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Abstract

In this thesis, we investigate whether there has been a change in
the yearly incidence of malignant melanoma in Sweden over the years
1970-2013. We also investigate if there is some difference between
gender amongst the affected. Data over the incidence of malignant
melanoma between the years 1970-2013 will be collected from Social-
styrelsen. The data will be analyzed and the first question will be
solved using statistical means by fitting three linear models and use
change-point analysis, a method used to detect changes in time series
data. The results show us that there has been one change-point in
the year 2000, where the increase of malignant melanoma cases have
been steeper. The second question will be solved by using multiple
linear regression with dummy variables, where we use an F-test from
an ANOVA-table to decide whether gender should be included as a
variable in the model or not. The result shows us that gender does
have an effect on the malignant melanoma cases. The results in this
thesis can be used to develop future studies, for the purpose to find
the source of malignant melanoma with intent to prevent it in the
future. The fact that a change occurred in the year 2000 can be used
while trying to find the reason for malignant melanoma.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: Carro-93@hotmail.com. Supervisor: Michael Hohle.
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1 Introduction

According to an article, ”Incidence, Risk Factors and Prevention of Melanoma”
written by R.M. Mackie published by the European Journal of Cancer in 1998
(R.M., 1998), the cases of malignant melanoma may have increased in the
world during the period of 1940-1990 followed by a flattening between 1990
and 1998. What we would like to do in this thesis is to answer the question
how this matches the Swedish incidence data in skin cancer. We would also
like to investigate what has happened since 1998.

The statistical aim of this thesis is to analyze the incidence time series by
its changes and build a multiple linear regression model to help understand
functional relationships. We will also see if gender has an effect on the num-
ber of diagnosed with cancer. This we will do with the data of the incidence
of malignant melanoma collected from Socialstyrelsen and then visualize the
data. We will then perform a statistical analysis to strengthen our guesses,
from just looking at the figures, to make our conclusions.

First, we will describe the background to the subject, i.e. give a short ex-
planation of what cancer is, followed by an ingoing description of the data
in section 3. In section 4 we will briefly go through the statistical methods
used in the thesis. This will be followed by section 5.1 where we will fit three
models developed from (R.M., 1998) to try to understand the changes in
data over time and then compare the results from the change-point analysis.
A creation of a multiple linear model with dummy variables to investigate if
there is some difference in the number of incidences due to gender will follow
in section 5.2. Then we go through the results in section 5.3 followed by a
discussion and suggestions for future studies in section 6.

2 Background of skin cancer

Cancer is a collection name for different cell disorders, which means that
the cell does not behave as usual. There are two different types of tumors,
non-cancerous (benign) and cancerous (malignant) tumors, where the latter
penetrates into other tissues and will eventually contact the small blood ves-
sels and lymphatic vessels. This malignant tumor can then spread to other
places in the body by going with the blood or lymph system and form new
tumors, called metastases.

A cancer development in a skin cell is named skin cancer(Einhorn, 2013).



Skin cancer is today among the most common form of cancer in Sweden(Hedefalk,
2014). There are different types of skin cancer, malignant melanoma is one of
them. It is not the most common, but the most dangerous form because of its
ability to engage metastases that can spread to the rest of the body(Swedish
Radiation Safety Authority, 2015).

One factor that causes skin cancer is the sun’s ultraviolet radiation, which
causes damage to the cell’s genome. People with a lot of birthmarks can also
be in the risk zone as well as people with relatives that have had malignant
melanoma(Hedefalk, 2014).

3 Material

In this section a description of the data we will work with will follow. We
start by looking at the data and count the incidence and then visualize the
data to see what conclusions we can make by just looking at Figure 1-3.

3.1 Description of the data

The data are collected from the statistical database for cancer, Socialstyrelsen,
http://www.socialstyrelsen.se/statistik/statistikdatabas/cancer,
in February 2015. Cancer statistics are reported during the years 1970-2013
as absolute number of cases and as the number of cases in relation to respec-
tive population size (per 100 000 population), the latter is used in this thesis
and will be called incidence. Hence the yearly incidence in a specific group
is calculated as

Cases in the group in year t

x 100000 = Incidence in the group in year t.

1)
In total 68 254 number of cases have been reported between the years 1970-
2013. The data is grouped in 18 age categories, 2 gender categories, 21 region
categories and 44 year categories. So the total number of cases 68 254 are
scattered over 18 x 2 x 21 x 44 = 33 264 cells.

Population in the group in year t

Table 1 shows a couple of lines of the data.



Year Region Age Gender Incidence
2013 Stockholms lan  0-4 Male 1.33
2013 Stockholms lan  0-4 Female 0
2013 Stockholms lan  5-9 Male 0

2013 Stockholms lan 85+ Female 109.91

2013 Uppsala lan 0-4 Male 0
2012 Stockholms lan  0-4 Male 0
1970 Norrbottens lan 85+ Female 0

Table 1: A couple of lines of the data.

In Figure 1 the incidence in females, males and total are plotted against
year, where we can see a constant increase in all the cases over the years.
The dotted vertical lines correspond to the potential change-points defined
according to the article (R.M., 1998), 1990 and 1998. There seems to be a
flattening around the years 1990 and 1998 but it is hard to see just by the
eye the exact years of changes. We can also see that there is no remarkable
difference between males and females, but there is some difference between
the years 1970-1980.
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Figure 1: Number of incidence per 100 000 population over time. The vertical
dotted lines correspond to the years 1990 and 1998.

The 18 grouped age categories can be seen in Figure 2, the plot shows us
that it is more common with malignant melanoma at a higher age and there
are almost no cases in the age of 0 to 24, neither for females or males. We
can also see that females seem to develop malignant melanoma at a younger
age compared to males.
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Figure 2: Box-plot of female and male incidences in malignant melanoma
sorted by age categories in data.

Figure 3 shows us the incidences in all the 21 regions, we can see that the re-
gions with the highest mean incidence are Skane and Halland both for females
and males and the regions with the lowest mean incidence are Vasterbotten
and Norrbotten. But overall there are small differences in mean incidences
among the different regions. There is also no big difference in the region
when it comes to males and females.



—~ —~
o o
o [§) [S) o o [S)
o 1 ¢} o o | QOOO o
o OO +7t0 o o O.,.
S g_ 088 .8 1o © o | _g°i°7 © 19 .
— ©.0-71187 1 Tel = F o8 1 .- 1ol
o . T'r' ' oy ' T [ (@] - ! -r: Ty v 0
— ' [ oy ' ' [ [ T
8 : : : Yot : T ! : YT ! 8 ] T T . : ' : Vg T : 'O
1 T ' ' 1
= O_:T:I M : ::'T:TE) — o '?. [ :'::::§9
8 S| ol 8 SR it
S _ g TEAT HH S H Tl HH
f [ ' c ! T = ! ' A
% 5 sleltelyros ieapriE g 5 *lllll*:l*l*;lllH“E
p— s s p— s
< TTTTTTTTTTTTITTTITITTITTT < TTTTTTTTTTTTITTTITTTITTT
ECU'UU @CDE'DCDCD'O'O'U oTTCOMNTCC E(‘UUU CDCDE'OCDCD'O'UU o TCOMTCC
S GECEGREDCECCECCS0C OO SGECEGREOCECCCSCCS0C OO0
SRS SRESCEEEETSFIcaEL SRS S50ESCCETESZIETEE
S ES590SBEnESESSuCLEan 2855200 dnEEESGROESS
eDedes 0 TR c0ZcTTE eDedes 0O TR c0ZSTTE
= [oRek [O5 T =s30 =2 oo= o= T=s20
o b =0 o n O »
N X s 2 (Dm oz n oFp—X g 2 Y5 &%
80 s 3 g > 20 s 3 o >
a < < 2 < S
Region Region

Figure 3: Box-plot of female and male incidences in malignant melanoma
sorted by region categories in data.

By just looking at Figure 1-3 we can try to answer our questions about
malignant melanoma. What we could say now is that gender may have an
effect on the incidence of malignant melanoma, which we can see in Figure
1. Although we will create a multiple linear model to investigate if what we
see by the eye is correct. When it comes to the changes in 1990 and 1998 its
quite hard to see the exact years, so this will be inspected with a creation
of three linear models of what we think we are seeing and then this will be
compared to a change-point analysis. However the question about what has
happened after the year 1998 can clearly be seen as an increasing in incidence
of malignant melanoma in Figure 1.

4 Methods

In this section the statistical theory used in the thesis is presented. We will
start by going through how to create a multiple linear regression model and
how to estimate the parameters. We will then describe how to check if the
underlying assumptions for the models holds and how to arrange them if they
are not fulfilled. One of the proposals will be a Box-Cox transformation to




get rid of, for example, heteroscedasticity and this method will be presented
as the following. Then we will go through a description about the goodness
of fit measurement AIC. At last we will briefly go through what change-
point analysis is and give an explanation of a technique used, called binary
segmentation.

4.1 Multiple linear regression

Multiple linear models are often used to quantitatively determine how the
values of more than one potentially explanatory variable are affecting the
value of the response variable(Sundberg, 2014). The multiple linear regres-
sion model is given by

Yi = a+ bixy + Poxaie.. + Brri + €y

for i = 1,...,n. This can also be written in matrix form as

y =XB +e, (2)
where y = (y17y27 "')yn>T7 ﬁ - (Oéaﬁl) "‘7516)T7 €= (617627 "'7€n)T and

1 zn 21 -+ ol

1 12 @22 -+ T
X = .

1 Tin Ton =* - Ln

Here; y denotes the response variables, the matrix X denotes the explana-
tory variables, 3 are the parameters and € are the error terms. The ¢; are
assumed to be independent and normally distributed with E(e;) = 0 and
V(e;) = 02 and hence y; ~ N(p;,0?) where p = X3.

One way to get an estimator of 3 is given by the least square method, which
we get by minimize the residual sum of squares

n

QB) = (i — )’

i=1
with respect to 3 (Alm & Britton, 2008, p.442-443). The solution is then
B = (XTX)"'XTy (Andersson & Tyrcha, 2014).



4.2 Model diagnostics

When we have performed multiple linear regression analysis as above, we
have assumed the following (Box & Cox, 1964).

i) linearity in the parameters

ii) independent errors

iii) normal distribution of errors

iv) homoscedasticity (constant variance of the errors).

To test these assumptions we can perform the following:

i) To detect nonlinearity in the parameters we can plot the residuals versus
the predicted values. Here the points should be symmetrically distributed
around a horizontal line, with constant variance(Nau, 2015).

i) When testing for no autocorrelation, we can use a so called Durbin-Watson
test. Where we test the null hypothesis of no autocorrelation against the al-

ternative hypothesis that the true autocorrelation is greater than 0( Andersson
& Tyrcha, 2014).

iii) To check for normally distributed errors we can look in a histogram or
normal quantile plot of the residuals. These both contain a reference line
from a normal distribution having the same mean and variance. The points
or stables should then follow the reference line(Nau, 2015).

iv) When looking for homoscedasticity in a time series data we can plot
the residuals versus time. We then search for evidence of residuals that grow
larger either as a function of time or as a function of the predicted value,
which can be signs of heteroscedasticity(Nau, 2015). We do not want het-
eroscedasticity in the data since we then can get the wrong estimates of the
B3’s because the method mentioned in section 4.1 demand constant and as
small residuals as possible. If this is not fulfilled, the standard errors for
the coefficients respectively, will look bigger or smaller than they should.
This will in turn lead to that the significance tests of the estimations will be
wrong(Broms, 2014).



4.3 Box-Cox transformation

When we have a linear model, as in (2) and the model diagnostics mentioned
above are not fulfilled we can use a so called Box-Cox power transformation
to transform the response variable to improve the normal assumption and
homoscedasticity of the response variable(Box & Cox, 1964, p. 211).

The parametric family of transformations from y to y*, with parameter
A € R, is given by the following equation system

y_J =D/ A0,
e {log(yi) if A =0, @)

for y > 0 (Box & Cox, 1964, p. 214). This gives us the transformed model

y*=x8+e€ (4)

A more ingoing explanation of the Box-Cox transformation can be find in
Appendix 1.

The aim is to find a value of A, which in turn gives the best transformation
to data, seen from the normal theory assumptions. Since we would prefer to
use log(y;), because of its simplicity in the interpretation, the hypothesis we

test will be
Hy: A= 0 against

Hi: A4 0, (5)

where one way to perform this test is to construct a confidence interval (CI)
with confidence level 1 — a and see whether the value 0 is included in the CI
or not. If 0 is not included in the interval we can reject the null hypothesis
that A = 0, at the « significance level(Alm & Britton, 2008, p. 311).

To be aware of is that the Box-Cox transformation not always guarantee
normality, because it actually checks for the smallest standard deviation and
not normality. This is because of the assumption that the transformation
with the highest likelihood is to be normally distributed when standard de-
viation is the smallest, but this is not a guarantee so we should always check
the transformed data by looking at the assumptions again and see if they
have improved(Buthmann, n.d.).



4.4 AIC

The Akaike information criteria (AIC) is a measure which can help to choose
between two models. The preferable model would be the one who tends to
have closest fit to the true values. If we look at this criteria we will choose
the model with the lowest AIC, i.e. the model that minimizes

AIC = —2(maximized log likelihood — number of parameters in model).

A model having many parameters will then be penalized. This helps us
to avoid over-fitting. We should be aware of that AIC is a comperative
measurement and do not say much by itself(Agresti, 2013, p. 212).

4.5 Change-point analysis

This section is mainly inspired by (Chen & Gupta, 2012) unless otherwise
noted. ”Change-point detection is the problem of discovering time points at
which properties of time-series data change”. That is, we want to investigate
a time and whether there have been a change in data before or after this
time(Yoshinobu & Masashi, 2005).

Let z1, x5 ... x, be a sequence of independent random variables with proba-
bility distributions Fi(61), Fa(02) ... F,,(60,), respectively.

There are different techniques to use when looking for a detection of changes.
The binary segmentation is an approximation, but the easiest to understand
and a general description of the technique can be summarized in the follow-
ing steps.

Step 1. We start by testing for no change-point versus one change-point;
that is, we test the null hypothesis

H0:61:02:...:9n:0
versus the following alternative
H1 . 01 =..= Qk 7& 0k+1 = ... = Qn,

where k is the location of the single change-point at this stage. If Hy is not
rejected, then we will stop. There is no change point. If Hy is rejected, then
there is a change-point and we will go to Step 2.

10



Step 2. We now test the two subsequences before and after the change-
point found in Step 1 separately for a change.

Step 3. We will repeat the process until no further subsequences have
change-points.

Step 4. The collection of change-point locations found by steps 1-3 is de-
noted by {ki, ks...k,}, and the estimated total number of change-points are
then q.

A change in mean would have indicated that the observations would be
growing or decreasing with time, meanwhile a change in variance would have
indicated a bigger variance between the observations. As can bee seen in
Figure 1 we seem to have a change in mean, and the null hypothesis will
then be

Hy:pp=po=..=pu,=p

versus the following alternative

Hy:pp=...= g # phgs1 = ... = ln.

5 Statistical modeling and data analysis

In this section we will fit three linear models to describe data and do a
change-point analysis to help answer the question whether there have been
a change in data over time or not. We will also create a linear model with
dummy variables to investigate if there is some difference between males and
females.

5.1 Model fit and change-point analysis

We will be using the incidence of total in the whole country and does not
take the age of the affected into account for simplicity. The total incidence
is calculated as

number of cases females+number of cases males

: x 100000 = wncidence of total.
total population

We now want to evaluate a range of models to see which one that fits the
data best, to get an idea of what changes that could have happened during

11



the years. First, we take Model a, where we assume that no change have
occurred between the years 1970-2013. We will then compare it with Model
b where we take into account that a change may have occurred at year 1990.
The last Model ¢ will also assume that a change at 1998 may have occurred.
The reason for Model ¢ is that there is no thesis about this period in the
article (R.M., 1998) and by the data to judge there seems to be an increase
in the incidence of malignant melanoma at that point. This leads us to the
following model selections,

Model a: y; = By + [ -t + €,
Model by, = Bo + B -t + P2 - (t —1990), + ¢,
Modelc:ytzﬁo—i—ﬁl-t-l—ﬁg'(t—1990)++53'(t—1998)++5t7

where t € {1970,...,2013}. By + f1 - 1970 stands for the output when we
are at year 1970, 3 is the average change when time increases by one unit,
given the other responses are kept constant, 5, is when we are between the
years 1990 and 2013 and 5 from the year 1998 and up to 2013. y is the
total incidence, t is the year and the residuals are denoted by €. The ( ), is
defined to be the positive outcome, for example, if we have (¢t — 1990) this
will be put to 0 if £ < 1990 and its true value otherwise.

We now want to check the model assumptions from section 4.2. By the
data to judge, Model ¢ seems to be the best fit of model. So we will start by
controlling Model c.

In Figure 4 we see that the assumption of normal distributed errors are
not quite achieved. We see, for example, in the top middle that the points
dash off a bit in the end and not follow the diagonal reference line. The top
right figure shows us a plot over the residuals versus the time to search after
heteroscedasticity. There are traces of an increasing pattern, which is a sign
of heteroscedasticity.

12
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Figure 4: Assumption checking, Model ¢. The top figures correspond to
Model ¢ and the bottom to the transformed, Model lc. From the left: His-
togram of the residuals, Normal Q-Q Plot, Plot of the residuals against year.

If we perform a Box-Cox test we get Figure 5, with a A value of 0.5. Figure 5
shows us that 0 is contained in the 95% confidence interval for A (the dotted
lines in the figure), so we do not reject the null hypothesis from (5) and we
put hence A = 0. This value of A gives us from (3) the transformation log(y;).

13



log—-Likelihood

Figure 5: Box-Cox test, Model c.

After the transformation only the left hand side will be changed in the mod-
els, from y; to log(y;) and the transformed models are now called Model la,
Model Ib and Model lc. If we redo the analysis of the assumptions we get
the results shown in the bottom of Figure 4. We now see in the bottom
left of Figure 4 that the residuals look normally distributed. We also see
in the bottom right in Figure 4 that the residuals look more random, so we
could say that the trace of heteroscedasticity is gone and we can assume ho-
moscedasticity.

Similar results apply to Model a and Model b, see Appendix 2, Figure 9-
12 for details. The models Akaike information criteria (AIC) can be seen i
Table 2.

df AIC
Model la  3.00 -85.47
Model Ib 4.00 -89.87
Model Ic  5.00 -129.08

Table 2: AIC for the three different models.
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According to the definition of AIC in section 4.4 we will choose the model
with the lowest AIC value, which in this case is Model lc. If we look at Figure
6 we also see that it appears like Model lc is the one visually giving the best
fit to the data.

When fitting the three models, we use the fact that the log-normal distribu-
tion have the same distribution as an exponential normal distribution, i.e. if

X ~ LN(p,0%) and Y ~ N(,02) then X < e¥ this implies that

- exp{—(logzi;”)z} for x > 0,
fx(z) = ¢ over .
0 otherwise.

It follows that
1
E[X"] = E[e"™] = ¢y (r) = exp{ru + 5027“2}, for any r > 0,

which implies that X is normally distributed with E[X] = exp{p+10?}(Gut,
2009, p.69).

The fit of the models will then be done as follows. We start by estimate

A~

(3 in the transformed models to be able to predict log(y;), which will be the
same as the estimation of E[log(Y;)]. Then to plot the fit of Model la, 1b

A

and lc we use the fact that Elog(Y;)] = exp{fi + 26?}. Hence, we got the
following fit for Model la

. ~ 1 —68.775 1
= e (X + 50°) = el o)

0.036 + 50.008}

15



Data
Fit of Model la
Fit of Model Ib

Incidence (per 100 000)
10 15 20 25 30 35

Fit of Model Ic
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Figure 6: Fit of the transformed models to data.

The assumption about linearity is achieved within the new transformed
Model lc which can be seen in Figure 7, where the line, that follows the
residuals, is as good as horizontal which it should be. We can also see with
a Durbin-Watson test that there is no autocorrelation between the residuals.
We get a p-value = 0.20 which tell us that we can not reject the null hy-
pothesis of no autocorrelation in the residuals. This means that the residuals
appear to be independent. The log(y;) themselves are correlated, but only

due to the functional relationship for the mean.

16
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Figure 7: The residuals plotted against the predicted values.

The estimations of the models are given by

Model la : log(y;) = —68.77 4+ 0.04 - ¢,

Model Ib : log(y;) = —79.66 + 0.04 -t —0.01 - (¢t — 1990) , ,

Model lc : log(y;) = —91.794-0.05 -1 — 0.04 - (t — 1990) , +0.05- (t — 1998), .

In Model la we have that when we are at year 1970 the estimated value
of the total incidence is e~0877+(0:041970) 4nq by one unit increase we will
multiply e®% to §. In Model 1b we will start with e~79-66+(0.041970) and by
one unit increase we will multiply § with %%, In the period of 1991-1998
we will also multiply § with e %% for every additional year after 1990, for

example in 1992 we will have g9y = e~ 7%-60+(0:041970) . (£0.04)22 . (,=0.01)2

When it comes to Model lc we start with e=9179+0:051970) gt vear 1970 and
multiply e®% for every unit of increase. In the period of 1991-2013 we will
also multiply 9 with e=%% for every additional year after 1990 and after 1998
we will also multiply § with e®% for every additional year.

17



The changes is hence,

E [yt+1]

AEA[yt] = exp{0.04} = 1.04, (6)

EA[y[”]l] = exp{0.04} - exp{—0.01} = exp{0.03} = 1.03, (7)
Yt

EA[‘%H] = exp{0.05} - exp{—0.04} - exp{0.05} = exp{0.06} = 1.06, (8)
Ely]

where (6), (7) and (8) respectively corresponds to the changes in Model la, 1b
and lc. Model la have the change 1.04 for all values of t between 1970-2013.
For Model 1b we have the change 1.04 for the years between 1970-1990 and
1.03 for the years between 1991-2013. For Model lc we have the change of
1.05 for the years between 1970-1990, 1.01 between the years 1990-1998 and
for the years between 1998-2013 the change is 1.06.

We now want to compare the selected model (Model lc) to the data with
the results of the change-point analysis.

Since we want to investigate the change in incidence of malignant melanoma
we will use the differences between the observed data points, i.e. Ay =
Yir1 — Ui, and investigate changes in the mean. If we then perform a change-
point analysis of the time series using the binary segmentation technique, to
find changes in mean, we get Figure 8. We can see one change-point in 2000
which give us two periods 1970-2000 and 2000-2013, where the slope of the
time series differ. In the figure we can also see that the period of 2000-2013
have a steeper slope, which can be visualized by the jump upwards in the
horizontal line in Figure 8.

18
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Figure 8: Change-Point detection in mean.

5.2 A linear model for gender

We now want to investigate whether there is a noteworthy difference in the
incidence of malignant melanoma between the genders. We thus compare
the following models

My :log(ysg) = Bo+ Br - t + e, (9)
M :log(yeg) = Po+ Pr-t+ P2+ 1(g) + s - 1(g) - t + &, (10)
where t € {1970,...,2013}. Here we use female as a reference variable and

the indicator variable is defined as

1 if g=male,
I(g) = {

0 if g=female.

This means that when g=female and the year is 1970 we have that log(y;) =
Bo + £1 - 1970 but when g=male we add B3 + 54 - 1970 to log(y;). To answer
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the question if gender has an impact on the incidences or not we want to
check if this additional change is zero.

We can then test the null hypothesis Hy : 82 = 3 = 0 against the alter-
native hypothesis H; : B2 # 0 and B3 # 0 where results are shown in an
ANOVA-table. In Table 3 we get a F-value of 6.24 and a p-value of 0.003,
this tells us to reject the null model, so we will accept the alternative hy-
pothesis and assume that there is a difference between males and females on
a 1% level when it comes to affected in malignant melanoma.

However, it could be the case that the lines for males and females are par-
allel, this we can test by testing the null hypothesis Hy : f3 = 0 against the
alternative hypothesis H; : 83 # 0. As we can see in Table 4 we get a F-value
of 9.79 and a p-value of 0.002. Again, we will reject the null hypothesis on a
1% level.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 86 0.87

2 84 0.76 2 0.11 6.24 0.0030
Table 3: ANOVA-table, testing 8 = B3 = 0.
Res.Df RSS Df Sum of Sq F  Pr(>F)

1 85 0.85

2 84 0.76 1 0.09 9.79 0.0024

Table 4: ANOVA-table, testing 83 = 0.

The models chosen with the estimations are given by

10g(fj1.y) = —64.01 + 0.03 - t —9.99 - I(g) + 0.01 - I(g) - t.

To have in mind is that this model does not contain change-points.

5.3 Results

We can see from the three fitted models that there was signs of some changes
in 1990-1998 and 1998-2013 compared to the period of 1970-1990. Model lc
had the best fit to data, where we in Figure 6 saw that the slope between
1990-1998 was not as steep. When we then performed a change-point analysis
in the differences in mean we saw that changes had occurred between the
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periods of 1970-2000 and 2000-2013. When performing the multiple linear
regression, we also saw that whether you are male or female have an effect
on the incidence of malignant melanoma.

6 Discussion

The purpose of this thesis was to investigate if there had been any changes
in the time series data between the period of 1970-2013 but also to investi-
gate if there were some noteworthy difference in the incidence in malignant
melanoma whether you were male or female.

When we did the fit of the three linear models we assumed that the Swedish
data between the years 1970-2013 matched the article and developed our
models from this and we got a result of changes. But when we then used the
binary segmentation techniques to detect any change-points we only got one
change-point in 2000. This indicates that there was no change in 1990 that
would have indicated a flattening, it just indicates a constant up-going trend
followed by a steeper trend after 2000 which also could be the case when
looking at Figure 1. But still there seems to be a smooth flattening between
the years 1990-2000.

We also saw that it does make a difference in the incidence of malignant
melanoma whether you are male or female. This could depend on different
things, maybe it’s because we have something that differs between us that
could be the effect. Sun is also said to be a huge risk factor which also can
explain this. When looking at Figure 1 we saw that the main difference be-
tween males and females seems to be up to the year of 1980 and this could
be because we potentially had different sun habits. This could also be the
explanation why there has been such an increase over the years. For example,
traveling to warmer places is more common today, than it was 10 years ago.
The explanation of the increase could also be in proven techniques to find
the disease. To get an answer of this we would need reported behavior data.

It would be interesting to investigate in future analysis how the incidence
of malignant melanoma depends on the age of the person and where in Swe-
den they live, maybe we could have seen some connection between the region
with more sun and number of affected with malignant melanoma. This could
have been done with the same data we used in this thesis added with the
data on the population size in each group. The reason for not using (1) is
because the number of cases was so small numbers in some groups, even 0
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sometimes, and then we could not count the population size from knowing
the number of cases and incidence in that group. We would also come across
the problem of observations equal to 0, which would have indicated that we
could not use the log transformation and neither the Box-Cox transforma-
tion method, who only works for y > 0. There is another approach for the
Box-Cox transformation that does accept all values of y, which we could use
in that case.

When looking at data in Figure 2 and 3 we saw that there was more common
with malignant melanoma at a higher age, this could depend on the slow de-
velopment of the disease. The difference in the regions could, as mentioned
above, depend on different climate, and of course different habits developed
after this.

It would also be interesting to look at the mortality development in the ma-
lignant melanoma cases and maybe where the metastases have taken place.
For this we would need more data, for example, data that consists of the
development of each individual’s health history, though its usual that you
reported healthy but then the cancer will get back somewhere else later in

life.

The answer on the first question whether there have been a change at the
years 1990 and 1998 is partly true, there seem to be changes in the years
1990 and 2000. When it comes to the second question whether there is some
difference between males and females, the answer is yes. This trend analysis
can be used similarly for many other types of diseases.
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A Appendix

A.1 Box-Cox transformation

In this section follows an ingoing explanation of the Box-Cox transformation
that is inspired by (Box & Cox, 1964, p. 215-216). Suppose that the observed
observations is defined as y = (yi,...,4n), and that the convenient linear
model for the problem would be

E(y*) = a#, (11)

where the column vector y* is the transformed observations, a is a known
matrix and 6 is a vector of unknown parameters associated with the trans-
formed observations. We now assume that the transformed observations
satisfy the full normal theory assumptions, i.e. that they are independently
y* ~ N(a#, c?) for some unknown \.

To obtain the likelihood in relation to these original observations, we go
through the probability density for the untransformed observations which is
the normal density multiplied by the Jacobian of the transformation, this is
given by

1 (y* —a6)"(y* — af)
(27)™/20™ 202

} Jny). (12)

where
n A

] [ dy;
J )\,y = L .

i=1

To find the maximum-likelihood estimates we first note that for a given
A, (12) is the likelihood for a standard least-squares problem, except for a
constant factor. ”Hence the maximum-likelihood estimates of the 8’s are the
least-squares estimates for the dependent variable y* and the estimate of o2,
denoted for a fixed A by 6%(\), is”

7*(A) = (") ary*/n = S(\)/n (13)

where, when a is of full rank,

a, =I—a(a’a)'a’, (14)
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"and S()) is the residual sum of squares in the analysis of variance of y*.
Thus for a fixed A, the maximized log likelihood is, except for a constant”,

Linas(N) = — g log(0) + log(J(%:¥)). (15)

To plot the maximized log likelihood L;,..(A) against A for a trial series of
values would now be meaningful. The maximizing value A may then from
this plot be read off and we can obtain an approximate 100(1 — «) per cent
confidence region from

Linas(8) — Lunas(3) < 22, (0), (16)

where the number of independent components in A is defined as v, . "The

main arithmetic consists in doing the analysis of variance of y* for each cho-
sen \.(Box & Cox, 1964, p. 215-216)
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A.2 DModel diagnostics; Model a and b

Histogram of residua
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Figure 9: Assumption checking, Model a. The top figures correspond to
Model a and the bottom to the transformed, Model la. From the left: His-
togram of the residuals, Normal Q-Q Plot, Plot of the residuals against year.

25



Histogram of residua  Normal Q—-Q Plot

» < © 9 o ° ©
2 @ © q
2 @ 3 o 3 L La® 3
T < 5 © 2 o 1 e
(m) ] — 0] . o%@@
nd < nd N o@
© T [N B B I N [ I B
-4 0 4 -2 0 2 1970 2000
Residuals Normal quantile Year
Histogram of residua Normal Q-Q Plot
n O - n N 0"
> < < <
2 g < 2 o ok,
g ¥ 2 0] 2 TI8® g
x <] ¥ o ° R
© @ T T T (N S I e
-0.2 0.0 0.2 -2 0 2 1970 2000
Residuals Normal quantile Year

Figure 10: Assumption checking, Model b. The top figures correspond to
Model b and the bottom to the transformed, Model Ib. From the left: His-
togram of the residuals, Normal Q-Q Plot, Plot of the residuals against year.
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Figure 12: Box-Cox test, Model b.
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