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Abstract

The main aim of this study is to investigate the factors that have a

potential influence on the final selling price of apartments. The use of

multiple linear regression and a number of transformations will result

in finding an informative model that describes if and how the predictor

variables studied influence the response variable of final selling price

of apartments. The predictive ability of the models chosen will be

investigated in the hope of using the final model for future predictive

purposes of selling prices. The study has been limited to investigating

the area of Södermalm in Stockholm, Sweden and the final conclusions

can be applied to this area only. The final model that best fit the data

included a use of log transformations on the response variable and one

of the predictor variables. The variable with the most influence on the

selling price of apartments was, as suspected, the area of the apart-

ment. Variables that showed non-significant within the final model

were regarding the brokerage company used as well as during which

season the apartment was listed on the market.
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1 Introduction

An interest in finding out the reason behind the high selling prices of certain

apartments in Stockholm is the main reason behind this thesis. A wish to gain

more knowledge of the Swedish real estate market, specifically at Södermalm,

as this is a part of Stockholm that seems to have grown in popularity in the

past few years. The real estate market in inner-city Stockholm is well known

amongst the Swedish population for being expensive, and the prices have been

increasing for the past few years. ”Apartment prices on Södermalm has risen

by an average of 21 percent in the past year. During the same period, consumer

price inflation rose by 0.1 percent.”[1]

To do this, an in-depth regression analysis will be pursued to find a model which

correctly describes the relationship between the selling price of an apartment

and a number of explanatory variables. A use of linear models, log and Box-

Cox transformations and model selection devices such as stepwise selection will

result in concluding which variables have a significant effect on the selling price

of apartments. The final chosen model will then be used for prediction of future

apartment prices, in order to assess the prediction ability.

This study will be helpful for people who are interested in purchasing or selling

an apartment in the south part of inner-city Stockholm. It will be easier for both

private parties as well as brokers to know what to look for when an apartment

enters the market. Questions for the reader to keep in mind throughout the

thesis, that can be considered as the focal point of this study, are stated below.

• Is it, as expected, the area of the apartment that has the most influence

on the selling price, or are other factors of more importance?

• Can some factors be disregarded in the pricing of an apartment?

• Will the final model be able to be used for predicting the future selling

price of apartments?
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The thesis is divided into five chapters, starting out with the Introduction where

the background of the subject has been discussed and the purpose of the analysis

was stated. The Theoretical Framework will provide knowledge of the theory

supporting the methods used in the following Analysis and Results chapter.

Finally, all results will be discussed and conclusions drawn in the Discussion

chapter.

2 Theoretical Framework

Within the following section, the necessary theoretical material that will be

referred to and utilized in the remainder of the thesis will be reviewed. The

reader will receive information crucial to understanding the analysis following as

well as for discussing the results. Lineära Statistiska Modeller by Rolf Sundberg

[2] as well as Practical Regression and Anova using R by Julian Faraway [3] will

be used as references throughout this chapter.

2.1 Linear Regression

There are a number of assumptions when using linear regression, stated below:

Linearity : the relationship between the response variable and the predic-

tor variables are assumed to be linear to each other

Normality : the residuals of the model are assumed to be normally dis-

tributed

Homoscedasticity : constant variance of residuals

Absence of Multicollinearity : predictor variables are not dependent on

each other
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2.1.1 Simple Regression

The model for simple linear regression is defined as the following:

yi = α+ βxi + εi, i = 1, ..., n (2.1)

where ε ∼ N(0, σ2) and i.i.d. in (2.1)

2.1.2 Multiple Regression

The model for multiple linear regression is defined below:

yi = α+ β1x1i + β2x2i + ...+ βmxmi + εi, i = 1, ..., n (2.2)

where ε ∼ N(0, σ2) and i.i.d.

Written into matrix form, we have the following:

y = Xβ + ε, (2.3)

where y = (y1...yn)T , ε = (ε1...εn)T , β = (β1...βn)T and

X =


1 x11 x12 . . . x1n

1 x21 x22 . . . x2n

. . . . . . . . . . . . . . . . . . . . . . . . .

1 xm1 xm2 . . . xmn


where the ones account for the intercept parameter α.
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2.1.3 Hypothesis Testing

The hypothesis we will be testing is whether the parameter term β has a signif-

icant effect on the response variable.

H0 : β1 = β2 = ... = βn = 0

2.1.4 Estimating Parameters

The method of parameter estimation used is ordinary least squares (OLS) using

a built-in system in R. If the errors are correctly assumed i.i.d, OLS returns

β̂ as the maximum likelihood estimator, and is according to the Gauss-Markov

theorem the best linear unbiased estimator (BLUE).

The best estimate of β is the one which minimizes the sum of the squared

errors, εT ε. With some calculations, we get that β̂ = (XTX)−1XT y, where β̂

is normally distributed with N(β, σ2(XTX)−1).

This is plugged into ŷ = Xβ̂ which in turn provides the estimation for the

residuals. This is used for calculation of the estimate for σ2:

σ̂2 =
ε̂T ε̂

n−m− 1
=

∑n
1 (y − ŷ)2

n−m− 1
(2.4)

where n−m− 1 are the degrees of freedom (df).

Finding confidence intervals for the parameters is done by the following:

β̂i ± t(α/2)(n−m− 1)σ̂
√

(XTX)−1 (2.5)

where (n-m-1) are the df. The t-test is used in this which is also used for testing

the hypothesis that β has a significant effect on the response.
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2.2 Model Efficiency

Several things need to be considered when determining the efficiency of the

model you have chosen. The ways used in this analysis are explained below.

2.2.1 Akaike Information Criterion

The Akaike Information Criterion (AIC) measures the quality of models for a

given data set. The preferred model will be the one with the lowest AIC value.

It is calculated using the log likelihood within the formula:

AIC = 2k − 2logL(β̂|y) (2.6)

2.2.2 Multicollinearity

Multicollinearity can be the results of, for instance, having two similar param-

eters that in turn are highly correlated to each other. ”Multicollinearity is a

state of very high intercorrelations or inter-associations among the independent

variables. It is therefore a type of disturbance in the data, and if present in the

data the statistical inferences made about the data may not be reliable.” [4]

A way of finding issues with multicollinearity within data is investigating the

VIF values within the model.

2.2.3 Variance Inflation Factor

The Variance Inflation Factor (VIF) calculates how much the variance of the

estimated regression coefficients β̂i is increased when combined with parameters

with high collinearity. It is a way of deciding whether multicollinearity will show

to be an issue in the future analysis. The VIF value that is used as a maxi-

mum limit is usually 5 or 10, this is when multicollinearity will be considered a
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problem. VIF is defined as

V IF =
1

1−R2
i

(2.7)

where R2
i is the coefficient of determination for Xi with the remaining predictor

variables on the right hand side.

2.2.4 Coefficient of Determination

The coefficient of determination, R2, is the percentage of variance explained by

the model. The definition of this is:

R2 =
ESS

TSS
= 1− RSS

TSS
= 1−

∑n
i (yi − ŷi)2∑n
i (yi − y)2

(2.8)

where ESS=Explained Sum of Squares, RSS=Residual Sum of Squares, TSS=

Total Sum of Squares, and TSS=ESS+RSS.

A R2 value of 1 indicates that 100% of the variation in the response variable can

be explained by the variation in the model. The Adjusted R2 accounts for the

amount of predictor variables included in the model and calculates the decrease

in residuals, having the following relationship with R2:

1−R2
adj = (1−R2)

dftot
dfres

(2.9)

2.2.5 Stepwise Regression

Within stepwise regression there are three main ways of going about choosing

a final model. In R, the inclusion of the parameter in the model relies on the

AIC value.

• Forward Selection : An empty model will analyse every variable and in-

clude those that are significant.
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• Backward Elimination : A full model will be checked step by step to see

if there are variables that need to be excluded from the model.

• Stepwise Selection : After each instance of adding a variable by forward

selection, all previous variables added are checked using backward elimi-

nation.

We will be using stepwise selection as the main stepwise regression tool, as it

uses a combination of the forward selection and backward elimination.

2.2.6 Residuals

The residuals can be calculated from equation (2.2).

ε̂ = y − ŷ

One important diagnostics plot is the one which plots the residuals ε̂ against

the fitted values ŷ. This is where non-constant variance can be spotted. For

homoscedastic data, there will be a band of residuals symmetrically distributed

around the x-axis. As the assumption of regression is that the residuals are

normally distributed, it is also important to check whether there is any skewness

of the residuals.

”Skewness is a measure of the degree of asymmetry of a distribution. If the left

tail (tail at small end of the distribution) is more pronounced than the right tail

(tail at the large end of the distribution), the function is said to have negative

skewness. If the reverse is true, it has positive skewness. If the two are equal,

it has zero skewness.” [5]

The formula for calculating the Fisher-Pearson coefficient of skewness is defined

as the following:

g1 =

n∑
i

(yi − y)3/n

s3
(2.10)

where s is the standard deviation.
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2.3 Model Transformation

In order to improve fit of models and possibly correct disturbances such as

heteroscedasticity, transformations of the variables may be of help. Faraway

discusses this in chapter 8 in ’Practical Regression and Anova using R’.

2.3.1 Log Transformation

In the typical multiple linear model shown in Equation (2.2), the errors enter

additively to the model.

logyi = α+ β1x1i + β2x2i + ...+ βmxmi + εi, (2.11)

When taking the log of the response, the model with the original scale of the

response changes. The errors enter multiplicatively in to the model, which means

that interpreting the regression coefficients is different when having transformed

the response variable. In this case, a one unit increase in x1 would result in a

multiplicative increase of eβ̂1 on the response.

ŷi = eα̂eβ̂1x1ieβ̂2x2i ....eβ̂mxmi (2.12)

Other possible transformations would be to instead transform one or more pre-

dictor variables (2.13) or transforming both response and predictor variables

(2.14).

yi = α+ β1logx1i + β2logx2i + ...+ βmlogxmi + εi, (2.13)

logyi = α+ β1logx1i + β2logx2i + ...+ βmlogxmi + εi, (2.14)
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2.3.2 Box-Cox Transformation

The Box-Cox method, explained in chapter 9 in ’Practical Regression and Anova

using R’[3] is designed for choosing the transformation to best fit the data

available. Transforming the response variable is done in the following way:

tλ(y) =


yλ − 1

λ
λ 6= 0

logy λ = 0

(2.15)

The value for λ̂ is found by maximizing the profile log-likelihood shown in the

equation below.

L(λ) =
n

2
log(

RSSλ
n

) + (λ− 1)

n∑
i

log(yi) (2.16)

where RSSλ is the residual sum of squares when tλ(y) is the response variable.

2.4 Prediction

Testing the fit of a model can be done by using it on a new set of historical data.

This is a sort of backtesting done by using the already estimated beta values on

the new data, to achieve a vector of new response values.

y∗i = Xnew ∗ β̂ (2.17)

In order to compare one would look at the residuals yi−y∗i where yi is the actual

historical values one can compare the predicted values with. It is necessary to be

careful when calculating the new predicted values for the transformed models.

For example, predicting for a log model mean having to transform back ey
∗
i .
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2.4.1 Mean Square Error of Prediction

If yi
∗ is a vector of n predictions, and yi is the vector of observed values cor-

responding to the inputs to the function which generated the predictions, then

the mean square error of the prediction can be estimated by

MSEP =
1

n

n∑
i=1

(yi − y∗i )2 (2.18)

The square root of this measurement can also be used as a prediction of the size

of the errors, called RMSEP (Root Mean Square Error of Prediction).
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3 Data

The data used in this thesis has been obtained through the company Booli

Search Technologies AB [6] which is an information search service based on the

Swedish real estate market. Data was downloaded via the web site’s own API

and include observations from the real estate market in Stockholm since year

2012, with a total of 6281 apartments sold in the region of Södermalm. The

language used for the statistical computing in this analysis was R, with Excel

used as a stepping stone for data import.

3.1 Original Data Set

The original data file obtained included the following variables:

PriceS : The final selling price of the apartment.

PriceL : Accepted price when listing first came on the market.

Area : The size of the apartment measured in square meters.

Rent : Monthly cost of living in said apartment.

Year : Construction year of apartment building.

DateL : The date when the apartment was listed.

DateS : The date when the apartment was sold.

Region : The specific region within Södermalm.

Floor : Which floor the apartment is on.

Broker : The brokerage company used for the sale.

Ocean : Distance to the ocean.
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3.2 Variable Transformation

Removing, adding or changing variables in regards to our original data set can

help simplify and prevent issues when doing the analysis. Something to keep in

mind is that we plan on using the final model for prediction, which prevents us

from using predictor variables that contain information on already sold apart-

ments. If, for example, one would like to find out whether the amount of days

that the apartment was out on the market before it was sold, it could easily be

added to the model. However, since the model will be used for prediction, one

will not have access to the selling date ’DateS’, which is why it will be excluded

from the analysis. For prediction purposes, data was separated at the 2014/2015

year mark within the ’DateL’ variable. The reason for this is so that we can fit

a model on our data up until 2015, and then use this model to assess the fit on

our leftover data in year 2015.

At first glance, it could be seen that there were around 1500 missing observations

within the ’Floor’ variable, some of which were included in rows that had several

missing parameter values. In order to see if there was any systematic reason for

these, we took a look at the individual observations for these rows and plotted

them against ’PriceS’, which can be seen in Figure 1 in the appendix. We

concluded that there was no specific reason for this and in the decision of either

excluding the entire ’Floor’ variable from the analysis, or removing all rows that

contained missing observations, we decided on the latter.

The data obtained from Booli regarding in which regions of Södermalm the

apartments were located were not correctly specified. Using longitude data for

each listing, we redefined the variable ’Region’ using three overall regions. Two

other variables that were grouped into categorical variables were ’Broker’ and

’Floor’. ’Season’ was created as a new categorical variable that used the infor-

mation within ’DateL’ to specify during which time of the year the apartment

was released on the market. The continuous variable ’Year’ was changed to

′Age′ = 2015−′ Y ear′, a variable showing how old the apartment building is.
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Considering the fact that highly correlated predictor variables create issues in

regression models, we decided to create two new variables that used the informa-

tion from variables that had a higher probability of creating problems. ’PriceL’

is quite possibly very highly correlated with our response variable, which is the

reason for the creation of ′PriceArea′ =
′Price′
′Area′ . The variables ’Rooms’ and

’Area’ are also quite possibly highly correlated, resulting in the creation of a

variable showing the area per room, ′AreaRoom′ =
′Area′
′Rooms′ .

3.3 Final Data Set

After the modifications in our given data set, we present the final collection of

variables that will be used in our analysis.

PriceS : Continuous response variable, ranging from 1450-15200(1000kr).

PriceArea : Continuous variable, ranging from 34782-115122(kr/m2).

AreaRoom : Continuous variable, ranging from 13.5-54(m2/room).

Area : Continuous variable, ranging from 11-217(m2).

Rent : Continuous variable, ranging from 100-8664(kr).

Age : Continuous variable, ranging from 4-370(years).

DateL : Continuous variable, ranging from 2011-10-21 to 2014-12-31(date)

Region : Categorical variable, observations ’Center’(baseline), ’East’ and

’West’.

Floor : Categorical variable, observations ’Low’(baseline), ’One’, ’Two’,

’Three’, ’Four’, ’High’.

Broker : Categorical variable, observations ’Small’(baseline), ’Medium’,

’Large’.

Season : Categorical variable, observations ’Autumn’(baseline), ’Winter’,

’Spring’, ’Summer’.
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The response variable PriceS is plotted against the continuous variables in Fig-

ure 1 and the categorical variables in Figure 2, in order to get an overview.
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Figure 1: Plot of Response vs Continuous Variables
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4 Analysis and Results

This section shows the analysis technique used to find a model that fits our data.

Analysed below will be regarding each section of the theoretical framework.

4.1 Linear Regression

In order to get an overview of how well the predictors work on their own against

the response variable, we perform simple linear regression of each predictor

variable, with the results shown below:

Variable P-value R2

Region < 2.2e− 16 0.02874766
Rent < 2.2e− 16 0.4164523
Floor < 2.2e− 16 0.02418968
PriceArea 9.45e− 14 0.01622919
AreaRoom 0.04185 0.001574889
Area < 2.2e− 16 0.8236692
Broker 0.2196 0.002789041
Age 0.1011 0.0003346439
Season 0.0001737 0.002667207
DateL < 2.2e− 16 0.01484966

Table 1: Linear Regression Values

It is shown above that all variables except ’Broker’ and ’Age’ were significant

on the 0.05 level in the simple regression. The variable that seems to have the

most influence on the response is ’Area’ with a R2 value of 0.82.
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4.2 Multiple Linear Regression

As discussed shortly in the Data chapter, the reason for exchanging the original

predictor variable ’Rooms’ for the new ’AreaRoom’ will be discussed first. When

attempting to place both variables in the full multiple linear regression model,

we checked the correlation between them, which came out to 0.912. Running the

regression made it evident that the VIF values of both of these variables were

above 5. We figured this might be a reason for the heteroscedasticity evident in

the model, which can be seen in the residual plot in Figure 3 below.
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In an attempt to solve this problem, we made the changes in variables and

equation (4.1) below became our so-called ”original” model.

PriceSi = α+ β1PriceArea+ β2AreaRoom+ β3Area+ β4Broker+

+ β5Age+ β6DateL+ β7Region+ β8Rent+ β9Season+ β10Floor + εi
(4.1)

In this model, the VIF values had lowered and were all below the critical value

of 5. A necessity when determining the fit of a model is checking data for

outliers. In Figure 4 below we can see that there are a few observations that

are considered outliers.
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Figure 4: Full Model Residual Plots

We wish to see what changes occur when removing the three outliers with the

highest absolute residual values. These three observations also had the high-

est Cook’s D values in the data set, which is an estimate for the influence of

the observation, giving us reason for removing them as outliers. This lowered

skewness of the residuals greatly, as it went from 0.3972 to 0.0721.
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However, when looking at the residuals in Figure 5 below, there was still het-

eroscedasticity evident and the assumption of normality of the residuals does

not seem to be correct.
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Figure 5: Model 1 Residual Plots

In order to try to even out out residuals, we will try a few of transformations.

First out is simply taking the log transformation of the response variable PriceS,

now becoming logPriceS, but keeping the rest of the variables the same.
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To compare these models, we can analyse Figure 6 below. There is a definite

change in the residuals, but heteroscedasticity does still seem to be evident.

However, we can see in the Q-Q plot that the residuals are starting to look

more normally distributed.
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Figure 6: Model 1 vs Log Full Model Residuals
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Since it looks like we are on the right track, we will do some further transforma-

tions of some of the explanatory variables. Keeping the response as logPriceS,

we will now focus on the explanatory variables. One possibility would be to log

transform our variable ’Area’, which is probably one of the variables with the

most influence on our response (considering the output in Table 1).

We will be using a version of Equation (2.14) where we transform the response

and only one of the predictor variables. Our new Log Model is defined in

equation (4.2) below.

logPriceSi = α+ β1PriceArea+ β2AreaRoom+ β3logArea+ β4Broker+

+ β5Age+ β6DateL+ β7Region+ β8Rent+ β9Season+ β10Floor + εi
(4.2)

We now look at how the residuals of the model have changed after the transfor-

mation.
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Figure 7: Log Model 1 Residuals

In Figure 7 we can see that there are great changes in the residuals. They have

levelled out and seem more homoscedastic and according to the Q-Q plot, the

assumption that the residuals are normally distributed seem correct.
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We decided to try out an additional transformation that could prove profitable,

a Box-Cox transformation of our response variable. The plot below shows us

where the λ value in Equation (2.16) is maximized, which in our case was 0.6667.
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Figure 8: Box-Cox Plot

Plugging this in to the Box-Cox transformation formula, we get our new trans-

formed response variable, boxPriceS:

tλ(yi) =
y0.6667i − 1

0.6667
(4.3)
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Our Box-Cox Model is therefore defined as:

boxPriceSi = α+ β1PriceArea+ β2AreaRoom+ β3Area+ β4Broker+

+ β5Age+ β6DateL+ β7Region+ β8Rent+ β9Season+ β10Floor + εi
(4.4)

Looking at the residuals in Figure 9, the transformation of the response does

not seem to solve the problems regarding heteroscedasticity.
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Figure 9: Box-Cox Full Model Residuals

In order to check the models for variables that might not be significant, we will

be using stepwise selection.
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4.2.1 Stepwise Selection

In this section we will be using stepwise selection for the different models in

the previous section. In equations (4.5)-(4.7) below you can see the final four

reduced models which now only include significant variables. The output from

R showing the coefficients of all models can be seen in Table 4-6 in the appendix.

Model 1

PriceSi = α+ β1PriceArea+ β3Area+ β5Age+

+ β6DateL+ β8Rent+ β9Season+ β10Floor + εi

(4.5)

Log Model 1

logPriceSi = α+ β1PriceArea+ β2AreaRoom+ β3logArea+

+ β5Age+ β6DateL+ β8Rent+ β9Season+ β10Floor + εi

(4.6)

Box-Cox Model 1

boxPriceSi = α+ β1PriceArea+ β2AreaRoom+ β3Area+

+ β6Age+ β7DateL+ β8Region+ β9Rent+ β10Season+ β11Floor + εi
(4.7)

A comparison between important values in the full models and the reduced ones

can be made in the following table.

Adj R2 AIC Skewness Residual SE
Model 1 0.934335 31142.2 0.07211903 373.8
Step Model 1 0.9343389 31138.07 0.06670592 373.8
Log 1 0.9583472 -13700.21 -0.04677067 0.07345
Step Log 1 0.9583965 -13707.29 -0.04873061 0.0734
Box 1 0.9314929 16595.72 -0.1980825 23.45
Step Box 1 0.93155 16594.94 -0.2012799 23.46

Table 2: Regression Model Values

The decision of exchanging our original models with the reduced models and
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continuing the analysis using these was made. In order to further analyse the

fit of the models, the residuals will be investigated and compared in between

them. Below are Normal Q-Q plots of the residuals.
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Figure 10: Q-Q Plot of Model Residuals

To further check the residuals of the models, we take a look at plots of the

residuals versus the fitted values.
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Figure 11: Residual vs Fitted of Models

Looking at the residuals of the three models and considering the overall results

in Table 2, we can conclude that both transformed models are superior to the

original model. It is also evident that Log Model 1 is the model that best

fit our data, as the residuals seem to be normally distributed as well as being

homoscedastic. It also has the highest AdjR2 value, the lowest value for AIC, a

residual skewness closest to zero as well as the lowest residual standard error.
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4.3 Predictive Ability

Models (4.5)-(4.6) have been fitted using the data set up until 2014-12-31. In

order to determine the predictive ability of these, the ”new” set of observations

in year 2015 will be re-introduced to the analysis. We will be using the models

fitted in the previous section on the new ”future” data set. Once these models

have predicted the new values for PriceS, we will compare these to the actual

values we have in the data set.

To get an overview of how well our models work, we can take a look at the actual

values plotted against values that were predicted through our models with the

new data set. If there would be a perfect fit, the predicted values would be

equal to the actual values and the observations would be plotted as a straight

line going through (0,1) in the following plot:
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Figure 12: Actual vs Predicted Values

Next we look at the residuals of the actual values and the predicted values.
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Figure 13: Prediction Price Difference
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RMSEP values for each model are shown in the table below.

MSEP Value RMSEP Value
Model 1 311974.8 558.547
Log Model 1 179566.4 423.753
Box-Cox Model 1 294774.7 542.932

Table 3: Mean Square Error

We can see in the table above that the lowest value of MSEP and RMSEP in

this case is for Log Model 1. What is necessary to remember is that all values

have been calculated using the re-defined price of the actual price divided by

1000. Nevertheless, the Log Model 1 is proven superior in predictive ability.
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5 Discussion

5.1 Results

It can be concluded that the preferred model is Log Model 1. The parame-

ter values shown in Table 6 are from the regression for the response variable

logPriceS. From the Log Model 1 equation (4.6) we therefore get the following

multiplicative relationship for the response PriceS:

PriceSi = eα ∗ eβ1PriceArea ∗ eβ2AreaRoom ∗ eβ3logArea∗

∗ eβ5Age ∗ eβ6DateL ∗ eβ8Rent ∗ eβ9Season ∗ eβ10Floor ∗ ε̂i
(5.1)

We will now have a closer look at the individual variables and their effect on

’PriceS’. The intercept value of e1.17854187817 = 3.2496324 would normally be

interpreted as the selling price of the apartment when all predictor variables are

set to zero. However, this is not realistic in this case. It is not possible that, for

example, an apartment with an area of zero would enter the real estate market.

The β estimates for the significant variables included in the model were inter-

preted as follows:

PriceArea : A one unit change in PriceArea would result in a 0.00121%

increase in PriceS as e0.00001207461 = 1.0000121.

AreaRoom : A one unit change in AreaRoom would result in a 0.1549%

decrease in PriceS as e−0.00154916996 = 0.9984520.

logArea : The value 0.94084167204 means that a 1% increase in logArea

creates a 0.94% increase in price.

Rent : A one unit change in Rent would result in a 0.00106% decrease in

PriceS as e−0.00001059427 = 0.9999894.

Age : A one unit change in Age would result in a 0.05719% increase in

PriceS as e0.00057175970 = 1.0005719.
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DateL : A one unit change in DateL would result in a 0.01555% increase

in PriceS as e0.00015546334 = 1.0001555.

Floor : As the baseline of this categorical variable is Low, all results will

be in regards to that. If an apartment is on floor One instead of Low,

’PriceS’ will increase by a multiple of e0.00734908697 = 1.0073762.

This interpretation is also used for the estimates for the floors

Two e0.02594192111 = 1.0262813, Three e0.01913642331 = 1.0193207, Four

e0.03361253183 = 1.0341838 and High e0.03741263613 = 1.0381213.

Season : As the baseline of this categorical variable is Autumn, all results

will be in regards to that. If an apartment is sold during Winter instead of

Autumn, ’PriceS’ will increase by a multiple of e0.00609386304 = 1.0061125.

This interpretation is also used for the estimates for Spring e0.01075518973 =

1.0108132 and Summer e0.00562504232 = 1.0056409.

Instead of stating the percentage changes in the response variable, one could

interpret the estimates such that the selling price of the apartment would in-

crease by a multiplicative factor of the estimate in question. One must keep

in mind that all interpreted parameter values assume that all other predictor

variables are held constant. Variables that were excluded from Log Model 1 in

the stepwise selection because of insignificance were the following:

Region : This variable had an extremely high p-value of 0.96664 and was

therefore not included in the final model.

Broker : This variable had a high p-value of 0.66067 and was therefore

not included in the final model.

In conclusion, variables that have a significant positive effect on the final selling

price of apartments ’PriceS’ are ’PriceArea’, ’logArea’, ’Age’, ’DateL’, ’Floor’

and ’Season’. Variables that have a significant negative effect on ’PriceS’ are

’Rent’ and ’AreaRoom’. Variables that does not have significant effects on the

reponse are ’Region’ and ’Broker’.
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5.2 Limitations and Other Analyses

There were quite a few limitations in this analysis. The data used did not

include several variables that most probably would have had an impact on the

final selling price. A few examples of these types of variables are the existence

of a balcony, an elevator, more specific regions of Södermalm as well as distance

to the subway. These variables could also have an effect on the other predictor

variables. An example of this would be ’Floor’. Living on the seventh floor

without an elevator might not be the most popular apartment but with an

elevator, it is definitely a better purchase and would result in a higher selling

price. However, we were still able to find a model with a good fit with the data

available.

”Final price information on condominiums is based on a structured automatic

collection of final bids from open bidding on-line. This means that many end

rates are included but not all. All brokerage firms do not present final prices

openly on the site, and even though an agency usually does so, the seller can

always choose not to display the bidding.”[7] This quote shows that there are

limitations to the data we obtained from Booli, as they do not obtain all listings

nor possibly completely correct information because of the automatic collection

of data. For future analyses, it is important to have data that is as correct and

complete as possible, in order to prevent drawing any inaccurate conclusions.

There is some past existing knowledge regarding this area of analysis. There

are other theses that have focused on this type of analysis and have results

similar to the ones stated in this thesis. [8] For future analyses, one could use

time series as well as checking more types of transformation of data, to see if

this provides a model with a better fit. Another type of analysis that could be

interesting to do is using the relative price as a response variable. This could

show if for example brokers adjust the listed prices lower because they know

for a fact from history that they will increase with a certain percentage. Is the

concept of having an ”accepted price” just a way of getting more people to the
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open houses, or is there a mutual understanding between brokers and buyers

that the price will rise?

In checking predictive ability, using MSEP can possibly be misleading if one

would use a data set in the future with contains observations that are very

different to the ones used in the regression analysis.
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6 Appendix
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Figure 14: Plot of PriceS of not available Floor observations

Coefficient Value
(Intercept) -11999.45254744
PriceArea 0.04071328
AreaRoom -2.46135341
FloorOne -7.48077651
FloorTwo 74.89539942
FloorThree 50.72556528
FloorFour 90.33800342
FloorHigh 157.68956727
Area 63.13713095
Age 3.82017464
DateL 0.58580373
Rent -0.06247285
SeasonWinter 12.84732098
SeasonSpring 47.33467589
SeasonSummer 5.90852202

Table 4: Model 1 Coefficients
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Coefficient Value
(Intercept) 1.17854187817
PriceArea 0.00001207461
logArea 0.94084167204
AreaRoom -0.00154916996
Rent -0.00001059427
FloorOne 0.00734908697
FloorTwo 0.02594192111
FloorThree 0.01913642331
FloorFour 0.03361253183
FloorHigh 0.03741263613
Age 0.00057175970
SeasonWinter 0.00609386304
SeasonSpring 0.01075518973
SeasonSummer 0.00562504232
DateL 0.00015546334

Table 5: Log Model 1 Coefficients

Coefficient Value
(Intercept) -713.601621300
PriceArea 0.002159004
AreaRoom -0.293877269
BrokerMedium -1.588994389
BrokerLarge -2.331498234
Area 3.832812070
Rent -0.003498850
FloorOne 1.793863325
FloorTwo 7.104319149
FloorThree 6.138600209
FloorFour 8.219738166
FloorHigh 12.256792962
Age 0.238543738
SeasonWinter 0.769420028
SeasonSpring 3.014175931
SeasonSummer 0.140295956
DateL 0.043840509

Table 6: Box Cox Model 1 Coefficients
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