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Abstract

This rapports aim is to investiage the European Central Banks
way of using mathematical statistical processes to affect the Euro-
pean economy. In order to accomplish this, we explain what methods
are being used, how the are working, and what purpose they serve the
European Central Bank. The models of concern are the Vector Au-
toregressive Model and other time series models. We use these models
to simulate forecasts, using data from two time series; these being un-
employment rate and house price index. We will further compare our
results with official European Central Bank statistics, where we will
see that the Vector Autoregressive Model could be a suitable method
when fine-tuned. Additionally we will see that the Vector Autoregres-
sive Model has good use for the European Central Bank when they are
conducting their macroeconomic scenarios, we will attempt to explain
why in this rapport.
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1 Introduction

In recent times, as a response to tough historical economic crisis, the European
Central Bank (ECB) has made an effort to enforce methodologies and
macroeconomic scenarios to bank stress tests. The stress tests are conducted so
banks can determine their ability to respond to financial crisis. The scenarios
constitute an extreme percentile of a damaging future macroeconomic outcome.

A key element of the stress test is the statistical simulation of the macroeconomic
scenarios, which are taking place during the stress test period, the standard
stress test period being three years. These tests could include the increase in
unemployment or a change upon the interest rates.

The European Systemic Risk Board (ESRB) has the task of overview and care of
the macroeconomic risks in the financial sector. Additionally the ESRB plays a
large part in the stress test preparation of the economic scenarios, which the
banks ultimately use in their stress test evaluation.

One factor that makes the stress test interesting to evaluate is the poor
performances across banks in Europe. One could argue that the stress test
should be sufficient and prepare banks for any type of economic crisis. But the
empirical evidence shows otherwise.

We will in this report examine how the ESRB are preparing the final result for
the macroeconomic scenarios used in the stress tests. We are going to study the
statistical models that are being used in the simulations, and explain how they
work in theory. Then simulate scenarios with these models and compare our
results with the official ECB scenarios.

We do this to get a better understanding of the way the ESRB are working, also
to investigate if the models that are being used serve their purpose to create
these macroeconomic scenarios.

Additionally, to restrict this report, we are focusing on the scenarios regarding
unemployment and house price index that are made to accommodate the
macroeconomic scenarios for the bank stress test in Sweden.



2 Definition of Terms/Models and Methodology

2.1 Methodology used by ECB

One should understand how the ECB are preparing the framework regarding the
stress test scenarios. By knowing this, the conclusion and the final judgment for
the results regarding the macroeconomic scenarios will seem just.

Every year the ECB is conducting a new stress test, the work begins with
examining what scenarios are appropriate and should be forecasted during the
stress test. The procedure of determining the scenarios contains a specific way of
thinking regarding risk. The assessments reflect a plausible outcome in the
economy that also warrants the probability of an impact on banks.

Naturally there are different types of risk during an economic crisis. So scenarios
are designed to match specific risk. When doing this, the ECB explains that
different models are used for different kind of scenarios, but they also conclude
that some risks could have an effect on another risk, “a joint shock calibration of
the two risks makes more economic sense”, see p. 15 in [13].

The way of producing the scenarios at first hand dose not seem to have any real
model or set procedure. Instead the model selection that is being used is
“tailored to the specific risk that the scenarios is supposed to reflect”, and “the ECB
uses an eclectic approach when selection models to produce scenarios”, see p. 15 in
[13]

But we have a few models that are being mentioned by the ECB to produce the
scenarios, one is the Stress test Elasticities tool (STEs Tool), another model being
used for determining risk and scenarios outside the EU is the NIGEM model, see
[14]. Further models that are being used are DSGE model, MSM model and also
various types of VAR (vector autoregression) models (GVAR or BVAR), see p. 18
in [13].

Unfortunately the STE Tool and NiGEM model are not official to the public, so we
would have to devote our attention on the latter mentioned models.

Since there are no clear or set rules for the for the final macroeconomic scenario
result, it is hard to pinpoint where the calculations made by the ECB could be
assumed too be deficient. Therefore it is a wise choice to focus on the scenario
results that the ECB present for the stress test and make sure that they seem
valid and that they have a statistical background that we could investigate, see
e.g. [13][14].



2.2 Further detailed Explanations of Models

The focus of this report is the macroeconomic scenarios within the EU, more
specific Sweden, which leaves us with the STE-tool and the VAR models that are
being used along with the ad-hoc way of working at the ECB.

We know that the STE tool is a “multi-country EU-wide shock simulation tool
based on impulse response functions of endogenous variables to pre-defined
exogenous shocks”, see [14].

The information about the STE tool let us make an assumption about what kind
of statistical analysis that is being used. We know that the use of historical data is
essential when making future assumptions. Further one must have the
knowledge of how this data is evolving over time and also how it is reacting to
exogenous shocks to be able to create a simulation tool like the STE. This
information gives us a hint of the use of time series analysis. To make this
assumption more understandable, we will further ahead in the report talk about
the theory of time series analysis.

However, time series analysis cannot be the only statistical tool that we should
use. Since we are aware of that multiple variables can intertwine and affect each
other, and that variables could have a joint effect on the macroeconomic
scenarios. We must take this in consideration and also capture these affects.

One-way of doing this is the use of vector autoregression model (VAR), as is
mentioned by the ECB. This is a tool that helps us understand the time series
dependence on each other, and help with creating good forecast predictions, this
is only mentioning a few things the VAR can help us with. Further in the report
we will talk about VAR theory, with the focus being on how the ECB might use
the VAR, how the procedure might look like, and the most likely way that the
final ECB results are put together.



3 Methods and Theory

3.1 Methods

The use of univariate time series and multivariate vector autoregression will be
the method of choice when conduction our work. Our reason to include
univariate time series analysis is to get a better understanding of the time series
process; also to have a second forecast result to compare with the vector
autoregression forecast.

The two statistical analysis tools will help us produce our own scenarios, and
compare results with the ECB final macroeconomic scenario. We will gather
information from historical time series regarding unemployment rates and
house prices index. Additionally we like to point out that making prefect forecast
prediction with the limits of this report might to not be the easiest task, but since
we are researching ECBs way of conducting their scenarios, and how the
statistical models works, the end scenario result will serve its purpose.

With the support of the program R, we are going to create forecasts and produce
scenarios from the times series models and the VAR models. For reference we

are mainly using three packages in R, those being “tseries”, “vars” and “forecast”,
these will suffice when conduction our work in R.

3.2 Theory

3.2.1 Time Series Analysis

With the help of the book “Time Series Analysis and Its Applications by Robert H.
Shumway & David S. Stoffer (2006)”, we can start to understand the process of
time series and also explain and go through how we could use time series
analysis for our purpose.

Time series analysis is the analysis of data that has been observed in different
points in time. One could use this analysis tool to investigate trends over time or
make forecast for the future. We can imagine that there is a clear correlation
within the sampling of adjacent points of the same subject over time. This would
mean that other conventional statistical tools would be restricted since they are
dependent on the assumption of independent and identical distributed (i.i.d)
observations, see p. 1 in [2].

When using time series analysis there are two approaches that one should be
familiar with before analyzing the obtained data. Those approaches are Time-
Domain and Frequency-Domain.

Time Domain is focused on analyzing data over a time period. This could be
different macroeconomic data of different kinds over a time period. Or
observations made on different occasions, whether it be the climate readings or



the stock market. While frequency domain analysis refers to signals or
mathematical functions based on frequency rather then time, see [1].

Which in our case, with the macroeconomic data we obtained over a time period,
where the data is not connected to any apparent mathematical function or any
type of frequency signal. Leads us to use the time series analysis with time
domain approach.

3.2.1.1 Time Domain Approach

The time domain approach focuses on modeling future values of a time series as
a parametric function of the current and past values. This approach is generally
motivated by the presumption that correlation between adjacent points in time
is best explained in terms of a dependence of the current value on past values,
see p. 2 in [2]. Thus the results of the time domain approach can be used as a
forecasting tool.

The approach with time domain is to begin with a linear regression of the
present value of a time series on its own past value, and on the past values of
other series, see p. 2 in [2]. With the linear regression we are able to estimate
parameters with maximum likelihood methods and investigate the significance
for them in the model.

Further when one realizes and understands how essential and important
correlation is as a feature to time series analysis. It will lead us to make further
analysis of our data with the aid of the auto-correlation function.

3.2.1.2 Auto-Correlation function

The auto-correlation function helps us measure the linear predictability of the
time series. The auto-correlation function is defined as

y(s,t)

VY(s9)y (L t)

Where st are particular time values in the time series, and where y(s,t) =
Yy (s, t) = E[(ys — us) (¢ — uy)] is the covariance, with u, = E[Y;] and u; = E[Y;].

p(s,t) =

This is a tool for clarifying relations that may occur within and between time
series at various lags, see p. 84 in [2], in other words, the time period between
two observations.

If we can predict y, perfectly from y; through a linear relationship, y;, = 5, +
p1ys. Then the correlation will be 1 if f; > 0, i.e. showing a direct increasing
linear relationship. And -1 if §; < 0, i.e. showing a decreasing linear relationship.

Hence with the correlation, giving us an estimate of how strong the linear
relationship is, we have a rough estimate of the ability to forecast the series at
time t from the value at time s, see p. 84 in [2]. Since we are trying to simulate a



good forecast on unemployment rates and house price index to measure against
the ECB stress test scenarios, the ACF is an important piece in our modeling.

Further analysis of the time series data is to make sure that all patterns in the
time series are accounted for. The next step in modeling the series is estimation
of the number of terms in the model that describes the dependency among
successive observations best (autoregressive terms). Also looking at the number
of terms in the model that describes the dependency among successive
observations best (moving average terms), see p. 2 and 4 in [3].

To figure out the number of terms, one could use the moving average model and
the autoregressive model, these is the two models will be helpful for this this
purpose.

3.3 Autoregressive Model

Autoregressive models are based on the idea that the current value of the series
Yt can be explained as a function of p past values, y;_1, Y¢-2, ..., Yt—p, Where p
determines the number of lags into the past needed to forecast the current value.

The definition of an autoregressive model of order p, or AR (p), has the following
form

Ve =CHP1yea + GoYe o+ F Ppyip T & 0T
yt =cC + le=1¢lyt—l + gtJ

where y, is stationary, meaning that the mean of the function is constant and
does not depend on time, and that the covariance function y,, (s, t) depends on s
and t only through their difference |[s - t|. Further c is a constant, ¢, ..., ¢, (¢, #
0) are the parameters of the model and &; is the error term, also called the white

noise of the model, we assume that ¢, has a mean of zero and variance o2, see p.
85 in [2] and see p. 24 in [2].

Under the assumption of a known order of p we have a possibility of estimating
the parameters in the model, see p. 56 in [7].

3.3.1 Estimation of the Autoregressive Processes

If we know the distribution of the white noise that generates the autoregressive
p process, AR (p) process, the parameters can be estimated using the maximum
likelihood (ML) method. We are going to restrict this report to ML methods,
since this is what we are using as an estimator method in our analysis when
using our programing tool in R.

We would also like to point out that the ML of an autoregressive process might
be a bit dense and complex, so to get an idea of how the ML method is working
we are going to focus on an AR (1) process. We use the equation

Ye=c+P(Ve-1) T &,



where we replace c = u(1 —¢) andgety, = u+ ¢(ye1 — 1) + &,
here |¢| < 1 and & ~ iid N(0,0?). Given data y;, y,, ..., ¥, we seek the likelihood
L(w, ¢, 0-82) = fu,n',ag (V1 Y2 s Vn)-

Where f, . 52(*) is the density for y,m, 02, and for future reference will be
dropped to f (), to ease the notation.

In the case of AR(1), we may write the likelihood as

L, ¢,08) = FOIf02ly1) o f Dl yn—1),

Because Y, |yn—1 ~ N(tt + ¢ (ye—1 — 1), 02) we have
fOnlyn-1) = fele — 1) — ¢ 1 — W1,

where f.(*) is the density of ¢, that is, the normal density with mean zero and
variance ¢2. We may write the likelihood as

L(w ¢, 07) = fFO)Mzafel (e — 1) — (e-1 — W].
To find f (y;), we can use the representation
yi=u+EZ,0

to see that y; is normal, with the mean u and variance 62/(1 — ¢?2). Finally for
the AR(1), the likelihood is

S, ¢)l

Lu,07) = (2nod)2(1 - ¢z exp l‘ 202

where typically S(u, ¢) is called the unconditional sum of squares,

Swe) =1 =) — w2 + i [(ve — 1) — de-1 — W%,
seep.126in [2].

To maximize the likelihood model above would be hard and require iterative or
numerical procedures. An alternative, and in the case of AR models, we have the
advantage to conditioning on initial values, and set linear models. That is we can
drop the term in the likelihood that causes the nonlinearity. Conditioning on y;,
the first observation, we can maximize the likelihood on the first observation.
Regarding y; as deterministic and setting f(y;) = 1, the conditional likelihood
becomes

L(w, &, 02|y1) = M=y fel (e — 1) = ey — )]
= (2mo2)-(D/2 exp [_ chl:;b)

where the conditional sum of squares is
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Sc(u, @) = [e — 1) — deor — W]
,seep.126in [2] and [16]

Taking the partial derivative of the log of the conditional likelihood function with
respect to o2 and setting the result equal to zero, we see that for any given values
of u and ¢ in the parameter space, 62 = Sc(ﬁ, gB)/(n — 1) maximizes the
likelihood. Thus the conditional maximum likelihood estimate of 62 is

62 =S.(n.¢)/(n—1),

so /1 and ¢ are the values that minimize the conditional sum of squares, S, (ﬁ, (]3)
Letting @ = u(1 — ¢), the conditional sum of squares can be written as

Se(u, @) = Zis[ye — a + ¢(ye-1)]>

From a least square estimation, we have @ = y,) — ¢3)7(1), where yy = (n —
D™ YL ye, and Yoy = (n— 1) X5 ., and the conditional estimates are
then
= Vo) = bV
1-¢
Yi=2(Ve — }_’(2))(}’t—1 - 3_’(1))
2ie2(Veo1 — V(w)?

¢ =

)

see p.127in [2].

We are now going to restrict the report and leave the MLE of parameters of the
data in its entirety to the program R.

With our now improved understanding for the autoregressive process. We will
apply this in our analysis, and find a good model for our data to be able to create
forecasts. A statistical model that will help us with this is the Autoregressive-
Integrated-Moving-Average model (ARIMA-model).

This model combines the autoregressive model and the moving average model.
We are not going to further investigate the moving average model, since our
main focus is going to be on multivariate autoregression technique further in the
report.

3.4 Autoregressive-Integrated-Moving-Average model (ARIMA)

There are a few components to the ARIMA (p, d, q) model that we should be
aware of. First we have the auto-regressive element, p, which shows the number
of terms in the model that describes the dependency among successive
observations. Then we have the differencing element, d, it stands for how many
times the data has been differenced, that is computing the differences between

11



consecutive observations. Lastly the moving average element, g, it describes the
persistence of a random shock from one observation to the next, see p. 1 in [3].

The middle element, d, is investigated before p and gq. The goal is to determine if
the process is stationary and, if not, to make it stationary before determining the
values of p and q. We do this by calculating the differences between pairs of
observations at some lag. If d > 0, then we would have to difference the data to
make it stationary, and remove any seasonality, that is removing recurring
patterns in data. An example being if d = 1, we would have a differencing process
of ¢, =y, — y,_1, where ¢, is the first differenced series of y;, see [17]. Now if d = 0,
it would mean that the data is already stationary and no number of differencing
is needed. Recall that a stationary process has a constant mean and variance over
the time period, see p. 8 in [3].

The autoregressive component p represents the memory of the process for
preceding observations. If the value of p = 0, there is no relationship between the
closest observations. If the value is 1 there is a relationship and a correlation at
the time periods between two following observations (lag 1), likewise p = 2
indicates a lag of 2, see p. 12 in [3].

Lastly the moving average component g represents the memory of the process
for preceding random shocks. When q = 0, there are no moving average
components. And similar to the autoregressive competent when the value is 1
there is a relationship between the current score and the random shock and a
correlation in lag 1, and likewise g = 2 also has a relationship and correlation on
lag 2, see p. 12 in [3].

To define the ARIMA model we can start by defining the ARMA part. A time
series is an ARMA (p, q) if it is stationary and

Ve =P1Veat o+ ¢pyt—p +wet 0w g+t ngt—q'

with ¢, # 0,6, # 0 and 6 > 0. Where w, is assumed to be white noise, and ¢, ..., ¢,
are the parameters of the autoregressive components and where 6,, ..., 6, are the
parameters of the moving average component. So if the model would only
contain one order of autoregressive component and one component from the
moving average for example, we would have an ARMA (1,1) model, see p. 93 in

[2].

Further the integrated ARMA model, or ARIMA model, is a broadening of the
ARMA model to include differencing. This is needed, as we previously discussed,
when the time series is not stationary and needs to be differenced. An example of
a notation of an ARIMA model if a time series where to be differenced two times,
with a model containing one order of autoregressive component and one
component from the moving average, we would have an ARIMA (1,2,1), see p.
141 in [2].

One of the first steps to estimate the parameters of the ARIMA with MLE would
be to difference the data, thus making it stationary. We have seen that the MLE is

12



very dense, and that having stationary data is a benefit when maximizing the
likelihood. It is difficult to write the likelihood as an explicit function of the
parameters in an ARIMA model, instead, it could be advantageous to write the
likelihood in terms of one-step prediction errors, x, — xf~1, see p. 128 in [2].
Luckily R will handle the MLE for the ARIMA, so we will not go into details, as
this matter is very complex.

Furthermore, if our time series would show signs of seasonality in the data, that
is, signs of recurring events. We would need to handle this in a form of a
broadened ARIMA model, for example the seasonal autoregressive intergraded
moving average model, the SARIMA model.

3.4.1 Seasonal-ARIMA models (SARIMA)

If our time series show sings of seasonal data, the best-fitted model would be a
seasonal autoregressive integrated moving average model. This is to take
account for seasonal and non-stationary behavior in our data. The dependence
on the past could occur when we have underlying seasonal lag S, i.e. a recurring
seasonal trend, this might be a quarterly or a yearly trend for example, see p. 157
in [2].

The SARIMA model adds seasonal autoregressive and seasonal moving average
components to the ARIMA model. A Seasonal ARMA model would be denoted as;
ARMA (p, q)(P, Q)(S), and is given by

Ve =b1Yeoa o Gpyep twe O W+ F W g + Py s o+ Py
+ ®1Wt_s + R + G)th_S )

where ¢, # 0,6, #0,|0,| <1,|®,| <1 and o5 . The notation @, is the seasonal
autoregressive component and &, is the seasonal moving average component
with seasonal period of s.

Identical to the ARMA model, the SARMA model can be broadened to the
integrated SARMA model, SARIMA model, i.e. including differencing of the time
series if needed, see p. 155 in [2].

As an example we denote an ARIMA (p, d, q)(P, D, Q)(S), which would mean that
we would have an SARIMA model. Where the ordinary autoregression,
integrated and moving average components are represented by p, d and gq.
Additionally, the seasonal- autoregression, integrated and moving average
components, are represented by P, D and Q. Lastly S, which is representing the
seasonal fluctuations, see p. 159 in [2].

Additionally drift could occur and can be added to the SARIMA model, this drift
appears when the data is non-stationary and is differenced, it is the mean that is
set for the specific produced SARIMA model, see p. 127 in [2].

When we want to select the appropriate model for our data, we will use the help

of R. The process would be to first find the difference operators d, then continue
and produce a roughly stationary series, set the autoregressive terms p, the
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moving average terms g, and if necessary a seasonal ARIMA model, see p. 159 in

[2].

Estimation of the parameters within the SARIMA is hard to do directly. If we take
a look at the previously denoted Seasonal ARMA model, it contains two
expressions with each of their own lag. This would have to be telescoped out
before starting any ML estimation, meaning we would have to expand the
expressions to be able to handle them, see [19]. When this is done, we face the
same difficulties as we do with the ARIMA model as we motioned in section 3.4.
We will again leave further theory of this complex matter for another paper.

The ARIMA and SARIMA analysis will be preformed on our time series data with
the help of the program R. This will help us to fit the best model for the data over
the investigated time period. Also we will leave it to R for the calculation of the
Maximum Likelihood Estimation (MLE) of parameters in the fitted model.

Once this is done we will make sure that the model is good by focusing on the
residuals of the model.

3.4.2 ARIMA/SARIMA Modell Checking

To investigate how well the fit is of the produced model, we will look at different
plots to look for general assumptions regarding regression. We are going to
investigate that our residuals follow the normality assumption, which would be
normally distributed residuals in the model. Also we will investigate that our
residuals are identical with mean zero and equal variance, i.e. that the residual
are homoscedastic, oppose to not following those assumptions being
heteroscedastic residuals. And lastly that we previously discussed, have a look at
the ACF to investigate the correlation of residuals between lags, see p. 77 in [9].

Remember that our aim is to investigate how good we are able to forecast future
values from the time series we have with the univariate time series method, so
we can later expand to multivariate time series modeling and forecasting.

The above theories will help us find a model that best fit our data and that will
allow us to make a fairly good forecast prediction. The forecast will be done by
the aid of the program R.

3.5 Time Series Forecasting

When we are doing the forecasts, we are grounding the future on the historical
data and on univariate time series. For the sole purpose of predicting the future
this seems to be a good way. But to analyze if our forecasts are good predictions,
before we move on to multivariate time series, we can consider looking at the
predictions errors for the produced forecast.

There are a few way of analyzing the prediction errors, but we choose to look at

the Mean Absolute Error (MAE). The MAE could be explained as a measure of the
average scale of the errors in the forecast, since it is an absolute value it does not
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consider the direction of the error. It is given by MAE = l, where f; is the

prediction and y; true value. Also we want to note that the value of the MAE is
not normalized, i.e. the size depends on the scale of data. Further the MAE is easy
to understand and compute, but it can be a chore to understand the relative size
of the error with MAE. We would have to understand what kind of scales we
have in the data we are producing when forecasting, see p. 87 in [7].

Now since one of our ambitions is to compare our forecast with the ECB
produced scenarios, the univariate time series forecast will not be sufficient. The
methodology given to us by the ECB tells us that we have to take into account
that different macroeconomic events can affect one another. For example when
there is a crisis in employment the values of house prices could be affected.

To investigate multiple time series simultaneously, we have a look for linear
independences among the different time series; to do this we are going to use a
multivariate technique. A popular technique is the vector autoregressive model
(VAR model), remember that VAR is used and mentioned in the ECB methodology.

3.6 Vector Autoregressive Model

VAR models are used for multivariate time series. It is essentially a system of
equations where the dependent variable is regressed on lagged observations of
all the variables in the procedure. The structure of each variable is a linear
function of the time period of past observations from the individual variable, also
called lags, that also includes past lags of the other variables concerning the
individual variable in the VAR analysis, see [4].

Some benefits of this multivariate method, comparing to the univariate method,
is that we can forecast on a collection of relatable variables, testing whether one
variable if useful to forecast another and see the proportion of how much one
variables variance is attributed with another variable, this is only to name a few
benefits, see [18].

The VAR can be explained as an n-equation, n-variable model in which each
variable is in turn explained by its own lagged values, plus current and past
values of the remaining n-1 variable, see [5]. The VAR model resembles the
autoregressive model, the main difference is that we are dealing with multiple
regressions and gathering them into vectors.

To make a clear definition of the VAR model we can have a look at how a VAR
model is built, letY; = (Y14, V2t --» Yne)' denote an (n X 1) vector of time series
variables. Where y,,; is the dependent variable and “n” stands for which variable
it represents and “t” stands for the observation in time “t”. The p-lag VAR (p) has
the form

Yt =cC + Hlyt—l + HZYt—Z + ot + Hth_p + Et ,t = 1, ...,T

where I1; are (n X n) coefficient matrixes and &; is the error terms for the vector
process with time invariant covariance matrix X,
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This error term should also satisfy E(g;) = 0, that every error term should have
the mean 0 and E(g,&';) = £, and 0 otherwise. That is, no correlation across
time. Thus, a VAR is a system in which each variable is expressed as a function of
own lags as well as lags of each of the other variables; see [5][6].

Thus, in a VAR of order p each component of the vector Y depends linearly on its
own lagged values up to p periods as well as on the lagged values of all other
variables up to order p. With this concept, the VAR has a process that allows the
analyst to identify and interpret economic shocks and to assess their influence
on macroeconomic variables, see p. 128 in [7]. Which is what we are looking to
do, as it is this that we have detected that the ECBs is trying to achieve.

When creating the VAR from our time series, we need to have a process of
identifying the best model, with the appropriate lags and best estimation of
parameters to the VAR model. We will do this with the aid of R programming,
where it will determine the amount of lags, and with that the amount of
parameters in the model to best fit our time series data.

The way R handles the data from the time series to fit a VAR model is through a
process that resembles stepwise selection, which means that R will try multiple
was of fitting the data, i.e. trying different lags to get the optimal fit, and
cancelling out the models with least significances. It will also help us estimate the
parameters in the model that is produced. That will be conducted in a similar
way of estimation parameters in the autoregressive process.

3.6.1 Estimation of parameters in the VAR process
We have covered the simple AR(1) process of estimating parameters, we are
now going to show in a more simplistic approach, how the estimation is being
done in the VAR(p) case.
First we are going to simplify the pervious VAR (p) notation in a compact form
Y, =B'Z;+¢&,t=1,...,T

& ~i.i.d N(0,Q)
where B’ = [co, I3, Iy, ..., ), Z; = [1,V{_1,V{_2, ..., Vi_x] and the initial values
YO =[y4, v 1, .,V k1] are given, also we have the notation Q for E(e,¢',), the
covariance matrix of error terms. We need to derive the equations for estimating

B and Q, which can be done by finding expressions for B and Q for which the
first order derivatives of the likelihood function are equal to zero.
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Consider the log likelihood function
T
TN T 1
InL(B, ;) = - —-In(2m) - 5 Inl@)| - EZ(yt _B'Z)Q'(y, — B'Z,),
t=1

then calculate dInL /0B = 0, which gives

T

T
> nZi=8) 1z,
t=1

t=1

so the MLE of B is:

T T
B =) wZD( ZI)™
t=1 t=1

Next we calculate dInL/9Q = 0, which gives us the MLE of Q

T
Q=T Z(Yt ~-B'Z)(y. —B'Z)™

t=1
,see p.561in [9].

We restrict ourselves and will leave the actual calculation on the data and the ML
estimations to R. The next step will be to understand how good of a model we are
producing with our data.

3.6.2 Vector Autoregression Model Checking

Once a VAR (p) model has been estimated, we will be able to do further analysis.
The multivariate normality assumption underlying the VAR model can be
checked against the data using the residuals, see p. 66 in [9]. We as researchers
should be interested in diagnostic tests, such as testing for the absence of
autocorrelation, heteroscedasticity or non-normality in the error process, see

8].

The VAR model describes the variation in ¥, as a function of lagged values of the
process, but not of current values. That is, that all information about current
effects in the data is contained in the residual covariance matrix X, see p. 66 in

[9].

3.6.2.1 Test for Residual autocorrelation

The VAR methodology is based on the idea of decomposing the variation in the
data into a systematic part describing all the dynamics and an unsystematic

random part. If the test suggests that there are significant autocorrelations left in
the model, our forecasting results will deviate systematically from an actual
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realization. If the chi-squared-test and F-tests derived for the VAR model, are
based on the assumption of independent errors. If this would not be satisfied, the
distribution of the tests will deviate from chi-squared and F in unknown ways.

Further the properties of the estimators may be sensitive to significant
autocorrelations. In particular the ordinary least square (OLS) estimator is
inconsistent when there are residual autocorrelations, see p. 74 in [9].

3.6.2.2 Test for Residual heteroscedasticity

Heteroscedasticity is often a concern for models based on data monitored with
monthly or higher frequency, heteroscedastic residuals can indicate structural
changes, see [10].

The presence of heteroscedasticity affects a number of standard inference
procedures, such that the application of these methods may lead to conclusions
that are not in line with the true underlying dynamics. In the time series context
there is literature that makes some suggestions for valid inference with
heteroscedasticity, see [11]. Meaning that much of the analysis can be done even
if there is heteroscedasticity. That is because the VAR model represents the
mean of the variables, which is often of primary interest.

Still, it may be useful to check for heteroscedasticity to better understand the
properties of the underlying data, see [10]. We will do this in the results, by
looking at residuals plots, looking for patterns.

3.6.2.3 Normality Test

Non-normality tests are often used for model checking, although normality is not
a necessary condition for the validity of many of the statistical procedures
related to VAR models. However, non-normality of the residuals may indicate
other model deficiencies such as non-linearity or structural change. Multivariate
normality tests are often applied to the residual vector of the VAR model, where,
as a side note, the univariate versions are used to check normality of the errors
of the individual equations, see [10]. We will use graphic methods to determine
normality of the residuals.

Further the residual autocorrelation tests and the heteroscedasticity tests are
derived under the assumption of normally distributed errors and the normality
tests are derived under assumption of independent and homoscedastic errors.

This means that we do not know whether all the tests which already passed the
residual examination can be trusted or not, and all residual examination tests in
that case would need to be recalculated after the model has been re-specified,
see p. 77 in [9]. This is nothing we will focus on, but it is worth mentioning.

With the aid of R, we will produce all the graphs and plots needed to investigate
trends or irregularities on the residuals of the VAR model.
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3.6.3 Vector Autoregressive Model Forecasting

Learning from the previous theory that we discussed, it indicates that VAR
models are natural tools for forecasting, their setup as we gathered, is such that
current values of a set of variables are partly explained by past values of the
variables involved, see [10].

VAR model are said to often provide superior forecasts comparing to univariate
time series models, since the forecasts of VAR models are quite flexible, and that
they can be adjusted to one or multiple conditions regarding the potential future
paths of specified variables in the model, see [6].

But one should be aware of one strain with VAR forecasting, that is, when we
have big number of multiple dependent variables in a model, we will then get
more parameters to estimate. An example might be if we would have 4 variables,
and a lag of 4; this would mean that every equation would have 16 coefficients
that would need to be estimated, making a total of 64 coefficients.

The more coefficients to be estimated the larger the chance of estimation error
entering the forecast, i.e. it would be more likely getting a rather unreliable
future scenario result. In practice it is usual to keep the number of variable small,
and only include the ones that are correlated to each other so they are useful in
the forecast, see [18]. Since we are only using two time series in the forecast to
see if they are dependent on each other. We have a smaller chance of having big
estimation errors.

Further we will not focus on the forecasting errors like we discussed with the
univariate time series models. Instead we will focus on how much the variables
actually contribute to one another in the forecast. We will do this with Variance
Decomposition, which allows us to investigate and decompose the forecast error
variance of a variable that is generated by the other variable in the system, see p.
146 in [7]. We will limit the rapport and not go into detail about how the actual
calculations are made. We will rely on the help of R to make all the correct
variance decomposition computations.

When preparing for the construction of our forecast. We keep in mind that when
the ECB are producing their results for the stress test, they are forecasting 3
years in to the near future. We can argue that this is a long horizon forecast, but
we have one way of conducting forecasts with this in mind, that is the chain rule
of forecasting.

3.6.3.1 Chain rule of forecasting

When we are looking for longer future scenarios intervals, that we want to be
able to compare with the ECB scenarios. The forecast loose accuracy the further
we go into the future. Since we in common with the ECB have this problem we
make sure that we understand how the forecasting works when we have fitted a
model to our data. The question we have is how the expected value, or mean, in
the future is produced for ¥, 4. For our stochastic process ¥; and the VAR model
with parameters I1;, we can produce a one step ahead forecast
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Et(yt+1) = z:l?l=1 ;Y 41—

If we would be interested in the t+2 forecast, this method would not be used
since Y., is unknown. The chain of rule forecast allows E(Y,,;) to be
substituted for ¥, 4. So the t+2 forecast would be

E:(Yiyz) =ME (Yigo) + g Y eyp
Now we can derive the t+k forecast model
E;(Yeyr) =Zig IGE Yy k=1
where
E;(Ye—) =Y y,i20
, see [4][12].
To get a result to compare with the macroeconomic scenarios produced by the

ECB. We will be using programing in R with this approach, and R will handle the
analysis and calculations when producing our forecasts.

4 Data

4.1 Description of Data

The macroeconomic scenarios produced by the ECB constitute an extreme
percentile of a damaging macroeconomic scenario. Which also reflect the current
economy and the near future. If we were to gather data from 50 years, we are
going to catch trends that might not fully reflect our current macroeconomic
status.

That is why we are going to gather historical data from the year 2004 up to 2014,
as these will signify our current economic trends. To make sure we get enough of
observations, we will be using quarterly data for our time series analysis. Which
will be 44 observations within the different time series. Further the structure of

the data is simple; each quarter gives us information about the percentage status
of the current unemployment and change in house price index.

The data is gathered from the institution Statistics Sweden, SCB.

5 Results

5.1 Overview

Since we have talked about univariate and multivariate analysis, we are going to
use our knowledge and conduct analysis on our data using both methods. We are
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going to fit models, look at the parameters significance in these models and test
the residuals. This will end our analysis regarding the produced model; the
models, created via stepwise selection, with the aid of R programing, will suffice
and serve our aim regarding this paper. Since R is testing multiple different
models and choosing the best one, we will limit the report here, and will not
compare the models that might fit the data manually, just go through the main
model that R will suggest.

Our next step will be to create the forecasts, look at possible errors in the time
series model or error variances for the VAR model, and compare the two forecast
results of each model. This is to see what kind of differences we might find in the
end result. Our focus is going to be on the multivariate analysis, the VAR forecast,
since this model resembles the needs of the ECB. And finally we will compare our
end result with the ECBs constructed scenarios.

5.2 Time series

First lets take a look at how our time series look when plotting them over a time
period.

Unemployment

Unemployment Rate (%)
7
\

2004 2006 2008 2010 2012 2014

Year

HousePricelndex

HousePricelndex
0
|

T T T T T T
2004 2006 2008 2010 2012 2014

Year

Figure 1. Time series plots over historical data of unemployment and house price index

By looking at figure 1 we are trying to distinguish what kind of assumptions can
be made about our data. We can see that the time series shows some kind of
trend near 2009, also some kind of seasonality cycle in half-year intervals. We
cannot see that we have a constant mean and also the variation over the time
periods is not constant. This gives us a hint of having non-stationary time series.
If this would be the case, we would need to difference our data to make in
stationary.

To make further assumption on the data we are going to look at the ACF plots,
figure 2, here we might also see if our previous observation can be validated.

21



Unemployment

ACF
00 04 08

\‘\ L1

i
[

i

i

!

\

!

)

!
—

|

|

'

|

!

|

|

'

|

!

|

|

'

|

!

|

|

'

|

!

|

|

'

|

!

|

|

'

|

!

|

|

'

|

!
—

:

4
I
4

Number of Lags

HousePricelndex

ACF
06 1.0
I I '
T
|
N
|
—
[

-02 02
1

Number of Lags

Figure 2. Plot of the autocorrelation function on unemployment and house price index.

When observing figure 2, we are looking at the lags over the different lag
periods, if they cross the dotted line we can determine if they are significant. We
are also looking for any type of periodic trend in the lags. That might tell us that
we have some kind of seasonality in our data. Additionally we are looking at how
fast the ACF will drop to zero correlation. If we can see that the drop is relatively
fast, we might assume that the data is stationary. But if the decrease is slow we
should assume a non-stationary data.

By examining figure 2, and focusing on the ACF for unemployment, we cannot
find trends in our data, i.e. the spikes are random. Also we observe significant lag
between 2 and 3. Which might hint of non-stationary data.

Investigating figure 2 with focus on the house price index, we can see a trend
between the lags. Also there is a resemblance with the ACF of unemployment
regarding the pace of the lags correlation dropping to zero. This tells us that we
might have seasonal data of the house price index and that we are dealing with
non-stationary data.

As a result of this, it is clear that we should be differencing our data to remove
any seasonality and more importantly make our data stationary so the model fit
will be good, as we discussed in section 3.4.

5.2.1 ARIMA-model

The use of R and the function auto.arima, this will help us pick the best model for
our data. It uses a stepwise selection method, which will try all different
combinations of ARIMA models and ultimately give us the one model that fits our
data best. It will difference the data if needed, also handle seasonality, and
choose the proper components of auto-regressive, integrated- and moving
average elements, to best fit our data. It will also estimate the parameters using
MLE. When the model is fitted, we will go through what R produced, and test that
they fulfill all the requirements we have on it.
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5.2.1.1 Fitting data to ARIMA

The produced models, and the best fit for our data according to R, are for the
time series of unemployment, an ARIMA (2,0,0)(2,1,1,)(4) with drift. And for the
time series regarding house price index, the result is an ARIMA (1,0,0)(2,1,0,)(4)
with drift.

It seems like a standard ARIMA model was not enough to fit the data from our
time series. Instead R produced a Seasonal-ARIMA model with drift.

5.2.1.2 SARIMA Model for House Price Index

We would like to go through the models and understand which components
where set to the data, figure 3 show us the model and the estimates of the
coefficients with their respective standard errors.

Series: HousePriceIndex
ARIMA(1,0,0)(2,1,0)[4] with drift

Coefficients:
arl sarl sar2 drift
0.6352 -0.6545 -0.3531 -0.0079
s.e. 0.1363 0.1531 ©0.1511 0.0812

Figure 3. House Price Index SARIMA model with parameters estimates and standard errors.

We see that from (1,0,0) that we have 1 auto-regressive-, 0 differenced and 0
moving average components for the non-seasonal part of the model. The
seasonal part of the model (2,1,0)(4), tells us that model has 2 seasonal AR
components, 1 seasonal differential component and 0 seasonal MA component.
The (4) stands for the numbers of periods we have per season, and this would be
quarterly periods in our case. Since our data is based on quarterly observations.
Also we can see that drift was added to our SARIMA model.

Now we want to control that the coefficients are significant for the model, if we
look at figure 4, we see the corresponding p-values. And we can tell that the p-
values are very low, indicating significance to all parameters in the model.

arl sarl sar2 drift
3.144884e-06 1.910784e-05 1.946970e-02 9.222935e-01

Figure 4. P-values of the parameters in the house price index SARIMA model.

5.2.1.3 SARIMA Model for Unemployment

Proceeding to investigate the model of unemployment, we notice in figure 5 that
we have a few more parameters to our model.
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Series: Unemployment
ARIMA(2,0,0)(2,1,1)[4] with drift

Coefficients:
arl

1.1450

s.e. 0.1693

ar2 sarl sar2

-0.2988 -0.1185 -0.4592
0.1641 0.2014 0.1644
Figure 5. Unemployment SARIMA model with parameters estimates and standard errors.

smal

drift

-0.7012 0.0297
0.2188 0.0249

The SARIMA model for unemployment, we see from (2,0,0) that we have 2 auto-
regressive-, 0 differenced and 0 moving average components for the non-
seasonal part of the model. The seasonal part (2,1,1)(4), tells us that model has 2
seasonal AR components, 1 seasonal differential component and 1 seasonal MA
component. We have the same periods of (4) per season, and this is as we
mentioned because we have quarterly periods. Also in this model we can see that
drift was added to our SARIMA model.

We want to make the same control on the coefficients as we did to the model for
house price index. Looking at figure 6, we again see very low p-values to the
corresponding coefficients that indicate significance to our model.

arl

sarl sar2

5.2.1.4 Testing the SARIMA models residuals

smal
1.358402e-11 6.861213e-02 5.563110e-01 5.228291e-03 1.351778e-03 2.335609%e-01

Figure 6. P-values of the parameters in the unemployment SARIMA model.

The next step to investigate if R has done a good job of fitting these models will

be to look for correlation, heteroscedasticity and normality in the residuals.

Residuals

Fitted Values Vs Residuals | House Price Index

Fitted values

Figure 7. Scatterplot to investigate heteroscedasticity of residuals of SARIMA model with House

Price Index
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Figure 8. Scatterplot to investigate heteroscedasticity of residuals of SARIMA model with

ACF

ACF

1.0

0.6

-0.2 0.2

1.0

0.6

-0.2 0.2

Residuals

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.8

Fitted Values Vs Residuals | Unemployment

(e} o
o
o
o o
o
o
° 5
oo o °
o o 0 ©
o
¢} o ¢}
o
o
o
o o
o o
o
o
o
o
o
T T T T
6 7 8 9

Fitted values

unemployment

ACF for Unemployment

ACF for House Price Index

Lag

Figure 9. ACF of residuals from the SARIMA models of unemployment and house price index
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Unemployment QQ-Plot
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Figure 10. QQ-plots of residuals from the SARIMA models of unemployment and house price
index

With the help of figure 7-10 we can make sure that the residuals of the created
models are satisfying our assumptions, i.e. linearity, constant variance
(homoscedasticity) and lack of auto-correlation.

From figure 7 and figure 8, we see that the cluster between the values has
approximately the same width all over. We cannot see that the cluster of values
has any tendency of a larger width when the values are getting larger. We choose
to interpret this as a sign of homoscedasticity.

From figure 9 we can tell that the auto-correlation between our residuals are
good. And from figure 10 we can see that our residuals are showing normally
distributed pattern. Since all checks on residuals of the models satisfy our
assumptions, we can go ahead and create future forecast on our data.

5.2.2 Forecast with the produced models

When creating the forecast, we need to be specific to what scenario we need to
produce. In our case we want to be able to compare scenarios to the ECB, looking
at section 4.1, we mentioned that the ECB are producing their scenarios for a
future outcome in the worst-case scenario, i.e. a damaging macroeconomic
scenarios that constitute an extreme percentile.
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When R helps us complete the forecast, it also creates prediction interval (P.I) of
the expected value for the future, R uses the theoretical variance of the forecast
distribution, created from the main model, and also two prediction levels of 80%
and 95%, see p. 119 in [2].

We can see this in figure 11, where the external gray area represents a P.I of
80%, and the inner area a 95% P.l. Since we want the most “extreme” scenario,
we will have to use the external results. As these represent the most extremt
outcome in the future in our case. In table 1, we can see the 80 % P.I of the
expected unemployment rate and the expected house price index for the stress
test years.

Now to investigate what kind of error we might have, we take a look at the MAE
that R has calculated for both forecast, we have a value of 1.043862 for the house
price index forecast. And a MAE value of the unemployment rate forecast is
0.2823115. Meaning we have an approximal difference between forecast and
observed house price index of 1.04, and for the observed unemployment rate, we
have approximately difference of 0.28 between the observed value and the
forecast. These errors are fairly low, and also quite good for the estimated
forecast.

Forecast of House Price Index

QW
T T T T T T

T T
2004 2006 2008 2010 2012 2014 2016 2018

1

0 2 4 6
Il

Index Value (%)

Year

Forecast of Unemployment
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6 7 8 9 10
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Figure 11. Future forecast of the unemployment and house price index SARIMA models

Year-> 2015 2016 2017
Expected House o o 0
Price Index (%) -1,48 % -1,71% -1,92%

Expected
Unemployment 8,89 % 9,09 % 9,08 %
Rate (%)

Table 1. Expected values at a 90% P.I of the future forecast of the unemployment- and house
price index SARIMA models
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5.3 Vector autoregression

Now that we have produced our scenarios with the univariate technique, we are
proceeding with the use of the multivariate analysis of our data. We are again
using aid from R to help us get the best-fitted VAR model to our data.

5.3.1 Fitting the data to the VAR model

Estimation of parameters and picking the best model for us is something R helps
us with. The most important part of the process will be to determine the
appropriate lags for our model. R will, with the use of a stepwise selection across
the different lags selection, pick the optimal model. The result when preforming
the stepwise selection ends with a lag of 1, which is a VAR (1) model. This means
that the data is best represented when the subject variable has 1 lag of itself and
1 lags of the other variable.

That is the unemployment is best estimated when used 1 lag of its own data and
1 lag of house price index, and vice versa regarding house price index model. In
other words we have at first glance some kind of dependency between our
subjects, as we suspected. Further we need to control the model R fitted to our
time series data.

5.3.1.1 VAR model for Unemployment

The VAR model for unemployment is best estimated when using 1 lag of its own
data and 1 lag of house price index. Lets take a look at figure 12, and see how the
estimations look and if they have significance to the model.

Estimation results for equation Unemployment:

Unemployment = HousePriceIndex.ll + Unemployment.l1

Estimate Std. Error t value Pr(>Itl)
HousePriceIndex.11l -0.008247 ©.009935 -0.830 0.411
Unemployment.11 0.744471 0.106978 6.959 2.14e-08

Figure 12. Unemployment VAR model with parameters estimates and standard errors and p-
values.

Further in figure 12, we see the VAR (1) for unemployment takes shape, but
more important, we notice that the parameter of house price index is not
significant with its high p-value of 0.411. The best action would be to reduce the
model, but for the sake of restricting the report, we leave the VAR model as it is.
We are more interested in how the model works, the focus is not to get a perfect
result, but will take note of this issue when making a final assessment of the VAR
model.

5.3.1.2 VAR model for House Price Index

Producing the VAR model for House Price Index with R, we get a similar result as
for the unemployment VAR model, i.e. we have a best estimated when using 1 lag
of its own data and 1 lag of unemployment. Taking a look at figure 13, we have a
parameter that is not significant to the model, which is unemployment, with a p-
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value of 0.30672. Again the model should be reduced, but as we previously
mentioned, for the sake of restricting the report leave the VAR model as it is, but
take note of this issue.

Estimation results for equation HousePriceIndex:

HousePriceIndex = HousePriceIndex.11l + Unemployment.l1l

Estimate Std. Error t value Pr(ltl)
HousePriceIndex.11 0.3970 0.1423 2.789 0.00805

Unemployment.11 1.5868 1.5326 1.035 0.30672
Figure 13. House Price Index VAR model with parameters estimates and standard errors and p-
values.

We will continue our investigation on the models by looking at their residuals.
And suspect that they might not be optimal since, in both VAR models, we have
one parameter that is not significant to the model.

5.3.2 Control of the residuals for the VAR
Controlling the VAR model residual we will as we did before with the univariate
models, focus on the basic assumptions regarding the residuals. This handles the

autocorrelation, normality and looking for Heteroscedastic in the residuals.

Unemployment
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Figure 14. ACF of residuals from the VAR models of Unemployment
HousePricelndex
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Figure 15. ACF of residuals from the VAR models of House Price Index
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VAR of Unemployment QQ-Plot
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Figure 16. QQ-plots of residuals from the VAR models of unemployment and house price index
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Figure 17. Scatterplot to investigate heteroscedasticity of residuals of VAR model of
unemployment and house price index

We start by looking at the autocorrelation plots of the VAR model residuals, we
can se that figure 14 is satisfying and not showing any evidence of late
autocorrelation. But figure 15, ACF of house price index residuals, patterns has
clear spikes on the significant blue doted line. This is an indicator of
autocorrelation; this means that our forecasting results will deviate
systematically from an actual realization.

An additional reflection on figure 11, is that we see little to none resemblance
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with figure 9, i.e. when comparing the ACF for the residuals with the univariate
model. This could be because of the VAR feature where the data is fitted in a
different way to the model, here the multiple variables are made to depend on
each other, which is something the univariate model does not do. We will not go
into detail or try to fix this issue, but we are taking this into account when
forecasting and analyzing the end results.

Further investigation on the residuals shows that the normality seems to be fine
when looking at figure 16. But we notice an extreme outlier on the QQ-plot for
unemployment, this point should reflect the observation made near 2008, see
figure 1. We also find outliers on the QQ-plot for house price index, these should
be the observation made around 2008 and 2012. Luckily the outlier does not
seem to influence the regression line, i.e. because the regression line runs
through the majority of the observations and the regression line doesn’t deviate
from the observations to a point that we should further investigate the outliers,
se we leave the outliers and conclude that figure 16 satisfies our requirements of
normality on the residuals.

Lastly looking for heteroscedasticity of the residuals in figure 17, we see the
same outliers that we see in figure 16, removing these outliers would not change
our analysis of the scatterplots in figure 17. Additionally we make the same
analysis as we did previously and leave them as they are.

Further looking at figure 17, we have a good pattern of homoscedasticity in the
residuals of the house price index. The same cannot be said about the plot of
residuals from the VAR model of unemployment. Here the patterns are really
strong and suggests heteroscedasticity. Again we will only acknowledge the
possibility of this problem, but wont take any action against it when we conduct
our forecast.

We see that the assumptions of the residual in the regression are not fully
fulfilled, and understand that this limits our ability to make conclusions. One
alterative to adjusting the VAR model would be to transform the data and see if
this would help with the residual assumptions. We will avoid transforming the
data, and remind the reader that this paper is made to illustrate what different
models the ECB might be using among its great arsenal of complicated analytical
tools, and how they work in theory.

5.3.3 VAR model forecasting

We will now go ahead and produce a prediction into the future with the VAR
models, we are again using R to help us conduct these forecast. The chain rule of
forecasting, that we have discussed, now comes to use. This is since we again are
producing predictions into a long time period. The results from the scenarios are
expected values, with a prediction level of 95%, where the expected house prices
index values are the lowest value of its P.I, and the expected unemployment rate
value is the highest value of its 95% P.], we pick these values for the same reason
we picked the values for the univariate models, i.e. they would represent the
very extremes of the future scenarios, the values are displayed in table 2.
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Year-> 2015 2016 2017
iﬁg?ﬁi;%;i 2,47 % 2,62 % - 2,65 %
Expected
Unemployment 7,71 % 7,70 % 7,69 %
rate (%)
Table 2. Expected values at a 95% P.I of the future forecast, of the unemployment and house
price index VAR models

Further we want to investigate the variance decomposition with the help of R, i.e.
see how much of the error variance of the variables are generated by each other
in the forecast models.

In table 3, we see the figures that R calculated for us, that is, we can with the
results see how much of the variance in the forecast is dependent of its own data
set and on the other variable in the model.

Further examining of table 3, we can see that in 2015, the forecast of the house
price index VAR model impact on the ability to forecast the house price index,
with unemployment, only accounts for 3,3 % of the variance. And for the forecast
of the unemployment VAR model, we see that house price index only generates
around 3,8 % of the variance of the forecast. These are rather low impacts, but
we could expect this, since we previously in figure 12 and 13 noticed that the
corresponded second parameters showed little significance to the models.

Further in table 3, we see that the variance of the forecasted variables in the
where based on their own data set with 96 % in 2015, 95 % 2016 and 2017. The
variables stand rather independent of each other.

Forecast Horizon (Year) HousePricelndex Unemployment
HousePricelndex 0.9668209 0.03317915
2015
Unemployment 0.038003771  0.9619962
HousePricelndex 0.9549596 0.04504037
2016
Unemployment 0.045839592  0.9541604
HousePricelndex 0.9541140 0.04588596
2017
Unemployment 0.046381412 0.9536186

Table 3. Variance decomposition for house price index VAR model and unemployment VAR
model
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5.4 Comparing results of the chosen analysis models

We will compare the results from each model. If we start by looking at the
different residuals plots. We could see that we had little to none hesitation
regarding the analysis made over the plots using the SARIMA model. The same
cannot be said about the VAR model, we had signs of autocorrelation and
heteroscedasticity. This did not fit our assumption regarding the residuals of the
VAR model, and it should be investigated. And preferably have a detailed
explained to why we had issues, and ultimately correct the problems. This would
probably make the models better and in our case, producing a more valid
forecast.

Further we could see that the cross variable in our VAR model where not
significant, and that they where not very useful to each other when doing the
forecasts on the two VAR models. This points us in the direction of believing that
the two time series are not very dependent on each other. Which would mean
that the optimal way of dealing with these particular time series would be to use
them in a univariate model.

Still the use of a VAR model is valid, we needed simulate a multivariate way of
dealing with data, also analyzing if the two time series would add for a better
forecast, and if they where dependent on each other when forecasting to get a
indication of how the ECB are working with these questions.

The forecast results between the SARIMA models and the VAR models are
different, that might cause an issue, but since we are dealing with future values
nothing is an exact science. But the results are pointing in the same direction,
and since we only need projection of what might happened in the future, the
results do their purpose.

One way of controlling our scenario results and with that the models, would be
to preform a backtesting on historical data, i.e. comparing scenario results with
actual observed observation. This would indicate if our models would be able to
create good forecasts, and if the models worked in a good way.

This is something we will leave out of the rapport, because our testing is against
the ECBs results, and mainly getting an idea of how to use the models. Further
we presume the ECB have made necessary back testing and are satisfied with
their own results, so we will relay on this, and see the ECBs results as accurate
predictions.

5.5 Comparing results with ECB macroeconomic scenarios

Before we start comparing our results with the ECB, we are going to present the
ECBs macroeconomic scenarios, they represents a predicted result that strains
the macroeconomic stability, i.e. these results have an extreme percentile that
deviates from the un-strained predictions of the macroeconomic stability. The
scenarios are produced and finalized by the ESRB regarding the Swedish macro
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economy. The times period for the scenarios are from the year 2015-2017, see
[15].

Year-> 2015 2016 2017
House Price Index 11,9 % 191 % 191 %
(%)
Unemployment rate 8,6 % 10,8 % 12.6 %

(%)
Table 4. Numerical values of future forecast, that constitute an extreme percentile, of the
unemployment and house price shocks produced by the ESCB

We are now looking for similarities in our forecast, which we see in table 1 and 2,
then comparing our values in relation to table 4. We can se a significant
difference between our forecasted house price index and the predictions
presented by the ECB. Does this result mean that we entirely made a wrong
assessment of what models are used to produce these scenarios by the ECB?

The answer took some real detective work, and surely we found out why the
predictions were so different from our results. By talking with Emil Hagstrom,
who is working for the Swedish Financial Supervisory Authority. The
explanation is given as follows, “Before the ECB publishes the result of the
macroeconomic scenarios. They send out a draft to each country equivalent of
Financial Supervisory Authority, where there are banks that are taking part in the
Stress-test exercise. This gives us a chance to comment and maybe enforce a change
to the end result. In the case of house prices in Sweden we regarded the scenarios
being very low. So we opted for a change with a higher stress level. And this is the
change you know see in the rapport.” With this knowledge we cannot compare
this data to our result. But we can appreciate that our calculations where not
horribly wrong.

The results of the unemployment are now of great interest. Are we able to see
any signs of similar results? The answer is yes; yes we can actually see that the
results are not far away. We see more similarities with the results of the SARIMA
model, compared to the VAR model. The values of the SARIMA model are closer
to ECB results and we have a similar up-going trend, with higher unemployment
later in the forecast period. For our simplistic analysis, compared to the ECBs
more refined way of working, we are happy with the similarities between the
forecast.

A noticeable observation is that the predicted values from the ECB are very
extreme. In our own conducted forecasts, with the lowest prediction interval
being 90 %, where we picked the values from the very end of the interval range,
we still could not get a wide enough range to get the extreme values comparing
to the ECB scenarios. This would lead us to think that the results the ECB is
presenting, has a very wide interval, this is probably to capture the very
extremes of outcomes in the future macro economy, also it is very likely, that
they are making some kind of an ad-hoc adjustment to the scenarios. This way of
working might be a standard procedure within the ECBs output of the
macroeconomic scenarios, to make them further severe, and make it tougher
against the bank stress test.
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6 Discussion and Conclusion

6.1 Discussion and Conclusion

The models we have analyzed have given us insight to what procedures are
being used when the ECB are producing their macroeconomic scenarios for the
bank stress tests. The theory behind the VAR model shows that the ECB has a
powerful tool to aid them in the work of producing the scenarios. We have also
seen that the VAR has many, if not all components that the ECB are looking for in
a statistical tool.

Unfortunately our results from the VAR were not perfect. We have mentioned a
few flaws in our results, and that these could possibly have been adjusted with
different statistical methods. The flaws mainly came from the fitting of the time
series data to the VAR model, which in turn, affected the end result.

Even without optimizing our model, we get a result that we can compare with
the ECB and furthermore see similarities with. This is interesting as it shows that
the model we chose to work with really could be used for the ECBs purpose, not
only in theory but also in practice.

Additionally we found it very interesting that the SARIMA model showed more
scenario similarities with the ECB data, comparing to the VAR model. The VAR
model is used to capture covariance in multiple time series; this is something
ARIMA and SARIMA models lack, where we do simple marginal adjustments.
Also the VAR model is compressing multiple data sets, and as we have seen, if
that process is not investigated, we might loose certainty in the end result.
Further we would like to consider that this demonstrates that the univariate
method could be useful in different forecasts, where you only focus on one time
series.

We have also learnt that having a few models to be able validate the results is a
clear advantage. As we mentioned in section 2.1, we know that the ECB has
several statistical tools, even more complicated tools, to aid them in their work.
Further we have seen that the ECB is using ad-hoc methods, like the method of
reaching out to the non-biased Swedish Financial Supervisory Authority, for a
second opinion to optimize their end result.

This is a good thing, because making an exact science of an expected scenario is
very hard. The ECB should not only rely on statistical methods, they should, as
they are, use their knowledge of current and historical trends, data structure and
choosing of the correct models to get the optimal result.

In conclusion, we recognize that the VAR model is a powerful tool, which can aid
the ECB in their work for future scenarios. And also realize that the ECB seem to
have a good portfolio of methods regarding the ways to produce macroeconomic
scenarios for the bank stress tests.
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