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Abstract

In this report, the daily water demand of the Swedish municipality
of Vetlanda is analyzed, for the purpose of forecasting. By regress-
ing on calendar effects found in the data, and assuming a seasonal
ARIMA structure for the errors, a suitable model is selected through
a combination of the Ljung-Box test, the Akaike Information Crite-
rion, and backtesting procedures. The resulting ARIMA(1,0,5)(1,1,2)7
error model with t(5.4)-distributed innovations is then estimated, and
a 90 day forecast is provided.
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1 Introduction

The importance of water in our lives dates back thousands of years—to the
dawn of irrigation and sanitation—and has become an integral part of society,
influencing everything from public health, to energy, manufacturing, and recre-
ation. Thus, providing access to clean water, and understanding the demand
for it, is of great interest. This report aims to take the daily water demand
of one particular municipality, and attempt to predict the future demand, with
the help of time series modeling.

The purpose of this report is to forecast the water de-
mand of Vetlanda, a 1 500 m2 municipality in Sweden
having almost 27 000 inhabitants (according to SCB,
2014). Being able to predict the demand is useful for the
water providers, since it can help them plan future oper-
ations, such as the upgrade of facilities, or the changing
of water prices. It also helps predict the impact of, say,
a new factory opening, or a new residential area being
built. Finally, it can also help detect anomalies, such as
water leaks and faulty equipment.

Several different methods for analyzing and forecasting water demand have
been suggested, including principal component analysis [9] [10], transfer func-
tions [13], artificial neural networks [3], and univariate time series modeling [6].
A variant of the last of these will be the focus of this report.

Previous work in this field have primarily focused on places with warmer
climates, i.e. Australia [9] [18], Spain [6], South Korea [10], and the southern
U.S. [13]. In such areas rainfall was often considered to have a significant ef-
fect on the water demand—and [13] even included temperature—which meant
that in the warmer and dryer summer months, these areas saw an increase in
demand. However, since the opposite seemed true for Vetlanda, these variables
were not considered. Instead, the various weekends and holidays seemed to re-
duce the demand significantly, and a regression was made using these as dummy
variables—with an ARIMA model fitted for the regression errors.

2 Theory

2.1 Time Series

A time series is a sequence of observations (of some quantity) taken over an
extended period of time. Usually these observations are made at a set time
interval—hourly, daily, monthly, etc. Such examples include the hourly number
of cars arriving at an intersection; the daily closing price of a stock; and the
monthly revenue of a store.

This report will focus on a time series that displays a serial correlation, i.e.
that past observations are correlated with the present one. This is a common
property of many time series, and thus literature on the subject is abundant
(see [5] and [16] for example).
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The following concepts and tests are all to serve us in working with this kind
of correlation.

2.2 Stationary and weakly stationary time series

A time series {Yt} is said to be a stationary process if any sequence (Yt1 , Yt2 , ..., Ytn)
has the same joint distribution as (Yt1+l, Yt2+l, ..., Ytn+l) for any integer l. In
other words, we have the same distribution no matter the starting point of our
observations—it is time invariant. This is a strong condition (see [15]), so a less
restrictive condition is often used (section 1.2.1 of [5]). A time series is weakly
stationary if it has a constant mean and the covariances between observations
is time invariant.

2.3 Backshift Operator

We can establish an alternative notation for our time series by defining an
operator B on a time series {Yt}, with the property

BYt = Yt−1.

That is, an operator which changes an observation to the one from the previous
time step. This B is called the backshift operator. You can go back further by
using powers of B, since in general

BkYt = Yt−k

for any integer k. This will provide a useful notation for our time series models,
as we shall soon see. For more on the properties and implications of the backshift
operator, see [14].

2.4 ARMA and ARIMA

The AutoRegressive Moving Average model [5][16] is a time series model of the
form

Yt −
p∑

i=1

φiYt−i = εt −
q∑

i=1

ψiεt−i, (1)

where {Yt} is the observation series; {εt} is the series of innovations; p, q ≥ 0 and
φ1, φ2, ..., φp, ψ1, ..., ψq are parameters. This is called the ARMA(p,q) model.
The autoregressive part of the name refers to the left-hand side, where we
regress on past observations; and the moving average part refers to the right-
hand side, where the past (random) innovations are allowed to influence the
expectation of the current observation (they randomly ”move the average”).

We can rewrite this with the help of the backshift operator by writing

(1−
p∑

k=1

φkB
k)Yt = (1−

q∑
k=1

ψkB
k)εt,

where B is the backshift operator; p, q ≥ 0, and φ1, ..., φp, ψ1, ..., ψq are the same
as in (1).
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A way to generalize this model a bit is to consider the ARIMA(p,d,q) model,
where the ’I’ stands for integrated. In backshift notation it looks like this:

(1−
p∑

k=1

φkB
k)(1−B)dYt = (1−

q∑
k=1

ψkB
k)εt.

What is new is the factor (1 − B) on the left-hand side, and what it does is
transform the data by letting Zt = Yt−Yt−1, generating a new time series {Zt}.
This is referred to as taking the first difference of the series, and the d means
that this is done d times. The model is therefore called ’integrated’ because the
model is still written in terms of {Yt}, with the differencing being a part of the
model itself.

Let us simplify our notation, by introducing the following naming conven-
tions (slightly modified from [5]):

∇ :=(1− L), the (first) difference operator,

ap(B) :=(1−
p∑

k=1

φkB
k), the AR(p) backshift polynomial,

mq(B) :=(1−
q∑

k=1

ψkB
k), the MA(q) backshift polynomial.

With these, we can write our ARIMA(p,d,q) model as

ap(B)∇dYt = mq(B)εt.

This will be convenient, and almost necessary, as we expand our model in
the following section.

2.4.1 Seasonal ARIMA

In many time series, we encounter seasonal patterns. For daily data there could
be a weekly pattern (all Mondays are similar, etc.), or for monthly data a yearly
pattern could exist (more sales in a store each December, for instance). For such
a time series we might consider the following model:

(1−
P∑

k=1

Φk(Bs)k)(1−Bs)DYt = (1−
Q∑

k=1

Ψk(Bs)k)et.

What we have here is, in some sense, an ARIMA model, but where all lags are
multiples of some positive integer s called the seasonality. For weekly patterns
in daily data, s = 7; for yearly in monthly data, s = 12; etc. We can name the
parts of this model similarly to the regular ARIMA, by letting

∇s :=(1−Bs)

AP (Bs) :=(1−
P∑

k=1

Φk(Bs)k)

MQ(Bs) :=(1−
Q∑

k=1

Ψk(Bs)k).
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Once again, we can get a similar, compact notation in

AP (Bs)∇D
s Yt = MQ(Bs)et (2)

Now, there is no reason to expect that the series {et} is uncorrelated, so a
natural step is to continue by fitting a regular ARIMA model to the innovations,
i.e.

ap(B)∇det = mq(B)εt, (3)

where {εt} is (hopefully) an iid series. Substituting for et in (2) and (3), we can
write the so called Seasonal ARIMA model as

ap(B)AP (Bs)∇d∇D
s Yt = mq(B)MQ(Bs)εt,

and refer to it as the ARIMA(p,d,q)(P,D,Q)s model, which contains all necessary
information—namely the degrees of all polynomials, both degrees of differencing,
and the seasonality s.

2.5 The Autocorrelation Function

If we apply the usual definition of correlation to a time series {Yt}, we can define
the autocorrelation between observations at times t and t− k as

ρk := ρYt,Yt−k
=

Cov(Yt, Yt−k)√
V ar(Yt)V ar(Yt−k)

.

If we can assume that {Yt} is weakly stationary, the autocorrelation becomes

ρk =
Cov(Yt, Yt−k)

V ar(Yt)
,

for any t, making it exclusively a function of k. We denote this the lag-k
autocorrelation.

Given an observed time series {yt}Tt=1, we estimate this as one does correla-
tions in general, through

ρ̂k :=

∑T
t=k+1(yt − ȳ)(yt−k − ȳ)∑T

t=1(yt − ȳ)2
,

where ȳ = 1
T

∑T
t=1 yt. This is called the autocorrelation function (ACF), and is

crucial in time series analysis.
Under the null hypothesis that the autocorrelation for a given lag is zero,

this estimate is asymptotically normal, with mean zero, and variance 1/T (see
[5], section 2.1.6). We can therefore create an approximate rejection region for
this hypothesis as |ρ̂k| > 1.96/

√
(T ), and use this to quickly determine which

autocorrelations are significantly different from zero.

2.6 The Partial Autocorrelation Function

In addition to the ACF, we can design another nifty tool for specifying the
orders of ARIMA processes. We will call it the partial autocorrelation function
(PACF), and there are several ways of defining it. A more technical definition
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is given in section 3.2.5 of [5], but we will choose another, courtesy of 2.4.2 in
[16].

Consider the following AR models (in linear notation):

Yt =φ1,1Yt−1 + εt

Yt =φ2,1Yt−1 + φ2,2Yt−2 + εt

Yt =φ3,1Yt−1 + φ3,2Yt−2 + φ3,3Yt−3 + εt

Yt =φ4,1Yt−1 + φ4,2Yt−2 + φ4,3Yt−3 + φ4,4Yt−4 + εt

...

These parameters can be estimated using the least squares method, for these
are just multiple linear regression models. We define the estimates of φk,k
(k = 1, 2, 3, ...) as the lag-k PACF of our Yt. This can be interpreted as the
effect Yt−k would have, if added to an AR(k-1) model.

We would then expect that a true AR(p) process would show large PACF
for lags up to, and including, lag-p; but PACF close to 0 beyond p. This gives
us a way to determine the appropriate order of AR model to use: We simply
look for the lag after which the PACF ”cuts off”, and use that as our p (see
section 6.2 of [5]).

2.7 Ljung-Box Test

We would like to have some kind of test to determine whether our ARIMA
model provides an adequate fit. The Ljung-Box test was first proposed in [12],
and consists of using the statistic

Q(m) = n(n+ 2)

m∑
k=1

r̂2k
n− k

,

where rk is the lag-k autocorrelation of the residual series. It tests the hypothesis
H0 : r1, r2, ..., rm = 0, againstH1 : rk 6= 0, for some k = 1, 2, ...,m. This statistic
is then approximately χ2(m) distributed for large n [2]. In other words, we can
test if there is any autocorrelation unaccounted for in our model, provided we
choose a large enough m. For our purposes, m = 20 will suffice.

2.8 AIC

Whenever we try to fit a model to data, we are only making guesses. We can
qualify these guesses by studying the data, and using various tests and criteria,
but we can seldom hope to find the true structure of our data.

So, what are we to do when our tests and criteria can produce multiple
qualified guesses? It is proposed in [1] to use the following statistic for directly
comparing statistical models:

AIC := 2k − 2LogL,

where k is the number of model parameters that need estimation, and LogL is
the maximum value of the log-likelihood function [11] (which is at the parameter
estimates by definition).

This is called the Akaike Information Criterion, and asserts that the ade-
quate model with the smallest AIC is preferable.
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3 Data

The data set under consideration consists of the daily water demand in the
municipality of Vetlanda, Sweden. More specifically it is the amount of water
measured (in m3), that leaves the central water distribution center.

The supplied data can be seen in Figure 1. Upon inspection, we can see
a clear weekly seasonal pattern. It would appear that the demand is lower by
several hundred m3 during Saturdays and Sundays. Furthermore, we see each
year in July, a similar reduction in demand that persists for several weeks. There
is also a brief drop the last week of every year.

Figure 1: Time series plot of daily water demand for Vetlanda.

Naturally, this is no coincidence, and we can quite easily make the connection
between these patterns and industry. Indeed, it is common for factories to close
down (or at least reduce capacity) during weekends and holidays, in addition
to four weeks each July (sometimes referred to as the Industrial Vacation in
Sweden).

So, what about other days where water demand is low? Referencing [17],
which lists and describes all national holidays, we can in fact see similar re-
duction in demand for those dates. An important thing to note, however is
that many of these are moving holidays. While Christmas Eve is always on
December 24, Easter always starts on a Friday (and not always in April!), so
some holidays are not necessarily 365 days apart. So, while [6] had grounds
to assume a yearly seasonal effect, we could in our case make a different one;
namely that of a calendar effect.

This motivates us to introduce two dummy variables: One x1i for weekends
and holidays, as described in [17]; and one x2i for the industrial vacation each
July. The reason we separate the two can be seen in Figure 1. During the
industrial vacations, water demand seems to drop more than during a normal
weekend. We could reason that this is due to the would-be factory workers going
on vacation outside the municipality during this time. We can also see that a
smaller weekend effect persists, so having both together is reasonable.

Lastly, it should be noted that when a holiday occurs on a Tuesday or a
Thursday, it is customary to extend the weekend to include that Monday or
Friday, respectively. This is reflected in the data also. For a full list of which
dates were considered weekends or holidays, see the Appendix.
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4 Analysis

Before we begin the process of fitting a suitable model for forecasting, we must
first sketch out the procedure. Following the general one detailed in [5] (specif-
ically chapter 9), we recognize the following three steps to specify our model:

1. Remove calendar effects by fitting a regression model to our data.

2. Remove the seasonal effect from the residuals by fitting an appropriate
ARIMA(0,0,0)(P,D,Q)s model.

3. Consolidate the seasonal part of this model, with an appropriate ARIMA(p,d,q)
model to remove the remaining autocorrelation.

Once we have accomplished this, we can estimate the model using the exact
maximum likelihood method described in [5], and forecast future water demand.

4.1 Calendar Effects

Following the discussion of section 3, regarding holidays and vacations, we would
like to propose the following regression model to account for these calendar
effects:

Let X1 = (x11, x12, ..., x1T )′ and X2 = (x21, x22, ..., x2T )′ be vectors of zeros
and ones, with ones indicating holidays in X1 and industrial vacation in X2;
and let {yt} be the water demand series. Our proposed regression model is then

Yt = α+ β1x1t + β2x2t + β3x1tx2t + et,

where α, β1, β2, β3 are unknown parameters, and {et} is some autocorrelated
time series. We have included the product of the dummy variables due to the
smaller weekend effects during industrial vacations.

To proceed, we need to study {et}. But how, when we all we can do is work
with the residuals

êt = yt − α̂− β̂1x1t − β̂2x2t − β̂3x1tx2t

of some estimate (i.e. least squares) of our regression model? Fortunately,
according to [8], these residuals have autocovariances which are asymptotically
equivalent to those of et, so in terms of determining the time series structure
of {et}, we have access to all our usual tools, such as the ACF, PACF, and
Ljung-Box test.

What we now need is the ordinary least squares estimates for our parameters,
which result in the model

yt = 4163− 834x1t − 1012x2t + 580x1tx2t + êt,

where we have assumed for the moment that the êt are iid normal and uncor-
related.

We can quickly note that the estimates are just about what we expected
from studying Figure 1. On regular business days we get about 4000m3, which
goes down by some 800m3 during weekends. Once the industrial vacation starts
it drops by 1000m3 during week days, and another 800 − 600 = 200m3 those
weekends.
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Let us now return to the residuals. In Figure 2, we have plotted first the fitted
values and the actual data; and second the residuals êt. For ease of inspection,
only the year 2014 is shown. We can see that the fitted model follows the data
quite well, making appropriate jumps when expected.

Looking at the residual plot in Figure 2, we see significant autocorrelation,
including some semblance of weekly seasonality. This is unfortunate, in the
sense that we would have been significantly closer to our solution; but very
much expected, looking at the data and the nature of our problem.

Figure 2: Fitted values and residuals of our basic regression model.

In Figure 3 below, we have a normal QQ plot of the residuals. In it, we can
actually see that the residuals follow the normal distribution quite well. This
is a useful property, since it gives us confidence in various asymptotic results,
such as the efficiency of the least-squares estimators, or the normality of the
autocorrelations (see [2]). These properties are necessary for the various tests
we will employ later, and we can now reasonably assume that our sample size
is sufficient for these to hold.

4.2 Seasonality

Equipped with the residual series {et}, we now begin the process of finding an
appropriate ARIMA model for our regression errors. We start by plotting the
residuals. In Figure 4 we have plotted the residuals, as well their ACF and
PACF. We can see strong autocorrelations in all three plots, but we pay special
attention to the spikes that occur at lag multiples of 7 in both the ACF and
PACF. This seems to suggest weekly seasonality, and we address it immediately.
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Figure 3: Quantile-Quantile plot for the residual series. Adherence to the
straight line implies normal distribution.

Figure 4: Diagnostics plots for the residual series. These show significant auto-
correlation, particularly lag 7 seasonal.

Taking the seventh difference of our residual series, we get the rather trivial
ARIMA(0,0,0)(0,1,0)7 model

∇7et = εt,

where {at} supposedly is iid. We can then find out if there is any autocorrelation
left, by creating similar plots as in Figure 4 for the new ARIMA(0,0,0)
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(0,1,0)7 residuals (which, in reality, is just the differenced series).
This results in Figure 5, which shows a vast improvement. The new residuals

now seem centered around 0, and the ACF tends to 0 relatively quickly. But we
can still see significant spikes in the PACF at the same lag multiples of 7, and
even the ACF has a hefty spike at lag 7. This all suggest that some seasonality
may still persist, and so we look to include some seasonal AR and MA terms in
our model.

Figure 5: Residual, ACF, and PACF for ARIMA(0,0,0)(0,1,0)7.

After trying some low order ARIMA(0,0,0)(P,1,Q)7 models, we find that
(P,Q)=(0,1),(0,2),(1,1),(1,2) handle the remaining seasonality quite well. Be-
cause the four different variants turn out to be graphically indistinguishable, we
only show the plots for ARIMA(0,0,0)(1,1,2)7 in Figure 6, but for the sake of
completeness, the rest can be found in the Appendix. In the figure we can see
that all seasonal effects have disappeared from the ACF, and while lags 7 and
14 still stand out slightly in the PACF, increasing P and Q does not seem to
help us. So we will be content with these lower order models as we proceed to
the next step. Hopefully, once we are done with that, these lags will also be
close to 0.

While we would like to proceed with only one of the seasonal parts above, we
do not have to. As we will determine and estimate full models using a computer
algorithm in the proceeding section, we can simply repeat it for all four variants
(at the expense of computational time only).

4.3 Completing the Model

From Figure 6 we still see significant autocorrelation. So our next step will be
to specify the nonseasonal part of our ARIMA model, and our approach will
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Figure 6: Residual, ACF, and PACF for ARIMA(0,0,0)(1,1,2)7.

be one of brute force. If we suppose that the best ARIMA models will contain
one of the four seasonal parts developed in the previous section, and that the
non-seasonal part will not involve lags greater than nine, then we will have a
total of 4 · 10 · 10 = 400 possible candidates. That is, we look at the models

yt = α+ βXt + et, ap(B)AP (B7)∇7et = mq(B)MQ(B7)εt. (4)

where p, q ∈ {0, 1, ..., 9}, P ∈ {0, 1}, and Q ∈ {1, 2}. We can see from Figure
6 that no non-seasonal differencing is necessary (zero-mean residuals, and the
ACF tends to zero), and we pick nine as the maximum lag because it was the
maximum lag for the resulted model in [6].

In order to narrow down our search, we will employ two criteria for choosing
what models we want to proceed with. They are:

1. The residuals of a good model should pass a Ljung-Box test for lag 20.
That is, Q(20) = 0 for any such model.

2. The best of these should be among the five models with the lowest AIC.

While the particular boundaries are arbitrary, they are arguably reasonable.
The downside to this is that we still need to estimate all 400 models in order
to use these criteria. However, with the aid of a computer this becomes a mere
matter of time, rather than effort. We can even go back to considering the time
series {yt} itself, and estimate the entire regression model—now with ARIMA
errors—without additional work on our end.

There is one significant problem with this type of estimation, however. It
turns out that—because we have seasonally integrated ARIMA models—the
regression constant is unidentifiable, and thus cannot be estimated. To under-
stand why, see Appendix. Our solution to this predicament will be to fixate
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the constant to be that of the least squares estimate in Section 4.1. It is, after
all, the mean of the values for which the other regressors are zero, which is a
reasonable choice at least. We make no claims that this is the best estimate of
this constant, but it allows us to proceed.

In order to build the maximum-likelihood functions used for estimating these
models, we need a distribution for the innovations εt. The easiest would be to
assume a normal distribution, but we need to verify this.

Using the ACF and PACF of the {êt} series acquired in Section 4.1, we can
find that an ARIMA(1,0,4)(1,1,2)7 model—under the assumption of normally
distributed innovations—passes our Ljung-Box test. Looking at Figure 7 how-
ever, where we have made a QQ plot and a histogram for this model’s residuals,
we can see that—while they do not follow a normal distribution—they do make
out a bell shape, with zero mean. It would then seem like we are better off
assuming a t(ν) distribution, for some parameter ν we can estimate along with
the rest of our models.

Figure 7: QQ plot and histogram for the ARIMA(1,0,4)(1,1,2)7 model residuals.

14



ARIMA Model AIC
(6, 0, 5)(0, 1, 1)7 29443
(1, 0, 5)(1, 1, 2)7 29456
(5, 0, 1)(0, 1, 2)7 29456
(1, 0, 4)(0, 1, 2)7 29456
(5, 0, 1)(1, 1, 2)7 29457
(2, 0, 4)(1, 1, 2)7 29457
(1, 0, 5)(0, 1, 2)7 29457
(1, 0, 6)(1, 1, 2)7 29457
(6, 0, 1)(1, 1, 2)7 29457
(6, 0, 1)(0, 1, 2)7 29458
(7, 0, 1)(1, 1, 2)7 29458
(2, 0, 5)(1, 1, 2)7 29458
(1, 0, 4)(1, 1, 1)7 29459
(7, 0, 1)(0, 1, 2)7 29459
(1, 0, 7)(1, 1, 2)7 29459

... ...

Table 1: The top of the list of ARIMA models for which Q(20) = 0, sorted by
lowest AIC.

We are now ready to perform maximum-likelihood estimation for our 400
potential models, and employ the criteria we just established (For an explanation
of how this is done, see Appendix). This results in 132 models passing the Ljung-
Box test, with the ones with lowest AIC presented in Table 1. We can see that
the ARIMA(6,0,5)(0,1,1)7 model has significantly lower AIC than the rest, but
instead of rejecting all other models outright, we will stay true to our plan, and
proceed with the top five.

4.4 Selection Through Backtesting

Since we are interested in fitting a model for the purpose of forecasting fu-
ture water demand, a reasonable final selection would be based on the compet-
ing models’ ability to forecast. We will thus end our analysis with a form of
backtesting. For us, this means we will look at how well the models would have
performed if we had implemented them a year ago, and let them forecast up
until now. It would then stand to reason, that the model that performed best
then, would have the best conditions to perform well going forward.

We design the following metric for measuring forecasting performance:

[Forecast Performance] :=

∑n
i=1(yt+i − ŷt+i)

2

n
, (5)

where ŷt+i is the i:th forecasted day from the starting time t, and n is the
total number of days forecasted in our backtest. This is a metric similar to
the mean squared forecast error (MSFE) [16], and a smaller value means better
performance.

What the best performing model is might depend on the type of forecasting
we use. One model might be better for short-term prediction, while another
would be better for longer periods. Since we do not know how the contents of
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this report would be used, we can without much additional effort study sev-
eral different forecasting periods. We therefore select the four most reasonable,
where forecasting is done every 1, 7, 30, or 90 day(s). For the periods larger
than 1 we make sure to only forecast each date once.

The backtesting procedure will thus be as follows, where we have a given
model and forecast period k:

1. Go back one year (365 days) from the most recent data point (which in
this case is 2014-02-15).

2. Take this point and the five years (1825 days) leading up to it as our data
sample.

3. Use this sample to estimate the parameters of the model in question.

4. Predict the value of the next k time steps recursively by plugging in the
sample data and its inferred innovations.

5. If our total data allows us to forecast another period, take the day of the
k:th forecast and go back to step 2. Otherwise, continue to step 6.

6. Take the total of n forecasted values and their respective observed data
points, and calculate the forecast performance according to (5).

Performing this procedure for our five models and four forecasting periods
yields Table 2.

ARIMA Forecast Period
Model 1 Day 7 Days 30 Days 90 Days

(6, 0, 5)(0, 1, 1)7 33710 39603 50644 54180
(1, 0, 5)(1, 1, 2)7 32135 38611 43961 54234
(5, 0, 1)(1, 1, 2)7 32411 38726 45174 55833
(5, 0, 1)(0, 1, 2)7 32262 38041 45025 54385
(1, 0, 4)(0, 1, 2)7 32409 39158 44547 54868

Table 2: The forecasting performance of the different models, for several differ-
ent forecast periods. The lowest are underlined.

In it we can see that indeed, different models performed better at different
forecast periods. We first note that the ARIMA(6,0,5)(0,1,1)7 model—while
having the lowest AIC of all—performed far worse than the rest in all but the 90
day forecasts, in which it did only slightly better than the ARIMA(1,0,5)(1,1,2)7.
In fact, the ARIMA(1,0,5)(1,1,2)7 model had arguably the best performance
overall, being at least second best for all four periods. While we could choose
a different model depending on which forecast period we want to use, we will
be making the conclusion that the ARIMA(1,0,5)(1,1,2)7 model is universally
preferred, and will be the sole model presented in the results.

5 Results

After considering the various calendar effects, and seasonal structure of the
data—as well as backtesting over multiple forecast periods—we arrive at the
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conclusion that the regression model with ARIMA(1,0,5)(1,1,2)7 errors is the
best among the ones considered, for the purpose of forecasting future water
demand in this particular municipality. Using the entire data set to estimate
the parameters, we get

yt = 4163− 661x1t − 649x2t + 505x1tx2t + et, and

a1(B)A1(B7)∇7et =m5(B)M2(B7)εt,

where x1t and x2t are indicator variables, indicating if day t is part of a week-
end/holiday or the industrial vacation respectively; and

a1(B) =1− 0.942B,

A1(B7) =1 + 0.201B7,

m5(B) =1− 0.375B − 0.111B2 − 0.054B3 − 0.088B4 + 0.024B5,

M2(B7) =1− 0.672B7 − 0.242B14,

εt =139.79zt

where B is the backshift operator, and zt is estimated to be t(5.4)-distributed.
Using this estimated model, we can provide a 90 day forecast, which is

perhaps a more useful result than these particular parameter estimates (which
should be re-estimated with every use, anyway). This forecast can be found
listed in the Appendix, but is plotted here in Figure 8.

Figure 8: A 90 day forecast using a regression model with ARIMA(1,0,5)(1,1,2)7
errors.

6 Discussion

While we arrived at a reasonably well performing model, it comes with its share
of caveats. We made a deliberate choice of regressors, which is certainly open
to criticism. We chose a rather simple regression model, focusing on the impact
industry had on the water demand, but there is no reason to suspect that this
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is the only factor of note. Even so, the way we did account for industry is very
binary and simple. We could for instance have looked into the fact that some
factories shut down early on Fridays (something which is actually reflected in
the data, with Fridays having a lower mean than the total).

There is also the matter of our estimate of the regression constant, and the
fact that we could not estimate it as a part of our likelihood optimization. But
since the least squares estimate we used instead represents the mean of the
regular non-holiday, non-vacation days; letting this be the mean of our series,
and letting the indicators shift the water demand down from this mean, seems
quite reasonable. So, by fixing this as the constant, we can be confident that
we are not committing any grave errors.

As far as further analysis is concerned, we can see from Figure 9 that, while
no significant autocorrelations persist, the residual variance seems far from con-
stant. In particular, the larger residuals seem clustered, which would suggest
that some sort of heteroscedastic model for the variance is in order—such as the
ARCH model of [7], or the GARCH model introduced in [4]. While outside of
the scope of this report, such analysis would open up other powerful tools for
forecasting, such as reliable confidence intervals and simulation possibilities.

Figure 9: Diagnostic plots for our regression model with ARIMA(1,0,5)(1,1,2)7
errors.
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7 Appendix

7.1 Identifiability Concerns

Suppose we have a regression model with ARIMA errors, i.e.

Yt = α+ βXt + et, where D(B)et = E(B)εt,

for some backshift polynomials D and E specified by the model. The likelihood
function is based on the distribution of εt, and solving the above for εt gives us

εt =E−1(B)D(B)(yt − α− βXt)

=E−1(B)D(B)(yt − βXt)− E−1(B)D(B)α,

where E−1(B) is an inverse filter of E(B) used by software to estimate ARIMA
models. Now, should our model have any sort of integration, we can write
D(B) = g(B)(1−B)k, for some other backshift polynomial g, and some integer
k > 0. We further note—since α is constant—that Bα = α. Putting all this
together, we get

εt =E−1(B)D(B)(yt − βXt)− E−1(B)g(B)(1−B)kα

=E−1(B)D(B)(yt − βXt)− E−1(B)g(B)(1−B)k−1(α−Bα)

=E−1(B)D(B)(yt − βXt).

So the likelihood function will not depend on α, and it is thus unidentifiable.

7.2 Maximum Likelihood Estimation

In this section we will use the ARMA(1,1) model as an example, to illustrate
how to use maximum likelihood to estimate parameters. The general case of
ARIMA(p,d,q) is much the same, but considerably more convoluted.

The difficulty of estimating an ARIMA model’s parameters lies in the fact
that the model is a function of both past values and past innovations—the
latter not being observable. Also, if we consider the first observation y0; in the
ARMA(1,1) model this will depend on the observation y−1 and innovation ε−1
from the previous time step—which we do not have access to! The solution is to
let these remain unknown, and treat them as parameters to be estimated. This
is called the unconditional or exact likelihood method [16]. (Note, however that
the estimates themselves are not interesting, they are only going to be a part of
the likelihood optimization.)

We can by solving recursively for the innovations. We write the ARMA(1,1)
model in linear notation:

yt − φyt−1 = εt − ψεt−1,

and solve for εt:
εt = yt − φyt−1 + ψεt−1.
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Doing this recursively, starting with ε0, we get

ε0 =y0 − φy−1 + ψε−1

ε1 =y1 − φy0 + ψε0 = y1 + (ψ − φ)y0 − ψφy−1 + ψ2ε−1

ε2 =y2 − φy1 + ψε1 = y2 + (ψ − φ)y1 + ψ(ψ − φ)y0 − ψ2φy−1 + ψ3ε−1

...

εt =yt + (ψ − φ)

t∑
i=1

ψi−1yt−i − ψtφy−1 + ψt+1ε−1

which gives us each innovation as a function of the observations {yt}, the regular
parameters φ and ψ, and the additional parameters y−1 and ε−1. We can
then build the log-likelihood function by assuming some distribution for these
innovations, usually the normal- or t- distribution.

7.3 ACF and PACF of Seasonality Models

Below are the ACF and PACF plots for the seasonality models under consider-
ation in section 4.2.
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7.4 Holidays and Vacations

Directly below are the dates—other than the Saturdays and Sundays—that
were considered holidays for the purpose of our regression. Further down are
the dates for the industrial vacations.

2009-01-01 2009-12-31 2011-01-01 2012-01-06 2013-03-29 2014-04-21
2009-01-02 2010-01-01 2011-01-06 2012-04-06 2013-04-01 2014-05-01
2009-01-05 2010-01-06 2011-04-22 2012-04-09 2013-05-01 2014-05-29
2009-01-06 2010-04-02 2011-04-25 2012-05-01 2013-05-09 2014-05-30
2009-04-10 2010-04-05 2011-05-01 2012-05-17 2013-05-10 2014-06-06
2009-04-13 2010-05-01 2011-06-02 2012-05-18 2013-06-06 2014-06-20
2009-05-01 2010-05-13 2011-06-03 2012-06-06 2013-06-21 2014-12-24
2009-05-21 2010-05-14 2011-06-06 2012-06-22 2013-12-24 2014-12-25
2009-05-22 2010-06-06 2011-06-24 2012-12-24 2013-12-25 2014-12-26
2009-06-06 2010-06-25 2011-12-24 2012-12-25 2013-12-26 2014-12-27
2009-06-19 2010-12-24 2011-12-25 2012-12-26 2013-12-27 2014-12-28
2009-12-24 2010-12-25 2011-12-26 2012-12-27 2013-12-28 2014-12-29
2009-12-25 2010-12-26 2011-12-27 2012-12-28 2013-12-29 2014-12-30
2009-12-26 2010-12-27 2011-12-28 2012-12-29 2013-12-30 2014-12-31
2009-12-27 2010-12-28 2011-12-29 2012-12-30 2013-12-31 2015-01-01
2009-12-28 2010-12-29 2011-12-30 2012-12-31 2014-01-01 2015-01-02
2009-12-29 2010-12-30 2011-12-31 2013-01-01 2014-01-06 2015-01-05
2009-12-30 2010-12-31 2012-01-01 2013-01-06 2014-04-18 2015-01-06

Table 3: Holiday dates.

Start Dates End Dates
2009-07-11 2009-08-09
2010-07-10 2010-08-08
2011-07-09 2011-08-07
2012-07-07 2012-08-05
2013-07-06 2013-08-04
2014-07-05 2014-08-03

Table 4: Start and end dates for the industrial vacations.
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7.5 90 Day Forecast

Date m3 Date m3 Date m3
2015-02-26 4046 2015-03-28 3305 2015-04-27 4015
2015-02-27 3852 2015-03-29 3381 2015-04-28 4054
2015-02-28 3287 2015-03-30 4012 2015-04-29 4078
2015-03-01 3364 2015-03-31 4051 2015-04-30 3411
2015-03-02 3994 2015-04-01 4075 2015-05-01 3217
2015-03-03 4037 2015-04-02 4070 2015-05-02 3309
2015-03-04 4058 2015-04-03 3215 2015-05-03 3384
2015-03-05 4055 2015-04-04 3306 2015-05-04 4015
2015-03-06 3863 2015-04-05 3382 2015-05-05 4054
2015-03-07 3293 2015-04-06 4013 2015-05-06 4078
2015-03-08 3371 2015-04-07 4052 2015-05-07 4073
2015-03-09 4002 2015-04-08 4076 2015-05-08 3878
2015-03-10 4042 2015-04-09 4071 2015-05-09 3309
2015-03-11 4067 2015-04-10 3877 2015-05-10 3384
2015-03-12 4062 2015-04-11 3307 2015-05-11 4015
2015-03-13 3868 2015-04-12 3383 2015-05-12 4054
2015-03-14 3299 2015-04-13 4014 2015-05-13 4078
2015-03-15 3376 2015-04-14 4053 2015-05-14 3412
2015-03-16 4007 2015-04-15 4077 2015-05-15 3217
2015-03-17 4046 2015-04-16 4072 2015-05-16 3309
2015-03-18 4071 2015-04-17 3877 2015-05-17 3384
2015-03-19 4066 2015-04-18 3308 2015-05-18 4015
2015-03-20 3872 2015-04-19 3384 2015-05-19 4054
2015-03-21 3303 2015-04-20 4014 2015-05-20 4078
2015-03-22 3379 2015-04-21 4053 2015-05-21 4073
2015-03-23 4010 2015-04-22 4077 2015-05-22 3878
2015-03-24 4049 2015-04-23 4072 2015-05-23 3309
2015-03-25 4073 2015-04-24 3878 2015-05-24 3385
2015-03-26 4068 2015-04-25 3308 2015-05-25 4015
2015-03-27 3874 2015-04-26 3384 2015-05-26 4054

Table 5: A 90 day forecast using a regression model with ARIMA(6,0,5)(0,1,1)7
errors.
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