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Abstract

A simple formula for non-discriminatory insurance pricing is intro-
duced. This formula is based on the assumption that certain individual
(discriminatory) policyholder information is not allowed to be used for
insurance pricing. The suggested procedure can be summarized as
follows: First, we construct a price that is based on all available infor-
mation, including discriminatory information. Thereafter, we average
out the effect of discriminatory information. This averaging out is done
such that discriminatory information can also not be inferred from the
remaining non-discriminatory one, thus, neither allowing for direct nor
for indirect discrimination.

Keywords: Discrimination, differentiation, insurance pricing, individual pol-
icy characteristics, discriminatory covariates, direct discrimination, indirect
discrimination, neural networks, complex algorithmic models, causal infer-
ence, confounding.

1 Introduction

The basic question is as follows: given observed claims of insurance policies
for which we have access to individual policyholder characteristics (e.g. gen-
der), how can we construct an insurance tariff for which we can assure that
it does not discriminate, say, w.r.t. gender? This is a highly relevant ques-
tion, for instance, the current EU legislation requires gender neutral pricing,
see [9]. This question has become even more relevant due to big data and
recent developments in complex algorithmic models because such algorithms
may be able to unfold, e.g., the gender from other detailed individual poli-
cyholder characteristics. For a broader overview on anti-discrimination laws
we refer to Avraham et al. [2].



We aim at developing pricing formulas that shall be devoid of discrimi-
nation, while the insurer is still able to differentiate between policyholders
with respect to non-discriminatory features. We assume that an insurer has
access to policyholder data that can be split into discriminatory (e.g. gen-
der, ethnicity) and non-discriminatory features (e.g. age, smoking habits).
For the purposes of this paper we distinguish between direct and indirect
discrimination by saying that:!

e A pricing model avoids direct discrimination, if none of the discrimi-
natory features is used as a rating factor.

e A pricing model avoids indirect discrimination, if it avoids direct dis-
crimination and, furthermore, the non-discriminatory features are used
in a way that does not allow implicit inference of discriminatory fea-
tures from them.

In this paper we make two key points. First, we demonstrate that avoid-
ing direct discrimination does not necessarily entail avoiding indirect dis-
crimination. Consequently, just ignoring discriminatory features in the cal-
culation of insurance prices does not necessarily yield discrimination-free
prices. Hence, “unawareness” of discriminatory features is not a solution
to our problem. Second, we propose a simple pricing formula that avoids
both direct and indirect discrimination. While the formula only uses non-
discriminatory features as rating factors, it introduces an adjustment, which
requires knowledge of policyholders’ discriminatory features.

These concepts are illustrated in the following simple example, a more
sophisticated version of which is given in Section 6.

Example 1. Assume that you have observed a health insurance product
and obtained the following claim counts (n; ;)i j—o0,1 and claim exposures

(74,4 )ij=0,1:

n;; || woman man row total ri,; || woman man row total
smoker 32 4 36 smoker 133 24 157
non-smoker 28 48 76 non-smoker 131 301 432
column total 60 52 112 olumn total 264 325 589

1We note that the regulatory text [9] provides definitions of direct and indirect discrim-
ination, which to an extent motivate our technical arguments. However, our definitions
are drawn from an actuarial thinking and we do not make any claim about their corre-
spondence to the legal definitions of those terms.



where ¢ = 1 corresponds to “smoker” and j = 1 corresponds to “woman”.
Based on the above contingency tables we may estimate the claim frequencies
Aij by the empirical frequency X” = n;;/7ij. Assume now that gender is
considered a discriminatory characteristic. Thus, in order to avoid direct
discrimination, its explicit influence on the calculated insurance price needs
to be removed. The standard way of doing this is to consider the aggregated

estimators (row sums) Xi,. = Nje/Tie = (Nio+ ni1)/(rio + ri1). This
approach produces, e.g. for smokers,
~ 36
Ao = — = 0.229.
b 17

The estimate Xl,o (and a premium for smokers based on it), thus, can be
produced by completely ignoring policyholders’ gender information. But
one can note that an alternative representation of A o is

Xl,. = lelf”(woman | smoker) + Xl,oﬁ)(man | smoker), (1)

where P refers to the empirical distribution obtained from the data. Hence,
the estimate Xl,- not only contains information about the influence of smok-
ing on producing a claim, but also, via P(gender | smoking habits), about
the propensity of smokers to be female or male. In our case, because smoking
habits substantially differ between genders (a smoker is a woman with prob-
ability 133/157 = 85%, whereas a non-smoker is a woman with probability
131/432 = 30%), it is indeed the case that the above approach implicitly
infers the likely gender from smoking habits. Therefore, indirect discrimi-
nation is present. ]

Literature review. Although an issue of key relevance for actuarial
pricing, relatively little attention has been paid to the issue of discrimination-
free pricing within the actuarial literature. In a discussion of the implications
of the EU gender legislation, it is suggested in Guillén [12] that covariates
highly correlated with gender can be used as proxies by insurance compa-
nies, which from our perspective results in indirect discrimination. Focusing
on the case of mortality pricing, Chen and Vigna [5] criticize the industry
practice of deriving a unisex life table by mixing the life tables for each
gender on the grounds that this does not respect the principles of actuar-
ial fairness, which is to say that the total unisex premiums charged for the
portfolio are not equal to the total premiums charged using gender specific
life tables. They provide alternative approaches without this shortcoming;
note that the discrimination-free price in Section 2 will reproduce the pric-
ing formulas of Chen and Vigna [5]. The implications of unisex pricing on



insurer capital requirements in the context of Solvency Il are examined in
Chen et al. [4], and an ALM approach to unisex pricing is taken in Burszas
et al. [3], where also the concept of “gender mix risk” is discussed. Market
implications of unisex tariffs are discussed in Sass and Seifried [19], see also
De Jong and Ferris [7] for a discussion of adverse selection stemming from
restrictions on risk classification.

The issue of indirect discrimination occurring when using the above men-
tioned “unawareness” approach, see also Definition 2 below, has been dis-
cussed in Pope and Sydnor [18] and Kusner et al. [15]. The procedure for
discrimination-free pricing provided in Pope and Sydnor [18] is the same
as our proposal in Section 2, below, but they do not provide a probabilis-
tic justification for the procedure. Moreover, in Pope and Sydnor [18] the
(critical) issue of a potential bias at the portfolio level and corrections for
this are not addressed. In Aseervatham et al. [1], the method of Pope and
Sydnor [18] is applied in the context of auto insurance pricing, but similarly,
the issue of a bias at the portfolio level is not considered.

Relatively few examples of causal inference applied within an insurance
context are known to the authors. At the renewal of insurance policies, some
insurers seek to estimate policyholder demand elasticity by randomly vary-
ing renewal prices for a subset of policyholders (i.e. a form of a randomized
controlled trial is conducted) and estimating the impact on the probability
of renewal. Once the demand elasticities have been estimated, a profit max-
imizing pricing policy can be established in a practice referred to as price
optimization, see e.g. Krikler et al. [13]. Also within this context, Guelman
and Guillén [11] apply methods from causal inference to estimate demand
elasticity functions from observational data collected by an insurer.

Statement of contribution. This paper makes several contributions.
Firstly, we formally define direct and indirect discrimination, a rigorous
probabilistic account of discrimination-free prices is given and the existence
of these prices is examined. Secondly, we justify the discrimination-free
pricing formula of Section 2 using the tools of causal inference. Thirdly, the
bias correction methodologies of Section 4 are a novel contribution to the
literature. Finally, the discrimination-free pricing procedure is illustrated
using a machine learning algorithm in Section 6.

Organization of the paper. In Section 2 we discuss different insurance
prices which comprises the best-estimate price considering all available infor-
mation, the unawareness price which avoids direct discrimination, and the
discrimination-free price which avoids direct and indirect discrimination.
Moreover, in Subsection 2.3 we give a mathematical definition of indirect
discrimination which is based on a change of probability measure. Special



versions of discrimination-free prices can nicely be interpreted in terms of
causal inference, which describes how to adjust for confounding covariates;
this is discussed in Section 3. Best-estimate prices (in terms of conditional
expectations) naturally lead to an unbiased pricing system on a portfolio
level. Discrimination-free pricing does not necessarily have this property.
This deficiency is going to be analyzed in Section 4. In Section 5 we de-
scribe the implementation of the procedure for calculating discrimination-
free prices. This is verified in more detail in Section 6 based on a longer
numerical illustration. The paper ends with a number of concluding remarks
in Section 7.

2 Discrimination-free pricing

2.1 Definition of discrimination-free prices

We denote by (€2, F,P) the underlying probability space with physical prob-
ability measure P. For a given portfolio of insurance policies, let D de-
note the vector of discriminatory covariates (characteristics, features, ex-
planatory variables) of policyholders, and let X denote the vector of non-
discriminatory covariates. We assume that X and D are random vectors
on (2, F,P); the randomness of these covariate vectors represents variations
between policyholders within a given portfolio. An individual policyholder
is obtained by conditioning on X = x, D = d (which can be interpreted as
choosing an insurance policy at random from the portfolio). For simplicity,
we will denote the marginal and conditional distributions of covariates under
P by X ~P(x), D ~P(d) and (D | X =x) ~ P(d | x), respectively.

A policyholder claim is denoted by the random variable Y. The claim Y
typically depends on (but is not fully determined by) both the discrimina-
tory covariates D and the non-discriminatory ones X. Our aim is to price
such a claim Y, with the resulting price being free from direct as well as in-
direct discrimination, according to the arguments of Section 1. A technical
definition of these concepts will be given in Section 2.3, below.

In the sequel, it will be useful to assume Y, X, D € £2(£, F,P). This as-
sumption is not crucial for defining discrimination-free prices, but will allow
us to give more intuitive interpretations in terms of orthogonal projections
and minimal distances. Our notion of price will be based on conditional
expectations of Y, when conditioning on different subsets of covariates. We
first introduce a number of different prices that are important for the sub-
sequent discussions and derivations.



Definition 2 (best-estimate price). The best-estimate price for Y w.r.t.
(X, D) is defined by
(X, D) :=E[Y | X,D].

Remark 3.

(a) We call the price (X, D) “best-estimate” because it minimizes the £2-
distance of all (X, D)-measurable prices to Y, i.e. u(X, D) is the orthog-
onal projection of Y onto the sub-space generated by (X, D).

(b) In general, the best-estimate price is not discrimination-free, unless we
are in the special case of p(X,D) = u(X).

(c) The best-estimate price is unbiased w.r.t. Y, that is,
= E[Y] = E[u(X,D)];

by the tower property for conditional expectations. Unbiasedness is im-
portant because it indicates that best-estimate prices achieve on average
the correct price level for the portfolio.

As already discussed in Example 1, an initial attempt at achieving a
discrimination-free price arises through simply ignoring discriminatory co-
variates D.

Definition 4 (unawareness price). The unawareness price for Y w.r.t. X
is defined by
u(X) = E[Y | X]. )

Remark 5.

(a) As the price u(X) does not depend explicitly on D, it avoids direct
discrimination. However, in general, the unawareness price will produce
indirect discrimination, as was discussed in Example 1; see also Kusner
et al. [15]. Specifically, we can write the unawareness price as

p(X) = [ p(X,d) dP(d| X). (3)

Indirect discrimination arises because the conditional probability dP(d |

X) enables inference of discriminatory covariates D from non-discriminatory
ones X. Such discrimination is avoided in the special case when D and

X are independent, since then it holds that dP(d | X) = dP(d).



(b) The price p(X) minimizes the £2-distance to Y based solely on X, i.e. it
is the best price w.r.t. information X. At the same time, the price p(X)
also minimizes the £2-distance to (X, D), by a simple application of
the Pythagorean theorem. Note that

114(X) = (X, D)5 = E[Var(u(X, D) | X)],

which intuitively should decrease with increasing dependence between
X and D. Hence, the quality in the approximation of u(X,D) using
1(X) should be good if X essentially is a function of D, i.e., if the
non-discriminatory covariates X allow us to almost perfectly infer the
discriminatory covariates D.

(¢) The unawareness price is unbiased, since

i =E[Y] = E[u(X)].

We now propose a price that is free of both direct and indirect discrim-
ination.

Definition 6 (discrimination-free price). A discrimination-free price for Y’
w.r.t. X is defined by

WX = [ p(X.d) 4P (), (4)

where the distribution P*(d) is defined on the same range as the marginal
distribution of discriminatory factors D ~ P(d).

Remark 7.

(a) The discrimination-free price (4) is obtained by averaging best-estimate
prices over discriminatory covariates, using a (potentially arbitrary)
marginal distribution P*(d), where it is the imposed marginalization
w.r.t. D which is the crucial step (e.g. nothing prevents us from using
P*(D) = P(D)). Given that the price h*(X) does not explicitly depend
on D, it is obviously free from direct discrimination. We argue that the
averaging construction proposed in (4) also removes indirect discrimi-
nation. First, note that while (4) appears similar to (3), there is a key
difference: discrimination-free prices do not in any way depend on the
conditional distribution P(d | X) — hence they do not enable to infer
the discriminatory covariates from the non-discriminatory ones. This
will be further discussed in Section 2.3 and verified in the case study of
Section 6. In the special case of X and D being independent, it follows
that h*(X) = u(X).



(b)

Definition 6 is designed to remove the possible explanatory power that
X may have for D; it does not assume independence between X and D
in the given portfolio. This point will be made more precise in Section
2.3, and in Section 2.4 we discuss existence of discrimination-free prices
as well as alternative interpretations of h*(X).

Definition 6 can also be motivated by arguments from causal inference.
Specifically, formulas like (4) are used to quantify the direct causal effect
of X on Y. Our distribution-free price corresponds to the (expected
value version) of the so-called “back-door” adjustment formula in causal
inference settings, when seeing D as a potential confounder of X; these
ideas will be discussed in more detail in Section 3. Furthermore, formula
(4) using the choice P*(d) = P(d) corresponds precisely to the Partial
Dependence Plot (PDP) introduced by Friedman [10], see also Zhao and
Hastie [20]; in particular, our estimated model approach in Section 5 will
correspond to formula (53) in Friedman [10].

Prices obtained using (4) will in general not be unbiased, since

p=ElY] BN (X)) = [ uxd) dP(@dPG),  (3)
even for the special choice P*(d) = P(d). For that reason, the need
emerges for portfolio level price corrections, which will be discussed in
Section 4.

Note that, given the potential arbitrariness of P*, evaluation of discrimi-
nation-free prices only requires knowledge of the mapping (x,d)
wu(x,d), where u(x,d) may be an (algorithmically derived implicit) re-
gression function. Nevertheless, as pointed out in the previous remark, if
one aims to correct a potential bias of h*(X), it is necessary to consider
(estimate under) the “real-world” probability measure P.

2.2 Choice of weighting distributions for discriminatory co-

variates

From Definition 6 it is clear that the distribution P*(d) can be chosen rather
freely. A simple choice is to set P*(d) = P(d), that is, average in (4) w.r.t. the
marginal distribution of the discriminatory characteristics in the portfolio.
This choice is supported by causal inference (CI) arguments in the settings
of Section 3, below. Therefore, we introduce the special notation for this



choice
RED(X) = /d u(X,d) dP(d). (6)

We illustrate how k(1) (X) is evaluated in the context of Example 1.

Example 8. Recall that in Example 1 we argued that aggregated estima-

~

tors (row sums) \; o are discriminatory because gender may be inferred from
smoking habits. The price h(€1)(X) proposes to remove this effect by replac-
ing the conditional probability P(gender | smoking habits) with P(gender).
This implies that the frequency estimate for smokers, Xl,n should be re-
placed by

Xgil) = A1 P(woman) + A; oP(man)
32 264 4 325

T 133 589 24 589

=0.200 < 0.229 = Aj..

Furthermore, it is useful to consider the extrema of discrimination-free
prices. Consider the following distribution-free prices

(X)) = sup /d w(X,d) dP*(d),

(X)) = inf /d u(X,d) dP*(d).

A (X) and h(-)(X) correspond to the essential supremum and infimum
over d in the range of D, respectively. Thus, for non-discriminatory covari-
ates X = x, this immediately gives us

KOx) < 1), hCD (), u(x) < A (x).

Moreover, for the bias property we get the following relationship
/ 1K) (x) dP(x) < E[h* (X)], 1 < / hH) (x) dP(x).

By definition 2()(x) corresponds to the “worst” (or most “prudent”) price,
and has been discussed in the context of unisex pricing in Chen and Vigna

[5].



Finally, recall that the distribution-free price (4) in general is biased.
An alternative possibility for the choice of P*(d) is to additionally require
unbiasedness in (5). In the simple case of a binary discriminatory covariate
like gender in Example 8, this reduces to choosing P*(woman) such that we
obtain an identity in (5). A more general construction of unbiased prices
via choices of P*(d) is presented in Section 4, below.

A special case corresponds to an additive best-estimate price, in the sense
that u(X,D) = p1(X) + p2(D). Then, the simple choice P*(d) = P(d) is

appealing, as it provides an unbiased price. Note that
WD) = [ n(X) dP(d) + [ jra(d) dP(d) = i (X) + Elua(D))

which implies

E[h“D(X)] = E[m (X)] + E[ua(D)] = E[u(X, D)] = p.

2.3 Revisiting direct and indirect discrimination

In this section, following the development of our ideas so far, we provide more
technical definitions of prices that avoid direct and indirect discrimination.?

Choose an arbitrary probability measure P* on the measurable space
(9, F) such that Y € LY(Q, F,P*). Choose a (sub-)vector Z of the covariates
(X, D) and define the (P*,Z)-conditional-expectation price by

W (Z) = EY | 2,

where [E* denotes the expectation under P*.

Definition 9. A price avoids direct discrimination, if it can be written as
i (Z) = E[Y | Z),

where Z is o(X)-measurable, and where the expectation is taken w.r.t. a
probability measure P* on (Q, F) such that Y € L1(Q, F,P*).

Remark 10.

(a) Definition 9 says that a price avoids direct discrimination if it can be
written as a measurable function of the non-discriminatory covariates X.
For Z = X we receive maximal use of non-discriminatory information
(relative to P*), therefore, we typically work with Z = X.

%(Fast) readers not familiar with changes of probability measures may skip this section.

10



(b)

(c)

The choice P* = P (and Z = X) provides the unawareness price u(X)
of Definition 4 which, thus, avoids direct discrimination.

Importantly, under the choice P* = P, the unawareness price p(X) can
be calculated without explicit knowledge of (X, D) — hence it does not
require collection of discriminatory policyholder information. This also
applies if we need to estimate p(X) from data, see (17) below.

Note that by using standard Radon-Nikodym arguments (assuming ex-
istence of relevant quantities), Definition 9 can be re-written according

to
p(Z) =E[Y™ | Z],

where Y* = YdP*(Y | Z)/dP(Y | Z). That is, the use of P* will in
general correspond to using another actuarial pricing principle than the
fair (pure risk premium) pricing principle under P. Another observation,
which is a direct consequence of the above, relating to a potential bias,
is that

E[u*(2)] = E[E[Y* | Z]] = E[Y"].

These ideas will not be pursued further other than that we will give
an example when P* is chosen such that E[Y] = E[Y*], where it is
possible to interpret Y* in terms of a certain type of risk-adjustment,
see Section 4.

Now, indirect discrimination can be defined.

Definition 11. A price p*(Z) that avoids direct discrimination is said to
avoid indirect discrimination if Z and D are independent under P*.

Independence under P* effects the decoupling of discriminatory covari-

ates from non-discriminatory ones, for specific policyholders. Thus, accord-
ing to Definition 11, a price that avoids indirect discrimination satisfies

W)= [ p(Z.d) (] 2) = [ () P (@), (7)

where p*(Z,d) = E*[Y | Z,D = d].

Remark 12.

(a)

It is important to note that the independence in Definition 11 is an
artifice of the introduced probability measure P* under which insurance
is priced and does not generally reflect the actual observed dependence
between X and D.

11



(b)

For Z = X, the calculation that avoids indirect discrimination is based
on the knowledge of p*(X,D), see (7) — hence it requires collection
of discriminatory policyholder information. In fact, one of the most
critical problems in practice is that discriminatory information is of-
ten incomplete, e.g. about ethnicity, which typically results in indirect
discrimination.

In statistical applications we usually use the conditional probability
measure P(y | X, D) to model the claim Y, given the covariates (X, D).
The reason for this choice is that Y, given (X, D), is observed under the
real world measure IP, which allows for direct estimation of the regression
function, see also Section 5 below,

(x,d) — p(x,d).

We could even insist on the measure choice P(y | X, D) for the claim Y,
given (X, D), because it implies that we maintain the (causal) structure
of how the covariates impact the response. This then motivates the
choice

P*(y,x,d) =P(y | X =x,D =d) P*(x) P*(d),

for Z = X in Definition 11, which in view of (7) results in the discrimi-
nation-free price

pX) = [ pX,d) AP | X) = [ (X, d) d (@) = 1 (X).

Thus, the discrimination-free price of Definition 6 does neither allow for
direct nor for indirect discrimination.

Linking to Remark 7(e), we need to know the real world measure PP
in order to study unbiasedness w.r.t. © = E[Y]. Moreover, the actual
portfolio that we hold is described by Z ~ P(z) which motivates the
choice P*(z) = P(z) for studying unbiasedness. Thus, unbiasedness
under Definition 11 holds if

p=El(@)] = [ i (a.d) 4P (d) dP(a),

We come back to this in Section 4.

12



2.4 Existence of discrimination-free prices

We have not yet discussed existence of discrimination-free prices according to
Definition 6 and the possibility of avoiding indirect discrimination according
to Definition 11. This is done in the present section.

We emphasize that data (and the related statistical models) play a cru-
cial role in discrimination-free considerations:

e Indirect discrimination may be the result of incomplete discriminatory
information, see Remark 12(b).

e Indirect discrimination may be the result of nonexistent or insufficient
information of certain parts of the population.

In this section we discuss the second item which can enter in different ways.
A first one, which is probably less relevant in insurance, is that not all
parts of the population are equally represented in the development of the
statistical model. For instance, there is research in image recognition to
discover malignant melanoma (skin cancer). If this research is mainly based
on images of people with light skin, the corresponding model will likely
fail to discover malignant melanoma for people with dark skin. This is a
form of discrimination resulting from insufficient data of certain parts of the
population.

In the current section we rather discuss nonezxistent data of certain parts
of the population. The meaning and implications of nonexistent data are
going to be discussed in more detail. We start with an example. Assume
that the discriminatory covariates D correspond to gender and the non-
discriminatory ones X to education. Education could be in the ordinal
form “secondary school degree”, “high school degree” or “university degree”,
but information about education could also be received in the following
categorical form “Catholic college degree”, “public college degree” or “girls
college degree”. Per definition the last label “girls college degree” contains
as only gender “female”. This implies that

P(X = girls college degree, D = man) = 0,

thus, the event A = {X = girls college degree, D = man} € F is a null set
w.r.t. P. In many cases, we do not model responses Y on null sets. Therefore,
neither Y on A may be specified in our model nor the conditional expectation
p(girls college degree, man) = E[Y" | A] may be determined. But this implies
that we cannot evaluate the discrimination-free price

h(X) = [ (X, d) dP(a),

13



if P*(d) has positive probability mass on both genders. In the current sit-
uation, the problem may be solved by setting P*(D = woman) = 1 which
gives the discrimination-free price h*(X) = u(X, woman).

If the education information X has an additional level “boys college
degree”, the above solution will not work because we have a second P-null set
B = {X = boys college degree, D = woman} € F which makes it impossible
to choose a distribution P*(d) such that the discrimination-free price h*(X)
is well-defined.

The simple solution to this problem is to drop the education information,
that is, choose a smaller covariate set. This is equivalent to choosing a
true subset Z of X in Definition 11. In practice, we often try to inter- or
extrapolate the model assumptions for Y. This is reasonable if unavailable
information corresponds to ordinary variables (and responses have some
continuity in these covariates). In certain cases it may also be justified
for nominal variables by, for example, postulating a multiplicative influence
structure of covariates, say, women are x% better than men regardless of
the attended college. In our situation such an assumption can be made, but
it cannot be verified because of a missing control group.

Proposition 13. Assume there exists a product measure P*(x)P*(d) on
(Q, F) which is absolutely continuous w.r.t. the probability measure P(x,d)
of the covariates (X,D). Then, there exists a price p*(X) that avoids indi-
rect discrimination.

Proof. Absolute continuity implies that every P(x, d)-null set is also a P* (x)P*(d)-
null set. Therefore, u(X,D) is well-defined on all sets where (X,D) has
positive P*(x)P*(d)-probability mass. Since the latter is a product measure
we can calculate the discrimination-free price h*(X) by integrating p(X, d)
over dP*(d | X) = dP*(d), see also (7). This completes the proof. O

3 Causal inference and discrimination

The purpose of this section is to justify the discrimination-free price of Def-
inition 6 in a causal inference setting. We try to give these arguments in
a pedagogical (though slightly informal) way. For a rigorous treatment we
refer to Pearl [16] and Pearl et al. [17, Ch. 3.1].

The starting point of causal inference is a hypothesis of a potential co-
variate relationship which may be described in terms of a directed graph
®. The directed graph & consists of a set of nodes corresponding to the
characteristics, including the response Y, and directed edges — “arrows” —

14



indicating directions of potential influence between the characteristics (in-
cluding the response Y'). This informal definition can be made precise, but
it is most easily understood by the example given in Figure 1 (lhs).

D

(AN .

X —Y X=x ——Y

Figure 1: (lhs) Causal diagram described by &; (rhs) causal diagram altered
according to the do-operation do(X = x).

The directed graph & in Figure 1 (lhs) is an example of a directed acyclic
graph (DAG), where acyclic means that when following the direction of the
edges, the graph does not contain any loops. For a precise description, see
Pearl et al. [17, Ch. 1.4]. The graphical representation given in Figure 1
(Ihs) corresponds to a situation where the discriminatory characteristics D
may influence both directly on Y, but also indirectly via X. Hence, Figure 1
(lhs) tells us that D is a confounder w.r.t. the effect of X on Y.

Figure 1 (lhs) already captures a large number of realistic insurance pric-
ing situations. For instance, in view of Example 1, we may identify smoking
habits by X and the gender by the discriminatory factors D. Differences
in smoking habits between men and women can be expressed by a directed
edge D — X. There are intrinsic differences between men and women when
it comes to health outcomes (e.g. women cannot get prostate cancer), this
is described by D — Y. Moreover, smoking in itself may cause health prob-
lems X — Y. This situation is exactly covered by the DAG & in Figure 1
(lhs).

We remark that the subsequent causality arguments also hold true for
more general causal diagrams, for instance, if we have additional (unmea-
sured) confounding characteristics U that enter the causal diagram as illus-
trated in Figures 10-12, given in the appendix. For pedagogical reasons, we
restrict ourselves to the causal diagram in Figure 1 (lhs).

Since the directed edges in the DAG & do not act fully deterministically,
and to make probabilistic statements, we need to endow the DAG & with a
probability measure P that describes the randomness involved. This prob-
ability measure P should be Markovian on & which, colloquially speaking,
means that all nodes have independent noisy background variables, see Pearl
et al. [17, Ch. 3.2.1]; for noisy proxy variables we also refer to Kuroki and
Pearl [14]. This Markovian DAG (&, P) leads in our example of Figure 1 to
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the following factorization, see (3.5)-(3.6) in [17],2

P(Y,X,D) =P(Y | X,D) P(X,D)
=P(Y | X,D) P(X | D) P(D). (8)

With this setup in place, one way to approach non-discriminatory pricing
is to require the following:

“Given that a policyholder has the set of characteristics X = x, what is
the expected value of Y, after removing the possible confounding effects
of discriminatory covariates D7’

The idea of the causal (non-confounded) effect* of X on Y can be cap-
tured precisely by a modification of the DAG & given in Figure 1. Specif-
ically, as illustrated on the rhs of Figure 1, remove all directed edges to X
and set the value of X to x. The removal of the directed edge D — X al-
lows us to consider only the (direct) causal effect of X = x on Y. Note that
this operation is different to conditioning. When conditioning on X = x,
the distribution of D is generally affected; but in the modified graph on
the rhs of Figure 1, changes in x do not influence D. This is precisely the
desired effect of removing the ability of inferring discriminatory covariates
from non-discriminatory ones, as was discussed in Remark 12(a) in Section
2. The above intervention of removing all directed edges to X and of fix-
ing X = x is denoted by the so-called do-operator do(X = x), see Pearl
et al. [17, Ch. 3.2.1]. Henceforth, a price that takes into account only the
causal (non-confounded) effect of X on Y can be defined by

E[Y | do(X = x)], (9)

where the probability P(Y | do(X = x)) still needs to be defined.

The do-operation do(X = x) going from the lhs to the rhs in the DAG
& of Figure 1 fulfills the so-called back-door criterion relative to the ordered
pair (X,Y), see Definition 3.3.1 in Pearl et al. [17]. This means that the do-
operation do(X = x) blocks every path between X and Y that contains an

3Formula (8) is nothing else than the Bayes’ rule on the Markovian DAG which more
formally may either be understood in terms of probabilities of events or in terms of con-
ditional distributions.

4For our intended application, the interpretation of “causal” will here be restricted to
the sub-population which chooses to buy insurance cover. No explicit consideration will be
taken w.r.t. which characteristics that will make individuals belong to this sub-population.
However, it is often reasonable to assume that the underlying causal relations should be
the same for the general population and the insured sub-population, although the effects
are not the same.
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arrow into X. Under these properties Theorem 3.3.2 (back-door adjustment)
of Pearl et al. [17] states that the causal effect of X on Y is identifiable in
the Markovian DAG (&, P) and given by the formula

P(Y | do(X = x)) = /dmy |X = x,D = d) dP(d). (10)

The following proposition is an easy consequence of definition (9), the defi-
nition of the best-estimate price u(X, D) and formula (10).

Proposition 14. Assume that the do-operation do(X = x) fulfills the back-
door criterion relative to the ordered pair (X,Y) in the Markovian DAG
(6,P). It holds that

E[Y | do(X = x)] = /d u(x,d) dP(d) = h@D(x),

where h\D(x) is defined by (6).
Remark 15.

(a) Proposition 14 justifies the discrimination-free price h(¢D(X) of equa-
tion (6) under specific Markovian DAG assumptions, and motivates the
choice P*(d) = P(d) in Definition 6. In particular, this discrimination-
free price is obtained by adjusting for possible confounding of D w.r.t.
X, thus, only measuring the direct causal effect of X on Y.

(b) Proposition 14 does not say anything about the quality of the induced
price which, of course, will depend on the specific model being used — it
merely states that there is no confounding, given that the assumptions
of the corollary are fulfilled.

(c) It is possible to extend the covariate relations described by Figure 1 by
including unmeasured characteristics U, see Figures 10 and 11, below.
Furthermore, recall that the ambition is not to obtain an as accurate
attribution of the effect of X as possible (this would be the unawareness
price of Definition 4), but the focus rather is on ascertaining that the
resulting price is devoid of any influence from discriminatory character-
istics. Thus, if it can be argued that the covariate relations described
in Figure 11 (or any subgraph thereof) can be mapped into an actually
observable graph corresponding to that of Figure 12 (or any subgraph
thereof), then Proposition 14 applies again. That is, pricing based on
(6) in the situation described in Figure 12 will be discrimination-free,
but the quality of the induced price may be poor because we do not
account for differences described by U.
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4 Attribution of total portfolio premium to indi-
vidual policies

The difficulty that we still have to deal with is that, in general, a discrimi-
nation-free price has a bias, see (5). This bias needs to be corrected because
otherwise the premium for the entire portfolio may not be at the appropriate
level. There is no canonical way of correcting for this potential bias, the
only requirement is that the bias correction should be discrimination-free
too, which excludes complex cost allocation mechanisms.

The portfolio bias of the P*-discrimination-free price is defined by

B* := pu—E[h*(X)] = E[Y] — /Xd (u(x,d) dP*(d)dP(x).

Simple bias corrections arise from taking rather different positions. An
egalitarian position is taken by distributing the portfolio bias B* uniformly
across the entire portfolio, regardless of any non-discriminatory covariates X.
This motivates the uniformly adjusted P*-discrimination-free price defined
by

%(X) = h"(X) + B*. (11)

Moreover, if we do not consider any covariates (neither discriminatory nor
non-discriminatory ones) we are back in the situation of a homogeneous
situation where we charge the same (constant) premium g to every poli-
cyholder. A drawback of the uniformly adjusted price (11) is that it may
result in negative prices for certain covariate values X.

A different position is to allocate the bias B* by differentiating w.r.t. X
in a still discrimination-free fashion (avoiding any inference of D from X).
A natural way is to allocate the total premium proportionally to h*(X),
resulting in the proportionally adjusted P*-discrimination-free price

*,p R * IJ/

mP(X):=h (X)M .y (12)

In the remainder of this section we discuss a more sophisticated approach
which chooses the distribution P*(d) specifically such that the discrimination-
free price h*(X) is unbiased, i.e. B* = 0. As there may be many such distri-
butions that may satisfy this condition, an additional criterion for choosing
P*(d) is needed. A standard criterion is to chose the measure P* as close as
possible to the physical distribution P(d), subject to the unbiasedness con-
straint on h*(X). If the relative entropy (Kullback-Leibler divergence) is
chosen as the divergence measure, then standard results can be applied, see
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Csiszar [6]. Specifically, note that the unbiasedness condition E[h*(X)] =
is equivalent to

E*[¢(D)] = p, (13)

where we define

C(t) = E[u(X, t)].

Note, we assume existence of distributions P*(d) that fulfill (13) which in
view of Section 2.4 needs to be made. The distribution P*(d) that minimizes
the relative entropy with respect to P(d) subject to® (13) is given by

. BCD)

for a suitably chosen parameter 8. Hence, the premium for a policyholder
with non-discriminatory covariates X = x is defined by (subject to existence)

A¢(D)
KL o o % (o €
T (X) =h (X) =E [N(an)E[eﬁc(D)]] )
which in light of Remark 10(d) may be thought of in terms of h*(x) = E[Y™* |
X = x]. To ease interpretation of this formula, and in order to make the

connection to Remark 10(d) more clear, let D = D be one-dimensional and
p(x,d) > 0 be increasing in d. Then, for § > 0, we have

B¢(D)
* KL\ _ €
™ (X) =E M(X7 D)E[eﬁC(D)]
= E [u(x, D)] + Cov | u(x, D), E[c5D)]

> E[u(x, D)) = hD(x),

which corresponds to the situation where the choice P* = P would produce a
negative bias (under-pricing). The calculation of 7*%(x) assigns a higher
premium to policyholders with covariates X = x such that p(x, D) is more
volatile (this can be made rigorous but is best visible in approximation (14),
below). This represents policies for which lack of information on discrimina-
tory covariates matters more, in the sense that there is a higher sensitivity to

®Since relative entropy is not symmetric, for the sake of completeness and to avoid
ambiguity, following the notation of Csiszar [6], the relative entropy of P*(d) relative P(d)
is denoted I(P*(d) || P(d)).
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the uncertainty induced by not using the discriminatory factor D. One can
thus view the bias correction in 7*%(x) as an implicit discrimination-free)
risk load.

For small $ we have approximation

1*(x) ~ E [u(x, D)] + BCov [u(x, D), {(D)] (14)
= E[u(x, D)] + 8/ Var[u(x, D)|Var[¢(D)] Corr [u(x, D), ((D)].

5 Estimated model

All previous discussion and derivations of discrimination-free prices and in-
direct discrimination were conducted under the assumption that the “true”
probabilistic model underlying the portfolio (Y, X, D) is known, represented
by the physical measure P. In practice, an estimated model is used because,
typically, the data generating mechanism is unknown.

Specifically, one starts from data

S= {(ylyxla dl)a ) (ynaxn7dn)}>

assuming that (y;,x;,d;) are i.i.d. realisations of (Y, X,D) ~ P.
Subsequently, a regression model (in the broader sense of regression mod-
els) is chosen
f:(x,d) = f(x,d) = f(x,d;0), (15)

which typically differs from the (true) best-estimate price functional (x,d)
p(x,d), given in Definition 2, but which should mimic p(x,d) in the best
possible way. One may specify a fixed functional form for z in (15) or, in a
wider sense, one can specify an algorithm that generates the mapping (15)
from the data S. In either case, i will still depend on unknown parameters 6
that have to be estimated from the data S (using a given objective function)
yielding estimate 8 = 6(S).
The resulting S-calibrated regression function

(x,d) = fi(x,d;0) (16)

then provides the approximation to the best-estimate price functional (x,d) —
p(x,d). Note that (16) provides an estimate of the best price and, obviously,
this estimate is in general discriminatory because it explicitly considers the
discriminatory covariate values d. Moreover, since we use the data & which
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has been generated under the physical measure P, the regression function
(16) also needs to be understood under the physical measure P, we refer to
Remark 12(c).

The unawareness price functional x +— u(x) can be approximated in
an analogous manner by just dropping d in (15) and (16), resulting in an
estimated regression function

x — ji(x;9), (17)

where the functional forms i and i may differ as well as their parameters
0 and 99, respectively. We emphasize that typically /1(-;5) will indirectly
discriminate w.r.t. d because in the estimation process of 9 we implicitly
use the covariate combinations (x;,d;) which (empirically) contain the de-
pendencies P(d | x) that allow inference of D from X. The estimated

unawareness price fi(x; ) can also be interpreted as an approximation to
E[i(X,D;0) | X = x; 8],

using the tower property argument (under the physical measure P).

Typically, also P(d) is not known. Usually, it is estimated by the empir-
ical distribution (ngq/n)q, where nq/n is the observed relative frequency of
the discriminatory covariate d in §. This motivates the discrimination-free
price

D () = 3 il d:6) 4, (18)
3 n

where we use the estimated best-estimate price functional (16). The price
(18) is discrimination-free in the sense of Definition 6, i.e. the discrimination-
free property is not affected by the fact that we work with an estimated
model. While potential estimation error may result in prices plc1 )(x) that
are not very close to R(CD) (x), the property of discrimination-freeness is
preserved within the selected model; we explore this in more detail in Section
6. When choosing the structure of the regression function g in (15), we
typically require existence of the discrimination-free price (18) in the sense
of Proposition 13.

6 Numerical illustration

6.1 Model and alternative pricing rules

We present a simple health insurance example, demonstrating our proposed
approach to discrimination-free pricing. The example we present satisfies
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the causal relations of Figure 1, such that discrimination-free prices can be
understood as reflecting direct (unconfounded) causal effects (in an insured
sub-population).

Let D = D correspond to the single discriminatory characteristic “gen-
der”, that is, D € {woman, man}. Furthermore, let X = (X7, X3), where
X, € {15,...,80} denotes the age of the policyholder, and X3 € {non-smoker,
smoker}; below we assume that smoking habits are gender related. We con-
sider three different types of health costs: birthing related health costs only
affecting women between ages 20 and 40 (type 1), cancer related health
costs with a higher frequency for smokers and also for women (type 2), and
health costs due to other disabilities (type 3). For simplicity, we only con-
sider claim counts, assuming deterministic claim costs for the three different
claim types. Moreover, we model all individuals as independent, having
the same exposure (= 1). We assume that the claim counts for the differ-
ent claim types are described by independent Poisson GLMs with canonical
(i.e. log-) link function. The three different types of claims are governed by
the following log-frequencies

log M1(X, D) := ag + a11{x, 120,40} 1 { D=woman}» (19)
log A2 (X7 D) = Bo+ f1 X1+ 521{X2:smoker} + /831{D:W0man}a (20)
log A3(X, D) := 70 + 11X, (21)

based on the joint non-discriminatory and discriminatory covariates (X, D).
The deterministic claims costs of the different claim types are given by
(c1,¢2,c3) = (0.5,0.9,0.1) for claims of type 1, type 2, and type 3, respec-
tively.

The best-estimate price (considering all covariates) of Definition 2 is
given by

/L(X, D) = 01)\1(X, D) + CQ)\Q(X, D) + Cg)\3(X, D)

This best-estimate price is illustrated in Figure 2 for the parameter values
(Oé(), 041) = (_407 385)7 (507 B, B2, 63) = (_2¢ 0.004,0.1, 02)7 and ('707 71) =
(—2,0.01). The plots on the lhs of Figure 2 refer to smokers (X2 = smoker),
while those on the rhs to non-smokers (X3 = non-smoker). The solid black
lines give the best-estimate prices p(X, D) for women and the solid red
lines for men. Obviously, these best-estimate prices discriminate between
genders.

Next, we calculate the discrimination-free price defined in Definition 6
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Figure 2: True model: (lhs) smokers and (rhs) non-smokers with solid black
and red lines giving the best-estimate prices for women and men, respec-
tively. The dotted orange lines show the discrimination-free prices and the
dotted blue lines show the unawareness prices.

for P*(d) = P(d), see (6), motivated by Proposition 14. It is given by
hED(X) = S (X d) + X (X, d) + es)3(X, d) P(D = d).

de{woman, man}

For the calculation of this discrimination-free price we need the gender pro-
portions within our population. We set P(D = woman) = 0.45. The orange
dotted lines in Figure 2 provide the resulting discrimination-free prices for
smokers and non-smokers. Note that these are identical for men and women,
such that all price differences can be described solely by different ages X3
and smoking habits Xy, irrespective of gender D. Moreover, the smoking
habits do not allow us to infer the gender; note that in the exposition so far,
it has not been necessary to described how smoking habits vary by gender.

We compare this discrimination-free price to the unawareness price ob-
tained by simply dropping the gender covariate D from the calculations
(Definition 4). Thus, we calculate

w(X) = EM (X, D) | X] + E[N(X, D) | X]+ csE[X3(X, D) | X]
The unawareness price requires additional information about the following
conditional probabilities
_]P)(D:d,X:X) P(D:d,XQZxQ)

PO=d|X=x)="Fx—% -~ Ba=s) = P
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the last equality following from assuming that the age variable X is in-
dependent from the random vector (Xo, D). In addition, we set P(D =
woman | X9 = smoker) = 0.8 and P(Xy = smoker) = 0.3. The former
assumption tells us that smokers are more likely women; this is similar to
Example 1. As a consequence, Xs has explanatory power to predict the gen-
der D, and the unawareness price will therefore be indirectly discriminatory
against women. These unawareness prices are illustrated by the blue dotted
lines in Figure 2. The blue dotted line lies above the discrimination-free
price (orange) for smokers (Figure 2, lhs) and below for non-smokers (rhs).
Thus, the unawareness price implicitly allocates a higher price to women
because smokers are more likely women.

smokers non-smokers

—— best-estimate price (women) —— best-estimate price (women)
—— best-estimate price (men) —— best-estimate price (men)
discrimination—free price discrimination—free price

0.30
I
0.30
I

unawareness price

unawareness price

0.25
I
0.25
L

true prices
true prices

0.20
I
0.20
L

0.15
I
0.15
I

20 30 40 50 60 70 80 20 30 40 50 60 70 80

age age

Figure 3: True model: (lhs) smokers and (rhs) non-smokers with solid black
and red lines giving the best-estimate prices for women and men, respec-
tively. The dotted orange lines show the discrimination-free prices and with
dotted green lines show the unawareness prices, for an alternative assump-
tion on P(D = woman | smoker).

The latter indirect gender discrimination is easily verified by an alter-
native assumption, namely, that smokers are more likely men, say, P(D =
woman | Xy = smoker) = 0.2. The resulting unawareness prices are plot-
ted by the dotted green lines in Figure 3. We observe that the smokers
are below the discrimination-free price (orange dotted line), and for non-
smokers we have the opposite sign. That is, in this case women are again
indirectly discriminated through their (non-)smoking habits, again serving
as a proxy for the explanatory variable of gender. The break-even point is
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P(D = woman | X9 = smoker) = 0.45 = P(D = woman) because in this case
D and X, are independent, which prevents from indirect discrimination, and
the unawareness price and the distribution-free price are equal.

6.2 Application on estimated models

The previous discussion has been based on the knowledge of the model gener-
ating the data. We now address the more realistic situation where the model
needs to be estimated. To this effect, we simulate data from (X, D,Y) ~ P
consistently with the given model assumptions, and subsequently calibrate
a neural network regression model to the simulated data.

Specifically, we choose a health insurance portfolio of size n = 100, 000,
and simulate claim counts from the Poisson GLMs (19), (20), and (21), with
the choice P(D = woman | X2 = smoker) = 0.8. An age distribution for
X1 is also needed for the simulation — the chosen probability weights are
shown in Figure 4. We assume that age X is independent from gender D
and smoking habits Xs, as in (22).

age distribution

frequency
0.015 0.020
Il Il

0.010
I

0.005
1

Figure 4: The age frequency used for both genders and smoking habits to
simulate the data.

Listing 1 gives an excerpt of the simulated data. We have the three
covariates X1 (age), X2 (smoking habit) and D (gender) on lines 5-7, and
lines 2-4 illustrate the number of claims N1, No and N3, separated by claim
types. The proportion of women in this simulated data is 0.4505 which is
close to the true value of P(D = woman) = 0.45. Our first aim is to fit a

25



O Ut WN

© 00O U WN -

Listing 1: Simulated health insurance data.

’data.frame’: 100000 obs. of 6 variables:
$ N1: int 0 0 0O O 00O O0O0OO

$ N2: int 001 0010020

$ N3: int 01 001000O0O0 ...

$ X1: num 36 57 70 49 63 27 41 58 16 34 ...
$ X2: num 00 1 0010011

$D:num 0110010011

regression model to this data, under the assumptions that individual policies
are independent, and that the different claim types are independent and
Poisson distributed. Beside this, we do not make any structural assumption
about the regression functions, but we try to infer them from the data using
neural networks. The independence assumption between the claim counts
N1, Ny and N3 motivates modeling them separately. Thus, we will fit three
different neural networks to model A, Ao and A3, respectively. As we do
not use prior knowledge on the data generating process, we will feed all
covariates (X1, Xo, D) to each of the three networks.

Listing 2: Neural network architecture used to infer A\;, Ao and As.

Design <- layer_input(shape = c(3), dtype = ’float32’, name = ’Design’)

#

Network = Design %>%
layer_dense(units=15, activation=’relu’, name=’hiddenl’) %>}
layer_dense(units=15, activation=’relu’, name=’hidden2’) %>
layer_dense(units=1, activation=’exponential’, name=’Network’)

#

model <- keras_model (inputs = c(Design), outputs = c(Network))

model %>% compile(loss = ’poisson’, optimizer = ’adam’)

Listing 2 illustrates the chosen neural network architecture, using the
R library keras, with which the three regression functions (19)-(21) are
estimated. We choose neural networks of depth 2 having 15 neurons in
both hidden layers, the rectified linear unit (ReLU) activation function, and
the canonical link under the Poisson assumption. Moreover, we select the
Poisson deviance loss as our objective function. This network involves 316
weights that need to be calibrated. We train these weights of the three
networks over 1000 epochs on batches of size 20,000.

Figure 5 illustrates the estimates A (X, D), A2(X, D) and A3(X, D) of
the three regression functions (19), (20) and (21) respectively, obtained by
fitting the three neural networks. The lhs of that figure gives claim type
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estimated frequency
estimated frequency
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Figure 5: Estimated regression functions (X, D) (Ihs), A2(X, D) (middle)
and A3(X, D) (rhs) using the neural network architecture of Listing 2.

1 which is birthing related. We see a rather accurate shape, with smoking
habits correctly ignored, and men not affected by these claims. Figure 5
(middle) gives the cancer related frequencies. Also here we receive the same
order w.r.t. gender and smoking habits as in (20). Finally, the rhs illustrates
all remaining claims. As, by (21) claims frequencies should not depend on
gender and smoking habits, the variation between lines indicates that the
regression model captures a spurious effect.
Using these estimated frequencies, we calculate the estimated best-estimate

price, (16),

(X, D;0) = c1 A (X, D) 4 caha(X, D) + cshs(X, D),

and its discrimination-free counterpart (18),

~

(CcI) _ ~ .y
W (x) Zd:u(x,dﬂ)n,

with empirical proportions nwoman/n = 1 — Niman/n = 0.4505. These prices
are illustrated in Figure 6: black lines give best-estimate prices for women,
red lines for men, and with the orange dotted lines showing the discrimination-
free counterparts. Comparing Figures 2 and 6 we conclude that the resulting
true prices and estimated prices are rather similar. Of course, by construc-
tion the resulting discrimination-free price is gender neutral within the es-
timated model, and in our case close to the theoretical one.

We indicate what happens if we drop the gender variable D from the very
beginning, i.e. if we train the networks only on the covariates X = (X1, X3)
as considered in (17). We choose exactly the same network architecture
as in Listing 2 except that we modify the input dimension on line 1 from
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Figure 6: Estimated neural network model: (lhs) smokers and (rhs) non-
smokers with solid black and red lines giving the best-estimate prices
for women and men, respectively. The dotted orange lines show the
discrimination-free prices and the dotted blue lines show the unawareness
prices.

3 for (X, D) to 2 for X. These networks involve 301 weights that need
to be trained. The resulting estimated regression functions A;(X), Aa(X)
and Xg(X), ignoring gender information D, are illustrated in Figure 7. The
left-hand side shows that we can no longer distinguish between gender, how-
ever, smokers are more heavily punished for birthing related costs, which is
an undesired indirect discrimination effect against women because they are
more often among the group of smokers (note that the y-scales in Figures 5
and 7 are the same). Finally, merging the different claim types provides the
estimated unawareness prices (when first dropping D) as illustrated by the
blue dotted lines in Figure 6, which can be compared with the blue dotted
lines in Figure 2.

In our final analysis we illustrate that the (non-)discrimination prop-
erty does not depend on the quality of the regression model (15) chosen.
We choose a poor model (compared to the neural network above) by just
assuming GLMs for j =1,2,3

(X, d) — log X]GLM (Xa d) = 0(()j) + 99)901 + eéj)l{xgzsmoker} + ei(’,j)l{d:woman}'

(23)
This model will perform well for j = 2,3, see (20)-(21), but it will perform
poorly for j = 1, see (19). This is because such a model has difficulties

28



network estimate, claim type 1 (without gender) network estimate, claim type 2 (without gender) network estimate, claim type 3 (without gender)

o smoker g4 g4
— non-smoker

025 030
025
L
2
L

020

estimated frequency
1
estimated frequency
015
estimated frequency
e

o oo
¢

o  oos
PR
g3
i3
32

g

o0 oo
PR
EF]
48

Figure 7: Estimated regression functions A1(X) (Ihs), X2(X) (middle) and
A3(X) (rhs) using neural networks and ignoring the gender information D.

capturing the highly non-linear birthing related effects, as seen in Figure 8
(lhs).
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Figure 8: GLM estimated regression functions APLM(X D) (lhs),
ASMM(X D) (middle) and AT (X, D) (rhs).

In Figure 9 we present the resulting best-estimate prices, unawareness
prices, and discrimination-free prices (in orange dotted lines), as estimated
using the GLM. The first observation is that the resulting prices are a poor
approximation to the true prices of Figure 2, the latter assuming full knowl-
edge of the true model. However, the general discrimination behavior is the
same in both figures, namely, that the unawareness price discriminates indi-
rectly by learning the gender D from smoking habits X5. This is illustrated
by the relative positioning of blue and orange dotted lines, with smokers
more heavily charged for birthing related costs due to the fact that smokers
are more likely women.
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Figure 9: Estimated GLM: (lhs) smokers and (rhs) non-smokers with solid
black and red lines giving the best-estimate prices for women and men,
respectively. The dotted orange lines show the discrimination-free prices
and the dotted blue lines show the unawareness prices.

The last step is to adjust for a potential bias, by considering the observed

bias
~, 1 1M~
B = Zy, — E Z h(CI) (Xi)7
=1 =1

n-

and allocating it to the discrimination-free prices R(CD) (x;), see Section 4.
We refrain from doing this explicitly here. This finishes the example.

Remark. There is one issue that has not been considered so far, and which
has been mentioned in the EU legislation [8], footnote (1) to Article 2.2(14)
— life and health underwriting. Namely, we have implicitly assumed that the
measurements of the non-discriminatory covariates are independent of the
discriminatory characteristics. If we think of gender as a discriminatory co-
variate, this is not necessarily the case because, for instance, the waist to hip
ratios naturally live on different scales for different genders, but they may
still have the same impact on health related questions. This implies that
non-discriminatory covariates may need pre-processing w.r.t. discriminatory
ones, such that the resulting measurements for different discriminatory char-
acteristics are comparable.
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7 Concluding remarks

The aim of this paper is to provide
(a) an actuarial perspective of direct and indirect discrimination;

(b) a demonstration that the omission of discriminatory information leads
to indirect discrimination in prices;

(c) aproposal for a simple formula that generates discrimination-free prices;

(d) methods that ensure unbiasedness of discrimination-free prices on port-
folio level, of course, these considerations also apply when transforming
the actuarial tariff into a commercial one; and

(e) a discussion on the role of the data in obtaining discrimination-free
prices.

The initial starting point to this paper has been an actuarial one. We
have intentionally avoided a deeper discussion on “fairness”, and, conse-
quently, how fairness may be measured. For more on these topics, we refer
to Kusner et al. [15] and the references therein. Moreover, we have also
not commented on which factors should be viewed as discriminatory — this
is a societal decision that goes way beyond our actuarial discussion, see
e.g. Avraham et al. [2]. We (only) provide tools to implement such deci-
sions. Moreover, any such implementation should be analyzed in terms of
possible systemic implications.

An important point worth being stressed once more is that in order to
be able to calculate discrimination-free prices one needs to have access to
all discriminatory characteristics — otherwise it is not possible to properly
adjust for the discriminatory characteristics’ influence. When it comes to
gender, this is generally unproblematic, but if we want to adjust for, e.g.,
religious or philosophical beliefs, this is information which in general is not
readily available. Customers may perceive it as weird to be approached
with questions concerning this type of seemingly unrelated (and possible
sensitive) information. A concrete example is discussed in De Jong and
Ferries [7], where sexual preference is discussed as a risk factor relating to
AIDS. Another comment concerning sensitive characteristics is the risk of
obtaining un-truthful answers which makes the collected data unreliable, see
De Jong and Ferries [7].

An important position taken in the present paper concerns the role of
the overall price prediction (on portfolio level). We have argued that the
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overall price prediction may be carried out using all available information,
including the discriminatory one. Given this, it is the allocation of this
overall cost that may introduce discrimination, and the discrimination-free
pricing may be thought of as an allocation that avoids this. This in turn
implies that it is primarily of interest to assess the predictive performance
of the overall price prediction, since the discrimination-free (price and its
induced) allocation will in general be biased. Still, there is nothing that
prevents us from assessing the quality of the allocation using e.g. bootstrap
techniques and cross-validation.

The argumentation used in the present paper has focused directly on
how to obtain a discrimination-free price (based on the above allocation
argument). This has lead us to a procedure which tells us how to adjust
the best-estimate price (obtained using all available information) to arrive
at a discrimination-free price. In a statistical sense, this is interpreted as
a “discrimination-free point estimate”. A different line of thought instead
could be that we try to develop a full statistical model that is discrimination-
free, i.e. sacrificing predictive power by appropriately disregarding direct and
indirect discrimination, this would result in a full statistical model that pro-
vides discrimination-free responses. An example of this approach in a life
insurance context are the gender neutral intensities discussed in e.g. Chen
and Vigna [5]. The main reason for considering prices directly is that we be-
lieve that this approach is closer to actuarial thinking, and because maximal
predictive accuracy is a desirable feature in risk management.
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A Further causal diagrams
D
Ug—X—Y

Figure 10: Causal diagram governed by DAG & considering unmeasured
characteristics U.

N

U—X—Y

Figure 11: Causal diagram governed by DAG & considering unmeasured
characteristics U.

D(U

(U)
X(U) — Y(U)
Figure 12: Causal diagram corresponding to Fig. 11 when the dependence

of the unmeasured characteristics U are suppressed.
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