = 0 allows us to classify any point in the whole trait
space, i.e. we believe the parametrization is perfect and that no unconsidered
categories can occur.

Finally, we remark that the parameter ρ could be used as an interesting
measure of how managable a classification problem is. For any classification
problem, we may compute the highest ρ-value for which I ∈ Î in ψ% of our
test cases. A more managable problem would then be one where the ρ-value
is higher. It can be used as a model selection tool too; for any combination
of traits and/or covariates, we compute the highest ρ-value for which I ∈ Î in
ψ% of our test cases, and then choose a model where ρ is acceptably high,
and the model is as parsimonious as possible.

5 Model selection using cross-validation

We will present an approach to model selection using κ-fold cross-validation.
It can be used to select covariates and/or traits to use from a larger set,
based on predictive performance and parsimonity of the model.

The idea of κ-fold cross-validation is well established within the scientific
community, and used for a very wide range of model families, see e.g. Wood
(2017, p. 256). Choosing κ = ni for category i is the basic form of cross-
validation, but it is computationally expensive, since one has to fit as many
models

∑N
i=1 ni as there are observations. Since the method under study

is already quite computationally intensive, in particular under widespread
obfuscation, large q and large data sets, we recommend using κ-fold cross-
validation with κ a bit smaller. An interesting conference proceeding by
Kohavi (1995) examines cross-validation in general when choosing between
classifiers. The author concludes that κ < ni is generally preferred when
picking the best classifier using cross-validation.

To perform κ-fold cross-validation in general for our kind of models, we
begin by choosing κ ∈ Z+ independently of i. Then create fold l for species i
by choosing uniformly at random a set Jil ⊂ {1, . . . , ni} comprising ni/κ or
ni/κ+ 1 observations of Di, the training data at hand for category i. Fit the
model using training data set Di(−l) = D \ {(xij, Yij) ; j ∈ Jil} and predict
the category of all observations in Jil; denote the classification of individual
j ∈ Jil of species i by Î(−il)ij. This procedure is repeated for Nκ test data
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sets D(−il), when i = 1, . . . , N and l = 1, . . . , κ. To assess the predictive
performance of the M models under consideration, let wi > 0 be weights
such that

∑N
i=1wi = 1, and compute

Rcv
m =

N∑
i=1

wi
ni

κ∑
l=1

∑
j∈Jil

R(̂I(−il)ij, i), (26)

using the reward function that corresponds to a prespecified value of ρ, for
m = 1, . . . ,M , and save the values. One could e.g. use the weights wi =
ni/

∑N
a=1 na or wi = 1/N , depending on whether it is more valuable to be

able to predict one category or not. Having computed {Rcv
m ;m = 1, . . . ,M},

the best classifier is

m? = arg max
m

(Rcv
1 , . . . , R

cv
M) .

When having computed Rcv
m , for m = 1, . . . ,M , one has the possibility to

choose a more parsimonious model that performes almost as well as m?,
under the usual principles of simplicity against predictive performance.

6 Simulation study of trait correlation effects

To orient ourselves regarding the effect of correlated traits, we performed the
following study. First, we generated a vector of 100 correlation values, evenly
spaced on (−0.99, 0.99). For each correlation value, we generated K = 10
parameter sets with N = 4,

∑N
i=1 ni = 400, p = 1, q = 2 and A = 2. The

category of each observation was chosen uniformly at random on N. For both
the covariance classes, the correlation between Yij1 and Yij2 was set to the
current value from the 100 different correlation values, whereas the variance
was set to 2 for both traits in the first covariance class and to 1 for both traits
in the second covariance class. We imposed these values on the covariance
matrices for all N categories. Moreover, the regression parameter matrices
Bi = vec−1(βi) are drawn from the prior distributions

βi ∼ N (β0i, I4) ,

β01 = (10, 1, 10,−2)>,

β02 = (10, 1, 13,−2)>,

β03 = (13, 1, 13,−2)>,

β04 = (13, 1, 10,−2)>

and set to the same value across correlations, for each of the K parameter
sets. Then, for each parameter set, we generated a test data set, according to
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the specified parameter values. Further, we generated another L = 10 train-
ing data sets for each parameter set, and fitted models to each of the L data
sets. These fits were then evaluated on the test data set (i.e. the category
of each observation in the test data set was predicted, given covariates and
trait values) for the current estimated parameter values, and the reward was
computed according to

R̄ =
1

KL

K∑
k=1

L∑
l=1

R̄kl (27)

for both reward functions. Here,

R̄kl =
1∑N
i=1 ni

N∑
i=1

nijk∑
j=1

R(̂Iijkl, i)

where Îijkl is the predicted category of the j:th among all nijk observations of
category i in test data set k, based on estimates from training data set l. The
interpretation of R̄ is thus, when picking ρ = 1 and τ = 0, the probability
of classifying correctly, i.e. omitting all categories i from Î· except the true
category I. Based on the simulation study underlying Figure 1 (a), we con-
clude that correlation between traits has a small effect on the performance
of the classifier. When fitting a simple linear regression model with R̄ as
response and the absolute value of the correlation as explanatory variable,
the slope is statistically significant; E

[
R̄
]

increases with the absolute value

of the correlation, with about 0.001 units of R̄ per 0.1 correlation units. We
conclude that the effect of correlation of traits is very small on the predictive
performance.

We also did a study with all parameters as before, but for 14 correlation
values evenly spaced on (−0.99, 0.99), K = 100 and L = 10. The correspond-
ing plot is in Figure 1 (b). Most noticable is the lower variance in reward
between correlation values, which essentially is due to a smoothing effect by
increasing K. Recalling (27) we notice that as K →∞, Var(R̄)→ 0 by the
law of large numbers. No statistically significant effect of |Cor(Y1, Y2)| on

E
[
R̄
]

was distinguishable.

7 A real data example

We examplify usage of the presented model on trait based species identifi-
cation of four morphologically similar warblers in the Acrocephalus genus;
Eurasian Reed Warbler (Acrocephalus scirpaceus), Marsh Warbler (Acro-
cephalus palustris), Blyth’s Reed Warbler (Acrocephalus dumetorum) and
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(a) Average reward for 100 different correlation values, with K = 10, L = 10.
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(b) Average reward for 14 different correlation values, with K = 100, L = 10.

Figure 1: Although the plots do not reveal it, we detected a slight positive
correlation between |Cor(Y1, Y2)|, and R̄ for the simulation in subplot (a),
meaning that classification is a little easier using correlated traits.
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Paddyfield Warbler (Acrocephalus agricola). This problem has been ap-
proached before by Walinder et al. (1988) and Malmhagen et al. (2013), at
least partially using the same data, but in statistically much less rigourous
ways.

A row xij = (1, xij1) of the design matrix Xi includes as second entry
a binary age (levels are juvenile and adult), thus p = 1. Traits are wing
length rounded to millimeters, second primary notch length rounded to half
millimeters and notch-wing position, which is ordered categorical with g3 =
18 levels, making q = 3. For those with rusty bird topography, these are
all measurements of different parts of the wings. Since all measurements
are rounded or ordered categorical, we have no complete observations, only
various truncated observations. Enumeration of individuals within species is
according to order of appearance.

We let the covariance matrices Σij depend on j through our only covariate
age, writing Σjuv

i and Σad
i for juveniles and adults respectively. Since age is a

binary covariate, we have two different covariance matrices for each species.
It can be noted that in this specific case, it would be equivalent to model
juveniles and adults separately with N = 8 and p = 0, rather than N = 4
and p = 1. Our general presentation still allows us to handle this with
N = 4 categories, as it is a special case of when there are several (A = 2)
covariance classes with common regression parameters. We impose the prior
distributions

Σjuv
i ,Σad

i
i.i.d.∼ IW (ν0,V0)

βi ∼ N
(
vec(Bi0), Iq ⊗Σ−1B

)
πi =

1

4
, i = 1, . . . , 4

on βi, Σjuv
i and Σad

i , for i = 1, . . . , 4, with the parameter values given in
Appendix C. In short, the prior is somewhat informative for categories that
have few observations.

Implementing the model in R (R Core Team, 2018) and generating sam-
ples from the posterior with the described blockwise Gibbs sampling algo-
rithm, we focus on presenting the decision regions here, whereas the parame-
ter estimates can be found in Appendix C. Since we have a q = 3-dimensional
trait space, we can visualize the decision regions given by the two considered
decision rules, including the indecisive region Λ. For this application, the
trait measurements are always obfuscated in some way, so we discretize the
trait space when visualizing the decision regions. We also present the decision
regions for the cases when some traits are unobserved, to stress the usability
of the method also under incomplete data. One can also straightforwardly
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compute decsion regions for when covariates are unobserved, but we omit it
here.

(a) Adult birds. (b) Juvenile birds.

Figure 2: Decision regions when observing all three traits of the Acrocephalus
warblers, using ρ = 0.1 and τ = 0.001. The indecisive region Λ is less trans-
parent, and colored according to which species one is unsure about. The
probability of observing an individual that falls in the indecisive region is
0.0797 for (a) and 0.0795 for (b). The decision region of Paddyfield Warbler
partially engulfs Blyth’s Reed Warbler for adult birds, reflecting the large
uncertainty in the parameter estimates for adult Paddyfield Warblers. No-
tice also that we introduce unnamed categories for notch position, as the
predictive posterior distribution requires this.
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(a) Adult birds. (b) Juvenile birds.

Figure 3: Decision regions when only observing wing and notch length.

Summarizing Figure 2, we have a relatively small indecisive region, even
for rather low values of ρ. In particular, the indecisive region is generally
located in low-density areas of the trait space, meaning that it is overall
unlikely to observe any subject with traits that make a single category dis-
tinguishable. Moreover, the indecisive region rule out two categories in every
case. Hence, the classifier is quite effective.
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Figure 4: Decision regions when only observing wing length and notch posi-
tion.
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Figure 5: Decision regions when only observing notch length and notch po-
sition.

Choosing ρ = 1 and τ = 0, i.e. doing traditional classification with
|̂I| = 1, we estimated the probabilities of classifying wrongly as

P̂
(
Î 6= I | x1 = 0

)
= 0.0251, P̂

(
Î 6= I | x1 = 1

)
= 0.0262.

Considering the case of ρ = 0.1 and τ = 0.001, we find that

P̂
(
I /∈ Î | x1 = 0

)
= 0.0065, P̂

(
I /∈ Î | x1 = 1

)
= 0.0068

and that

P̂
(
|̂I| > 1 | x1 = 0

)
= 0.0795, P̂

(
|̂I| > 1 | x1 = 1

)
= 0.0797.

Overall, this means that by introducing the classification rule using ρ and
τ , we have managed a 83.5% decrease in probability of excluding the true
species from the set of possible species, at the cost of in 7.91% of the cases
not pinpointing one species, for juvenile birds. For adult birds, we manage
a 77.7% decrease at the cost of being indecisive in 7.93% of the cases. In
all considered cases, we at most choose two species as members of Î, when
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Figure 6: In (a) and (b), decision regions when only wing length is observed
are shown; in (c) and (d) decision regions when only notch length is observed
are shown; and in (e) and (f) decision regions when only notch position is
observed are shown. In all plots, kernel density estimates of each aposteriori
trait distribution for each species is shown with black lines of different types;
it highlights the larger degree of separation in the traits wing length and
notch position.

observing all three traits. Further lowering ρ trades larger indecisive regions
for even lower probabilities of excluding the correct species, whereas lowering
τ restricts the part of the trait space we feel confident classifying in.

The estimated probabilities presented above hold true when observing
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birds of each species with equal probability. Without going into details, we
did some quick tests of the performance of the classifier under very skewed
prior probability distributions, e.g. π = (1− π2 − π′, π2, π′/2, π′/2) with π′

small. The decision regions became very similar, indicating that our classifier
is very insensitive to prior category probabilities.

Subclassifiers can straightforwardly be derived. If one e.g. observes only
birds of species i = 1, 2 with equal probability,

P̂
(
|̂I| > 1 | x1 = 0, I ∈ {1, 2}

)
= 0.0487

P̂
(
|̂I| > 1 | x1 = 1, I ∈ {1, 2}

)
= 0.0118

P̂
(
I /∈ Î | x1 = 0, I ∈ {1, 2}

)
= 0.0044

P̂
(
I /∈ Î | x1 = 1, I ∈ {1, 2}

)
= 0.0018.

In summary, the probability of being indecisive P(Y ∈ Λ) and the proba-
bility of being wrong P(I /∈ Î) is lower than overall for this pair of species,
indicating that most of the probability mass of Λ is in other regions than the
overlap of these two species’ densities. One may compute probabilities for
any combination of species, and for any apriori distribution over categories.

One of the species, i = 4 (Paddyfield Warbler), has considerably less data
available than the other species (n4 = 31, njuv4 = 19 and nad4 = 12), which is
the main reason for this species to seemingly have greater variation in its trait
values than the other species, as parameter uncertainty is large. Graphically,
one can notice in every Figure concerning adult birds, that the region colored
in this species’ color is elongated and larger than the other species. It also
causes Λ to increase in size, therfore increasing the probability of observing
a bird that we cannot determine the species of by these traits. One could
mitigate this by choosing less vague priors for the covariance matrices Σjuv

4

and Σad
4 , if one has apriori knowledge to use in such a construction, or collect

more data on this species.

8 Discussion

Throughout this paper, we have set up and analysed a classification problem
where classification is aided by two sets of observations for each subject;
its trait vector Y and its covariate vector x, where x is informative about
the interpretation of Y . Since the trait values often are of various kinds
and obfuscated, we set up a uniform framework for these situations using a
latent multivariate Gaussian distribution. To formalize the classification, we
introduce reward functions and two parameters ρ ∈ [0, 1] and τ ∈ [0, 1). The
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choice of ρ affects the size and location of the indecisive region Λ, which is
everywhere in observation space where our classifer does not have sufficient
information to rule out all but one category, whereas τ puts a limit on how
much we allow an observation to deviate and still accept classification. The
effect of correlation between traits and the loss of information through typical
obfuscations are illustrated through a simulation study and an example of a
real world situation where this procedure is applicable.

Overall, there are two main usages of the method presented in this paper.
First, one may use a fitted model to classify new observations with statistical
rigour. Secondly, one may derive distinguishing characteristics of the cate-
gories considered. An example of the usefulness of the second case would be
an ornithologist with a set of birds of known taxa, who doesn’t know what
morphologically separates these taxa. Using this method, she may extract
for which trait measurements there is a high probability of certain taxa and
thereby create (and write down) an identification key. Further, if there are
too many combinations of trait levels to memorize, the model may perform
the classification in an automized way. This highlights the mathematical
equivalence of the two activities.

An adjustment that is conceptually critical but often negligable numer-
ically, is to correct all latent Gaussian distributions by truncating them to
only positive values for some traits. The trait wing length in our real world
example has to be positive by definition, and hence we should adjust our
Gaussian distribution accordingly. However, considering the parameter esti-
mates (see Appendix C), it would make a practically undetectable difference
in our example. For other cases, it could indeed be of larger importance.

The reliance on training data with known categories can potentially be
relaxed, or at least partially relaxed. To take a step towards unsupervised
learning, one would need to add a clustering layer to the model. Potentially,
one could specify the number of clusters to identify, specify a range of integers
within which the number of clusters should be located or leave it completely
open. This would allow the method to be used in situations where it is not
known how to classify observations at all, and thus investigate wheter there
is support for several categories in a given data set.

Modifying the method slightly in order to handle repeated measurements
is a straightforward task. The benefit with repeated measurements of the
traits is a better understanding of the magnitude of the measurement er-
ror, and greater confidence in the average as being close to the true value.
One could then integrate the number of measurements into the classification
method, with direct effects on the size of the indecisive region.

As mentioned in Section 2, we assume independence between the regres-
sion parameters within different categories. This allows the effect of a co-
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variate to vary between the categories, as opposed to forcing the same effect
of a covariate across categories. However, in Appendix C, one may find the
posterior means of our covariate effects in our real data example of Section 7,
and notice that the effect is similar for some traits across categories, and even
across traits to some extent. Arguably, this indicates that there is a general
effect of our covariate, and therefore we could construct a model that allows
for such a general effect, although we did not feel confident in assuming this
apriori in our example.
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A The posterior distribution

We start by formulating a Lemma which will be useful in the proof of Propo-
sition 1. Denote an identity matrix of rank n with In.

Lemma 1. Let Z be a block-diagonal nq × (p + 1)q matrix, where there are
q blocks X, which are n × (p + 1)-matrices, along the diagonal. Let Σ be a
symmetric, positive definite q × q-matrix. Then it holds that

Z> (Σ⊗ In)−1 Z =
(
Z (Σ⊗ Ip+1)

−1
)>

Z.

Proof. We prove the lemma by iterated use of the mixed-product property
of the tensor product. Since Z = (Iq ⊗X), the left hand side becomes

(Iq ⊗X)> (Σ⊗ In)−1 (Iq ⊗X) =
(
Iq ⊗X>

) (
Σ−1 ⊗ In

)
(Iq ⊗X)

=
(
IqΣ

−1 ⊗X>In
)

(Iq ⊗X)

=
(
Σ−1 ⊗X>

)
(Iq ⊗X)

= Σ−1Iq ⊗X>X

= Σ−1 ⊗X>X
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and the right hand side becomes(
(Iq ⊗X) (Σ⊗ Ip+1)

−1
)>

(Iq ⊗X) =
(
IqΣ

−1 ⊗XIp+1

)>
(Iq ⊗X)

=
(
Σ−1 ⊗X

)>
(Iq ⊗X)

{by symmetry of Σ} =
(
Σ−1 ⊗X>

)
(Iq ⊗X)

= Σ−1Iq ⊗X>X

= Σ−1 ⊗X>X

which proves the lemma already in the third equalities.

The simplification of the expressions will be used in the forthcoming
Proposition 1, but also noticable is that the RHS of the equality can compu-
tationally be considerably faster when implementing this method, than the
LHS, which is the canonical parametrization.

In Rossi et al. (2012) we can find the posterior distribution of the regres-
sion parameter vector β in a multivariate multiple regression with only one
covariance class. Since we have A covariance classes, we generalize this result
slightly. All notation is as in the main paper, but we omit the index i since
we consider a general case. To breifly recapitulate, we have n observations
of q traits explained by p covariates, contained in Y and X respectively. We
construct U and Z as in (2) and (3) respectively. The observations are dis-
tributed over A covariance classes and we denote observations belonging to
covariance class α by adding a superscript to X, Y, Z or U accordingly. Our
regression parameters are included in the (p+1)×q matrix B, which we write
in vector form as β = vec(B). Assuming a prior on each of the columns of

B, and letting it be N
(
(γ1, . . . , γp+1)

>
k = βk,ΣB

)
for k = 1, . . . , q, we obtain

a prior N
((
β>1 , . . . , β

>
q

)>
= β0, Iq ⊗ΣB = Σβ

)
on β. Each observation of a

trait vector y with covariate vector x is assumed to follow the distribution
N(xB,Σα(x)), i.e. the covariance class is determined by the covariate.

Proposition 1. Denote the parameter vector of a Bayesian multivariate
multiple regression model with A covariance classes by θ =

(
β,Σ1, . . . ,ΣA

)
,

where β is the regression parameter vector and Σ1, . . . ,ΣA are the A co-
variance matrices. Let the prior of θ be p(θ) = p(β)

∏A
α=1 p(Σ

α), where
β ∼ N(β0,Σβ) and Σα ∼ IW (ν0,V0) for α = 1, . . . , A. Then the posterior
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distribution of β | U,Z,Σ1, . . . ,Σα is N(β̃, Σ̃), where

Σ̃ =

[
Σ−1β +

A∑
α=1

(Σα)−1 ⊗ (Xα)>Xα

]−1

β̃ = Σ̃×
[
Σ−1β β0 +

A∑
α=1

(
(Σα)−1 ⊗ (Xα)>

)
Uα

]
.

Proof. By applying Bayes’ theorem

p
(
β | U,Z,Σ1, . . .ΣA

)
∝ exp

{
−1

2
(β − β0)>Σ−1β (β − β0)

}
·

·
A∏
α=1

exp
{
−1

2
(Uα − Zαβ)> (Σα ⊗ Ip+1)

−1 (Uα − Zαβ)
}

= exp
{
−1

2
βCβ + βD

}
where, as by the proof of Lemma 1,

C = Σ−1β +
A∑
α=1

(
Zα(Σα ⊗ In)−1

)>
Zα

= Σ−1β +
A∑
α=1

(Σα)−1 ⊗ (Xα)>Xα

and

D = Σ−1β β0 +
A∑
α=1

(Zα)>(Σα ⊗ In)−1Uα

= Σ−1β β0 +
A∑
α=1

(
(Σα)−1 ⊗ (Xα)>

)
Uα.

Consequently,
β | U,Z,Σ1, . . . ,ΣA ∼ N(β̃, Σ̃)

where

β̃ = C−1D

=

[
Σ−1β +

A∑
α=1

(Σα)−1 ⊗ (Xα)>Xα

]−1
×
[
Σ−1β β0 +

A∑
α=1

(
(Σα)−1 ⊗ (Xα)>

)
Uα

]

and

Σ̃ = C−1 =

[
Σ−1β +

A∑
α=1

(Σα)−1 ⊗ (Xα)>Xα

]−1
.
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Note how the covariance matrix Σ̃ is a multivariate version of a weighted
average of the prior covariance matrix Σβ and the other A covariance matri-
ces. A considerable gain in computational speed is achieved by reducing the
matrix expressions from their original form to the one presented in Lemma
1.

B Gibbs sampling details

The focus of this section is Procedure 1, in which we describe in detail how to
generate a sample of size Ri from the posterior distribution of the parameter
vector θi, using blockwise Gibbs sampling. It describes the general case, i.e.
when we have obfuscated trait measurements in Dobs. For the case with
perfectly observed trait measurements, we skip the sampling of Yi and use
the observed values instead, otherwise the procedure is the same. Applying
the procedure to data from each category i will yield all the samples we need
from the posterior distribution to perform classification.

In Procedure 1, TN(µ,Σ, S) refers to the truncated Gaussian distribution,
where µ is the mean vector, Σ is the covariance matrix and S describes the
truncation limits. Simulating from this distribution can be done exactly
using rejection sampling, or approximately using an inner Gibbs algorithm.
Depending on the case, either approach can be preferred, as the tradeoff is
exact sampling versus efficiency. Also, more advanced algorithms such as
Importance Sampling-techniques can be used in this step.
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Procedure 1 The Monte Carlo approach to sampling the parameters’ pos-
terior distirbution under obfuscation.
Input: Dobs

Output: A sample of size Ri from the posterior distribution of θi.
for α = 1→ A do

draw Σα
i0 ∼ IW (ν0,V0)

end for
draw βi0 ∼ N (βi0,Σβi)

θi0 ←
(
βi0,Σ

1
i0, . . . ,Σ

A
i0

)
for r = 1→ Ri do

for j = 1→ ni do
draw Yij,r−1 | xij, Sij, θi,r−1 ∼ TN (XijBi0,Σij0, Sij)

end for
Ui,r−1 ← vec(Yi,r−1)

draw βir | Ui(r−1),
{
Σα
i(r−1)

}A
α=1
∼ N

(
β̃, Σ̃

)
for α = 1→ A do

draw Σα
ir | Uα

i(r−1),Z
α
i , βir ∼ IW (ν0 + nαi ,V0 + Sαi )

end for
θir ←

(
βir,Σ

1
ir, . . . ,Σ

A
ir

)
save θir

end for
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Table 1: Prior parameter values for the real world data example.

ν0 = 10 V0 =

15 5 5
5 15 5
5 5 15

 ΣB =

(
3 0
0 1

)

B10 =

(
66 11 108
1 1 1

)
B20 =

(
70 9.5 105
1 0.5 1

)
B30 =

(
57 12.5 115
1 1 1

)
B40 =

(
62 12.5 113
1 1 1

)
.

C Results of Acrocephalus analysis

Section 7 of the paper contains an example of using our method on a real world data set. The parameters’ of the
prior distributions used are in Table 1, the mean of the parameters posterior distributions are in Table 2, and some
quantiles of the parameters’ posterior distributions are in Table 3.
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Table 2: Monte Carlo estimated means of parameter posterior distributions.

B1 =

(
66.70 11.06 107.99
0.73 1.39 2.29

)
B2 =

(
70.05 9.45 104.96
0.69 0.61 0.67

)
B3 =

(
57.27 12.66 115.31
0.37 1.16 0.82

)
B4 =

(
62.26 12.49 113.53
0.03 1.13 1.03

)

Σjuv
1 =

2.35 0.63 0.07
0.63 0.63 0.52
0.07 0.52 1.48

 Σjuv
2 =

 2.19 0.40 −0.05
0.40 0.44 0.19
−0.05 0.19 0.80

 Σjuv
3 =

1.99 0.41 0.18
0.41 0.71 0.17
0.18 0.17 0.92

 Σjuv
4 =

 2.29 0.26 −0.42
0.26 0.87 0.29
−0.42 0.29 1.38


Σad

1 =

2.67 0.54 0.46
0.54 0.63 0.49
0.46 0.49 1.65

 Σad
2 =

2.51 0.49 0.21
0.49 0.53 0.16
0.21 0.16 0.78

 Σad
3 =

1.89 0.60 0.11
0.60 0.85 0.32
0.11 0.32 1.22

 Σad
4 =

4.63 0.94 0.89
0.94 1.45 0.58
0.89 0.58 1.33


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Table 3: Quantiles of the posterior distribution for the parameters of the Acrocephalus model. The parameters are
indexed as (·)imk, where i = 1, . . . , N , m = 0, . . . , p and k = 1, . . . , q, with N = 4, p = 1 and q = 3. The order of i is
Eurasian reed warbler, Marsh warbler, Blyth’s reed warbler and Paddyfield warbler ; the order of m is intercept then
age; and the order of k is wing length, notch length then notch position.

Quantile B101 B111 B102 B112 B103 B113 Σ
juv
111 Σ

juv
112 Σ

juv
113 Σ

juv
122 Σ

juv
123 Σ

juv
133 Σad

111 Σad
112 Σad

113 Σad
122 Σad

123 Σad
133

2.5% 66.69 0.70 10.99 1.27 107.87 1.95 2.31 0.55 -0.11 0.57 0.42 1.28 2.61 0.43 -0.03 0.55 0.35 1.30
50% 66.70 0.73 11.07 1.38 108.00 2.29 2.35 0.63 0.07 0.63 0.52 1.48 2.67 0.54 0.47 0.62 0.47 1.59

97.5% 66.72 0.76 11.13 1.52 108.13 2.56 2.38 0.72 0.23 0.71 0.64 1.66 2.74 0.64 0.90 0.72 0.74 2.35

Quantile B201 B211 B202 B212 B203 B213 Σjuv
211 Σjuv

212 Σjuv
213 Σjuv

222 Σjuv
223 Σjuv

233 Σad
211 Σad

212 Σad
213 Σad

222 Σad
223 Σad

233

2.5% 69.99 0.57 9.42 0.54 104.86 0.39 2.07 0.35 -0.19 0.41 0.13 0.69 2.28 0.40 -0.15 0.47 -0.01 0.50
50% 70.05 0.69 9.45 0.61 104.96 0.66 2.19 0.40 -0.05 0.44 0.19 0.80 2.51 0.49 0.20 0.53 0.16 0.76

97.5% 70.10 0.81 9.48 0.68 105.04 1.00 2.32 0.44 0.08 0.47 0.25 0.92 2.76 0.60 0.62 0.60 0.34 1.16

Quantile B301 B311 B302 B312 B303 B313 Σjuv
311 Σjuv

312 Σjuv
313 Σjuv

322 Σjuv
323 Σjuv

333 Σad
311 Σad

312 Σad
313 Σad

322 Σad
323 Σad

333

2.5% 61.84 -0.48 12.23 0.80 113.23 0.63 1.31 0.08 -0.22 0.47 -0.06 0.60 1.34 0.32 -0.26 0.61 0.10 0.87
50% 62.26 0.03 12.49 1.13 113.53 1.03 1.94 0.39 0.17 0.69 0.16 0.90 1.85 0.59 0.11 0.83 0.32 1.20

97.5% 62.69 0.56 12.75 1.46 113.85 1.43 3.04 0.83 0.63 1.08 0.44 1.37 2.64 0.99 0.47 1.17 0.60 1.71

Quantile B401 B411 B402 B412 B403 B413 Σ
juv
411 Σ

juv
412 Σ

juv
413 Σ

juv
422 Σ

juv
423 Σ

juv
433 Σad

411 Σad
412 Σad

413 Σad
422 Σad

423 Σad
433

2.5% 56.64 -0.74 12.24 0.40 114.80 0.05 1.28 -0.29 -1.34 0.49 -0.10 0.77 2.36 -0.17 -0.17 0.76 -0.01 0.68
50% 57.27 0.36 12.66 1.16 115.32 0.81 2.17 0.24 -0.38 0.83 0.26 1.30 4.32 0.84 0.80 1.35 0.52 1.24

97.5% 57.89 1.47 13.10 1.89 115.83 1.61 4.00 0.92 0.26 1.52 0.83 2.46 9.07 2.55 2.53 2.77 1.50 2.60
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