
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Causal Inference through
Structure Learning in Bayesian Net-
works
Simon Berggren

Matematiska institutionen

Kandidatuppsats 2015:12
Matematisk statistik
Juni 2015

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2015:10

http://www.math.su.se

Causal Inference through

Structure Learning in Bayesian

Networks

Simon Berggren∗

June 2015

Abstract

This thesis is about structure learning in Bayesian Networks, and how

this may be used for causal inference. A Bayesian Network is a graphical

representation of a probability distribution, that provides a clear repre-

sentation of conditional independences among the random variables. It

consists of a graph and a set of probability tables. In the graph, each

node represent a random variable, while edges and their orientations rep-

resent association and its nature. Causal inference is an analysis con-

cerned with queries about cause and effect relationships. Specifically, in

the phenomenon we wish to analyze, we use random variables to model

the factors that describe this phenomenon, and infer causal associations

among those variables.

Structure learning is a method for obtaining a Bayesian Network from

data, i.e. given data consisting of a number of observations, where each

observation consists of a realization of all the random variables in our

model, the task is to infer a graph structure that represent the distribu-

tion of the variables. Hence, the main focus of this thesis will be to obtain

a graph structure from data, such that the cause and effect relationships

it exhibits, represents the corresponding causal associations in the under-

lying distribution. There are different approaches to structure learning

in Bayesian Networks. In this thesis, focus is on the constraint-based ap-

proach, in which we use conditional independences, inferred from data,

to build the graph structure. Since the number of required independence

tests increases fast with the number of variables in our model, algorithms

are necessary to handle the learning process.

One part of this thesis consists of a theoretical treatment of structure

learning in Bayesian Networks, and in another part, I have composed and

implemented my own version of a structure learning algorithm, SLBN,

which is available for download at https://github.com/SiboBerggren/SLBN.

Furthermore, simulation studies were performed to test the capabilities of

structure learning, and of the SLBN algorithm. Altogether, we will see

that structure learning is a powerful tool that may be used for causal

inference, and that the SLBN algorithm successfully handles the learning

process.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-

mail: simon.berggren@gmail.com. Supervisor: Michael Höhle.

Contents

1 Introduction 3
1.1 Drug test example . 3
1.2 Causal Inference . 5
1.3 Probability theory . 5
1.4 Data and Estimation . 6

2 Bayesian Networks 9
2.1 Graphs . 9
2.2 Bayesian Networks . 10
2.3 Markovian factorization . 10
2.4 Propagation in Bayesian Networks 12
2.5 Simulation . 13

3 Constraint-based structure learning 15
3.1 Correspondence in Bayesian Networks 16
3.2 Equivalent structures . 17
3.3 D-separation . 19
3.4 Stability . 20
3.5 Markov blankets . 21
3.6 Comparing structures . 21

4 The SLBN Algorithm 23
4.1 Input and output . 23
4.2 Step by step . 24

4.2.1 Step 1. Determine the Markov blankets 24
4.2.2 Step 2. Obtain the graph skeleton 25
4.2.3 Step 3. Propagate V-structures 26
4.2.4 Step 4. Remove cycles . 27
4.2.5 Step 5. Add compelled edges 29

4.3 Implementation of SLBN . 31
4.3.1 Adjacency matrix . 32

1

4.3.2 Symmetry . 32
4.4 Discussion . 33

5 Experimental results 35
5.1 Drug test example . 35
5.2 Testing SLBNs capabilities . 37
5.3 Simulation with latent variables . 40
5.4 Simulation of an unstable distribution 42
5.5 Coronary data-set . 43
5.6 Extending structures . 46

6 Discussion 47

7 Appendix 50
7.1 Independence test . 50
7.2 Proof of correctness of Step 4 in SLBN 51
7.3 Walk through of Step 1 in SLBN 52
7.4 Walk through of Step 2 in SLBN 53
7.5 Drug test simulation, information output 54

2

Chapter 1

Introduction

I would rather discover one causal law, than be king of Persia. This statement by
Democritus 400 BC demonstrates that answers to queries about cause and effect
relationships has always appealed to humanity. In this text, structure learning
in Bayesian Networks is presented, as a tool to infer causal associations. Such
analysis is referred to as Causal inference.

Causal inference, based on data from experimental settings, is desired in many
fields such as medicine and economics. The following made up example will be
used throughout the text to exemplify the different concepts.

1.1 Drug test example

Consider a new drug attempting to provide remedy for Ulcerative colitis (UC), an
inflammatory bowel decease with symptoms appearing in breakouts. Suppose that
the drug has a number of side effects, namely that some people may experience
a decreased appetite, and that some may have an increased level of a specific in-
testinal bacteria (IB). In a possible setting for testing the drug, we have a random
sample of a number of individuals, supposed to represent the population of people
suffering from UC. Half of them are given the drug, and the other half is given
placebo (i.e. a sugar pill), without being aware of what substance they actually
got. After some time, we measure each individuals C-reactive protein level (CRP),
an indicator of inflammation. We also observe whether each individual has had
a breakout or not during the time of the experiment, if they have experienced
decreased appetite, and if their level of IB has increased above a specific level.
From this information, we attempt to determine how the factors are related. If
this investigation indicates an association between taking the drug and absence
of a breakout, it does not necessarily imply that the drug is a direct cause. The
absence of a breakout may be caused by increased IB level or reduced food in-

3

take, resulting from decreased appetite. Such knowledge about the relationships
between the various factors, would be crucial in the future treatment of UC.

The relationships between the observed factors in this setting may be repre-
sented by a Bayesian Network (BN). The factors are represented by random vari-
ables (RV) and pictured by nodes in a graph, where an edge and its orientation
represents association and its nature. In the example, we have binary categorical
RVs ”drug” (D), ”increased IB” (IB), ”decreased appetite” (DA), ”hi CRP level”
(CRP), and ”breakout” (B). The BN in figure 1.1a represents that D affects DA,
IB and CRP, and that CRP affects B. The second BN in figure 1.1b represents
that D affects IB and DA, that those two affects CRP, which in its turn affects
B. It also states that D has no direct impact on B, but affects it only through
other factors. If the latter was the case, we may consider another treatment, also
increasing the IB level, and suggest reduced food intake. BNs and their properties
are explained in chapter 2.

D

IBDA CRP B

(a)

D

IB DA

CRP B

(b)

Figure 1.1: Two Bayesian Networks representing different relationships among the
factors in a drug test setting.

Structure learning in Bayesian Networks is concerned with obtaining the struc-
ture of the graph, given data, i.e. to find out how the RVs relate to each other. In
the example we could use it in an attempt to obtain the graphs in figure 1.1 from
data. There are different approaches to this, commonly divided into two families,
the score-based and the constraint-based. In the Score-based approach, how good
different structures fits data are evaluated, and the best scored structure is chosen.
In the constraint-based, conditional independence tests successively builds up the
desired structure. Since the number of tests increases fast with the number of
RVs in the model, this cannot (apart from small settings) be done by hand, and
algorithms that automatically handle the learning process are necessary. In this
text, focus is on the constraint-based approach, which is explained in chapter 3.

As a part of the thesis, I have composed and implemented my own version of
a structure learning algorithm, SLBN, which takes advantage of ideas from the
constraint-based approach. SLBN is presented in chapter 4, and is available for
download at github [13]. Results from experiments, where SLBN is used to learn
the structure from a number of data-sets, are presented in chapter 5.

4

Before going into structure learning in Bayesian Networks, some basic theory
has to be covered. In the following sections, the idea of causal inference, the most
important concepts of probability theory, and a description of what data we are
concerned with, are presented.

1.2 Causal Inference

A statement about causality specifies the direction of an association, and is there-
fore stronger than one about a dependence. For RVs A and B, ”A causes B” is
interpreted as ”A is a cause of B and B is an effect of A, but not the other way
around”, i.e. the outcome of A will affect B’s probability distribution, but the
outcome of B does not affect A’s.

Causal inference is an analysis concerned with queries about causal associations
among RVs in a model, i.e. based on data we attempt to determine how a RV
is affected by changes in another. In e.g. a multiple linear regression-model, a
prediction is based on how the ”regression-plane” corresponds to changes in all
the explanatory variables, and if those covariates, the actual cause of a change in
the response variable remains unknown1. Causal inference attempts to distinguish
covariation from causation. In the drug test example of section 1.1, it may give
the answer to if absence of a breakout is actually caused by taking the drug, in
addition to if those are associated.

1.3 Probability theory

Conditional independences among RVs forms the basis in constraint-based struc-
ture learning, this section will introduce some important concepts of independence.

Let A and B be two RVs. In general, the correspondence between the joint and
the conditional probabilities are

P (A,B) = P (A|B)P (B). (1.1)

A and B is said to be independent if they do not affect each other, and we write
(A ⊥⊥ B). If they are dependent, we write (A 6⊥⊥ B). Formally, A and B are
independent if and only if

P (A,B) = P (A)P (B) or equivalent P (A|B) = P (A). (1.2)

Conditional independence of A and B given a set of RVs C, disjoint of {A,B},
states that A does not provide any information about B, given information about

1A ”causal” alternative to prediction in a multiple linear regression-model is presented in
section 2.4.

5

C, and we write (A ⊥⊥ B|C). This holds if and only if

P (A|B,C) = P (A|C) or equivalent P (A,B|C) = P (A|C)P (B|C). (1.3)

We will refer to a specific outcome c, of the RVs in C as a configuration of C.
The law of the total probability specifies that

∑
a∈A P (A = a) = 1, where A is

A’s sample space, and we have

P (A) =
∑
c∈C

P (A,C = c), (1.4)

where C denotes the set of configurations of C.
Consider a joint probability distribution P , over a set of RVs V = (V1, V2, . . . , Vn).

Repeated use of (1.1) gives

P (V1, V2, . . . , Vn) = P (Vn|V1, . . . , Vn−1)P (V1, . . . , Vn−1) = . . .

= P (Vn|V1, . . . , Vn−1)P (Vn−1|P (V1, . . . , Vn−2) . . . P (V1).
(1.5)

1.4 Data and Estimation

When learning the structure of a Bayesian Network from data, we are interested
in how the factors affect each other, or specifically how the RVs in our models
are related. Data will therefore consists of a number of observations, where each
observation consist of a realization of all the fators we want to model. Hence, in a
setup containing a set of k RVs, V = (V1, V2, . . . , Vk), we have, in a sample of size
n, data

D = {d1,d2, . . . ,dn}, where dj = (dj1, d
j
2, . . . , d

j
k), j = 1, 2, . . . , n,

and where dji denotes the outcome of Vi, i = 1, 2, . . . , k, in the jth observation.
The sample space of each RV corresponds to the possible outcomes of the factor it
represents. As an example, a sample of size n from the drug test setting in section
1.1 will consists of observations on D, IB, DA, CRP and B from n individuals,
and the sample space of each RV will consist of two values (typically 1 and 0 for
”yes” and ”no” respectively). Note that we in this text assume that there are no
missing observations in data.

Constraint-based structure learning applies to ordinal data (continuous or dis-
crete values), as well as nominal data (categorical levels without a meaningful
ordering). In the case of nominal data, each configuration of the RVs in our model
has a specific probability to occur, and we assume that the RVs follows a joint
multinomial distribution. We will estimate those probabilities, i.e. the parameters
in the multinomial distribution, from the proportions in data. Specifically, given

6

a model containing a set of k RVs V = (V1, V2, . . . , Vk), and a sample D of size
n (without missing values of these RVs). Let rV denote the number of possible
configurations of all RVs in V, this is typically given by the Cartesian product of
the sizes of each RVs sample space, i.e. rV =

∏k
i=1 rVi

, where rVi
is the size of Vis

sample space. Let furthermore ni denote the number of observations in D that
match the ith configuration. Then the maximum likelihood (ML) estimator π̂i, of
the probability of the ith configuration πi, i = 1, 2, . . . , rV, is given by ni/n, where

rV∑
i=1

ni = n and

rV∑
i=1

πi = 1.

Given data from the drug test example in section 1.1, we will be interested in
estimating

πi,j,k,l,m = P (D = i, IB = j,DA = k, CRP = l, B = m), i, j, k, l,m = 0, 1, (1.6)

i.e. the probability of observing the RVs at the specified levels in one individual.
For each of the rV = 25 = 32 possible configurations of the RVs, we will estimate
these probabilities with π̂i,j,k,l,m = ni,j,k,l,m/n, where ni,j,k,l,m denotes the number of
observations that match this specific configuration. For the sample of size n = 500,
presented in the contingency table 1.1, we have e.g. π̂0,0,0,1,1 = 127/500 = 0.256,
estimating P (D = 0, IB = 0, DA = 0, CRP = 1, B = 1).

B 0 1
CRP 0 1 0 1

D IB DA
0 0 0 12 7 5 127

1 15 0 8 13
1 0 44 0 10 12

1 6 0 1 2
1 0 0 1 0 0 5

1 12 1 2 7
1 0 17 0 13 7

1 124 0 26 23

Table 1.1: Contingency table show-
ing the outcomes of the five RVs in
the drug test setting of section 1.1,
for a sample of size 500.
(Data is simulated according to
the distribution specified by the
Bayesian Network in figure 2.2)

The size of a model refers to the number of parameters required to specify the
distribution, i.e. the size is rV − 1 =

∏k
i=1 rVi

− 1 in a model with k RVs. For
each of the rV1 possible values of V1, V2 assumes one of rV2 values, V3 one of rV3 ,
and so on, and the fact that the probabilities sums to one restricts the number
of parameters by one. In the drug test example, with 5 binary RVs, the joint
multinomial distribution is specified by 25− 1 = 31 parameters, i.e. the size of the
model is 31. In chapter 2 we will see that a BN representation of a model, based on
conditional independences, may reduce its size, and in a setup with a large number

7

of RVs, this reduction may be crucial, e.g. in order to estimate probabilities such
as the one in (1.6).

Conditional independences among the RVs, forms the basis in constraint-based
structure learning. The asymptotically χ2 distributed Pearson’s χ2 test for inde-
pendence, is used to infer about such independences from data, and is explained
in the appendix 7.1.

When the aim with structure learning is a complete causal analysis, we have
to assume that the observed RVs describes the phenomenon of interest sufficiently
good. Specifically, we assume that no unobserved factors affects two or more of
the observed ones. Such ”unobserved RVs” are referred to as latent variables or
confounders (Pearl, 2000).

As mentioned, the distributions will be represented by Bayesian Networks, now
we are ready to explore those in the next chapter.

8

Chapter 2

Bayesian Networks

A Bayesian Network is a graphical representation of a probability distribution,
which provides a clear representation of how the RVs are related. BNs are suit-
able for causal inference since the graph structure specifies a factorization of the
distribution, as will be explained in section 2.3. Constraint-based structure learn-
ing takes advantage of this factorization. Conditional independences inferred from
data specifies a factorization of the distribution, and is used to obtain a graph.
Relationships read from this graph then tells us something about the distribution
via this factorization. In this chapter, BNs and their properties will be explained,
and in chapter 3, we will see how we can use independences inferred from data to
obtain the graph. The relevant graph terminology is introduced in the following
section.

2.1 Graphs

Our graphs consist of nodes, representing RVs, and edges. A directed edge and its
orientation represents a causal association between the corresponding RVs, and
undirected edges represents unspecified associations. Connected nodes are said to
be adjacent, and in a complete graph, each pair of nodes are adjacent. A path
is series of edges and the nodes they connect, such that no node is revisited. If
all edges in a path are directed, and follows the same orientation, we call it a
directed path. A cycle is a directed path, starting and finishing at the same node.
In figure 2.1, A−C−E−D is a undirected path from A to D and B→D→E→F is
a directed path from B to F. Changing the orientation of the edge D→E to E→D
would introduce the cycle B→C→E→D→B. In BNs, cycles are not allowed, but
only directed acyclic graphs (DAG), as the one in figure 2.1. Acyclic graphs with
both directed and undirected edges is referred to as a PDAGs, partially directed
acyclic graphs. The skeleton of a DAG (or a PDAG) refers to the corresponding

9

undirected graph. In figure 2.1, A and B are the parents of C, E is the only parent
of F, {A,B,C,D} are the predecessors of E, and A has no predecessors. C and D
are the children of B, and E and F are the descendants of D. The neighborhood of
a node consist of its parents and children, e.g. {A,B,E} are the neighbors of C.

A B

C D

E F

Figure 2.1: Example of a DAG.

2.2 Bayesian Networks

The term “Bayesian Network” was coined by Pearl (Pearl,1985), and the name
stems from a parallel to Bayesian statistics, we update our prior knowledge by
observed data. Among several definitions of a BN, the following is used in this
text.

Definition 1 (Koller,Friedman,2009) Bayesian Network
A Bayesian Network is a graphical representation of a probability distribution over
a set of RVs. It consists of a DAG in which each node corresponds to a RV, and
a set of conditional probability tables, one for each RV.

The intended conditional probability tables are determined by the joint distribu-
tion. To see this, consider a model with a set of RVs V = (V1, . . . , Vk). For a
specific outcome Vi = vi and a configuration u, of the RVs in U ⊆ V\Vi, the
identities (1.1) and (1.4) gives,

P (vi|u) =
P (vi,u)

P (u)
=

∑
s∈S P (vi,u, s)∑

s∈S,v∈Vi P (u, s, v)
(2.1)

where s is a configuration of S = V\{U, Vi}, and S and Vi are the sample spaces
of S and Vi respectively. Since Vi ∪U ∪ S = V, the desired conclusion follows.

2.3 Markovian factorization

In this section, the factorization mentioned in the introduction to this chapter,
will be formalized. Given an ordering of a set of RVs, the Markovian parents of a
RV A is the minimal subset of A’s predecessors, according to that ordering, such
that A is independent of all its other predecessors given this subset.

10

Definition 2 (Koller,Friedman,2009) Markovian parents
Let V = (V1, . . . , Vk) be an ordered set of RVs, distributed according to P . A set
of variables PA(Vi) ⊆ {V1, . . . , Vi−1} is said to be the Markovian parents of Vi if

P (Vi|PA(Vi)) = P (Vi|Vi−1, Vi−2, . . . , V1) (2.2)

and no proper subset of PA(Vi) satisfies (2.2).

According to the identity (1.5), the joint probabilities can be written,

P (V1, V2, . . . , Vk) =
k∏

i=1

P (Vi|PA(Vi)) (2.3)

In a BN, the oriented edges induces a natural ordering of the RVs, and the Marko-
vian parents of a RV is just its parents. Due to this observation and (2.3), the size,
i.e. number of parameters required to describe the distribution, may be reduced
in a BN. Let G be the graph of a BN with RVs V = (V1, . . . , Vk), distributed
according to PG, where PG factors according to G. Let furthermore ri denote
the cardinality of Vi’s sample space, and qi =

∏
{i:Vj∈PA(Vi)} ri, be the number of

configurations of the RVs in PA(Vi) for i = 1, 2, . . . , k. Then

size(G) =
k∑

i=1

qi(ri − 1) (2.4)

is the number of parameters in the joint multinomial distribution, given that it
factors according to G. Compared to the expression for the size

∏k
i=1 ri − 1, as

computed in section 1.4, (2.4) is always smaller for a DAG. Consider the drug
test example in section 1.1, and the BN in figure 1.1b. Due to the independences
implied by the graph,
P (D, IB,DA,CRP,B) = P (D)P (IB|D)P (DA|D)P (CRP |IB,DA)P (B|CRP),

and 11 parameters will specify the distribution, instead of the 31 found in section
1.4. The distribution is therefore determined by the probability tables in figure
2.2, which illustrates how a BN typically is specified (the probabilities are made
up).

If A→C→B is the graph of a BN, P (B|C,A) = P (B|PA(B)) = P (B|C),
so (B ⊥⊥ A|C) holds, i.e. A and B is independent given C. When learning the
structure of a BN, we use such conditional independences, inferred from data, to
obtain the graph, and this graph to infer about causal associations. How this
is done, and under what circumstances the relationships in the obtained graph
actually corresponds relationships in the distribution, is explained in chapter 3. In
the next section, an important application of BNs is exemplified, and in section
2.5, a description of how we can simulate data from a BN is explained.

11

D

IB DA

CRP

B

D d1 d0
0.5 0.5IB|D IB = 1 IB = 0

D = 1 0.9 0.1
D = 0 0.2 0.8

DA|D DA = 1 DA = 0
D = 1 0.8 0.2
D = 0 0.2 0.8

CRP|IB,DA CRP = 1 CRP = 0
IB = 1 DA = 1 0.1 0.9

DA = 0 0.25 0.75
IB = 0 DA = 1 0.4 0.6

DA = 0 0.9 0.1

B|CRP B = 1 B = 0
CRP = 1 0.95 0.05
CRP = 0 0.15 0.85

Figure 2.2: Bayesian Network, represented as a DAG and a set of probability
tables, specifying the distribution in the drug test example of section 1.1.

2.4 Propagation in Bayesian Networks

We have seen that the BN representation of a distribution provides a clear repre-
sentation of conditional independences among the RVs, and the probabilities of a
specific RV’s outcomes may be easily accessed, since those depends only on a sub-
set of all RVs in the distribution, namely the Markovian parents. As an example,
in the BN of figure 2.2, the probabilities of B’s different outcomes depends only on
the outcome of PA(B)=CRP, and is available in the probability table for B|CRP,
i.e. we do not have to account for the outcomes of D, IB and DA to specify those
probabilities, if we know the outcome of CRP.

As motivated above, the BN representation of a distribution is useful when
we wish to predict the outcome of a specific RV, given information about the
remaining RVs. Such prediction is sometimes referred to as propagation, and is
an important application of BNs. Specifically, let V be the set of RVs, and sup-
pose that VI ∈ V is of specific interest, i.e. we are interested in probability vector
P(VI |V\VI = v), where v is a realization of the RVs in V\VI . This expression
may be laborious to derive from the joint probability distribution if the factor-
ization of 2.3 is unknown, but in a BN the graph specifies this factorization, and
P(VI |V\VI = v) = P(VI |PA(VI) = u), where u = {vi ∈ v : Vi ∈ PA(VI)} is
the outcomes of the variables in PA(VI) that match v. As an example, consider
a bank, concerned with whether or not to approve a loan to a new customer,
and suppose that the bank collects data from all its customers. Specifically, the
bank has data on a number of RVs VE = (VE1, VE2, . . . , VEk), representing dif-
ferent factors such as income and age, that may affect a customers ability to pay
back a loan, from each customer in the bank1. The bank has also repayment

1It is convenient to use ordinal RVs when exemplifying VE , even though it contravenes this
texts restriction to nominal categorical data. However, the theory naturally extends to ordinal
data, as will be discussed in chapter 6.

12

history for each customer, i.e. in a simple setup, the bank has data on the RV
VI , with two possible outcomes, ”customer did pay back loan” and ”customer did
not pay back loan”. Suppose furthermore that we can represent the distribution
of (VE1, VE2, . . . , VEk, VI) with a BN. We are interested in the probability that a
new customer that requests a loan, will be able to pay it back, given informa-
tion about the factors represented by VE for this costumer, i.e. the probability
P (VI |VE = v), where v is a realization of the RVs in VE. In a BN, the probabil-
ity table for VI |PA(VI) contains this information. Structure learning may be used
to infer this BN from data consisting of observations on all the customers in the
bank, i.e. we estimate the probability distribution through structure learning, and
use this estimation for propagation. This exemplifies an important application of
structure learning. How the BN can be inferred from data is explained in chapter
3.

2.5 Simulation

In this section, we will see how data may be generated, according to a distribution
specified by a BN. The described technique is used for the simulations in chapter
5. For convenience, the set-builder notation will sometimes be used even though
an ordered vector is intended.

Given a BN with k RVs V = (V1, V2, . . . , Vk), one sample d = (d1, d2, . . . , dk)
from this BN is generated as follows. Let V(1) ⊆ V denote the set all parentless
RVs in V, then for each RV Vi ∈ V(1), one realization di of Vi is generated from
a multinomial distribution. The parameters in this distribution are specified by
the corresponding probability table in the BN, i.e. for each Vi ∈ V(1), we have a
vector of probabilities P(Vi), and generate di from a MN(1,P(Vi)) distribution.
After having realized all RVs in V(1), we will have a vector r(1) = {di : Vi ∈ V(1)},
consisting of the realizations of the RVs in V(1). Next, we realize each RVs that
has all of its parents in V(1), let V(2) = {Vj : PA(Vj) ⊆ V(1)} denote this set,
i.e. for each Vj ∈ V(2), we generate dj according to a MN

(
1,P(Vj|V(1) = r(1))

)
distribution, where the probability vector P(Vj|V(1) = r(1)) is specified in the row
of the corresponding probability table that match the realizations in r(1). When
all RVs in V(2) is realized, we will have the vector of realizations, r(2) = {dj : Vj ∈
V(2)}. Next, we realize each RV that has all of its parents in V(1) ∪V(2), in the
same way as described above, and the procedure continues until all the RVs in
V =

⋃
l V

(l) is realized. Note that, due to the DAG structure, the sets V(l) are all
disjoint.

We are typically interested in simulating a data-set consisting of n > 1 samples,
i.e. n independent realizations of the RVs in the BN. One could therefore repeat the
described procedure n times, but it is more efficient to generate n realizations of the

13

RVs in V(i), before proceeding to the RVs in V(i+1). Suppose that
⋃M

l=1 V(l) = V,
then algorithm 1 will produce a data-set of sample size n from a BN. In algorithm
1, dji denotes the jth realization of Vi ∈ V, dj denotes the jth realization of the RVs
in V, and r(m),j = {dji : Vi ∈ V(m)} denotes the jth realization of the RVs in V(m)

for m = 1, 2, . . . ,M . The probability vectors are specified in the corresponding
probability table of the BN.

foreach Vi ∈ V(1) do
generate {d1i , d2i , . . . , dni } from MN(n,P(Vi))

end

r(1),j = {dji : Vi ∈ V(1)}
for m = 2, 3, . . . ,M do

foreach Vi ∈ V(m) do
for j = 1, 2, . . . , n do

generate dji from MN
(
1,P(Vi|V(m−1) = r(m−1),j)

)
end

end

r(m),j = {dji : Vi ∈ V(m)}

end

dj = (dj1, d
j
2, . . . , d

j
m)

d = {d1,d2, . . . ,dn}

Algorithm 1: Simulation of a BN.

The simulations in chapter 5 is done in R. When realizing multinomial dis-
tributed RVs, the sample-function is used.

14

Chapter 3

Constraint-based structure
learning

The idea behind constraint-based structure learning is to obtain a graph from con-
ditional independences inferred from data, and to use this graph to infer about
causal associations in the distribution. If relationships in the graph does not cor-
respond to ditto in the distribution, conclusions from reading the graph would not
be justified, and the idea of causal inference through structure learning would be
useless. To justify such analysis, we need to ensure that the graph only entails
relationships that actually corresponds to relationships in the underlying distribu-
tion. Before explaining how such a graph is obtained in sections 3.1 through 3.4, a
general overview of constraint-based structure learning follows. Figure 3.1 and the
following schematic description intends to guide the reader through this chapter.

Structure learningData
Samples containing

observations of RVs, supposed
to describe a phenomenon of

interest sufficiently.

Conditional independences, inferred from data, are used to form a
skeleton.

V-structures are detected based on D-separation, and edges in those
are oriented.

Yet undirected edges are directed whenever the opposite orientation
would introduce new V-structures or cycles.

Graph
Graph exhibiting causal
relations among RVs.

1.

2.

3.

Figure 3.1: Constraint based structure learning.

1. Starting from a graph consisting of nonadjacent nodes, corresponding to the
RVs in our model, a skeleton is formed based on conditional independences in-
ferred from data. Two nodes are connected if and only if there are no subset of

15

the remaining RVs that renders their corresponding RVs independent.
2. Based on the connections in the skeleton, and the rules of D-separation, a
specific kind of node triples, called V-structures are detected, and the edges in
those are oriented. V-structures, and what makes them important, is explained in
section 3.2, and D-separation is explained in section 3.3.
3. Finally, yet undirected edges are oriented, such that the graph remains acyclic
and now further V-structures are introduced. Through this, we obtain a PDAG
which exhibits causal associations. Under assumptions, specified in sec 4.1, those
relationships will be valid for the underlying probability distribution.

3.1 Correspondence in Bayesian Networks

The theory in the following sections serves to ensure the correspondence between
relationships in the graph we obtain from data, and relationships in the distribu-
tion that data is supposed to follow. D-separation, defined in section 3.3, provides
a convenient way to identify such inferred independences that can be used to ob-
tain a graph that satisfies this. To motivate the ideas behind D-separation, we
will distinguish independence in a graph from independence in a distribution, i.e.
initially, independence between two nodes will not be equivalent to independence
between the RVs they represent. Notations-wise it will be distinguished by sub-
scripts P and G, for independences in distributions and in graphs respectively.
The following definition refers to the factorization introduced in section 2.3.

Definition 3 (Pearl,2000) Markov Compatibility
If a probability distribution P admits the factorization of (2.3), relative to the
ordering induced by a DAG G, then G and P are said to Markov-compatible.

Theorem 1 (Pearl,2000)
For any three disjoint sets of nodes, A,B and C in a DAG G the following impli-
cations holds:

• (A ⊥⊥ B|C)G ⇒ (A ⊥⊥ B|C)P for every distribution P , Markov-compatible
with G.

• (A 6⊥⊥ B|C)G ⇒ (A 6⊥⊥ B|C)P for at least one distribution P , Markov-
compatible with G.

The following direct consequence is instructive, in order to formulate the desired
correspondence.

For any three disjoint sets of nodes A,B and C in a DAG G, and for all
distributions P the following holds:

16

• (A ⊥⊥ B|C)G ⇒ (A ⊥⊥ B|C)P whenever G and P are Markov-compatible.

• if (A ⊥⊥ B|C)P holds in every P that is Markov-compatible with G, then
(A ⊥⊥ B|C)G.1

If there were only one DAG being Markov-compatible with P , independences
among RVs distributed according to P would certainly hold in this. Unfortu-
nately, this is not the case in general. However, there are certain structures, such
that if those are not present in a DAG, this will not be Markov-compatible with a
distribution satisfying the corresponding relationships, i.e. such structures has to
be present in every DAG being Markov compatible with P . If considering graphs
entailing only such structures, independence in graphs and distributions would be
equivalent, and due to mutual exclusivity of independence and dependence, this
equivalence would also hold for dependences. Towards to identify those structures,
we will examine the fundamental connections.

3.2 Equivalent structures

Consider a substructure of a graph, consisting of three nodes, where two of them are
adjacent with the third, but not connected to each other. There are three possible
orientations of the edges in such a triple if we consider the nodes as interchangeable.
Those are the serial connection, the diverging connection and the V-structure,
referred to as the fundamental connections (Scutari,Nagarajan,Lébre,2013). The
serial connection consists of the nodes and edges in a directed path, in the diverging
connection one of the nodes has outgoing edges pointing towards the other two,
and in the V-structure two of the nodes have edges converging to the third, the
collider (see figure 3.2).

A C B

(a) Serial connection
A

C

B

(b) Diverging connection

A

C

B

(c) V-structure

Figure 3.2: The fundamental connections.

Decomposing the probabilities of the corresponding RVs according to the iden-
tity (2.2), and the ordering implied by the graphs gives

P (A,B,C) = P (A|PA(A))P (B|PA(B))P (C|PA(C)) = P (A)P (C|A)P (B|C),
(3.1)

1The second statement, that a graph G embodies all independences in a probability distribu-
tion P, is with the additional assumption that P is stable (see section 3.4) also referred to as G
being an I-map of the set of independences in P (Koller,Friedman, 2009).

17

P (A,B,C) = P (A|PA(A))P (B|PA(B))P (C|PA(C)) = P (A|C)P (B|C)P (C),
(3.2)

P (A,B,C) = P (A|PA(A))P (B|PA(B))P (C|P (C)) = P (A)P (C|A,B)P (B),
(3.3)

for the serial connection, the diverging connection, and the V-structure respec-
tively. For (3.2), the definition of conditional independence (1.1) gives

P (A|C)P (B|C)P (C) =
P (A,C)

P (C)

P (B,C)

P (C)
P (C) = P (C|A)P (A)P (B|C), (3.4)

which equals (3.1). Hence, based on the outcomes of conditional independence
tests exclusively, we will not be able to distinguish the diverging connection from
the serial connection. However, the expression for the V-structure (3.3) differs
from the others, and we can uniquely determine a class of PDAGs, defined by its
skeleton and set of V-structures. Such a class satisfies the transitive, symmetric
and reflexive properties and is referred to as an equivalence class.

Definition 4 (Pearl,2000) Equivalent structures
Two PDAGs are equivalent if and only if they have the same skeletons and the
same set of V-structures.

The uniqueness of the skeleton follows from the fact that two nodes are adjacent
if and only if no subset of all RVs renders their corresponding RVs independent,
and that independence when conditioned on only one such subset is sufficient to
separate them. Therefore the conditional independence tests will always identify
whether two nodes are neighbors or not.

Consider the PDAGs in figure 3.3. Changing the orientation of the edge con-
necting A and B will not change the set of V-structures, therefore the first and the
second PDAG belongs to the same equivalence class, defined by the third PDAG.
Redirecting the edge connecting D and E, as in the fourth and fifth PDAG, will
result in PDAGs from different equivalence classes, the first with V-structures
A→C←B and C→E←D, and the second with A→C←B and C→D←E.

A

C

B

D E

A

C

B

D E

A

C

B

D E

A

C

B

D E

A

C

B

D E

Figure 3.3: PDAGs illustrating equivalence classes. The first, second and third
graph belongs to the same equivalence class, but the forth and fifth belongs to
different.

18

3.3 D-separation

D-separation is used to orient edges in constraint-based structure learning, and
provides a convenient way to identify such directed substructures of a graph, that
is uniquely determined by conditional independences inferred from data.

Consider three nodes A,B and C in a graph G, and the fundamental connec-
tions. Intuitively, in the serial connection A→C→B, and in the diverging connec-
tion A←C→B, A and B are marginally dependent, but independent when condi-
tioned on C, i.e. (A 6⊥⊥ B)G, but (A ⊥⊥ B|C)G. This extends to larger graphs, in
a directed path traversing a number of nodes,

A→ C1 → · · · → Cn → B,

or two directed paths, starting from a node Ci ∈ {C1, C2, . . . , Cn},

A← C1 ← · · · ← Ci → · · · → Cn → B,

(A 6⊥⊥ B)G, but (A ⊥⊥ B|Cj)G holds for j = 1, 2 . . . , n. For the V-structure
A→C←B, we will instead introduce a dependence by conditioning, i.e. (A ⊥⊥ B)G
but (A 6⊥⊥ B|U)G holds for any subset U of C and its descendants. D-separation
is a formalization of this ideas.

Definition 5 (Pearl,1988) D-separation
Let A, B and C be three disjoint sets of nodes in a DAG G. A path p is said to
be D-separated, or blocked, by C if and only if

• there is a serial or a diverging connection along p such that the middle node
is in C, or

• there is a V-structure along p, centered at a node Z, s.t. neither Z or any of
its descendants are in C.

If C blocks every path between nodes in A and B, then C D-separates A and B.

Note that C D-separates A and B if and only if (A ⊥⊥ B|C)G.
In the DAG in figure 3.4, B D-separates C from D but {B,E} does not since

the path C→E→D is open. E D-separates A from F, but C does not, since C will
open the path A→C→B→D→E→F. A and D are D-separated by ∅, but not by
F, since F opens the paths A→C→B→D and A→C→E→D.

In the following, graph-independence and independence among RVs will be
distinguished only if the context motivates it.

To be able to determine the equivalence class uniquely, i.e. to ensure the desired
correspondence between relationships in the graph, obtained by constraint-based
structure learning, and relationships in the underlying distribution, we also have
to assume that the distribution is stable. Stability is explained in the following
section.

19

A B

C D

E F

Figure 3.4: DAG used in examples of D-separation and Markov blankets.

3.4 Stability

A distribution is said to be stable2 if its set of independences are invariant under
different parameterizations (Pearl,2000). The following example of an unstable
distribution illustrates the concept.

Consider a distribution with three binary categorical RVs A,B and C, where A
and B is independent and Bernoulli distributed with

P (A = 1) = pA, P (A = 0) = 1− pA, P (B = 1) = pB and P (B = 0) = 1− pB,

and where C equals 1 if A=B and 0 otherwise. By this definition of the probability
distribution, (A 6⊥⊥ C) and (B 6⊥⊥ C) holds in general. However, with pA = pB =
1/2, (A ⊥⊥ C) and (B ⊥⊥ C) holds. To see this, note that given that A = 0, then
C = 0 if and only if B = 1, and by similar arguments we get the following two
equalities, from which the proclaimed independences follows:

P (C = 0|A = 0) = P (B = 1) = pB = 1/2 = 1− pB = P (B = 0) = P (C = 0|A = 1)

P (C = 0|B = 0) = P (A = 1) = pA = 1/2 = 1− pA = P (A = 0) = P (C = 0|B = 1).

(3.5)

This specific parametrization introduces extraneous independences, and the dis-
tribution is not stable. No consider the following inequalities,

P (C = 0, A = 0|B = 0) = 0 6= pA = P (C = 0, A = 1|B = 0),

P (C = 0, B = 0|A = 0) = 0 6= pB = P (C = 0, B = 1|A = 0),

P (A = 0, B = 0|C = 0) = 0 6= pBpA = P (B = 1)P (A = 1)

= P (A = 0|C = 0)P (B = 0|C = 0).

(3.6)

Evidently, each pair of the RVs are marginally independent, but dependent when
conditioned on the third. This illustrates why unstable distributions are problem-
atic in constraint-based structure learning. The V-structure we expect to obtain is
A→C←B, which exhibits the marginal independence of A and B, their dependence
when conditioned on C, and the unaffected dependences of A and C, and of B and
C. However, for pA = pB = 1/2, each of the three conditional dependencies in

2The concept of faithfulness is equivalent to stability (Koller,Friedman,2008).

20

(3.6) together with the pairwise independences in (3.5), satisfies the factorization
linked to the V-structures (3.3), and the equivalence class cannot be determined.
While Markov compatibility ensures the existence of an equivalence class, stability
ensures its uniqueness.

Another concept used in most of the constraint-based learning algorithms (and
in SLBN), is that of Markov blankets, which is explained in the following section.

3.5 Markov blankets

Markov blankets (MB) are used when building up the skeleton, and when detecting
the V-structures in the constraint based learning algorithms3. The MB of a node
is the minimal set of nodes that D-separates it from all others.

Definition 6 (Pearl,2000) Markov blanket
Let V be the set of nodes in a Bayesian Network. The Markov blanket of A ∈ V
is a set MB(A) ⊆ V\A s.t.

1. (A ⊥⊥ B|MB(A))G for all B ⊆ V\{MB(A), A})

2. if a set H satisfies 1 (in the place of MB(A)), then MB(A) ⊆ H

The MB of a node consist of its parents, its children and the parents of its children,
e.g. in figure 3.4, B is the parent of A’s child C, so B ∈MB(A), and (A 6⊥⊥ C|B)G
holds as expected. We have MB(A) = {B,C}, MB(B) = {A,C,D}, MB(C) =
{A,B,D,E}, MB(D) = {B,C,E}, MB(E) = {C,D, F} and MB(F) = {E}.

A goodness of fit measure for model selection is instructive to distinguish dif-
ferent graph structures. One such measure, the BIC-score, is explained in the
following section.

3.6 Comparing structures

If there are several graph structures available, a goodness of fit measure indicating
how well different structures match data is instructive. The more complex a graph
structure is, the less explanatory power it has, and therefore such a metric is
desired to also account for the complexity of the graph. The Bayesian information
criterion (BIC), known from classical statistics, can be adopted to the BN context.
Let G be a DAG representing a set of k RVs distributed according to PG, where
PG factors according to G as described in section 2.3, and let D = {d1,d2, . . . ,dn}
be a data-set, where di, i = 1, 2, ...n denotes the ith sample. Let furthermore π̂ be

3The PC-algorithm does not use MBs, and is an exception (Scutari,Nagarajan,Lébre,2013).

21

the ML estimator of PG’s parameters based on D as described in section 1.4, i.e.
π̂ is the probabilities that matches data best, given PGs factorization. Then we
define the BIC-score (Jensen,Nielsen,2007)

BIC(G|D) =
n∑

i=1

logP (di|π̂, G)− size(G)
log n

2
.

This expression is such that higher values indicates better fit. The less factorized,
according to equation (2.3), a joint distribution is, the higher the log-likelihood
term will be, but the less explanatory power the graph structure will posses. Hence,
a goodness of fit measure based exclusively on the log-likelihood term favors densely
oriented graphs. The size term, defined in section 2.3, compensates for this fact
by decreasing the BIC-score proportional to the number of parameters required
to describe the distribution. The BIC-score is score equivalent, i.e. it cannot
distinguish one graph from another in the same equivalence class.

Interpreting the BIC-score may be summarized as follows (Kass,Raftery,1995).
Given a data-set, let BIC1 and BIC2 denote the BIC-scores of two different graph
structures that we wish to compare, then

|BIC1−BIC2| evidence against the lowest scored structure

< 2 no difference worth mentioning
2 − 6 positive
6 − 10 strong

10 < very strong

The BIC-score is used to compare different structures in chapter 5.
Now, constraint-based structure learning is explained and motivated, but as

mentioned in the introduction, algorithms are required to handle the learning
process. In the next chapter such an algorithm is presented.

22

Chapter 4

The SLBN Algorithm

As a part of this thesis, I have composed and implemented my own version of
a structure learning algorithm, called SLBN, which is an acronym for Structure
Learning in Bayesian Networks. SLBN is implemented in R and consist of 545
lines of code. The source-code is available for download at github [13].

SLBN is a constraint-based learning algorithm, composed of five steps. The first
step, obtaining the MBs, and the forth step, removing cycles, are inspired by the
Grow/Shrink algorithm (Margaritis,2003). Step two, three and five, obtaining the
skeleton and orienting the edges, are inspired by the IC-algorithm (Pearl,2000)1.

In section 4.2 each step of SLBN will be explained and motivated, and some
details about the implementation are found in section 4.3. In the following section,
the input and output of SLBN is specified.

4.1 Input and output

input: Data containing observations of RVs, following a stable distribution, that
sufficiently describes the modeled phenomenon.
output: A maximally oriented graph, i.e. a PDAG from the equivalence class,
defined by the inferred skeleton and V-structures, in which undirected edges are
oriented whenever the opposite orientation would introduce new V-structures or
cycles (Pellet,Elisseff,2008).

The sufficiency assumption ensures that relationships in the obtained graph
represents relationships among the observed RVs. Presence of latent variables
would violate the results of SLBN since ”false” edges, connecting RVs affected by
the same latent variable, may occur. As an example, consider the BN in figure

1The algorithms in the constraint-based family stems from the IC-algorithm (IC for Inductive
causation). IC was proposed by Verma and Pearl in 1990.

23

4.1 and suppose that A is not observed in data. Since no subset of the observed
RVs would render B and C independent, there would be a ”false” edge connecting
them in the inferred graph structure.

A

B

C

D

Figure 4.1: Graph used to illustrate a model with a latent variable A.

Unstable distributions may entail conditional independences that are not struc-
tural, as explained in section 3.4, and relationships inferred from such indepen-
dences are not desired in this context.

4.2 Step by step

In this section, each step of SLBN is explained. The following list introduces
the five steps. Starting from a graph consisting of one node for each RV in the
distribution and no edges.

Step 1 Determine the Markov blanket for each node.

Step 2 Obtain the graph skeleton by finding the neighbors of each node.

Step 3 Propagate V-structures. Orients edges that are part of a V-structure.

Step 4 Remove cycles from the graph.

Step 5 Add compelled edges. Orients yet undirected edges.

Note that independences are tested, not dependences. However, the notation
of dependence sometimes makes the ideas more intuitive, and will therefore be
used in the following descriptions.

4.2.1 Step 1. Determine the Markov blankets

Step 1 determines a set of MBs (defined in section 3.5), one for each node, in two
phases, the growing- and the shrinking-phase. Consider a BN with a set of RVs V,
distributed according to P . Let for A ∈ V, S(A) be the set that is to be formed
into MB(A), and let N(A) denote the neighborhood of A. Note that instances in
V and in the sets defined above represent both nodes and RVs, e.g. A represent
both a RV and a node, and MB(A) consist of instances representing both the

24

RVs that corresponds to the nodes in A’s MB, and the nodes in MB(A). Step 1
obtains the MBs through the procedure presented in the pseudo-code of algorithm
2.

for A ∈ V do
S(A) = ∅
#growing:

while
(
∃ B ∈ V\A s.t. (A 6⊥⊥ B|S(A))

)
do

S(A) = S(A) ∪B
end
#shrinking:

while
(
∃ B ∈ S(A) s.t. (A ⊥⊥ B|S(A)\B)

)
do

S(A) = S(A)\B
end
MB(A) = S(A)

end
Algorithm 2: Step 1 of SLBN.

For each node in the BN, say A, we initialize a set, S(A) = ∅, which is suppose
to be completed into A’s MB, MB(A). If the test (A ⊥⊥ B|S(A)) indicates that
A is dependent of another RV B when conditioned on S(A), which is the best
candidate of MB(A) at this point, B is included in S(A). This continues until all
RVs but those in S(A) is independent of A given S(A). In this way the growing-
phase provides a set of potential MBs, s.t. MB(V) ⊆ S(V) for each V ∈ V. At
this point, there may be nodes in S(A), that are not members of MB(A). This will
be the case if A and another RV, say B, is dependent when conditioned on S(A)
at the time of the test (A ⊥⊥ B|S(A)), but another RV C, subsequently added
to S(A), renders A and B independent when conditioned on it. This motivates
the shrinking-phase, which excludes false members from the S sets. If there exist
a RV B ∈ S(A) that is independent of A when conditioned on S(A)\B, it is a
false member of MB(A) and we exclude it from S(A). This continues until each
RV B in S(A) is dependent of A when conditioned on S(A)\B. Then we assign
MB(A) = S(A).

A walk-through of Step 1, when obtaining a MB, is presented in section 7.3 of
the appendix.

4.2.2 Step 2. Obtain the graph skeleton

Step 2 obtains the skeleton by connecting each node with its neighbors, through
the following procedure (using the notation introduced in the last section):

25

For each A ∈ V and for each B ∈MB(A), if there is no set H ⊆ U s.t. (A ⊥⊥ B|H),
where U is the smaller of MB(A)\B and MB(B)\A, then include B in N(A).

Two nodes, say A and B, are to be adjacent if and only if there is no subset
W ⊆ V\{A,B} s.t. (A ⊥⊥ B|W). However, all potential neighbors of a node
belongs to its MB. Furthermore, two nodes in the same MB are to be separated if
and only if they share a common child, and this child belongs to both of the nodes
MBs. Hence, all information that is needed to determine if A and B are neighbors
is contained both in MB(A) and in MB(B), and we may condition on subsets of
the smaller of those two without loss of generality. Note that it would take 2k−2

independence tests to determine if two nodes are to be neighbors if we were to
consider the entire set of k RVs in a BN (2k−2 being the cardinality of V\{A,B}’s
power set). In general, the cardinality of a MB is small compared to 2k−2, and the
number of independence tests in Step 2 may be substantially reduced.

As an example of Step 2, consider the BN in figure 4.2a and suppose that
we determine the neighborhood of B. When testing (B ⊥⊥ C|A), where A ∈
MB(B)\C = {A,D} = MB(C)\B, this will indicate dependence, and B and
C will not be connected. On the other hand, when testing (B ⊥⊥ D|H), where
H ⊆ {C} = MB(D)\B < {A,C} = MB(B)\D, no H will separate B and D.

A walk through of Step 2, when obtaining the neighborhood of a node in a
larger BN is found in section 7.4 of the appendix.

A

B C

D

(a) DAG in example of Step 2 of
SLBN.

A B

C D

E F

(b) DAG in example of Step 3 of SLBN.

Figure 4.2

4.2.3 Step 3. Propagate V-structures

Step 3 orients edges that are parts of V-structures through the following procedure
(using the notation introduced in section 4.2.1):

For each A ∈ V and for each B ∈ N(A), if there exist C ∈ N(A)\{N(B), B}
s.t. (B 6⊥⊥ C|A ∪H) for all H ⊆ U, where U is the smallest of MB(B)\{A,C}
and MB(C)\{A,B}, then orient the edges B→A and C→A.

26

The condition identifies the kind of node triples that forms the skeleton of the
fundamental connections. In such triples, D-separation provides a way to orient
edges in the graph, so that the implied relationships is valid in the underlying
distribution, as explained in section 3.3.

In a BN with RVs {A,B,C} ∪V, consider the subgraph

AB C

and note that B and C are nonadjacent, but that there might exist other paths
connecting them in the remaining graph. With A ∈ V, B ∈ N(A) = {B,C, . . .}
and C ∈ N(A)\{N(B), B}, this triple is identified in Step 3. If (B 6⊥⊥ C|A ∪
W) holds for every subset W ⊆ V\{A,B,C}, there cannot be an edge B←A,
because in that case there would be an unblocked path B←A−C, regardless of the
orientation of the edge connecting A and C, and (B ⊥⊥ C|A∪W) would hold (one
W satisfying this is W = ∅). Hence, orienting the edge B→A is the only option,
and by a symmetry argument also A←C follows, i.e. we have the V-structure
B→A←C. The subsets we condition on serves to block all paths connecting B and
C but the one traversing A. If there exist such paths, those will be blocked both
by nodes in MB(B)\{A,C} and in MB(C)\{A,B}, hence we might condition on
subsets of the smaller of those two MBs without a loss of generality.

As an example, picture the skeleton of the BN in figure 4.2b, and suppose that
E is examined. With D ∈ N(E) and C ∈ N(E)\{N(D), D}, and since (D 6⊥⊥ C|E∪
H) holds for any H ⊆ {B}, where B is the smaller of B = MB(D)\{E,C} and
{A,B} = MB(C)\{E,D}, the desired V-structure C→E←D would be detected.

4.2.4 Step 4. Remove cycles

In the absence of erroneously oriented edges Step 4 is excessive, since we assume
DAGs. However, with a large number of independence tests, the graph resulting
from Step 3 may contain such. If those result in cycles, Step 4 removes those cycles
through the following two steps:

1. step one, remove cycles
As long as there are cycles in the graph, iterate the following two operations:

• form C, the collection of all edges that are part of a cycle (C may
contain duplicates),

• remove the most frequent member of C from the graph2, and add it to

2Removing the most frequent edge is a heuristic. The problem of removing the edge, s.t.
most cycles disappear is NP-complete, i.e. a problem without known efficient solutions (Margari-
tis,2003).

27

the set R.

2. step two, reverse edges
Reverse the edges in R, and add them to the graph in the reversed removal
order.

Note that Step 4 (and Step 5), is concerned only with the graph structure, i.e.
from this point SLBN does not use data.

For Step 4 to be meaningful, we need to show that no new cycles are introduced
by the procedure described above. The proof of this, which also clarifies the reason
for the reversed order insertion, is found in section 7.2 of the appendix.

A pseudo-code for Step 4 is presented in algorithm 3. In this, C is a collection
and R is a set, both containing edges (note that C may contain several instances
of the same edge), Ge is the set of edges in the graph G, V is the set of nodes,
and (A,B) denotes the oriented edge A→B.

R = ∅
#step one, remove cycles:
while G is cyclic do

C = ∅;
for edge (A,B) ∈ Ge s.t. (A,B) is part of a cycle in G do

C = C ∪ (A,B)
end
ec = most frequent edge in C;
Ge = Ge\ec
R = R ∪ ec

end
#step two, reverse edges:
reverse R
for edge (A,B) ∈ R do

Ge = Ge ∪ (B,A)
end

Algorithm 3: Step 4 of SLBN.

As an example of Step 4, consider the graphs in figure 4.3, where a dashed
edge represent a directed path traversing zero or more nodes. Initially, i.e. in
the first graph, there are three cycles, (B,...,D,...,F,E,...,C,...,A,B), (A,B,...,A) and
(C,D,...,F,E,...,C). In the first transit of step one, all edges in the graph will be
included in C, and all edges but those in the dashed path from B to A and (C,D)
will occur twice. Say (F,E) is removed, resulting in R = {(F,E)} and the second
graph, which still contains the cycle (A,B,...,A). Say (A,B) is removed in the next

28

transit of step one, resulting in R = ((A,B), (F,E)) and the third acyclic graph.
Inserting the reversed edges in R gives the forth DAG.

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

Figure 4.3: Cyclic graph is converted into a DAG by Step 4 of SLBN.

4.2.5 Step 5. Add compelled edges

Step 5 orients yet undirected edges whenever the opposite orientation would result
in a new V-sructure, or in a cycle. Edges that are oriented as a result of this
procedure are called compelled (Scutari,Nagarajan,Lébre,2013).

The following four rules are executed until they no longer applies, and whenever
a change is made, the transit restarts.

R1 If there exist two nonadjacent nodes A,B ∈ V with a common neighbor
C ∈ V, s.t. A→C−B, then orient the edge C→B.

R2 If there exist nodes A ∈ V and B ∈ N(A) with an undirected connecting edge,
and a directed path A→ · · · →B, then orient the edge A→B.

R3 If there exist four nodes A,B,C,D ∈ V s.t. A−B, C and D are nonadjacent,
and forming the paths A−C→B and A−D→B, then orient the edge A→B.

R4 If there exist four nodes A,B,C,D ∈ V s.t. A−B, C and B are nonadjacent,
A and D are adjacent, and forming the path A−C→D→B, then orient the
edge A→B.

The PDAG that Step 5 operates on entails only such relationships that can
be uniquely determined by independences inferred from data, i.e. as explained in
section 3.2, all directed edges in the PDAG are oriented based on their attendance
in V-structures3. The four rules above are based on the idea that the equivalence
class of the PDAG is to be maintained throughout Step 5. A motivation to each
rule follows.

3Note that this is violated whenever Step 4 is executed. The disputable approach of combining
Step 4 and Step 5 is discussed in section 4.4.

29

R1

R1 identifies node-triples of the form A→B−C. Since A and C are non-adjacent,
the edge C→B would introduce a V-structure of the kind that would have been
detected by Step 3, hence B→C is the only alternative.

R2

R2 identifies structures such as the one in figure 4.4a (a dashed line denotes a
directed path traversing one or more nodes). The edge A→B would make the
graph cyclic, hence B→A, as in figure 4.4b, is the only alternative. The proof in
section 7.2 ensures that no new cycles will be introduced.

A B

(a)

A B

(b)

Figure 4.4: Example where R2 in Step 5 of SLBN orients the edge A→B to avoid
a cycle.

R3

R3 identifies substructure as the one in figure 4.5. To see why A→B is the only
alternative, suppose that B→A constitutes the true orientation. Then D→A and
C→A follows from avoiding cycles, resulting in the V-structure C→A←D. How-
ever, since C and D are nonadjacent, this V-structure would have been detected
by Step 3, and B→A is ruled out.

A

C

B

D

Figure 4.5: Example of graph where R3 in Step 5 of SLBN orients the edge A→B.

R4

R4 identifies substructures as the one in figure 4.6a. To see why A→B is the
only alternative, suppose that B→A constitutes the correct orientation. Then

30

the structure in figure 4.6b follows from avoiding cycles, and since B and C are
nonadjacent, the V-structure centered at A in 4.6b would have been detected by
Step 3. Hence B→A is ruled out.

Verma and Pearl showed that those four rules are required to obtain a max-
imally oriented graph (Pearl,2000), and Meek proved that they are also suffi-
cient (Meek,1995). Meek also showed that R4 is excessive when starting from
a PDAG, only containing directed edges, orientated based on their attendance in
V-structures.

A

C

D

B

(a) Example of graph where R4 orients the
edge A→B.

A

C

D

B

(b) Graph in the counterexample of R4.

Figure 4.6: Graphs used to illustrate R4 in Step 5 of SLBN.

4.3 Implementation of SLBN

SLBN is written in R and consists of 545 lines of code, the source-code is avail-
able for download at github [13]. The SLBN implementation takes advantage of
the ci.test-function from the R package bnlearn when testing conditional inde-
pendences [6] and the graphviz.plot-function from the R package Rgraphviz when
drawing the graph [10]. When computing the BIC-score of the inferred structure,
the cextend - and the score-function from bnlearn is used [6]. R4 of Step 5 is left
out in the implementation.

SLBN takes, except from data, four optional arguments:

• A threshold value α, specifying at what limit two RVs are concluded to be
independent (see section 4.4). If no argument is passed for α, the default
level α = 0.05 is used.

• A boolean ”info” argument, specifying if information about the learning
process is printed. An example of this information output is found in section
7.5. The default value is FALSE, i.e. no information output will be printed.

31

• A boolean ”viewGraph” argument, specifying if the resulting graph is to be
drawn. The default value is TRUE, but the option to prevent the graphi-
cal output is useful e.g. when learning the structures of a large number of
simulated data-sets in a loop.

• A boolean ”sCheck” argument, which allows the user to prevent synchro-
nization of the MBs (see section 4.3.2). The default value is ”TRUE”.

The SLBN implementation draws the inferred graph, but it also returns a list
object, consisting of the three following instances:

1. The adjacency matrix of the inferred graph structure,

2. The BIC-score of the inferred graph structure (evaluated on input data),

3. The number of performed independence tests.

4.3.1 Adjacency matrix

When constructing the graph in SLBN, it is represented by an adjacency matrix,
i.e. with k nodes, we have a k×k matrix M, initially consisting of zeros. If the ith
node have an edge pointing towards the jth node, then Mi,j = 1, i, j = 1, 2, . . . , k.
Undirected edges are represented by ones in both directions, i.e. if the ith and
jth node are connected by an undirected edge, then Mi,j = Mj,i = 1. This
representation admits the use of results from graph theory, e.g. when examining
the existence of a directed path between two nodes (no details of these actions will
be given here).

4.3.2 Symmetry

We expect symmetry in the MBs. If A is in B’s MB, then A is either a direct
neighbor of B, or they share a common child, so B also has to be in A’s MB, and
a similar symmetry is expected for the neighborhoods. When building the MBs
in Step 1 of SLBN, errors in the independence tests, when conditioned on certain
subsets of the RVs, may cause asymmetries in the MBs. If this happens, SLBN
includes or excludes edges from the MBs to obtain the desired symmetry. The way
this is done is based on experiments, i.e. I have implemented a mechanism that
handles asymmetries based on studies the learning process of a large number of
data-sets, generated to reveal systematic failures. With this solution SLBN tends
to return more dense connected graphs in data-sets with a large number of RVs
than e.g. the gs-function from the bnlearn package [6], but also to capture the
”desired” graph more frequent in data-sets with a smaller number of RVs.

32

4.4 Discussion

In this section a number of subjects linked to SLBN is discussed. It aims to
clarify shortcomings of constraint-based structure learning, improvements that are
available among other algorithms, and to motivate my decisions when composing
SLBN.

Numerical data

All the theory and all the examples in this text is concerned with nominal data,
but SLBN also operates on numerical data. The difference in how such is han-
dled by SLBN, is due to how the independences are tested. In the case of nu-
merical data, the exact t-test for Pearson’s correlation coefficient is used (Scu-
tari,Nagarajan,Lébre,2013).

Combining Step 4 and Step 5

The motivation to the rules of Step 5 relies on the idea, that the graph Step 5
operates on entails only relationships that certainly corresponds to relationships
in the underlying distribution, i.e. that all orientations in it is a result of Step 3.
This is not the case if the graph resulting from Step 3 is cyclic and Step 4 was
executed. One might therefore argue that combining Step 4 and Step 5 is a passable
approach, (e.g. the IC-algorithm does not have a functionality corresponding to
Step 4). However, that the graph resulting from Step 3 contains cycles indicates
that data follows a distribution that doubtfully satisfies the assumptions, and
the reliability of SLBN’s output is in this case already violated. Furthermore,
the arguments that motivates the rules in Step 5 also relies on the assumption of
acyclicity, and the approach of combining Step 4 and Step 5 seems like a reasonable
compromise.

Efficient performance

Efficient performance in terms of the number of performed actions, and the exe-
cution time, have been of low priority when implementing SLBN. To gain speed,
a number of excessive actions could be avoided, e.g. in Step 3, by not attempting
to orient edges in a V-structure that was identified in an earlier transit. Another
way to gain speed would be to use compiled code, e.g. written in C.

Undirected edges and order-determined orientations

As we have seen, not all structures can be detected by the constraint-based learning
algorithms. As an example, edges in completely connected node triples as the one

33

in figure 4.7a are left undirected. Regardless of the orientations in this structure,
the condition in Step 3 is never satisfied, and Step 5 requires at least one already
oriented edge. Also edges connecting a single parent, such as the edge A→B in
figure 4.7b, is left undirected.

B C

A

(a)

A B

(b)

A

B C

D E

(c)

Figure 4.7: Graphs used to illustrate shortcomings of constraint based structure
learning.

Orientations resulting from Step 5 may depend on the variable ordering, i.e. the
output of SLBN may depend on how we organize data. As an example, consider
the sub-graph of a BN in figure 4.7c. If E precedes A (and C precedes B) in the
variable ordering, then R1 will detect E→D−C and orient the edge D→C, and in
the next transit R2 will orient the edge B←D. On the other hand, if A precedes E
in the variable ordering, R1 will first orient B→D, and in the next transit R2 will
orient D←C, resulting in B→D←C. Hence, for two different variable orderings,
but for the same data, SLBN will return two different graphs.

The choice of threshold

Two RVs are concluded to be conditionally independent when the p-value of the
independence test exceeds a specified threshold-value α, as explained in section
7.1. The statement ”Small values of α, e.g. α ∈ [0.01, 0.05] work well for networks
with up to hundred variables” specifies a reasonable range for the choice of α
(Scutari,Nagarajan,Lébre,2013). However, to test different threshold-values and
compare the results is instructive. The consequences of different threshold-values
are easily concluded from how the first three steps constructs the graph in SLBN,
and may be summarized as follows:

• Smaller α may result in a PDAG with fewer connections and orientations. The
risk that SLBN fails to detect a true relationship increases while the risk that the
output exhibits false relationships decreases.

• Higher α may result in a PDAG with more connections and orientations. The risk
that the output exhibits false relationships increases, but the risk that SLBN fails
to detect true relationships decreases.

At the extremes, when α is sufficiently close to one, or to zero, the result will be
a complete, or a totally separated graph respectively.

34

Chapter 5

Experimental results

In this chapter the structure of BNs will be learned from simulated and real world
data. The aim is to test the SLBN algorithm and its implementation, and to
illustrate the capabilities and shortcomings of constraint-based structure learning.
In sections 5.1, 5.2, 5.3 and 5.4, data-sets are simulated based on examples in this
text, and in section 5.5, a real world data-set on potential risk factors of coronary
trombosis is analyzed.

Data is simulated according to the method that was described in section 2.5 of
chapter 2.

5.1 Drug test example

The drug test example was introduced in section 1.1. Simulations of it, according
to the distribution specified in figure 2.2, was generated in order to illustrate
the influence of the threshold-value α, and the sample size n1. For each n =
200, 500, 800, one data-set was generated, and for each α = 0.005, 0.03, 0.08, the
structure of each data-set was learned by SLBN. The inferred graphs are presented
in figure 5.1.

The skeleton similar in all graphs but 5.1f, which indicates that the grow/shrink
approach appears robust. The orientations of D’s outgoing edges are of the kind
that cannot be detected, as explained in section 3.2 and 4.1, which the graphs also
shows. Therefore the graph structure in e.g. 5.1d is the best maximally oriented
graph we can expect from SLBN. For n = 200, the higher threshold value α = 0.08
allows Step 3 of SLBN to determine the V-structure centered at CRP, and with
this present, R1 in Step 5 also orients CRP→B. For n = 500, the graphs indicate
that SLBN perceives more edges and orientations when increasing the threshold to
α = 0.08, then an additional V-structure centered at DA is inferred. For n = 800,

1The simulation code is available for download at github [13].

35

D

IB DA

CRP

B

(a) n = 200, α = 0.005

D

IB DA

CRP

B

(b) n = 200, α = 0.03

D

IB DA

CRP

B

(c) n = 200, α = 0.08

D

IB DA

CRP

B

(d) n = 500, α = 0.005

D

IB DA

CRP

B

(e) n = 500, α = 0.03

D

IB

DA

CRP

B

(f) n = 500, α = 0.08

D

IB DA

CRP

B

(g) n = 800, α = 0.005

D

IB DA

CRP

B

(h) n = 800, α = 0.03

D

IB DA

CRP

B

(i) n = 800, α = 0.08

Figure 5.1: Outputs from SLBN, when learning the structure from simulations of
the drug test example.

the output is not sensitive to different threshold values, i.e. the p-values of the
crucial independence tests are not in the range α ∈ [0.005, 0.08], which indicates
that data, probably due to the larger sample size, is rich on information and
unambiguous.

The BIC-scores of the inferred structures are presented in table 5.1 (BIC is
undefined for undirected graphs, as will be explained in section 5.6). The BIC-
score for the graph in figure 5.1f is much smaller than that of the other n = 500
graphs, and due to the BIC-score interpretation in section 3.6, a difference of 78.2
provides very strong evidence against 5.1f. Note that it is meaningless to compare
structures with the BIC-score evaluated on different data-sets.

Another simulation of the same distribution, with n = 500 and α = 0.04, was
done to show SLBNs information output. This resulting data is presented in table
1.1 of chapter 1, and the text output in the appendix 7.5.

To illustrate how the number of detections, of the best graph we can expect

36

BIC α = 0.005 α = 0.03 α = 0.08
n = 200 undefined undefined −511.0
n = 500 −1213.5 −1213.5 −1291.7
n = 800 −1958.9 −1958.9 −1958.9

Table 5.1: BIC-scores for three different structures, learned from simulations of
the drug test setting.

from SLBN, i.e. 5.1d, varies with the sample size, another experiment was done.
For each n = 100, 200, . . . , 2000, 100 data-sets was generated, again according
to the distribution specified in figure 2.2. The number of those 100, for which
SLBN learned the desired PDAG 5.1d, when using α = 0.04, was counted. The
result is presented in figure 5.2, where the number of detections is plotted against
the sample size n. The number of detections increases with the sample size, and
stabilizes around 79.85 detections of 100 when n ≥ 700 (79.85 is the mean number
of detections for n = 700, 800, . . . , 2000).

500 1000 1500 2000

0
40

80

n

of

 d
et

ec
tio

ns

Figure 5.2: Number of detections of the desired PDAG 5.1d, when the structure was
learned from 100 simulations of the drug test setting, for different sample sizes n.

5.2 Testing SLBNs capabilities

The following simulation aims to test the capabilities of SLBN, and to illustrate
a goodness of fit comparison of different graph structures over the same data-set,
using the BIC-score, which was explained in section 3.6.

One data-set, from the BN specified in figure 5.3, was generated for each the six
different sample sizes, n = 200, 400, 600, 900, 1300, 2000, and for each of those six

37

A B

C D

E G

H

A a0 a1
0.5 0.5

B b0 b1 b2
1/3 1/3 1/3

C|A,B c0 c1
a0 b0 0.1 0.35

b1 0.35 0.65
b2 0.5 0.5

a1 b0 0.5 0.5
b1 0.7 0.3
b2 0.9 0.1

D|B d0 d1
b0 0.2 0.8
b1 0.5 0.5
b2 0.8 0.2

H h0 h1
0.5 0.5

E|C,D e0 e1 e2
c0 d0 0.1 0.35 0.55

d1 0.35 0.55 0.1
c1 d0 0.55 0.1 0.35

d1 0.8 0 0.2

G|E g0 g1
e0 0.9 0.1
e1 0.1 0.9

Figure 5.3: BN specifying the distribution used for simulations in section 5.2.

data-sets D1,D2,. . .,D6, the structure was learned by SLBN, using α = 0.04. This
resulted in three different graph structures, S1 from D1, S2 from D2,D4,D5 and D6,
and S3 from D3, which are presented in figure 5.4. S2 captures all relationships
specified in the distribution but the edge B→D, which is of the kind that cannot be
inferred (see section 3.2), i.e. in four of the six data-sets, SLBN captures the best
graph we can expect. The V-structure C→E←D and the edge E→G are detected
in all graphs.

A

B

C D

E

G

H

(a) S1

A B

C D

E

G

H

(b) S2

A B

C D

E

G

H

(c) S3

Figure 5.4: Graph structures learned by SLBN from data simulated according to
the BN in figure 5.3.

The following experiment illustrates SLBNs capabilities of capturing the best
scored structure. For each of the six data-sets D1, . . . ,D6, the BIC-score was com-
puted for S1,S2 and S3, the results are plotted in figure 5.5. Next, for each of the

38

six data-sets, say D1, the BIC of the structure that was learned from D1, i.e. S1,
was compared with the BIC of the best scored of S1, S2 and S3, when evaluated
on D1. The results of this, together with a similar comparison between the BIC of
the highest and the lowest scored of S1, S2 and S3, for each data-set, are presented
in table 5.2, where S4 =S5 =S6 =S2.

i : 1 2 3 4 5 6
|BIC(Si, Di)−maxj{BIC(Sj , Di)}| 13.40 0 5.25 0 0 0

|mink{BIC(Sk, Di)} −maxj{BIC(Sj , Di)}| 13.40 10.85 39.73 40.69 92.35 134.08

Table 5.2: Comparison of BIC-scores of the structures S1, . . . ,S6, evaluated on six
different data-sets D1, . . . ,D6.

The result that would favor constraint-based structure learning, would be that
the inferred graph always scored best, but as figure 5.5 indicates, this is not the
case. S2 scores best in all of the data-sets, even in those where SLBN inferred an-
other graph. With differences exceeding 10, there is very strong evidence against
S1 in all data-sets, also in D1 from which S1 was learned. For D3, the difference
|BIC(S3, D3)−BIC(S2, D3)| = 5.25 is smaller, i.e. the evidence against S3 is pos-
itive but not strong. We see that SLBNs output in the smallest data-set D1, is
substandard, but that the outputs for the larger sample-sizes are satisfying. Fur-
thermore we see that the BIC-score favors S2, which is the graph structure that is
closest to the BN that all of the data-sets was generated from.

−
99

8
−

99
4

−
99

0
−

98
6

B
IC

S1 S2 S3

D1

−
19

74
−

19
70

−
19

66

B
IC

S1 S2 S3

D2

−
29

50
−

29
30

B
IC

S1 S2 S3

D3

−
43

60
−

43
40

−
43

20

B
IC

S1 S2 S3

D4

−
67

60
−

67
20

−
66

80

B
IC

S1 S2 S3

D5

−
96

80
−

96
20

−
95

60

B
IC

S1 S2 S3

D6

Figure 5.5: BIC-scores for the structures S1,S2 and S3, evaluated on six different
data-sets, D1,...,D6.

The number of executed independence tests when learning each structure was,
for increasing n: 93, 103, 137, 107, 131, 129, i.e. in a model with 7, not very densely

39

connected RVs, in general over 100 tests are performed. Step 4 of SLBN was not
executed in any of the learning processes, i.e. Step 3 did not introduce any cycles.
It is also worthwhile to note that R1 was the only rule of Step 5 that was applied
(such information is provided by the optional information output of SLBN).

Another experiment, based on the distribution specified in figure 5.3 was done,
again to test SLBNs capabilities of capturing the optimal structure. For each
n = 100, 200, . . . , 1300, 100 data-sets was generated, and for each data-set, the
structure was learned by SLBN, using α = 0.04. To compare SLBN with another
implementation of a constraint-based learning algorithm, for each data-set, the
structure was learned also by the gs-function from the R package bnlearn [6].
Next, for each sample size n, the number of learned structures that matched the
”best” graph we can expect from the constraint-based learning algorithms, i.e. the
graph in figure 5.4b which captures all specified edges but B→D, was counted.

The results, presented in figure 5.6, where the number of detections out of
the 100, are plotted against the sample size n, are not very convincing. The
number of detections increases with n, but the mean number of detections for
n = 500, 600, . . . , 1300 is just 50.7 of 100 for SLBN, and even lower for the gs-
function. However, to count only the outputs that perfectly match 5.4b is a dubious
approach since it does not account for how close the inferred structure is to the
desired ditto. Hence, also the number of the six edges in 5.4b that was captured
by the two algorithms (with its correct orientation), was counted for each data-set.
Specifically, the mean value of the number of detected edges, for the 100 simulations
was computed, for each sample size n. Those mean values are plotted against the
sample size n in figure 5.7, and the plot indicates that the number of captured edges
increases with n. For SLBN, it stabilizes around 5.32 edges of 6 for n ≥ 500. Also
this latter approach is dubious in order to investigate the capabilities of capturing
the optimal structure, since it does not account for potential additional edges that
might have been inferred. However, the two approaches together indicates that the
capability of inferring a satisfying structure for small sample sizes, say n ≤ 400,
is bad. For those n we have less than 40 detections of 5.4b per 100 data-sets. For
larger sample sizes, say n > 500, this capability is acceptable. The plots of 5.6 and
5.7 also indicates that, in this specific comparison, SLBN is slight better than the
gs-function over all. Furthermore, it does not appear that the inferred structure
will be more reliable when increasing the sample size beyond say n = 600.

5.3 Simulation with latent variables

This simulation illustrates constraint-based structure learning from data, following
a distribution that does not satisfy the sufficiency assumption, which was explained
in section 4.1. Data-sets of sample size n = 1000, was generated according to a

40

200 400 600 800 1000 1200

0
20

40
60

80
10

0

n

of

 d
et

ec
tio

ns

SLBN
gs

Figure 5.6: Number of detections of desired PDAG in figure 5.4b, per 100 simula-
tions of the BN in 5.3, for different sample sizes n, and for two different algorithms.

200 400 600 800 1000 1200

2.
5

3.
5

4.
5

5.
5

n

of

 e
dg

es

SLBN
gs

Figure 5.7: Mean number of detected edges in 100 simulations of the BN in figure
5.3, for different sample sizes n, and for two different algorithms.

BN, similar to the one in figure 5.3, but with two additional latent variables LA
and LB, this BN is specified in figure 5.8. Next, the structure was learned from
generated data, but in a model without LA and LB. One graph resulting from
this experiment is presented in figure 5.9. It indicates that the effect of a latent

41

variable is local, LA’s common impact on A and G results in the edge A→G, and
LB’s common impact on B and H ties those two together. Except for those two
edges, the skeleton is identical to the corresponding sub-skeleton in figure 5.8, and
the V-structures centered at C and E are present. The graph does not differ very
much from the ones presented in section 5.2, and in this specific example, the
presence of the latent variables may not lead to completely incorrect conclusions
about the analyzed phenomenon.

LA

LBA B

C D

EG

H

LA la0 la1
0.5 0.5

LB lb0 lb1
0.5 0.5

A|LA a0 a1
la0 0.2 0.8
la1 0.8 0.2

B|LB b0 b1 b2
lb0 0.2 0.5 0.3
lb1 0.1 0.2 0.7

C|A,B c0 c1
a0 b0 0.1 0.35

b1 0.35 0.65
b2 0.5 0.5

a1 b0 0.5 0.5
b1 0.7 0.3
b2 0.9 0.1

D|B d0 d1
b0 0.2 0.8
b1 0.5 0.5
b2 0.8 0.2

H|LB h0 h1

lb0 0.85 0.15
lb1 0.15 0.85

E|C,D e0 e1 e2
c0 d0 0.1 0.35 0.55

d1 0.35 0.55 0.1
c1 d0 0.55 0.1 0.35

d1 0.8 0 0.2

G|LA,E g0 g1
la0 e0 0.1 0.9

e1 0.15 0.85
la1 e0 0.25 0.75

e1 0.05 0.95

Figure 5.8: BN used for the simulations in section 5.3

5.4 Simulation of an unstable distribution

The following experiment illustrates structure learning from data, with an unstable
distribution. To this aim, consider the unstable distribution that was described in
section 3.4. For eight different values of pA, namely pA = 0.50, 0.52, . . . , 0.64, and
for pB = 1 − pA, 100 data-sets of sample size n = 300 was generated. For each
data-set, the structure was learned by SLBN, using α = 0.05, and for each value
of pA, the number of the 100 learned graphs that captured the desired V-structure
was counted. The result is presented in figure 5.10, where the number of detections
of the desired V-structure is plotted against pA. When |pA − pB| ≤ 0.4, i.e. for

42

A B

C D

E

G

H

Figure 5.9: Graph inferred by SLBN in the experiment of section 5.3.

pA = 0.5 and pA = 0.52, only 0 and 3 outputs of 100 capture the desired V-structure
respectively. The number of detections increases with pA, and there appears to be
a breakpoint between α = 0.56 and α = 0.58. For pA = 0.64, 96 of 100 outputs
capture the desired structure. This experiment illustrates that the constraint-
based learning algorithms cannot handle unstable distributions satisfactory.

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64

0
40

80

pA

de

te
ct

io
ns

Figure 5.10: The number of learned structures per 100, that capture the desired
V-structure, for different values of the probability pA.

5.5 Coronary data-set

In this section, a real world data-set is analyzed. The coronary data-set contains
information about potential risk factors for coronary trombosis, measured in 1841
men employed in a Czechoslovakian car factory. Data was collected in the 1970s,

43

and is available for download at bnlearns web page [7]. It contains six categorical
RVs, which are presented in table 5.3. Note that none of the RVs is of specific
interest, i.e. the aim with the study was to survey the relationships between the
measured RVs, rather than to determine their effect on coronary trombosis.

Description Abbreviation Levels
smoking S yes/no
strenuous mental work MW yes/no
strenuous physical work PW yes/no
systolic blood pressure (unit: mm/HG) Pse (Pse < 140) / (140 < Pse)
ratio of beta and alpha lipoproteins Prt (Prt < 3) / (3 < Prt)
family anamnesis of coronary heart disease F yes/no

Table 5.3: Coronary data-set.

In (Whittaker,1990), the coronary data-set was used to exemplify a graphical
log-linear model selection procedure, for multi-way contingency tables. The aim
with Whittakers analysis is to infer an independence graph, i.e. a graph skeleton
without directed edges. This model selection procedure is, in conformity with the
introducing steps of SLBN, based on conditional independences, and Whittakers
proposal is presented in figure 5.11a. The structure of the data-set was also learned
both by SLBN, and by the gs-function from the bnlearn package [6], using both
α = 0.005 and α = 0.02. The results of this are presented in figure 5.11.

For α = 0.005, both SLBN and gs returns structures with the same skeleton as
Whittakers proposal 5.11a, but with some additional orientations. For α = 0.02,
both algorithms infers the additional edge Pse→MW (higher α-values, 0.02 ≤ α ≤
0.1, result in the same graph for both SLBN and gs). The BIC-scores for the
extended graphs are:

BIC α = 0.005 α = 0.02

SLBN −6726.42 −6718.54
gs −6730.99 −6728.76

The graph in 5.11d, obtained by SLBN for α = 0.02 scores best, and since the
difference to the second best scored structure, the SLBN α = 0.005 output 5.11b,
is 7.88, 5.11d is to prefer, with strong or very strong evidence against the other
structures (see the BIC interpretation in section 3.6). Since no BIC-score is avail-
able for the proposed skeleton, as explained in section 5.6, this cannot be compared
to the others graphs. The fact that we obtain different graph structures, stresses
the importance of testing different threshold-values.

128 and 127 independence tests were performed by SLBN when using α = 0.005
and α = 0.02 respectively.

In this analysis, the constraint-based learning approach does not provide much
extra information, as opposed to a method without causal concerns, i.e. a method

44

S

MW

PW

Pse

Prt

F

(a) Whittaker’s proposal

S

MW

PW

Pse

Prt

F

(b) SLBN, α = 0.005

S

MW

PW

Pse

Prt

F

(c) gs, α = 0.005

S

MW

PW Pse

Prt F

(d) SLBN, α = 0.02

S

MW

PWPse

Prt

F

(e) gs, α = 0.02

Figure 5.11: Graphs exhibiting relationships among the RVs in the coronary data-
set, learned using five different approaches.

that also reveals associations among the RVs, but that does not specify their
nature. Without interpreting the results in detail, it is worthwhile to note the
counterintuitive edge MV→F in the graphs resulting from α = 0.02. It appears
far fetched that strenuous mental work would affect the family anamnesis of coro-
nary heart decease. This compelled edge is a result of R1 in step 5 of SLBN
(and of the corresponding action in gs), and is applied whenever the V-structure
PW→MW←Pse is inferred in the sub skeleton consisting of PW−MW−Pse and
MW−F. The inferred counterintuitive edge MV→F illustrates that, even though

45

the constrain-based learning approach captures the broad picture of the relation-
ships, it may result in dubious causal implications, and has to be used with care.

5.6 Extending structures

The BIC-score is used to compare different structures and require DAGs, as de-
scribed in section 3.6. A graph, learned by a constraint-based learning algorithm,
may be only partially directed, and in order to compute the BIC-score of a PDAG,
it has to be extended to a consistent extension, which is any DAG that belongs
to the same equivalence class as the PDAG. The undirected edges in the PDAG
are oriented based on methods that stems from the score-based learning approach
(Daly,Shen,2009), but no details will be given here. Since the BIC-score is score
equivalent, it assign the same value to this extension as to the original PDAG,
which motivates a BIC-score comparison of PDAGs, through extending them.
However, if not all edges in a PDAG can be oriented without introducing new
V-structures or cycles, no consistent extension is available. In those cases, the
BIC-score is undefined for the PDAG. In the preceding sections, graphs are ex-
tended by the cextend -function from the R package bnlearn [6].

46

Chapter 6

Discussion

The focus in this thesis was to understand the concepts of constraint-based struc-
ture learning in Bayesian Networks (BN), and how those may be used for causal
inference. This was subsequently split into two main tasks. The first was to do a
theoretical study of constraint-based structure learning and BNs, and to present
and motivate this theory in a clear and concise matter, while also clarifying its
limits. Composing this text was challenging since a large part of the theory was
not part of any previous course curriculum in the math program at Stockholm
University. Hence, the difficulties have been to present the basis in an adequate
level of abstraction while staying concise, in order to leave room for a description
of the second main task.

The second task was to compose and implement my own version of a constraint-
based structure learning algorithm. The results presented in chapter 5 indicates
that the resulting algorithm, SLBN (available for download at github [13]), is able
to learn the structure from data. The work with this algorithm involved, besides
translating the theory into practice, an large number of experiments. Those exper-
iments consisted of using SLBN (and other available implementations of similar
algorithms) to learn the structure of simulated BNs, generated to satisfy specific
properties, in order to revel SLBN’s (and other algorithm’s) capability to infer the
desired structure.

Future work

A number of desirable features were, because of the time limit of the thesis, delib-
erately left out in SLBN. However, a large part of the presented theory naturally
extends to a broader set of applications. A number of examples of developments
follows.

• Information about the strengths of the directed edges, i.e. about the strength

47

of the inferred causal associations, is already obtained via the p-values of the in-
dependence tests that is used in the algorithm. Hence, what remains in order to
complement the output of SLBN with values that describes such strengths is to
prepare, and present those values. Information about such strengths is valuable.
As an example, if we in the drug test example of section 1.1 knew that decreased
appetite has a large impact, but that IB has a small impact, on the probability of
observing a breakout, this information would lead to different conclusions than if
all inferred relationships are considered equal.

• A number of actions that would improve the efficiency of SLBN, in terms of
the number of executed independence tests, are available among other existing
constraint-based structure learning algorithms, and other improvements of SLBNs
efficiency where discussed in section 4.4. When learning the structure of data-sets
with a large number of variables, such efficiency is desired.

• SLBN assumes sufficiency, as explained in section 4.1. Pearl suggests the IC*-
algorithm to handle ”latent structures”. The output of IC* is a marked pattern,
in which orientations are allowed to be determined at different levels of certainty,
and the sufficiency assumption is relaxed to ”distributions where every unobserved
variable is a parent-less common cause of exactly two nonadjacent observed vari-
ables” (Pearl,2000). The ideas of IC* could be adapted to SLBN. Note that, even
though the assumption is relaxed, it still restricts the applications of structure
learning to data where the random variables are carefully chosen.

• One shortcoming of the structure learning methods is the lack of significance
measures. The BIC-score, and other similar metrics such as AIC or BDe, indi-
cates which graph structure, among a number of candidates, that fit data best,
but non of them provides a meaningful measure of the probability that the graph
actually exhibits the ”true” relationships. A familywise error rate, taking all in-
dependence tests into account, may result in a passable measure, since not all
independence tests affect the learned structure, e.g. if an erroneous independence
test in Step 3 of SLBN results in a suspended V-structure, this might have been
the final result anyway, due to a subsequent ”correct” test. As opposed to sta-
tistical methods that provides a level of significance, the result from a structure
learning method is therefore to be treated as a best guess, rather than a result
that is ”correct” with a specific probability. However, other methods to provide a
significance level are available. We may get an indicator of an inferred structures
reliability through simulations, i.e. through generating a large number of data-sets
according to the distribution inferred from the data of interest, and compare those
simulated data-sets with original data. Furthermore, with large sample sizes, a

48

possible approach is to learn the structure from a part of data, and to compare a
prediction based on the inferred structure with the remaining data. Based on this
comparison, an indicator of the inferred structures reliability may be obtained. A
significance level, indicating the reliability of a learned structure would make the
method more applicable, and to complete SLBN with a functionality that provides
such a measure would be a major improvement.

Applications of structure learning

The results presented in chapter 5 shows that structure learning may be used for
causal inference, but we have also seen that the method is limited by strict as-
sumptions on data. The sufficiency assumption, explained in section 4.1, is never
completely satisfied, there always exist latent variables at a higher level of ab-
straction, and in general we will not know if the random variables used to model
a phenomenon, constitutes a sufficient description of it. However, as the results
presented in 5.3 indicates, the effect of a latent variable is local, i.e. its impact is
limited to a part of the structure, and a large part of the inferred relationships
may be valid even though the sufficiency assumption is not satisfied. Furthermore,
a sufficient model is not always crucial, i.e. the aim is not always to get a com-
plete description of a phenomenon, and an inferred causal association may provide
valuable information even though it is due to latent variables.

Structure learning may be used for propagation, which was exemplified in sec-
tion 2.4. The inferred graph structure together with p-values from the indepen-
dence tests that the algorithm use, estimates the probability distribution. We may
use this estimation to predict the outcome of a random variable of interest, for
specific values on the remaining variables. Estimating a probability distribution
may be done in several ways, but due to a BN’s clear representation of conditional
independences among the variables, structure learning in BNs is suitable for this
kind of propagation.

In this text, structure learning have been exemplified in statistical contexts.
However, the methods are also used for data driven prediction and decisions in
the machine learning field. Specifically, automatically executed predictions, based
on structures learned from a dynamic flow of incoming data, forms the basis for a
machines ”decisions”. Sometimes, such data driven decisions constitutes a robots
”intelligent” behavior in Artificial Intelligence.

Altogether, we have seen that structure learning in Bayesian Networks is a
powerful tool, that provides the basis for a lucrative analysis, causal inference,
but we have also seen that there are important shortcomings of the method, and
that it has to be used with care. However, since the structure learning algorithms
have been developed during a relatively short period, improvements in the field
are probably imminent.

49

Chapter 7

Appendix

7.1 Independence test

In this section, Pearsson’s χ2 test for contingency tables, due to the English
mathematician Karl Pearson, is explained, following (Agresti,2013) and (Scu-
tari,Nagarajan,Lébre,2013).

In a model with a set of categorical RVs V, we typically test (A ⊥⊥ B|C), for
RVs A,B∈ V, and a set of RVs C ⊆ V\{A,B}. Let rA denote the the size of
A’s sample space, and rC the number of configurations of the the RVs in C. We
will present data, consisting of n independent samples, in contingency tables. The
number of observations ni,j, i = 1, 2, . . . , rB, j = 1, 2, . . . , rA that match the jth and
ith level of A and B respectively, will for each configuration cl, l = 1, 2, . . . , rC of
C be given in the rA × rB table 7.1. In this table

∑rA
j=1

∑rB
i=1 ni,j = nrc , where nc

is the number of samples that match c, and
∑rC

l=1 ncl = n.

C = c A

B

n1,1 n1,2 · · · n1,rA
n2,1 n2,2 · · · n2,rA

...

nrB ,1 · · · nrB ,rA

Table 7.1: rA × rB contingency table.

Each count in cell (i, j) is a Bernoulli distributed RV with parameter πi,j, and
the ni,js follows a joint multinomial distribution with parameters

π = {πi,j : i = 1, 2, . . . , rB, j = 1, 2, . . . , rA}, where
∑

πi,j = 1.

The asymptotically unbiased ML estimator of πi,j is given by π̂i,j =
ni,j

n
, and since

the parameters sum to one, it will have rArB − 1 degrees of freedom (d.f.). Under

50

H0 : (A ⊥⊥ B|C), the probability of an outcome in cell (i, j) is given by the product
of the probability of an outcome in row i, and the probability of an outcome in
column j, i.e. πi,j = πi·π·j, where πi· =

∑rA
j=1 πi,j and π·j =

∑rB
i=1 πi,j. The ML

estimator of those probabilities is given by

π̃i,j = n̄i·n̄·j =
1

n

rB∑
i=1

ni,j
1

n

rA∑
j=1

ni,j.

By the restrictions
∑rB

i=1 ni· =
∑rA

j=1 n·j = n, π̃ will have (rA − 1) + (rB − 1) d.f..
We expect a test statistic that rejects H0 for large values, to increase as data

indicates deviation from the decomposition πi,j = πiπj.∑
i,j

(ni,j − n n̄i· n̄·j)
2

n n̄i· n̄·j
(7.1)

satisfies this. It is sometimes written
∑

k(Ok − Ek)2/Ek, where we sum over the
cells in the contingency table. O denotes the observed value in each cell, and E
refers to what we expect under H0. The d.f. is given by the difference between
the d.f. under the alternative hypothesis ”H0 is false”, and the d.f. under H0,
i.e. rArB − 1 −

(
(rA − 1) + (rB − 1)

)
= (rA − 1)(rB − 1). Under H0, and for

large samples, (7.1) is approximately χ2
(rA−1)(rB−1) distributed. Furthermore, if

H0 is true we expect the square sums from different configurations of C to be
independent. The sum of independent χ2 RVs are again χ2 distributed, with d.f.
given by the sum of the summands ditto. Therefore the desired test statistic is∑

c∈C

rB∑
i=1

rA∑
j=1

(ni,j − n n̄i· n̄·j)
2

n n̄i· n̄·j
,

which under H0 is asymptotically χ2
rC(rA−1)(rB−1) distributed, and rejects H0 when

exceeding a suitable χ2 quantile.

7.2 Proof of correctness of Step 4 in SLBN

Step 4 is explained in 4.2.4 of chapter 4. We first prove that adding an edge to an
acyclic graph, such that the opposite orientation of the edge would involve it in a
cycle, does not introduce another cycle.

Consider an acyclic graph G. Towards a contradiction, suppose that the edge
(B,A) is a part of the cycle (A,R1,...,Rm,B,A), and that inserting (A,B) in the
place of (B,A) in G would introduce another cycle, (B,L1,...,Ln,A,B), see figure
7.1. Then G would also contain the cycle (A,R1,...,Rm,B,L1,...,Ln,A), but G was
supposed to be acyclic, and the desired contradiction is met.

51

A

B

R1

RmL1

Ln

Figure 7.1: Graph G in the proof of correctness of Step 4 in SLBN.

What remains is to prove that no cycles will be introduced when inserting
several edges, specifically the edges in R (see section 4.2.4 for specifications of R,
S and the two steps, and note that those steps refers to the two sub-steps in Step
4 of SLBN).

Step one will terminate first when the graph G is acyclic, and the first inserted
edge in step two, say (V1,V2), is the one that was removed last in step one. Since
G was cyclic before (V1,V2) was removed, inserting (V2,V1) in the place of (V1,V2)
will result in an acyclic graph, by the first part of the proof. Suppose that removing
(V1,V2) also would have made another cycle, which was handled in an earlier
transit of step one, disappear. Then (V1,V2) would have been involved in this last
handled cycle, and the ones taken care of in the earlier transit. In this case, since
the most frequent edges in S are removed first, (V1,V2) would have been removed
in an earlier transit of step one, i.e. we are in the situation considered in the first
part of the proof. This completes the proof.

7.3 Walk through of Step 1 in SLBN

A walk through of Step 1 in SLBN, explained in section 4.2.1, obtaining the MB
of the node D in the DAG of figure 7.2 is presented in table 7.2. The variable
ordering D,A,E,B,F,C is selected to stress the fact that the result does not depend
on this. Note that MB(D) provided by Step 1 in the walk through agrees with
the one that was found in section 3.5.

If the MB of F in figure 7.2 were to be determined, but in the variable ordering
A,B,C,D,E,F. Then all nodes (but F itself) will be included in S(F) during the
growing-phase, and all nodes but E will have to be removed, which stresses the
importance of the shrinking-phase.

52

Growing phase:
S(D) = ∅,
S(D) = ∅, (D 6⊥⊥ A|∅) =true, A not added to S(D)
S(D) = ∅, (D 6⊥⊥ E|∅) =false, E added to S(D)
S(D) = {E} (D 6⊥⊥ A|{E}) =false, A added to S(D)
S(D) = {A,E} (D 6⊥⊥ B|{A,E}) =false, B added to S(D)
S(D) = {B,A,E} (D 6⊥⊥ F |{B,A,E}) =true, F not added to S(D)
S(D) = {B,A,E} (D 6⊥⊥ C|{B,A,E}) =false, C added to S(D)
S(D) = {C,B,A,E} (D 6⊥⊥ F |{C,B,A,E}) =true, F not added to S(D)
S(D) = {C,B,A,E} Growing phase complete
Shrinking phase:
S(D) = {C,B,A,E} (D ⊥⊥ C|{B,E,A}) =false, C not removed from S(D)
S(D) = {C,B,A,E} (D ⊥⊥ B|{C,E,A}) =false, B not removed from S(D)
S(D) = {C,B,A,E} (D ⊥⊥ A|{C,B,E}) =true, A removed from S(D)
S(D) = {C,B,E} (D ⊥⊥ C|{B,E}) =false, C not removed from S(D)
S(D) = {C,B,E} (D ⊥⊥ B|{C,A}) =false, B not removed from S(D)
S(D) = {C,B,E} (D ⊥⊥ E|{C,B}) =false, E not removed from S(D)
Shrinking phase complete
MB(D) = S(D) = {C,B,E}

Table 7.2: Step 1 of SLBN determines the MB of D in the DAG of figure 7.2.

A B

C D

E F

Figure 7.2: DAG in the walk throughs of Step 1 and Step 2 of SLBN.

7.4 Walk through of Step 2 in SLBN

A walk through of Step 2 in SLBN, obtaining the neighborhood of D in the DAG
of figure 7.2, in the variable ordering D,A,E,B,F,C, is presented in table 7.3.

53

D MB(D) = {E,B,C}
E: |MB(D)\{E}| = |{B,C}| = |{F,C}| = |MB(E)\{D}| {B,C} is chosen.
(D ⊥⊥ E|∅) = false
(D ⊥⊥ E|{B}) = false
(D ⊥⊥ E|{C}) = false
(D ⊥⊥ E|{B,C}) = false
all tests false ⇒ undirected edge between D and E added.

B, similar to case above. . .
all tests false ⇒ undirected edge between D and B added.

C: |MB(D)\{C}| = |{E,B}| < |{A,E,B}| = |MBC\{D}| {E,B} is chosen.
(D ⊥⊥ C|∅) = true
(D ⊥⊥ C|{E}) = false
(D ⊥⊥ C|{B}) = true
not all tests false ⇒ no edge added.

N(D) completed
A...

Table 7.3: Walk through of Step 2 of SLBN, obtaining the neighborhood of D in
the DAG of figure 4.2b.

7.5 Drug test simulation, information output

1 SLBN.
2
3 Step 1 , l e a rn Markov b lanket s .
4
5
6 Obtaining Markov blanket o f D, growing :
7 (D ind IB |) , p= 0 , i n d i c a t e s dep . S={IB} , r e s t a r t i n g
8 (D ind DA | IB) , p= 0 , i n d i c a t e s dep . S={IB , DA} , r e s t a r t i n g
9 (D ind CRP | IB , DA) , p= 0.232 , i n d i c a t e s ind . S unchanged

10 (D ind B | IB , DA) , p= 0.078 , i n d i c a t e s ind . S unchanged , sh r ink ing :
11 (D ind IB | DA) , p= 0 , i n d i c a t e s dep . S unchanged .
12 (D ind DA | IB) , p= 0 , i n d i c a t e s dep . S unchanged .
13 Obtaining Markov blanket o f IB , growing :
14 (IB ind D |) , p= 0 , i n d i c a t e s dep . S={D} , r e s t a r t i n g
15 (IB ind DA | D) , p= 0.811 , i n d i c a t e s ind . S unchanged
16 (IB ind CRP | D) , p= 0 , i n d i c a t e s dep . S={D, CRP} , r e s t a r t i n g
17 (IB ind DA | D, CRP) , p= 0.003 , i n d i c a t e s dep . S={D, CRP, DA} , r e s t a r t i n g
18 (IB ind B | D, CRP, DA) , p= 0.185 , i n d i c a t e s ind . S unchanged , sh r ink ing :
19 (IB ind D | CRP, DA) , p= 0 , i n d i c a t e s dep . S unchanged .
20 (IB ind CRP | D, DA) , p= 0 , i n d i c a t e s dep . S unchanged .
21 (IB ind DA | D, CRP) , p= 0.003 , i n d i c a t e s dep . S unchanged .
22 Obtaining Markov blanket o f DA, growing :
23 (DA ind D |) , p= 0 , i n d i c a t e s dep . S={D} , r e s t a r t i n g
24 (DA ind IB | D) , p= 0.811 , i n d i c a t e s ind . S unchanged
25 (DA ind CRP | D) , p= 0 , i n d i c a t e s dep . S={D, CRP} , r e s t a r t i n g
26 (DA ind IB | D, CRP) , p= 0.003 , i n d i c a t e s dep . S={D, CRP, IB} , r e s t a r t i n g
27 (DA ind B | D, CRP, IB) , p= 0.326 , i n d i c a t e s ind . S unchanged , sh r ink ing :
28 (DA ind D | CRP, IB) , p= 0 , i n d i c a t e s dep . S unchanged .
29 (DA ind CRP | D, IB) , p= 0 , i n d i c a t e s dep . S unchanged .
30 (DA ind IB | D, CRP) , p= 0.003 , i n d i c a t e s dep . S unchanged .
31 Obtaining Markov blanket o f CRP, growing :
32 (CRP ind D |) , p= 0 , i n d i c a t e s dep . S={D} , r e s t a r t i n g
33 (CRP ind IB | D) , p= 0 , i n d i c a t e s dep . S={D, IB} , r e s t a r t i n g
34 (CRP ind DA | D, IB) , p= 0 , i n d i c a t e s dep . S={D, IB , DA} , r e s t a r t i n g
35 (CRP ind B | D, IB , DA) , p= 0 , i n d i c a t e s dep . S={D, IB , DA, B} , r e s t a r t i n g , sh r ink ing :
36 (CRP ind D | IB , DA, B) , p= 0.276 , i n d i c a t e s ind . S={ IB , DA, B } , r e s t a r t i n g
37 (CRP ind IB | DA, B) , p= 0 , i n d i c a t e s dep . S unchanged .
38 (CRP ind DA | IB , B) , p= 0 , i n d i c a t e s dep . S unchanged .
39 (CRP ind B | IB , DA) , p= 0 , i n d i c a t e s dep . S unchanged .
40 Obtaining Markov blanket o f B, growing :
41 (B ind D |) , p= 0 , i n d i c a t e s dep . S={D} , r e s t a r t i n g
42 (B ind IB | D) , p= 0 , i n d i c a t e s dep . S={D, IB} , r e s t a r t i n g
43 (B ind DA | D, IB) , p= 0 , i n d i c a t e s dep . S={D, IB , DA} , r e s t a r t i n g
44 (B ind CRP | D, IB , DA) , p= 0 , i n d i c a t e s dep . S={D, IB , DA, CRP} , r e s t a r t i n g , sh r ink ing :
45 (B ind D | IB , DA, CRP) , p= 0.124 , i n d i c a t e s ind . S={ IB , DA, CRP } , r e s t a r t i n g

54

46 (B ind IB | DA, CRP) , p= 0.333 , i n d i c a t e s ind . S={ DA, CRP } , r e s t a r t i n g
47 (B ind DA | CRP) , p= 0.773 , i n d i c a t e s ind . S={ CRP } , r e s t a r t i n g
48 (B ind CRP |) , p= 0 , i n d i c a t e s dep . S unchanged .
49 Step 1 complete , Markov b lanket s :
50 D : IB , DA
51 IB : D, CRP, DA
52 DA : D, CRP, IB
53 CRP : IB , DA, B
54 B : CRP
55
56 Step 2 , l e a rn neigborhoods , obta in ske l e t on .
57
58 Obtaining neighborhood o f D
59 t e s t i n g IB , condit ion−s e t : { DA } , no s epara t ing set , D IB ne ighbors
60 t e s t i n g DA , condit ion−s e t : { IB } , no s epara t ing set , D DA neighbors
61 Obtaining neighborhood o f IB
62 t e s t i n g D , condit ion−s e t : { DA } , no s epa ra t ing set , IB D neighbors
63 t e s t i n g CRP , condit ion−s e t : { D, DA } , no s epara t ing set , IB CRP neighbors
64 t e s t i n g DA , condit ion−s e t : { D, CRP } , (IB ind DA | D) , not ne ighbors
65 Obtaining neighborhood o f DA
66 t e s t i n g D , condit ion−s e t : { IB } , no s epa ra t ing set , DA D neighbors
67 t e s t i n g CRP , condit ion−s e t : { D, IB } , no s epara t ing set , DA CRP neighbors
68 t e s t i n g IB , condit ion−s e t : { D, CRP } , (DA ind IB | D) , not ne ighbors
69 Obtaining neighborhood o f CRP
70 t e s t i n g IB , condit ion−s e t : { DA, B } , no s epara t ing set , CRP IB ne ighbors
71 t e s t i n g DA , condit ion−s e t : { IB , B } , no s epara t ing set , CRP DA neighbors
72 t e s t i n g B , condit ion−s e t : { } , no s epa ra t ing set , CRP B neighbors
73 Obtaining neighborhood o f B
74 t e s t i n g CRP , condit ion−s e t : { } , no s epa ra t ing set , B CRP neighbors
75 Step 2 complete , ne ighbors :
76 D : IB DA
77 IB : D CRP
78 DA : D CRP
79 CRP : IB DA B
80 B : CRP
81
82 Step 3 , propagate V−s t r u c t u r e s .
83
84 Centernode : D ,
85 Centernode : IB ,
86 Centernode : DA ,
87 Centernode : CRP , detected V−s t r u c tu r e : IB−>CRP<−DA
88 Centernode : B ,
89 Step 3 complete , detected o r i e n t a t i o n s :
90 IB −> CRP
91 DA −> CRP
92
93 Step 4 , Graph i s a c y c l i c
94
95 Step 5 , o r i e n t compel led edges
96 Rule 1 s a t i s f i e d , o r i e n t CRP −> B
97 Step 5 complete , detected o r i e n t a t i o n s :
98 CRP −> B
99

100 SLBN complete , Adjacency Matrix :
101
102 D IB DA CRP B
103 D 0 1 1 0 0
104 IB 1 0 0 1 0
105 DA 1 0 0 1 0
106 CRP 0 0 0 0 1
107 B 0 0 0 0 0
108
109 BIC : −1211.146 , number o f t e s t s : 81

55

References

[1] Judea Pearl, Causality and reasoning, first edition, Cambridge University
Press, 2000

[2] R. Nagarajan, M. Scutari and S. Lébre, Bayesian networks in R, Springer,
2013

[3] D. Koller and N. Friedman, Probabalistic graphical models, The MIT Press,
2009

[4] F. V. Jensen and Thomas D. Nielsen Bayesian networks and decision graphs,
second edition, Springer, 2007

[5] D. Margaritis, Learning Bayesian networks model structure from data, PHD
thesis, 2003

[6] Marco Scutari, bnlearn R-package, URL:
http://www.bnlearn.com

[7] Coronary data-set, URL:
http://www.bnlearn.com/documentation/networks/index.html

[8] Robert E. Kass and Adrian E. Raftery, Bayes Factors,
Journal of the American Statistical Association, Vol. 90, No. 430, pp. 773-795,
1995

[9] Jean Philippe Pellet and André Elisseeff, Using Markov Blankets for Causal
Structure Learning, Journal of Machine Learning Research 9, 2008

[10] K.D.Hansen J.Gentry L.Long R.Gentleman S.Falcon F.Hahne and D.Sarkar,
R-package Rgraphviz, URL:
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html,

version: Release (3.1)

56

[11] Rónán Daly and Qiang Shen, Learning Bayesian Network Equivalence Classes
with Ant Colony Optimization, Journal of Artificial Intelligence Research 35,
2009

[12] Judea Pearl, Probabilistic reasoning in Intelligent Systems, Morgan Kaufmann
publisher, Inc., 1988

[13] Simon Berggren, SLBN source-code, URL:
https://github.com/SiboBerggren/SLBN, 2015

[14] Alan Agresti, Categorical Data Analysis, third edition, Wiley, 2013

[15] Joe Whittaker, Graphical Models in Applied Multivariate Statistics, John Wi-
ley & Sons Ltd., 1990

57

