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Abstract

In financial market, the volatility of returns varies over time. The
purpose of this study is to estimate the dynamic volatility of re-
turns for Deutsche Bank by using an autoregressive conditional het-
eroscedasticity model. Both ARCH and GARCH models have been
used to model observed time series and determine future volatility
based on previous values and volatility. We have applied the assump-
tions of both normal distribution and Student t-distribution of error
terms to models. ARCH(m) and GARCH(1,1) have been compared
by abilities of forecasting volatility based on AIC and Ljung-Box tests.
The result has shown that GARCH(1,1) with normal distribution is
the model that we need use for estimating volatility of returns.
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1 Introduction

With the development of economy, the financial market has gradually be-
come an important part. Volatility in financial markets increases along with
the economic globalization and investment liberalization. Financial theory
is based on the relationship between risk and earnings. Fluctuations in asset
prices to a certain extent reflect the risk characteristics of assets. Under-
standing how price fluctuations change over time is one of the main prob-
lems investors are facing in the decision-making process. Market investors
can take advantage of volatility forecasting in risk management, derivatives
pricing, hedging and portfolio choice.

This thesis is inspired by Robert F. Engle’s contribution to the economic
science. The autoregressive conditional heteroscedastic (ARCH) model was
introduced by Engle (1982), see [8]. The ARCH model is a kind of dy-
namic non-linear time series model and it is used in modeling time-varying
volatility. Besides the ARCH model, the generalized autoregressive condi-
tional heteroskedasticity(GARCH) model, which was developed by Boller-
slev(1986) based on ARCH model,see [8], will also be presented in this thesis.
Both of models are able to predict the same thing, it is interesting to com-
pare these models in their behavior in forecasting financial volatility and use
the one with the best predictive ability in the future.

A presentation of the theory is given in section 4 with a short overview
of tests for determining the properties of data. In section 5 we will intro-
duce how ARCH and GARCH models are constructed and how the models
can be compared. The results of data analysis, modeling of volatility and
comparison of the two models will be presented in section 6.

2 Aim

The aim of this thesis is to estimate dynamic volatility of returns for Deutsche
Bank. The estimated volatility will be determined by comparing perfor-
mance of abilities to forecast financial volatility among ARCH(m) and GARCH(1,1)
models.

3 Data

Deutsche bank is Germany’s biggest bank and one of the most major finan-
cial institutions in the world. It is listed on the stock exchanges around
world. In this thesis we have chosen Deutsche bank’s stock price on Na-
tional Association of Securities Dealers Automated Quotations (NASDAQ),
New York, to examine the models of dynamic volatility. Since the stocks are
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traded every trading day on global financial market, they are presented as
daily time series data. In this thesis the original data from NASDAQ is rep-
resented by daily stock prices from 2012-01-30 to 2015-01-30, i.e. 756 trading
days. The reason we chose the three-years-period is because, it covers both
calm and turbulent conditions on the market. These different conditions
are sufficient for model estimation and hence to get a better predication of
volatility. We use daily close price in our analysis. The original data of daily
close prices is downloaded from NASDAQ’s website, see [10].

4 Theory

In this section we will describe the theory which is used in different parts
in our analysis. It will also be used for reasoning and modeling. The origi-
nal data, which is downloaded from NASDAQ’s website, is daily close stock
price for Deutsch Bank. The data is presented as time series. It shows how
much the value of Deutsche Bank’s price has changed every day. The contin-
uous daily returns, also called daily log-returns, are used for mathematical
modeling.

4.1 Return and Variance

Return is a basic concept in finance. It presents the gain or loss of an asset
in a specific period, it is usually quoted as a percentage, but we use decimal
form in this thesis. We start with the definition of return. Let Pt denote
the price of a stock at time t, t = 1, 2, ..., n

One-period simple(net)return:

R∗t =
Pt − Pt−1

Pt

=
Pt
Pt−1

− 1

(1)

Continuous or log-return:

Rt = ln(
Pt
Pt−1

) (2)

The difference Pt-Pt−1 is the revenue or profit during the holding period.
The denominator Pt−1 is the stock price at one day before time t. The
simple return is always greater or equal than the continuous return. Since
ln(x) ≈ x − 1 for 0.9≤ x≤ 1.1, it holds that Rt∗ = Pt−Pt−1

Pt−1
≈ ln( Pt

Pt−1
), see

[2].
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Figure 1: Comparison of simple return and continuous return

In finance, volatility is a measure for variation of price of an asset over
time. A high volatility means that the stock value could change dramati-
cally over a time period. The typical statistic used to measure volatility is
standard deviation. It is defined as the square root of the average squared
deviation of the data from its mean. The mathematical formula for standard
deviation calculation is

σ̂ =

√√√√ 1

n

n∑
i=1

(Rt − µ̂)2, (3)

where µ is the mean value of returns, n is number of observations.

4.2 Normality test

It is typically assumed that data is normally distributed. Based on skew-
ness and kurtosis, we can access the fit of normal distribution to our data.
Further, two normality tests, Shapiro-Wilk Normality Test and Jarque-Bera
Test, will be also used in order to check normality of data.

4.2.1 Skewness and kurtosis

Kurtosis is a descriptive statistic of the degree of steepness for the distribu-
tion of all values in overall. This statistic needs to be compared with the
normal distribution. If kurtosis equals to three, it indicates that the data
has the same degree of steepness as a normal distribution, see [2]. Kurtosis,
greater than three, indicates that the data has a relatively steeper distri-
bution than normal distribution, as a sharp peak. On the contrary, the
distribution of data is relatively flat compared with the normal distribution,
if the kurtosis is less than three. The greater the absolute value of kurto-
sis value is, the greater difference of the degree of steepness between data’s
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distribution and normal distribution. The kurtosis value can be calculated
according the following formula

γ̂1 =

∑n
i=1(xi − x̄)4

ns4
, (4)

where s is the estimated standard deviation.

Skewness is also a descriptive statistic of data distribution. It describes
the asymmetry of the distribution. Normal distribution has skewness equal
to zero, see[2]. Skewness, which is greater than zero, indicates that the dis-
tribution has a fatter or longer tail on the right side than the left side. It
means that there are more extreme value of data in the right side from the
mean. On the contrary, the tail on the left side of the probability density
function is fatter or longer than the right side if the skewness is less than
zero. The following formula calculates skewness value

γ̂2 =

∑n
i=1(xi − x̄)3

ns3
, (5)

where s is the estimated standard deviation.

4.2.2 Shapiro-Wilk Normality Test

In 1965, Samuel Sanford Shapiro and Martin Wilk published a test of nor-
mality, see [9]. The Shapiro-Wilk Normality test uses the null hypothesis
principle to check whether a sample comes from a normally distributed pop-
ulation or not. The test has an assumption of normal distribution of data,
see [2]. Thus

Assumption:

F(x)=φ(x−µσ ),

φ(x) is the cumulative distribution function of standard normal distribution.

Test statistic:

W =

∑n
i=1(xi − x̄φ−1((i− 1/2)/n)2∑n

i=1(xi − x̄)2
∑n

i=1 φ
−1((i− 1/2)/n)2

(6)

4.2.3 Jarque-Bera Test

The Jarque-Bera test is a goodness-of-fit test of whether the skewness and
kurtosis of data matching a Normal distribution. The statistic JB is defined
as
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JB =
n

6
(S2 +

1

4
(K − 3)2) (7)

where n is the number of observations, S is the sample’s skewness and K is
the sample’s kurtosis, see [2].

4.3 t-test

The t-test is used in order to check whether the expected value of a sample
data from normal distribution is equal to zero. Assume that the sample
X = (x1, x2, ..., xn) is from a normal distribution with expected value µ and
variance σ2. We have the null hypothesis H0 : µ = µ0 against H1 : µ 6= µ0.
The test statistic is

T =
X̄ − µ0

s(X)/
√
n
∼ t(n− 1) (8)

where s(X) is standard deviation of sample. The test statistic is Student
t-distributed with (n− 1) degrees of freedom. If |T | > tα/2(n− 1), then we
reject the null hypothesis. tα/2(n− 1) is the α/2 t-distributed quantile, see
[7]

4.4 Autocorrelation test

The autocorrelation describes the dependency between two observations.
Thus, correlation of random variables at different times. The time periods
between two observations is called lag, for example, lag 1 is between Xt and
Xt−1, lag 2 is between Xt and Xt−2, see [3].

We start by defining the process of returns as

rt = µ+ at (9)

where µ is the expected value of the process rt and at is an independent
random variable with expected value zero and variance σ2.

Consider a return series rt, the lag-` autocorrelation of rt is the correlation
coefficient between rt and rt−`, and it is denoted by ρ`. The autocorrelation
function for rt is estimated as follow, see [4].

ρ̂` =

∑T
t=`+1(rt − r̄)(rt−` − r̄)∑T

t=1(rt − r̄)2
, (10)

where 0≤ ` ≤ T − 1, T is size of the sample and r̄ is estimated mean value
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of rt.

The estimator ρ̂ is asymptotically normally distributed with mean equals
to zero and variance equals to 1

T for any fixed positive integer under the
condition that rt is an independent identical sequence and E(rt

2)<∞.

The Ljung-Box test is used to test whether a series of observations over
time are random and independent based on a number of lags, see [4]. The
Ljung-Box test has a null hypothesis that the series of residual has no au-
tocorrelation for a fixed number of lag, which means ρ(k), k = 1, 2. . . are
equal to zero, against the alternative hypothesis that the correlation coef-
ficient ρ(k), k = 1, 2. . . are different from zero. The test statistic has the
following formula for calculation of autocorrelation coefficient, see [4].

Q(m) = T (T + 2)

m∑
`=1

ρ̂2
`

T − `
, (11)

where T is the sample size, m is the number of autocorrelation lags, and ρ`
is the sample autocorrelation at lag `. The test statistic Q is asymptotically
χ2 distributed with m degrees of freedom.

Partial Autocorrelation Function (PACF) is a function of its ACF and used
to determine the order of model. We introduce the PACF in the following
way. The return is

rt = φ0,1 + φ1,1rt−1 + e1t

rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + e2t

.

.

.

where the first term φ0,1, φ0,2 are constant, φi,j , i 6= j is the coefficient of rt−i
and ejt is error term. The estimated φ̂i,j , i = j is called the lag-j sample

PACF of rt. For example, in the first equation, φ̂1,1 is the lag-1 sample

PACF of rt. In the second equation, φ̂2,2 is the lag-2 sample PACF of rt,
see [4].

4.5 Distribution of error term

In modeling of volatility, the distribution of error term plays an important
roll. The most common assumption of financial volatility is normal distribu-
tion. But if the error term is fat tailed, the normal distribution assumption
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is not suitable. In this thesis, besides the normal distribution, we will also
introduce Student t-distribution.

4.5.1 Normal distribution

The density function of a random variabel Xt is given by

fX(xt) = 1
σ
√

2π
exp−

(xt−µ)
2

2σ2

where µ is the expected value and σ2 is the variance. The standard normal
distribution has mean µ = 0 and variance σ2 = 1.

4.5.2 Student-t distribution

Student-t distribution’s probability density function is given by

fX(xt) =
Γ( ν+1

2
)√

νπΓ( ν
2

)
(1 +

x2t
ν )−

ν+1
2

where ν is the number of degree of freedom and Γ is the gamma function.
When ν →∞ the Student -t distribution approach to the normal distribu-
tion.

5 Methodology

In this section we will present how ARCH and GARCH models are con-
structed, how parameters are estimated and how the models are compared.
Several packages in program R will be listed in the end of section.

5.1 ARCH(m)

In 80’s, Robert.F Engel introduced the AutoRegressive Conditional Het-
eroscedasticity model(ARCH) and successfully applied it to the research of
United Kingdom inflation index volatility, see [5]. It is also the first model
of conditional heteroscedasticity.

With the referens to Tsay, see [4], “the basic idea of ARCH models is that
(a) the at term of an asset return is serially uncorrelated, but dependent,
and (b) the dependence of at can be described by a simple quadratic func-
tion of its lagged values”. ARCH(m) model assumes that the residual term
at is a product of standard deviation σt and errors εt, thus

at = σtεt,
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where εt is a sequence of independent and identically distributed random
variables.

The squared standard deviation σ2
t is the one-step ahead forecast of the

conditional variance. It depends on the previous squared residuals with a
certain weight. Mathematically it can be written as

σ2
t = α0 + α1a

2
t−1 + ...+ αma

2
t−m, (12)

where α0 > 0, αi ≥ 0 for i > 0 are the weights of previous squared residuals,
m is the number of the squared residuals included in the calculus of the
conditional variance. ARCH model models the volatility as a function of
previous squared residuals.

5.2 GARCH(m,s)

GARCH(Generalized Autoregressive Conditional Heteroscedasticity) model
is proposed by Bollerslev based on Engel’s ARCH model, see [8].

The GARCH(m,s)model is given by

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j (13)

Where again ε is a sequence of independent and identically distributed ran-

dom variables, α0 > 0, αi ≥ 0 βj ≥ 0 and
∑max(m,s)

i=1 (αi + βi) ≤ 1, m is the
order of the ARCH terms a2 and s is the order of the GARCH terms σ2, αi
are the weights of squared residuals and βi are the weights of squared stan-
dard deviations, see [4]. GARCH model models the volatility as a function
of both previous squared residuals and previous squared standard deviations.

Determining the order of a GARCH model is not easy, in most applications,
only lower order GARCH models are used, i.e. GARCH(1,1),GARCH(2,1)
and GARCH(1,2), see [4]. In our case, we only use GARCH(1,1) to estimate
the volatility of returns. The GARCH(1,1) is given by

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1 (14)

It means the squared standard deviation is made up of consist of a constant
α0, one-step previous squared residual with weight α1 and one-step previous
squared standard deviation with weight β1.

5.3 Parameter estimation

Maximum Likelihood method is a common approach to estimate param-
eter. In ARCH(m) estimation, for a set of T independent and identi-
cally distributed random variables data a1, a2, ..., aT , which comes from a
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distribution with a known density function f(x) and unknown parameter
α = (α0, α1, ..., αm), see [4]

Under the assumption of normally distribution of εt, the likelihood func-
tion is

L = f(am+1, ..., aT |α, a1, ..., am)

=
T∏

t=m+1

1√
2πσ2

t

exp(− a2
t

2σ2
t

)
(15)

and the loglikelihood function is

` = ln(L)

= −1

2
ln(2π)− 1

2

T∑
t=m+1

ln(σ2
t )−

1

2

T∑
t=m+1

a2
t

σ2
t

(16)

Under the assumption of Student t-distribution of εt,the likelihood function
is

L = f(am+1, ..., aT |α, a1, ..., am)

=
T∏

t=m+1

Γ((ν + 1)/2)

Γ(ν/2)
√

(ν − 2)π

1

σt
(1 +

a2
t

(ν − 2)σ2
t

)−(ν+1)/2
(17)

and the loglikelihood function is

` = ln(L)

= (T −m) ln(
Γ(ν+1

2 )

Γ(ν2 )
√
π(ν − 2)

)− 1

2

T∑
t=m+1

ln(σ2
t )

− ν + 1

2

T∑
t=m+1

ln(1 +
a2
t

(ν − 2)σ2
t

)

(18)

where σ2
t = α0 + α1a

2
t−1 + ...+ αma

2
t−m can be evaluated recursively for an

ARCH model.

In the same way, the log-likelihood function fo GARCH(1,1) model is

Under the normality assumption:

` = −1

2
ln(2π)− 1

2

T∑
t=1

ln(α0 + α1a
2
t−1 + β1σ

2
t−1)

− 1

2

T∑
t=1

a2
t

α0 + α1a2
t−1 + β1σ2

t−1

(19)
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Under the Student t assumption:

` = T ∗ ln(
Γ(ν+1

2 )

Γ(ν2 )
√
π(ν − 2)

)− 1

2

T∑
t=1

ln(α0 + α1a
2
t−1 + β1σ

2
t−1)

− ν + 1

2

T∑
t=1

ln(1 +
a2
t

(ν − 2)α0 + α1a2
t−1 + β1σ2

t−1

)

(20)

5.4 AIC

AIC, Akaike information criterion, is a measure of godness of statistical
model fitting for a given set of data. The AIC is defined as

AIC =
−2

T
ln(L) +

2

T
m (21)

where ln(L) is log-likelihood function T is the sample size and m is the
number of parameters, see [4]. The same data is used in models and the one
with smallest AIC value is the best, see[6]. We will compare different models
with AIC value to conclude which model has the best ability to forecast the
financial volatility.

5.5 Back test

5.5.1 Confidence interval

We will construct 95% confidence intervals based on the estimated volatil-
ity from ARCH and GARCH models with normal distribution and Student
t-distribution.

For a stochastic variabel Q, with E[Q] = µ and V ar(Q) = θ2, we have

P (Q ≤ qα) = α.

where qα is the quantile of α and α is a percentile. To standardized the
distribution, we subtract the mean and divide by the standard deviation.

P (Q−µθ ≤ qα−µ
θ ) = P (Q̃ ≤ q̃α) = α.

The stochastic variable Q̃ has E[Q̃] = 0 and V ar(Q̃) = 1. In order to
determine the quantile from the distributions of the estimated volatility
which are calculated with our models, we need multiply them in previous
formula. Thus,

P (Q̃σ̂ ≤ q̃ασ̂) = P (W ≤ wα) = α.

The interval of quantile wα and −wα is the confidence interval we want. The
stochastic variable W has E[W ] = 0 and V ar(W ) = σ̂2
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5.5.2 Binomial test

The binomial test is an exact test of the statistical significance of deviations.
If we have a binomial distributed stochastic variable Y and let k denote
the number of ”success”, s denote the expected proportion of successes if
the null hypothesis is true and n is the total number of observations, then
Y ∼ Bin(n, s).The probability of getting k successes in n is

P (Y = k) =
(
n
k

)
pk(1− p)n−k.

The test has the null hypothesis that the real probability of success is equiv-
alent to s, and the alternative hypothesis that it is not equivalent to s.

5.5.3 Back-testing

Let T denote the number of observations of a data-set and τ denote a spe-
cific position in the interval [1, T ] such that [k, k + τ ] belongs to [1, T ]. In
this thesis we use the observations in [1, τ ] to estimate volatility next time
point, i.e τ + 1. In this way, we get a new data-set of estimated volatility
from position τ + 1 to position T . We construct the 95% confidence interval
based on the estimated volatility. Let Kt denote the estimated confidence
interval, Rt denote the real log-returns and define the indicator variable I
indicate violations, then we have the process It is a process of i.i.d. Bernoulli
variables with success (i.e violation) probability 1− α, see [1].

It =

{
1 Rt /∈ Kt

0 Rt ∈ Kt

Then we can calculate the per cent of observed violations p =
∑T
t=τ+1 It
T−τ .

Finally, we can test the null hypothesis H0 : p = 1 − α against alternative
hypothesis H1 : p 6= 1− α by a binomial test.

5.6 Packages and Commands in R

In this thesis, we are using program R for data analysis and modeling.
The benefit of using program R lies in the fact that it brings a lot of
complete packages. Two main packages are fBasics and fGarch for our
analysis. fBasics package collects functions to investigate basic proper-
ties of data. The main function of this package for our data analysis is to
do hypothesis testing. With commandos shapiroTest and jarqueberaTest,
One Sample Normality Tests, i.e. Shapiro-Wilks normality test respectively
Jarque-Bera normality test could be done. fGarch is a specific package for
ARCH/GARCH modeling. The procedure garchF it is used for parameter
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estimation of ARCH/GARCH models by the maximum log-likelihood ap-
proach. With an addition of cond.dist = std, we can change the default
value, which is the normal distribution, to Student t-distribution. This pro-
cedure will also calculate the AIC value of each model.

6 Results

6.1 Analysis of data

We start to plot our data in program R. Figure 2 below presents the devel-
opment of Deutsche Bank stock daily close price on NASDAQ during the
period of three years, i.e. 756 observations from 2012-01-30 to 2015-01-30.
Between index 50 and index 125 i.e. around April 2012 and July 2012, the
stock price is on the decline, reaches the lowest price in three years, then the
stock price rebounds, is on the rise, and reaches the highest price at index
500 i.e. around February 2014. After that, price falls. The data appears to
have quite high amplitude of the fluctuation over certain time period.

Figure 2: Daily close price for Deutsche Bank

Figure 3 is the daily log-returns of our data. Remember, the calculation
of return used here, is defined by Rt∗ = Pt−Pt−1

Pt−1
≈ ln( Pt

Pt−1
) It is easy to see

return changes with time. Most observations is on the interval [-0.05,0.05].
Amplitude of return data has changes over time, it is relatively high in the
beginning of period, then it tends to be calm, fluctuate within interval.

Since kurtosis and skewness are descriptive statistics of data distribution, it
is useful for testing the sample data’s distribution with normal distribution.
As we present in Skewness and Kurtosis subsection, normal distribution’s
skewness and kurtosis equal to zero and three respectively. We list mean,
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Figure 3: Daily log-return for Deutsche Bank

standard deviation, skewness, kurtosis, Shapiro-wilk test and Jarque-Bera
test in figure 4.

Figure 4: Table of basic data analysis

The skewness of log-return series of Deutsche Bank stock price is 0.00204,
which is very close to zero. It indicates that observations are relatively sym-
metrically distributed round the mean value however with more data placed
on the left side from zero than right side. The kurtosis of log-return series
is 1.1299, which is less than three. It indicates that data has a relatively
steeper distribution than normal distribution, excess peakedness. Therefore,
it could be assumed that the sample is symmetric distributed and has fat-
tail characteristic. P -value of both Shapiro-wilk test and Jarque-Bera test
are significant, which means we should reject null hypothesis. This is to say,
the sample is not normally distributed.
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Another way to observe data is Quantile-Quantile plot (QQ-plot). By plot-
ting the log-returns, we see easily that the sample data is not normal dis-
tributed due to that some observations deviate from the straight line, see
figure 5. Above all, we can conclude that the data is not normal distributed.
For the financial time series data, other distributions could be considered.
For example, Student t-distribution could be assumed for data. Figure 6
is a QQ-plot for Student t-distribution of log-return data. More observa-
tions tend to lie on the line comparing with normal QQ-plot. However,
it is difficult to conclude that data is Student t-distributed due to several
observations deviate from the straight line.

Figure 5: QQ-plot of log-return series for normal distribution

Figure 6: QQ-plot of log-return series for Student t-distribution
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6.2 Model building

We refer to Tsay’s method to build a volatility model, see [4]. Serial depen-
dence in data will be tested and a mean equation will be specified to remove
any linear dependence if it is necessary. Then we will test residuals of the
mean equation for ARCH effects. A volatility model will be established in
next step. Finally, we do model checking.

6.2.1 Specifying a mean equation

We start to specify a mean equation for the return process rt,

rt = µt + at.

Assume that rt could be described by a mean model and a volatility model.
The mean model describe term µt. We plot the autocorrelation function of
log-return series in figure 7. The purpose of the autocorrelation function is
to measure dependency between the value in the present and the value a
few days in the past.

Figure 7: Autocorrelations of daily log-return series of Deutsche Bank

As we see, all sample ACFs are close to zero, the series is a white noise
series. Clearly, the serie has no serial correlation. In addition, in order to
detect the serial correlations, we can also test the sample data, log-return
series, with Ljung-Box test. According to the earlier knowledge, the number
of lags is given by ln(the number of observations), i.e. ln(756). So lags up
to 7 are chosen for calculation of Q-statistic of Ljung-box test. Q-statistic
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is defined by formula (10). Ljung-Box test has a null hypothesis H0 : ρ = 0
against alternative hypothesis H1 : ρ 6= 0. Ljung-Box test gives us a p-value
equal to 0.8004, which is non-significant with 95% significance level, we don’t
reject null hypothesis. Thus, the log-return series has no serial correlation.
Another test needs to be done is to check if the series’ mean is signifi-
cantly different from zero. We have a null hypothesis H0 : µ = 0 against
alternative hypothesis H1 : µ 6= 0 with 95% significance level. The t-test
gives us a p-value equal to 0.4884, greater than 5%, which is non-significant.
The estimated mean value is in 95% confidence interval, [-0.0019602137,
0.0009372022]. So we do not reject the null hypothesis. Thus, our mean
equation equals to zero. The return process can be represented as rt = at

6.2.2 Testing for ARCH effect

We have already determined that the return process can be written as
rt = at, now we need test it for ARCH effect. The squared series a2

t is
used to check for conditional heteroscedasticity, which is also known as the
ARCH effect. There are two main test for ARCH effect, Ljung-Box test and
Lagrange multiplier test[4]. Here we focus on the Ljung-Box test. Lags up to
7 are chosen for calculation Q-statistic of Ljung-Box test. The Q-statistic is
defined by formula (10). The Q(7) value is 63.517. As we mentioned earlier,
the test statistics is asymptotically chi-squared, χ2 distributed with k = 7 de-
grees of freedom. The p-value is 2.985E-11, which is extremely close to zero.
It means that ARCH-effect exists. The ACF figure of squared log-returns
below (figure 8) also confirms that the series shows strong ARCH-effect.

Figure 8: Autocorrelations of squared log-return series of Deutsche Bank
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6.2.3 Specifying a volatility model

In this step we will examine the ARCH and GARCH models with two
kinds of different distribution of the error term, i.e normal distribution and
Student-t distribution, to estimate and forecast the financial volatility using
the stock return for Deutsche Bank. We are especially interested in the co-
efficients, whether they are statistically significant or not. For comparison
of models, we are interested in AIC values.

We start to determine the order in ARCH model. With reference to Tsay,
see [4], the partial autocorrelation function (PACF) of a2

t can be used for
order determination. PACF is plotted on figure 9.

Figure 9: Partial autocorrelation of squared error term

As we see, it is difficult to determine the order from PACF plot. With the
help of a producer in program R, we get a estimated order of 5. ARCH(5)
with normal distribution and Student-t distribution respectively has the
following estimation of coefficients and AIC, see figure 10. Note that values
with ”**” marking are statistically significant at 10% significance level.
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Figure 10: Parameter-estimating and AIC for ARCH(5)

With help of GARCH(1,1) model, we have following estimation of coef-
ficients and AIC on the figure 11.Note that values with ”**” marking are
statistically significant at 10% significant level.

Figure 11: Parameter-estimating and AIC for GARCH(1,1)

Since the constant term means the long-term volatility, the non-significant
α0 is not logical. The constant term α0 can be calculated by hands. We
know that

α0 = (1− α1 − α2)VL

where α1, α2 and the long-term volatility VL are known. Hence, the cal-
culated α0 is 2.491665e-06 for GARCH(1,1) with normal distribution and
1.936591e-06 for GARCH(1,1) with Student-t distribution. In summery, the
following four equations of volatility models are determined.

ARCH(5) with normal distribution:

σ2
t = 0.0002132 + 0.1244a2

t−1 + 0.1277a2
t−3 + 0.09193a2

t−4 + 0.07829a2
t−5

ARCH(5) with Student t-distribution:

σ2
t = 0.0002048 + 0.1328a2

t−1 + 0.1479a2
t−3 + 0.1263a2

t−4

GARCH(1,1) with normal distribution:
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σ2
t = 2.491665 ∗ 10−6 + 0.04122a2

t−1 + 0.9527σ2
t−1

GARCH(1,1) with Student t-distribution:

σ2
t = 1.936591 ∗ 10−6 + 0.04459a2

t−1 + 0.9507σ2
t−1

There are several way to compare the advantage of models. Here we deter-
mine to contrast the performance of models by comparing AIC values and
results from model checking. We consider the smaller AIC model has, the
better model is.

6.2.4 Model checking

To check the validity of volatility equations, we use the Q-statistics of ât
and ât

2, where ât is a sequence of independent identical random variables
of the standardized residuals, see [4].

ât = at
σt

With the standardized residuals ât we test the null hypothesis that there
are no autocorrelations in the standard residuals series, and test the null
hypothesis that homoscedasticity exists in series with the squared standard-
ized residuals ât

2. Results are summarized in figure 12 and 13. Ljung-Box
test gives us all p-value greater than 5%, which means we should not reject
both null hypothesis.

Figure 12: Ljung-box test of ât

Figure 13: Ljung-box test of ât
2

ACF plots of standardized residuals ât on figures 17-20 in appendix for
all four models show that no autocorrelations exist in standardized residual
series. ACF plots of squared standardized residuals ât

2 on figures 21-24 in
appendix show that GARCH models perform better than ARCH models in
homoscedasticity test.
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We can see GARCH models perform better than ARCH models in both
AIC and homoscedasticity test. ACF plots of standardized residuals and
squared standardized residuals are almost identical for both GARCH(1,1)
model with normal distribution and GARCH(1,1) model with Student t-
distribution, but GARCH(1,1) with normal distribution has a smaller AIC
value. In order to check the validity of the distribution assumption for
GARCH(1,1) models, we plot QQ-plots of standardized residuals with nor-
mally distribution and Student t distribution on figure 14 and figure 15
respectively.

Figure 14: QQ-plot of standardized residuals with GARCH(1,1), normal
distribution

Figure 15: QQ-plot of standardized residuals with GARCH(1,1), Student
t-distribution
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We can see there is one extreme observation that lies far away from
the straight line in both plots. It is difficult to conclude which distribution
assumption is better.

6.3 Back-testing

For back-testing purposes the data is split into two sub-samples. We have
the full sample of the Deutsche Bank log-returns of 755 observations in total.
We use the sample of the first 500 observations to estimate volatility in the
rest of positions, i.e. from 501 to 755, 255 observations. The sample of the
estimate volatility will be compared with the sample of the real value, i.e.
the last 255 observations in the full sample. We estimate the confidence
intervals of the level 95% based on the estimated volatility from our models,
which means that we assume that 5% will not be in the interval. All models
have an amount of log-returns violate the estimated confidence interval. We
calculate per cent of violations from each model and test the null hypothesis
H0 : p = 0.05, i.e per cent of violations equals to 0.05, against the alternative
hypothesis H1 : p 6= 0.05 with binomial test. The results of the number of
violations, per cent of violations and p-value from binomial test of each
model are summarized in figure 16.

Figure 16: Results of backtesting

We can see that we have the same values in both normal distribution and
Student t-distribution of ARCH and GARCH models, so the distributions
have no big impact. GARCH(1,1) models are closest to the wanted level
and ARCH(5) models have almost a too low level of violations. P -values
are non-significant, which means with 5% significance level we could not
reject the null hypothesis.

7 Discussion and conclusion

The purpose of this thesis is to estimate dynamic volatility of returns for
Deutsche Bank based on previous information by using ARCH(5) and GARCH(1,1)
models. The sample is a set of series of Deutsche Bank’s daily log-returns
during the past three years. We have reviewed if the log-returns could be
considered to be normal distributed or Student t-distributed. Since we can
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not determine which distribution is most suitable, we have applied both dis-
tributions to these two models.

ARCH(5) models under normal- and Student t-distribution assumptions
have five and four significant parameters respectively. GARCH models have
significant parameters of both ARCH terms and GARCH terms but a non-
significant parameter of the constant term. Since the constant term rep-
resent the long-term volatility which the expected value of variance will
converge to, it is required to be in volatility equation.

Further, we have checked validity of volatility equations by using the stan-
dardized residuals. The Ljung-Box tests of autocorrelation and heteroscedas-
ticity in the models have shown that neither autocorrelation nor heteroscedas-
ticity existed in these models. But if we take a closer look to the ACF plots
of squared standardized residuals of ARCH(5) models, we would discover
several numbers of lags exceed the “blue marking” limits. When it comes
to AIC, the GARCH(1,1) models have a lower AIC value than ARCH(5)
models. It means that GARCH(1,1) models have generally better ability
in forecasting financial volatility. However, the difference of AIC values
between two GARCH(1,1) models are little. Furthermore, we checked the
validity of the distribution assumption of GARCH(1,1) models with QQ-
plots of standardized residuals. Both QQ-plots showed that the sample was
not certain nomal- or Student t-distributed.

We have split the full sample of Deusche Bank log-returns into two sub-
samples. By using the sample of the first 500 observations we have estimated
volatility of next 255 trading days. The sample of last 255 observations from
the full sample has been used for comparison. We also have constructed
confidence intervals based on the estimated volatility and done back-testing
by calculating amount of log-returns that violate the estimated confidence
interval and tested 95% confidence interval of per cent of violations by bino-
mial test. The results have shown us that there is difference in distributions
among ARCH(5) and GARCH(1,1). All models have almost 5% violations
but GARCH(1,1) models are closer to the wanted level.

Further investigation of GARCH model with more lags could be considered
in next time. An additional alternative could be to estimate volatility by
using other advanced models for example EGARCH, IGARCH and GJR-
GARCH. In our research GARCH(1,1) models are relatively better than
ARCH(5) model based on AIC values, autocorrelation and heteroscedastic-
ity plots of standardized residuals and back-testing. The differences in dis-
tributions are little, the assumption of distribution has no big impact. But
GARCH(1,1) with assumed normal distribution has the smallest AIC value.
Based on the analysis, we can conclude that GARCH(1,1) with assumed nor-
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mal distribution is the best choice of model for estimating volatility among
four models.
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8 Appendix

The autoccorelation functions of standardized residuals for four models.

Figure 17: Autocorrelation function of ât, ARCH(5) Gaussian

Figure 18: Autocorrelation function of ât, ARCH(5) Student t
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Figure 19: Autocorrelation function of ât, GARCH(1,1) Gaussian

Figure 20: Autocorrelation function of ât, GARCH(1,1) Student t
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The autoccorelation functions of squared standardized residuals for four
models.

Figure 21: Autocorrelation function of ât
2 ARCH(5) Gaussian

Figure 22: Autocorrelation function of ât
2 ARCH(5) Student t
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Figure 23: Autocorrelation function of ât
2 GARCH(1,1) Gaussian

Figure 24: Autocorrelation function of ât
2 GARCH(1,1) Student t
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