
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

From Markov chains to Markov
decision processes
Niclas Lovsjö

Matematiska institutionen

Kandidatuppsats 2015:5
Matematisk statistik
Juni 2015

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2015:5

http://www.math.su.se

From Markov chains to Markov decision

processes

Niclas Lovsjö∗

June 2015

Abstract

In this bachelor’s thesis we will try to build an understanding of

Markov decision processes as an extension to ordinary discrete time

Markov chains in an informal setting. The intended reader is assumed

to have knowledge of basic probability theory. Throughout the text

we use trivial examples of applying the theory, which we believe builds

good intuition. As a last section we show how a basic Reinforcement

learning algorithm, namely Q-learning, can be used to find a solution

of an MDP-problem.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: niclas.lovsjo@me.com. Supervisor: Mathias Lindholm.

Abstract

In this bachelor’s thesis we will try to build an understanding of
Markov decision processes as an extension to ordinary discrete time Markov
chains in an informal setting. The intended reader is assumed to have
knowledge of basic probability theory. Throughout the text we use trivial
examples of applying the theory, which we believe builds good intuition.
As a last section we show how a basic Reinforcement learning algorithm,
namely Q-learning, can be used to find a solution of an MDP-problem.

Sammanfattning

Med denna kandidatuppsats ska vi försöka bygga upp en förståelse
för Markov beslutsprocesser, som en utökning till grundläggande Markov-
kedjor i diskret tid. Den förmodade läsaren antas ha kunskap om grund-
läggande sannolikhetsteori. Vi kommer genom uppsatsen använda enkla
exempel som hjälpmedel till att introducera teorin, vilket vi tror ger bätt-
re förståelse för materialet. Som ett sista kapitel kommer vi titta på hur en
Belöningsbaserad inlärnings-algoritm, vid namn Q-learning, kan användas
för att lösa en Markov beslutsprocess.

2

Acknowledgements

I would like to thank my supervisor Mathias Lindholm for helping
me in all aspects of writing this thesis. Mathias has helped me not only
to understand the material in this thesis, but how to approach learning
mathematical statistics in general.

3

Contents
Introduction 5

Markov chains 7
The basics of MC . 7
The Chapman-Kolmogorov equations 8
Hitting times . 9
Stationary distributions . 10

Markov decision processes 11
The basics of MDP . 11
The value function . 13
The Bellman equation . 15

Reinforcement Learning 18
The basics of RL . 18
Learning the optimal policy . 18
The greedy policy . 20
The delta-function . 20
The problem of dimensionality . 21
The stochastic case . 21

Discussion 24

Reference list 25

Appendix 26

4

Introduction
Consider the way you teach a dog to sit. Usually it is done by you telling it
to sit, and most often this won’t work the first couple of times. Then, all of
a sudden, it follows your command and sits. Now you should obviously try to
reinforce this good behaviour by giving it some kind of reward, say a biscuit,
and slowly it will learn that each time it follows your sit-command it will receive
a biscuit.

Now could we take this idea of reinforcing desired behaviour and apply it in
mathematical algorithms? In fact this idea has been around since the early
days of computers, and as one can imagine the complexity of tasks computers
can learn has grown accordingly. In this thesis we will try to build the founda-
tion needed to understand these algorithms from a mathematical point of view,
as opposed to the computer science approach used in most literature, for exam-
ple Sutton and Barto (1998) and Mitchell (1997)1. We will learn that to really
understand learning algorithms, one has to have knowledge of various subjects,
not only mathematical statistics.

The theory that we are interested in here is based on Markov theory. Say we
have an ordinary discrete time Markov chain, at the basic case each time-step
it will have a probability distribution of states to where this stochastic process
is going to transition. We can think of this transition as being an action, al-
beit a single-choice action, that is forced upon the process at each time step.
Now if we make this a multi-choice action instead, that is, each action has its
own transition probabilities. After each action, and after the transition to the
next state, we supply the process with some reward. The problem now comes
down to finding a set of actions, called a policy, as to maximize the total reward
of moving through some process. We call a process having these properties a
Markov Decision Process(MDP).

An MDP-problem can be solved using optimization theory, more precisely Dy-
namic Programming(DP). DP is a vast area of optimization, and we will focus
on a part which we call backward induction algorithm. This can briefly be de-
scribed as a way of breaking down optimization problems into sub-problems,
solving these and bringing them back together to solve the main problem. A
central concept in DP is the Bellman-equation, which we will go through in the
MDP-section below.

As computers evolved and simulation-techniques became more powerful other
techniques, with roots in DP, was developed. One of these is Reinforcement
learning(RL), which combines DP with Monte Carlo-simulations. That is, we
simulate and optimize at the same time and change the behaviour of an agent
while it is interacting in this process. In this thesis we will not focus as much on
the family of RL-algorithms, but instead put focus on taking the reader from the
more familiar ordinary Markov chains to the concept of Markov decision pro-
cesses, and then introduce a classical RL-algorithm as a way of solving MDP’s.
This RL-algorithm is called Q-learning.

1When searching for information about this subject, one is most often directed to courses
at various computer science departments, very seldom the mathematics department.

5

We have divided this thesis into three blocks - Markov Chains, Markov De-
cision processes and Reinforcement Learning. The style of writing we will use is
to not include formal theorems with proofs, but instead use them in an informal
manner and give reference to where the proofs can be found. Furthermore, the
derivations which will be included are the ones we think is central to understand-
ing that particular section, and we have chosen to include them in the running
text of that reason. We will also use basic examples to explain the concepts
with where we find it to be useful. The nature of both the examples and deriva-
tions are such that they can easily be skipped without disturbing the exposition.
In the beginning of each block we will declare if we have followed a particular
exposition of a certain reference, otherwise references are given throughout the
text. In general, the references are taken from educational literature as opposed
to scientific articles.

6

Markov chains
The objective of this section is to declare what a Markov chain(MC) is and what
properties it has. Throughout this thesis we will only consider finite discrete
time processes. This section partly follows the exposition of (Ross, 2010), and
some ideas are taken from (Taylor, 2012).

The basics of MC
We define a process as something that changes over time. Let Xt denote the
state of this process at time t. Furthermore we make the assumption that each
Xt is a random variable and that t ∈ Z+. We limit this process to be ran inside
some system, which consists of different states S, i.e. Xt ∈ S, and that the
process always is in some state in this system. If the transitions between these
states is stochastic, we have a stochastic process, and we say that the process is
in state i at time t if Xt = i. Each such move from state i to j in one time-step
has a transition probability pij . This probability is fixed, i.e it does not change
over time. This process has the property that the probability of moving from
some state i to another state j is independent of the states visited prior to i.
Formally we define this as, P (Xt+1 = j|Xt = i,Xt−1 = it−1, ..., X1 = i1, X0 =
i0) = P (Xt+1 = j|Xt = i) = pij and we say that a process which has this
property is markovian.

Let pnij denote the probability of moving from i to j in n time-steps. Whenever
pnij > 0 for some number of timesteps n ≥ 0 we say that j is accessible from i,
and if two states are accessible to each other they are said to communicate. The
transition probability pnij partitions the process into communicating classes, for
those states that communicate, which implies that each state only can belong
to one class. We say that a class is a closed class, if the process only can enter
states in that class but never leave. If all states communicate, i.e. consists of
only one class, the chain is said to be irreducible.

The regular properties of probabilities apply, i.e. we have that pij ≥ 0,
∑∞
j=0 pij =

1 and we also constrain the value of each Xt to be a positive integer. We say
that a sequence of random variables X0, X1, X2... that has these properties is a
Markov chain X.

Assume that the probability of re-entering state i, while starting in i, is fi.
Now if fi = 1 we say that i is a recurrent state, and transient for fi < 1.
From the markovian property we know that each time the process enters i it
will be conditionally independent of the states prior to i, including i itself. For
a recurrent state this means that i will be visited infinitely many times. For
this to be true there can not be any state that absorbs the process, i.e. a state
who only communicates with itself. We call such a state an absorbing state.
On the other hand, for a transient state j there will for each visit be a positive
probability 1−fj that the present visit is the last, i.e. a transient state will only
be visited a finite number of times. If the Markov chain is finite, this implies
that all the states can’t be transient. To see this, assume we have a process
containing only transient states. Say that the present visit is the final time j
was visited. As the number of timesteps goes to infinity, this will occur to every

7

transient state. Since every state is transient, it will end up being in no state
- which contradicts the property of Markov chains always being in some state.
That is, every Markov chain needs to have at least one recurrent state.

If the expected time until the process returns to the the recurrent state i is
finite while starting in i, then we say that i is positive recurrent. A state in a
Markov chain is said to be periodic if it can return to some state i, while start-
ing in i, only under some multiple d(i) of steps, where d is a positive integer
satisfying d > 1. If instead d = 1 we say that the state is aperiodic. States that
are both aperiodic and positive recurrent is said to be ergodic, which we will
discuss the implications of further in the next section.

Example 1: Say we have a 3-state Markov chain with states {1, 2, 3} and
the transition probabilities as in Figure 1.

1 2 3

1/3
2/3

1/2

1/2

1/3
1/6

1/2

Figure 1: Example of a Markov chain

with the accompanying transition matrix,

P =

 0 1/3 2/3
1/2 0 1/2
1/6 1/3 1/2

We see for example that P (Xt+1 = 2|Xt = 1) = 1/3, i.e. the probability of
transitioning to 2 while being in 1 is 1/3 at some time t. Furthermore, we note
that Example 1 is ergodic and irreducible.

The Chapman-Kolmogorov equations
From the last section we know that pnij defines the probability of moving from
i to j in n time-steps, more formally we have that pnij = P (Xn = j|X0 = i) for
any n ≥ 1. Now using the first law of total probability and the Markov property

8

we see that,

pnij = P (Xn = j|X0 = i)

=
∑
k∈K

P (Xn = j,Xr = k|X0 = i)

=
∑
k∈K

P (Xn = j|Xr = k,X0 = i)P (Xr = k|X0 = i)

=
∑
k∈K

P (Xn = j|Xr = k)P (Xr = k|X0 = i)

=
∑
k∈K

prikp
n−r
kj , (1)

where K is the set of all possible states, and r is a non-negative integer r < n.
We call (1) the Chapman-Kolmogorov equations, and they essentially say that
the probability of moving from some state i to another state j in n-steps is equal
to the sum of the probabilities of all the intermediate steps k between i and j.

What makes this convenient is that we can now express the n-transition in
form of matrix multiplication. If we let P (n) denote the matrix holding the
probabilities for n-step transitions, (1) implies that P (n) = P (r)P (n−r). By
induction, see (Taylor, p.10, 2012), it can be shown that,

P (n) = Pn (2)

i.e. raising the one-step probability matrix to the power of n gives the probabil-
ities of moving from state i to j in n steps.

Now using the Markov chain from Figure 1, we see for example that
P (Xt+2 = 3|Xt = 1) = P 2

1,3 = 1/2.

P 2 =

0.28 0.22 0.50
0.08 0.33 0.58
0.25 0.22 0.53

Which is confirmed by the step-by-step computations: we have the feasible tran-
sitions {A→ B → C,A→ C → C} with probabilities 1

3
1
2 + 2

3
1
2 = 1/2.

Hitting times
The following subsection is inspired by (Taylor, p.13, 2012).

We define a hitting time as the first time t the process enters some non-empty
set of states C ⊂ S, under the assumption that C is a closed communicating
class. Now, if we have a discrete time Markov chain X on S, and let C ⊂ S be
a closed communicating class for X, we define the absorption time τC ∈ N of C
as,

τC =

{
min{t ≥ 0 : Xt ∈ C} if Xt ∈ C for some t ≥ 0,

∞ otherwise,

9

and the absorption probability of entering C while starting at state i by

hCi = P (τC <∞|X0 = i)

= P (∃t <∞ : Xt ∈ C|X0 = i)

:= P (Xt ∈ C|X0 = i).

Now, to solve for a vector of probabilities hC = (hC1 , h
C
2 , ...) we set up a linear

equation system as, {
hCi = 1 if i ∈ C
hCi =

∑
j∈S pijh

C
j if i /∈ C.

(3)

We have the trivial case hCi = 1 if i ∈ C. To see that (3) holds for the case
i /∈ C note that,

hCi = P (Xt ∈ C|X0 = i)

ltp
=
∑
j∈S

P (Xt ∈ C|X1 = j,X0 = i)P (X1 = j|X0 = i)

=
∑
j∈S

P (Xt ∈ C|X1 = j,X0 = i)pij

Mp
=
∑
j∈S

P (Xt ∈ C|X1 = j)pij

=
∑
j∈S

pijh
C
j ,

where ltp, Mp denote that we use the law of total probability and the Markov
property. We will see in the next chapter that hitting times can be useful for
evaluating policies in Markov decision processes.

Stationary distributions
Finishing this section we want to discuss the asymptotic behaviour of Markov
chains. If a Markov chain has absorbing states, then under the assumption that
the chain will run sufficiently long, the Markov chain will be more and more
likely to have been absorbed by this state. On the contrary if all the states are
non-absorbing we can say something about the distribution for a Markov chain
as t→∞. In fact, for an irreducible ergodic Markov chain letting

νj = lim
n→∞

pnij , j ≥ 0,

νj is the unique non-negative solution of

νj =

∞∑
i=0

νipij , j ≥ 0,

∞∑
j=0

νj = 1,

(4)

10

This is a convenient way of representing Markov chains, since instead of using
(2) with higher and higher powers until we find convergence, we can solve for
the stationary distribution using the set of linear equations in (4).

Markov decision processes
We attempt here to make the transition from Markov chains to Markov decision
processes. The material used is mostly based on (Sutton and Barto, 1998) and
(Taylor, 2012).

The basics of MDP
Assume that we have an ordinary Markov chain, at each time-step t this process
makes the decision to move according to some transition probability distribution
as described in the last section. Now, if for each such time-step we introduce
a set of actions to be taken before this transition happens, with a probability
distribution for each such action. One can think of this as instead of having a
process that transitions by itself, we now have a decision-making agent moving
through the process. This agent chooses an action ai ∈ A. That is, for each
state st we have a finite set of feasible actions Ast . We call each such pair
{(a1, st), (a2, st), ..., (an, st)}, the state-action pairs.

We call the environment of this agent its nature. After an action has been
taken by the agent, the nature responds by moving the agent to a new state ac-
cording to some probability distribution P aij , for which the markovian property
hold2, i.e. P aij = P (St+1 = j|St = i, at = a, ..., St0 = i0, at0 = a0) = P (St+1 =
j|St = i, at = a). Furthermore, the agent is rewarded with some bounded value
rass′ for entering state s′ from s under action a. We call a process having these
properties a Markov decision process.

The rewards are setup as to make the agent solve a given problem. In some
cases we want it to be defined by taking an action and then entering a state. In
others we just want it to be rewarded for entering a state, independent of the
action that brought it there. In the simplest case, we just reward the agent for
entering one state in the process, usually the absorbing state. This gives that,
the reward rass′ will in some cases be deterministic and in other cases stochastic,
depending of the nature of the problem. The agent will have some starting
state, and some absorbing terminal state. In some cases we need a closed subset
C ⊂ S of terminal states.

Each subset of actions through the states from starting state to terminal state
forms a policy, and is denoted π. The problem for the agent comes down to
finding a path through nature that maximizes the rewards received while fol-
lowing this policy. If some policy is better or equally good, with respect to some
given objective, than all the other feasible policys, we say that it is an optimal

2Notice that we differ between the n-step transition probability matrix Pn
ij from the MC-

section, and Pa
ij the probability of transitioning to j from i given action a.

11

policy and denote it with π∗. In the case where there are multiple policies that
are better than the others, and mutually equally good, we say they form a set
Π∗ = {π∗1 , ..., π∗n} of optimal policies.

Example 2: We would like to introduce a basic two-state, two-action MDP
to give some more intuition to this. Assume that we have two states {1, 2} in
which we can take two actions {αi, βi} ∈ A in each state i. That is, we have
the actions {α1, β1, α2, β2}. Let ri ∈ R be a reward-vector for entering state i.
We assign the following transition probabilities P aij and rewards ri to the above
scenario,

α1 : Pα1
1,2 = 0.8, Pα1

1,1 = 0.2 r1 = 1

β1 : P β1

1,2 = 0.5, P β1

1,1 = 0.5 r2 = 0

α2 : Pα2
2,1 = 0.5, Pα2

2,2 = 0.5

β2 : P β2

2,1 = 0.9, P β2

2,2 = 0.1

As an example starting in state 1, the agent takes action a1 and then moves
back to 1 with probability Pα1

1,1 = 0.2 or to state 2 with Pα1
1,2 = 0.8, then receives

r1 = 1. On the other hand if it chooses b1 it moves with probability P β1

1,1 = 0.5

back to state 1 and with probability P β1

1,2 = 0.5 to state 2. Since we only receive
a reward of entering state 1, the task of the agent is trying to choose the actions
that brings it to 1 with highest probability.

As with the Markov chain-graph from Example 1, we can illustrate this with a
Markov decision process-graph, see Figure 2,

1 2

α1 α2

β1 β2

α1

β1

α2

β2

Figure 2: A Markov Decision graph. The thick line represents an action a and
the dotted line the possible next states while taking a specific action.

where we have omitted the actual transition probabilities given an action for
sake of clarity. This process has no absorbing state, and all states are therefore
recurrent.

Now assume that we have a scenario such that the agent starts in state 1,
and lives for a two-step time-period, in which it wants to maximize its rewards.

12

Each policy dictates what action to take given a certain state. That is, we have
the following policies for Example 2: ({α1, α2}, {α1, β2}, {β1, α2}, {β1, β2}). As-
sume we decide to follow a policy, say πα = {α1, α2}, i.e. at state 1 we choose
α1 and at state 2 we choose α2. Let Rt be the total reward, i.e. return, for some
state at t. That is, here this means that R1 is the total return starting in 1
and stopping after two transitions. The following calculations give the expected
value of following πα for this scenario, which we denote Eπα [R1|S1 = 1]. Thus
for t = 1 we have,

Eπα [R1|S1 = 1] = (r1 + Eπα [R2|S2 = 1])Pα1
1,1

+ (r2 + Eπα [R2|S2 = 2])Pα1
1,2

= (r1 + (r1P
α1
1,1 + r2P

α1
1,2))Pα1

1,1

+ (r2 + (r1P
α2
2,1 + r2P

α2
2,2))Pα1

1,2,

which also can be written as,

Eπα [R1|S1 = 1] =

2∑
i=1

Pα1
1,i (ri + Eπα [R2|S2 = i]). (5)

By doing this for all four policies, we see that policy π = {β1, β2} will maximize
the expected return, with the value Eπ∗ [R1|S1 = 1] = 1.2.

Notice that we differ between the random variable Rt, the return at time t,
and the deterministic parameter ri, the reward for entering i. Also, note that
in this example we have used that rα1

1,1 = rβ1

1,1 = rα2
2,1 = rβ2

2,1 = r1 which must not
be the case in a more general setting, as noted earlier.

Now to find the optimal policy, we would have to compare all policies for all
time-steps. We will in the next section see how this can be done iteratively. In
the final section we use this example to find the optimal policy by simulations.

For this solution to be tractable we need perfect knowledge of the transition
probabilities, the reward-vector and we need a time-setup that is finite. If ap-
plied to some real-life examples, it is usually not the case that we have knowl-
edge of this. In our example we had no terminal-state but instead restricted the
process to go on for two time-steps.

The value function
Now let us formalize the idea from the previous section in a more general setting.
Let each state in the process have a value V π(s) for a given policy π. We
define this value as the expected total reward Rt from being in s at time t
when following policy π, i.e. V π(st) = rst + γrst+1

+ γ2rst+2
+ ... + γkrst+k =∑k

i=0 γ
irst+i , where γ is a discount factor satisfying 0 ≤ γ ≤ 1. This implies

that using a discount factor of γ = 0 only the immediate reward from choosing
ai in st will be considered, and using γ = 1 all of the rewards in policy π will
have equal weight for V π(st). Note that in Example 2 we used γ = 1. We say
that a policy π that maximizes V π(s) for all states s is an optimal policy and

13

denote it with π∗. That is,

π∗ = max
π

V π(s). (6)

Sometimes it can be useful to introduce a probability of taking action a in s,
given that we follow π by Pπ(s, a). We will discuss this concept of, having a
probability of choosing an action, later in the section ”ε-greedy policy”, because
it has more impact in Reinforcement learning. Note that in Example 2, we used
Pπ(s, a) which only took values 0 and 1. We now derive a way of representing
V π(s) which will make it easier for us to understand how we can find and com-
pare these policies, and most importantly it can be linked to a known equation
guaranteeing optimality. We have,

V π(s) = Eπ {Rt|st = s}

= Eπ

{ ∞∑
k=0

γkRt+k+1|St = s

}

= Eπ

{
Rt+1 + γ

∞∑
k=0

γkRt+k+2|St = s

}

=
∑
a

Pπ(s, a)
∑
s′

P ass′

[
rass′ + γEπ

{ ∞∑
k=0

γkRt+k+2|St+1 = s′

}]
=
∑
a

Pπ(s, a)
∑
s′

P ass′ [r
a
ss′ + γV π(s′)] .

(7)

As noted earlier, to be able solve for V π(s) we need V π(si) for the subsequent
states si = s′, s′′, ..., sN−1. In practice, we set the value of the terminal-state
sN to be zero, but implement a reward for arriving at this terminal state. This
means that the reward received for going to the terminal-state, will be incorpo-
rated in the value of the state prior to the terminal-state. Furthermore, notice
the similarities between (5) and the last line of (7), which give some more intu-
ition to the value-function.

Now this only states the value of s under the policy π. Since we are interested
in finding the optimal action at each state we need to, at each time step, choose
the action a that maximizes V (s). That is, for every state s the maximum value
is attained at,

V ∗(s) = max
a

{∑
s′

P ass′ [r
a
ss′ + γV ∗(s′)]

}
, (8)

where ∗ denotes that it is the maximum value. Now, if we store each such
maximizing action a, denoted a∗, in a vector, this vector will contain the optimal
policy. That is,

a∗ = arg max
a

V (s),

and

π∗ = {a∗s, a∗s′ ..., a∗sN−1}, ∀s ∈ S,

14

and we note that sN is some terminal state not included in the policy per
definition. This implies that following π∗,

V π
∗
(s) = V ∗(s).

We want to emphasize that for this to hold, the action a∗ guarantees opti-
mality at s if and only if the process follows an optimal policy in all subsequent
states s′, s′′, ..., sN , see the principle of optimality in (Bellman, p.4, 1954).

The Bellman equation
Equation (8) is the so called Bellman-equation3. The Bellman-equation can be
shown to guarantee optimality, see e.g. (Ross, 1968). We will discuss this in an
intuitive sense, which also will give us an understanding of how MDP’s can be
solved.

As noted in the last section, what is distinctive of (8) is that the choice a∗
takes the value of V ∗(s′) into account, that is for each time-step the value of
V ∗(s) uses the optimal choice a∗ in s′. V ∗(s′) takes into account V ∗(s′′) and so
on, down to V ∗(sN) for some terminal state sN . We can use this to set up an
iterative algorithm. Notice that we want to store both the optimal value, and
the optimal action. We call this value- and policy-iteration, respectively.

Now if we set s = sN and let

V ∗(sN) = rsN (9)

for all s ∈ S. Substitute N − 1 for N and let,

V ∗(sN−1) = max
a∈A

{∑
sN

P asN−1sN

[
rasN−1sN + γV ∗(sN)

]}
,

a∗sN−1 = arg max
a∈A

{∑
sN

P asN−1sN

[
rasN−1sN + γV ∗(sN)

]}
,

(10)

and repeat this until sN−1 = s. We call each such procedure from sN to s
an epoch. This procedure iterates until each V (si) has converged. As noted
earlier, the storage vector {a∗s, a∗s′ , a∗s′′ , ..., a∗sN−1} now forms an optimal policy
π∗ (Taylor, p.46, 2012). Note that (9) is only set for s = sN since we dont have
a value in the terminal state sN .

This method is known as the backward induction-algorithm. It belongs to
the area of Dynamical Programming, which itself is a sub-area of optimization-
theory. Different types of backward induction-algorithms similiar to this is en-
countered in undergraduate courses like finance mathematics - the Rubinstein

3Due to Richard E. Bellman, whom also laid the foundation of MDP’s.

15

binomial model for pricing options or computer science - depth first search-
algorithms. To get a better understanding of how this works, consider the
following example:

Example 3:
Let us work through a classical MDP-problem using (9). Consider a value-grid
like the one in figure 3, with the rewards to the right. For each step we take,
we get a reward of -5, and the process ends whenever we reach a4 or b4. The
possible actions a are ”take a step in direction..." - ”North”, ”East”, ”South”,
”West”, denoted {N,E, S,W} ∈ A. We let the the states {a : c, 1 : 4} span the
grid, so for example the upper rightmost square is state ”a4”.

a

b

c

1 2 3 4

+100

−100

start

a

b

c

1 2 3 4

−5 −5 −5 −5

−5 −5

−5 −5 −5

Figure 3: The starting value- and reward-grids, left and right respectively.

That is, the system is completely defined by,

S = {a1 : c4},
A = {N,E, S,W}, where N := ”go North”, ...,W := ”go West”,
γ = 0.9

rss′ =

−5 for s = {a1 : c3, c4},
100 for s = {a4},
−100 for s = {b4},

and let P assa = 0.7, where sa denotes the next state from s in direction a,
and P ass′ = 0.1 for the rest of the feasible directions under action a. For ex-
ample, say we stand in c3 and choose a = N , the probability of moving in
direction N is 0.7 and 0.1 for the rest of the directions, i.e. PNc3,b3 = 0.7 and
PNc3,c2 = PNc3,c4 = PNc3,c3 = 0.1 . Whenever we end up trying to transition out-
side the grid we bounce back to the same position and receive the corresponding
reward, that is why PNc3,c3 = 0.1 and PSc3,c3 = 0.7. Note that the rewards only
depends on what state the process is taken to, i.e. rNss′ = ... = rWss′ = rss′ , and
that Pπ(s, a) only takes on values of 0 and 1.

Figure 4-5 in Appendix A shows the result after the first and second update,
and Figure 6 after the first epoch. Figure 7 shows the optimal policy after the
value-function has converged.

16

Now each such policy transforms an MDP into an ordinary discrete time MC
as discussed earlier, and we can use the theory from the last section to analyze
hitting times and stationary distributions etc. for comparing properties of differ-
ent policies. Though this becomes limited very fast, since we have 49 different
policies for this small example, it can be convenient for comparing just a few of
these, and give a link back to Markov chains.

For the optimal policy of Figure 7, we have the following equation system to
solve for the absorption probability of entering C = a4, while starting in c1:

hc1 = 0.7hb1 + 0.1hc2 + 0.2hc1

hc2 = 0.7hc1 + 0.2hc2 + 0.1hc3

hc3 = 0.7hc2 + 0.1hb3 + 0.1hc3 + 0.1hc4

hc4 = 0.7hc3 + 0.2hc4 + 0.1hb4

hb1 = 0.7ha1 + 0.1hc1 + 0.2hb1

hb3 = 0.7ha3 + 0.1hb3 + 0.1hb4 + 0.1hc3

hb4 = 0

ha1 = 0.7ha2 + 0.1hb1 + 0.2ha2

ha2 = 0.7ha3 + 0.1ha1 + 0.2ha2

ha3 = 0.7ha4 + 0.1ha3 + 0.1ha2 + 0.1hb3

ha4 = 1

However, we fail at solving this using standard linear equation system-methods.
Using the method of writing this as a matrix in canonical form, inspired by
(Björkström), we get the following absorption probabilities for absorption in
b4, a4 respectively from each state,

b4 a4
c1 0.25 0.75
b1 0.25 0.75
a1 0.25 0.75
c2 0.25 0.75
a2 0.05 0.95
c3 0.25 0.75
b3 0.16 0.84
a3 0.02 0.98
c4 0.34 0.66

which seem like a reasonable result.

17

Reinforcement Learning
This section follows the exposition of (Mitchell, 1997), with ideas from (Sutton
and Barto, 1998).

First we are going to discuss what reinforcement learning is in a general and
intuitive sense, then we will go into the theoretical parts.

Reinforcement learning is a way of combining dynamical programming with
simulations. By letting an agent interact in an artificial nature it can learn a
behavior by receiving rewards from a teacher. There are a few different algo-
rithms developed for reinforcement learning, and we will keep focus on one of
the most well-known: Q-learning.

Q-learning was introduced by (Watkins, 1989). Watkins introduces Q-learning
by drawing parallels to how animals learn by getting rewards for desired behav-
ior. The essence of reinforcement learning are these rewards. As an example,
assume that we want to learn a game-strategy. We set up the nature of this
particular game and the let the agent play. If the agent performs a win, we
reward it by 1 and 0 otherwise. If a win has occured, the question of what
stages has had significant impact on the outcome arises.

The basics of RL
RL is based upon MDP-theory, with the main difference being the backward
induction algorithm we have used solves an MDP-problem directly using the
known nature, i.e. S, A, P aij and raij . RL on the other hand is simulated, that is,
the agent explores the nature by actually testing an action in any given state,
and observes what happens. After each such event it adapts to whatever nature
has responded back to the agent with, in terms of this reward and the next state.
This means that RL can learn optimal policies in which the nature is unknown,
simply by interacting in it.

The following part assumes deterministic actions, for the stochastic case we
will have to make minor changes. This will be done in the last part of this
section.

Learning the optimal policy
So how does the agent learn the policy π∗? From the last section we know
that maximizing the value-function will produce an optimal policy. Though
the value-function only keeps track of the value of being in a state, it does not
consider what actions to choose in each state. We define the optimal action a∗
in state s as the one that maximizes the immediate reward rass′ and the value

18

of V (δ(s, a)) for some mapping δ : S ×A → S. That is,

π∗(s) = arg max
a

[rass′ + γV ∗(δ(s, a))], (11)

where γ is the mentioned discount factor. We will devote a subsection for dis-
cussing δ(s, a) later, for now we just need to know it outputs the next state s′
with the highest value, and this value is precisely V ∗(δ(s, a)).

To be able to store the actions chosen in each state, we introduce the Q-function.
Now we want the algorithm not only to store the action that maximizes (9),
but to store the value for each action. Implying we need a storage for both the
state and the action at each timestep. This is commonly called the Q-function,

Q(s, a) = rass′ + γV ∗(δ(s, a)). (12)

Notice how (11) and (12) can be combined as

π∗(s) = arg max
a

Q(s, a)

which yields that taking a∗ in each state will provide an optimal policy. This
means that the value of choosing action a under state s incorporates the future
values of states.

This sounds promising but we need to know more how the actual updating
occurs, and perhaps more important - how can we be assured that this updat-
ing of the state-action-values converges to the true ones of the nature? The
maximized value function of state s is the same as choosing the action a′ that
maximizes the Q-function in state s′, that is

V ∗(s) = max
a′

Q(s′, a′)

and we can rewrite (11) as

Q(s, a) = rass′ + γmax
a′

Q(s′, a′)

and we want to emphasize that s′ is produced from the function δ(s, a), i.e. Q
is recursive. Furthermore, the basis of this definition is the Bellman-equation,
and has the optimality properties we discussed in the last section.

In practice Q(s, a) is set up as lookup-table, i.e a storage of the Q-values, which
updates at each time-step. One immediate complication of this is that in real-
world-problems this method tend to grow too large to handle with the basic
approach included in this thesis, we discuss this issue in the section ”the prob-
lem of dimensionality”.

Say we define Q̂(s, a) to be the estimate of the true underlying value of Q(s, a)
for each s,a. In practice the updating follows,

Q̂(s, a)← rass′ + γmax
a′

Q̂(s′, a′), (13)

i.e the estimate is updated using an estimate. That is, (12) is a form of pseudo-
bootstraping, see (Sutton and Barto, 1998).

19

The greedy policy
Now if the agent always chooses the action that maximizes Q, we will often end
up at a local optima, since if a given path is better than the starting values of
Q, this path will be built upon in the next epochs.

To conquer this problem we make our agent choose the present optimal ac-
tion with some probability ε, and with probability 1 − ε choose an exploring
policy. That is, it chooses suboptimal actions deliberately to find unexploited
policies. We call this the exploration vs. exploitation-tradeoff, since exploring
will decrease the value at first, but might increase the value in the long run. As
the number of updates goes to infinity, this insures that each state-action pair
is visited an infinite number of times, which is one of the restrictions for Q̂(s, a)
to converge.

On the other hand, as the number of updates grows large less exploration is
needed, since more of the nature is known, and exploitation becomes more
important than exploring. Using a increasing function ε = f(k) for updates
k = 1, 2, 3... handles this by increasing the probability of exploiting as the num-
ber of updates increase.

Furthermore, notice the connection between having a ε-greedy policy and Pπ(s, a)
from the MDP-section. We have not used Pπ(s, a) in the RL-section, but these
are essentially the same thing. The difference is merely in the way they are
used. The ε is used as to inforce exploration in simulations. This can obviously
not be done using the backward induction-algorithm, since we solve it using the
complete nature, i.e. there is no point in exploring. Instead we use Pπ(s, a) in
MDP’s if the nature of the problem demands it. Assume for example that the
problem is such that it has a number of actions to choose, but we must restrict
some of these action to be chosen only some percentage of the time.

The delta-function
We have devoted this section to discussing the mentioned function δ(s, a), since
we wanted to have some more knowledge of the ε-greedy function before doing
so. How this function is chosen while programming an algorithm like this actu-
ally separates Q-learning from a variation of Q-learning, called SARSA.

In the basic Q-learning, δ(s, a) is constructed as to search the value of all sub-
sequent states of s, and output the state with the highest value. That is,

δ(s, a) = arg max
s

V (si) = s′,

for all subesequent states si. This means that although we can construct Q-
learning as to follow an ε-greedy policy, the next state optimal decision at s′
when updating for s will follow a greedy policy in Q-learning.

On the other hand, with SARSA we construct the algorithm as to actually
choose an action in s following a given policy and then transition to the next
state s′. Only after doing this will it send the value of s′ back to s and update

20

V (s). That is, we use a delayed updating rule. We can also alter the number of
steps we want this to be delayed, which is then called TD-learning for Temporal
Difference, i.e. we can have it simulate multiple steps from s and then send back
the values observed from s′, s′′,

So what is the difference? Remember that each action has a probability dis-
tribution. While Q-learning only look up the values of the possible states s′,
SARSA actually explores, and therefore learns, the distribution of a in s′ both
when in state s and s′. Since the transition is simulated we can use an ε-greedy
policy for the decision in s′ while updating the value of s. Using an ε-greedy
decision for choosing s′ would not make much sense in Q-learning, since we could
end up taking the value from some s′i and then transition to another state s′j ,
i.e. no exploration, just varying the state where we get the value of s′ in s.

The problem of dimensionality
As noted earlier, the actual Q-values of each pair is stored in a lookup-table.
For real-life applications this tend to grow big rapidly, to the point where it
infeasible to use these tables. This is overcome by, instead of storing each value,
approximations of the Q-function is used. The area of function approximation
is outside the scope of this thesis, and we have deliberately avoided situations
where it is needed. But since a lot of the literature includes this, we’ve been
exposed to some of the tools used, which are usually various forms of neural
networks. Essentially what this does is to cluster states which seem to have
some properties in common. Treating each such cluster as one state, the state-
action-space is shrunk to a hopefully manageable size. This is an obvious next
subject to look into, to learn this theory further.

The stochastic case
In the last section we showed how to come up with a Q-function and how it
is related to the Bellman-equation. We also assumed we had a deterministic
system, i.e the nature takes the agent to the same state each time an action is
chosen, the reward-function is stationary etc. The problem with implementing
stochastic elements into a updating rule like (12) is that each element in the
lookup-table takes a new value each update. Having stochastic effects on the
actions taken could cause these values to diverge. To counter this, we introduce
a step-size parameter θ which instead of changing the values of each Q(s, a)
adjusts them in the desired direction. Now arguing similarly as we did in (6) it
can be shown that (Mitchell, p.381, 1997),

Q̂(s, a)← (1− θ)Q̂(s, a) + θ
[
rass′ + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

]
, (14)

in the stochastic case. The parameter α is usually chosen as to decrease the
impact of each update, as the number of updates increases. An example is

21

given in (Mithchell, p.382, 1997),

αn =
1

1 + visitsn(s, a)
.

Updating rule (14) is a tuple 〈s, a, r, s′, a′〉, hence the name SARSA. (Watkins
and Dayan ,1992) shows that Q̂(s, a) converges to Q(s, a) with probability 1,
given some conditions on α. Updating rule (14) is one of the most basic Re-
inforcement learning algorithms, and as noted by (Watkins and Dayan, 1992),
”Q-learning is a primitive form of learning, but, as such, it can operate as the
basis of far more sophisticated devices”.

As a last example, we will go through the actual updating in SARSA. We have
also spent time experimenting with implementations for more involved scenar-
ios, none of which we are certain of having found an optimal policy. Of that
reason, we think this thesis will benefit more from seeing this being done man-
ually for a few time-steps in a very basic example as follows.

Example 4:
Consider Example 2 again, although this time we assume it will not live for 2
time-steps, but continue to run until we have found convergence. We will here
go through one step of the updating process, and make assumptions regarding
the outcome of each random variable. Let the parameters be,

θ = 0.9

γ = 0.9

ε = 0.9.

We use random numbers to generate the starting lookup-table Q(s,a), which
becomes,

Q(s,a):
action αi action βi

state 1 0.67 0.23
state 2 0.19 0.44

We remind ourselves of the transition probabilities and rewards,

α1 : Pα1
1,2 = 0.8, Pα1

1,1 = 0.2 r1 = 1

β1 : P β1

1,2 = 0.5, P β1

1,1 = 0.5 r2 = 0

α2 : Pα2
2,1 = 0.5, Pα2

2,2 = 0.5

β2 : P β2

2,1 = 0.9, P β2

2,2 = 0.1

1. Now starting in state 1, we see that arg maxaQ(1, a) = α. Meaning we
choose α with probability ε = 0.9. Assume exploitative action α is chosen,
i.e. Q(s, a) = Q(1, α) = 0.67.

2. We look at the transition probabilities for α1. Assume the outcome of the
transition is state 2. The reward for arriving at state 2, is r2 = 0.

22

3. Before actually updating the first step, we need the next state-transition.
The agent is now in state 2, where arg maxa(Q, 2) = β. Assume that the
exploring action α is chosen, i.e. Q(s′, a′) = Q(2, α) = 0.19.

4. Now we update using (14),

Q(1, α)← (1− θ)Q(1, α) + θ[0 + γQ(2, α)−Q(1, α)] = −0.38.

The updated lookup-table becomes,

Q1(s, a) =
action αi action βi

state 1 -0.38 0.23
state 2 0.19 0.44

and this keep iterating until convergence.

23

Discussion
Our interest in MDP’s started with self-learning algorithms, neural networks
and the hype of deep-learning. Pretty soon it was apparent that we needed to
step backwards theory-wise, to see where RL came from, in order to understand
to the more advanced algorithms. That was how we found MDP’s. To under-
stand more of the theoretical parts of MDP’s we need to study optimization
theory, since a lot of the applications we’ve encountered is in planning. In order
to be able to understand RL better, we need more computer science or perhaps
more specifically statistical machine learning, and we also need to work a lot
more with programming to be able to implement these algorithms. With that
being said, the theory included in this thesis is the theory we found we could
handle fairly well.

Our aim with writing this thesis, has been to introduce ourselves to the subject,
which we think we have succeeded with. Furthermore, we wanted to do a thesis
involving statistical programming. Not because that is a skill we master, but
the direct opposite.

What we could have done differently, is to realize at an early stage that this the-
sis should be about MDP’s and the link to Markov theory, instead of spending
time reading about RL and the algorithmical variations of it. Also, we should
have put focus on sources that built this theory from a mathematical point of
view such as Ross (1970) and Taylor (2012) early on, instead of a computer
science-perspective such as Sutton and Barto (1998). Since this is a subject we
had no prior exposure to, we feel that we have not had time to get both an
overview and depth. The next time we will probably try to do something which
we have been more exposed to, and try to make it more focused on some more
narrow aspect of the material.

24

Reference list
Ross, S.M. (2010) Introduction to Probability Models. 10th edn. Academic Press

Taylor, J (2012) Markov decision processes:Lecture notes for STP 425. Ari-
zona State University

Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning: An introduc-
tion. Cambridge: MIT Press

Ross, S.M. (1968) Arbitrary state markovian decision processes. Stanford Uni-
versity

Bellman, R.E. (1954), The theory of dynamical programming. Rand Corporation

Björkström, A. () Några kommentarer till avsnitt 4.6 i Ross: Introduction to
probability models (7th ed). Stockholm University

Mitchell, T.M. (1997) Machine Learning. McGraw-Hill

Watkins, C.J.C.H (1989) Learning from delayed rewards. Kings College

Watkins, C.J.C.H and Dayan, P. (1992) Technical note: Q-learning. Boston:
Academic Publishers

Ross, S.M. (1970) Applied probability models with optimization applications.
New York: Dover Publications

25

Appendix

A: The grid-problem

a

b

c

1 2 3 4

+100

−100

start

68.5 a

b

c

1 2 3 4

→

Figure 4: The value- and policy-grid after 1 update.

a

b

c

1 2 3 4

+100

−100

start

12.54 33.45

25.06 42.95 68.5 a

b

c

1 2 3 4

↑ ↑

→ → →

Figure 5: The value- and policy-grid after 5 updates.

a

b

c

1 2 3 4

+100

−100

3.78 11.21 21.91 0.84

12.54 33.45

25.06 42.95 68.5 a

b

c

1 2 3 4

↑ → ↑ ←

↑ ↑

→ → →

Figure 6: The Value- and policy-grids from the first epoch.

26

a

b

c

1 2 3 4

↑ ← ← ←

↑ ↑

→ → →

Figure 7: The optimal policy π∗.

27

