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Abstract

Can a GARCH model be used to accurately forecast Value at Risk
of a single stock and an index portfolio? To answer this question, we
fit a GARCH(1,1)-t model to the Samp;P500 index and to a bank’s
stock. Using this model with a rolling window procedure, we per-
form 1000 one-day ahead Value at Risk forecasts. These forecasts are
then backtested—mainly using Christoffersen’s conditional coverage
test—after which we draw the conclusion that the model is indeed
appropriate for our return series.
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1 Introduction

In this section we introduce Value at Risk, mention the current literature as well as
state the purpose of this thesis.

Market risk is the exposure that an investor has to changes in the market prices.
A measure of market risk is Value at Risk (VaR). This risk measure summarizes how
much a firm may lose due to unfavourable price changes under normal circumstances.
It is widely implemented, for example it is used within financial institutions as a risk
measurement tool (Jorion, 2007:22-27). Also, regulators use VaR to enforce capital
requirements depending on risk exposure. The populatity and thereby the impor-
tance of VaR grew after J.P. Morgan published RiskMetrics in 1994 (Longerstaey and
Spencer, 1996). Risk management is a big field within finance. The literature on VaR
is large, see for example Manganelli and Engle (2001), Giot and Laurent (2004), and
Kuester et al. (2006).

Estimating VaR is difficult. Many decision have to be made regarding what models
to be used. In this thesis we use statistical models to calculate VaR and decide if the
models are appropriate.

1.1 Purpose and Research Question

VaR is a heavily used risk measure. It is especially important for portfolios. When
calculating portfolio VaR researchers and practitioners frequently use GARCH models.
In this thesis we study the difference between using a GARCH model a single stock
and on an index portfolio. Given that VaR in practice often is used on portfolios
rather than single assets, the practitioner might be interested in knowing to what
extent the risk models used in practice can be applied to a single asset as opposed to
a portfolio such as an equity index.

The specific research question answered in this thesis is the following: Can a
standard GARCH(1,1) model with t distributed innovations be used to accurately
forecast VaR for a stock and an index?



2 Time Series

In this section we begin by introducing some fundamental definitions in the first sub-
section. In the second subsection we present some statistical tests used in Time Series
Analysis. In the third subsection we introduce GARCH models.

2.1 Theoretical Background

In this subsection we define returns, conditional variance, ACF, white noise, volatility
clustering and covariance stationarity.

2.1.1 Returns

Let P; be the price of an asset (e.g. stock or index or portfolio) at time ¢. We define
the return at time ¢ as
rt:ln(Pt)—ln(Pt,l). (1)

The log returns are used, rather than the arithmetic returns, because of the log returns

statistical properties. (Tsay 2013:4f)

2.1.2 Conditionality

Define F;_1 as the information set up until time ¢ — 1. In other words
Fio1 =A{r1,..r—1}.
Define the conditional mean as
pe = Elre| Fi-1].

Define the conditional conditional variance by

02 = var(r¢| Fi_1).

We will use statistical models to forecast p; and o;. The conditionality is important
but prevalent in time series analysis and therefore we will refer to u; as the mean and
to JtQ as the wvariance. By dropping the prefix “conditional” we save time and ease
the notation. It is important, however, the concept of conditionality. Especially so in
section 2.3.4 where we describe how the conditional distribution, not the unconditional
distribution, is used when estimating the parameters from the returns data using MLE.



2.1.3 Autocorrelation Function

The autocovariance is defined as
Vi = cov(re, Te—k)

where r,_j, is the returns k*" lag, and of course k is a positive integer. In a stationary
time series {r;} the autocorrelation is defined as

cov(re, re—
op = (7t Tt—k) _ Tk (2)
\/V&I‘(?“t) var(ri_g) 70

where the second equality holds because var(r;) = var(r;_j) in a stationary time series.
(Tsay, 2013:45-47)

2.1.4 White Noise Process

Let z; be a time series, then
2 ~ WhiteNoise(0, ¢2)

if and only if 79 = 02 € R and ;, = 0 for lags k > 0. In other words: if a process has
zero mean and no covariance between its values at different times, it is said to be a
white noise process.

A white noise process can follow different distributions. One example is the Stu-
dent’s t-distribution (Brooks, 2002:232f). The PDF of a Student’s t-distribution is

v+1

e (@ —ap\ " F)
10~ s (5 ) &

2.1.5 Volatility Clustering

Mandelbrot noted in 1963 that large changes tend to be followed by large changes—of
either sign. Likewise, he observed that small changes by small changes tend to be
followed by small changes—of either sign. This is what has come to be referred to
as volatility clustering. Mandelbrot’s observation implies that r? and |r;| should have
high autocorrelation, which is in fact observed in the ACF plot that we will introduce
later on.



2.1.6 Covariance Stationarity

Let {r;} be a time series process. For {r;} to be covariance stationary, three conditions
must be satisfied we must have that

I E[re] =p
IT E[(re — p)?] =70 < 0
III cov(re, re4k) = V&

for all times t € Z and lags k. That is to say, a time series is covariance stationary
when (I) the mean, (II) the variance and (III) the autocovariance structure are all
time invariant. When a time series is non-stationary, a unit root is present. (Brooks

2002:230f)

2.2 Statistical Tests

In this subsection we bein with introducing a statistical tests for stationarity (ADF-
test). Then we discuss normality tests (Q-Q-Plots) and how to test for autocorrelation
(Ljung-Box test and ACF plot).

2.2.1 Test of Unit Root

Let {ry} be a time series. The Augmented Dicke Fuller regression is

P
Ary = a4+ Bt +yri— +Z(5kA7‘t—k + Uy
k=1

where « is a constant, u; is the regression error term, and 3 is the coefficient on the
time trend. In the Augmented Dicke Fuller test (ADF-test) we use this regression to
test

Hy:~v=0 Unit root is present i.e. non-stationarity

against the one-sided alternative Hj : 7 < 0 so the alternative states there is no unit
root i.e. that the time series process is stationary. The test statistic

DFobs — Y
Std.Err(¥)
is compared with DFer#ical — _3 4 which is the critical value at a significance level

of 5 %. The more negative DF the stronger the rejection of the null. If DF <
DFeritical then the null is rejected at a 5 percent significance level, leading us to
conclude that there is no unit root present. (Dickey & Fuller, 1979)



2.2.2 Test Normality

A Q-Q plot is often used to determine if data is normally distributed. It can also
be used to test if data follows a t distribution (or other theoretical distributions). If
the data follows the theoretical distribution, then the points in the Q-Q Plot lie on
a straight line. In the exploratory data anlysis on page 19 in Figure 4 we draw four

Q-Q Plots.

2.2.3 Test of Autocorrelation

To evaluate the autocorrelation of the returns and squared returns we can either use
a Ljung-Box test or an ACF plot, or both
The null hypothesis in the Ljung-Box test is

Hy:v =0

for the lags k = 1,..., K against Hy : 3 k s.t. 74 # 0. The test statistic in the

Ljung-Box test is
K 2
QUK) = T(T +2) Y 5~ 32(K) (4)
k=1
where T is the number of observations. We will use a type I error of 5% and K = In(T).
(Ljung and Box, 1978:297-303)

An ACF plot can be used as a visual test if data is autocorrelated. In and ACF
plot 7 is displayed on the y-axis and k on the x-axis. The dotted horizontal lines in
an ACF plot are for —1/T + 1.96/\/T where 1.96 comes from Agg5. If a value ~ is
above the dotted line we deem lag k to be statistically significantly different from zero
at the 5 percent level. On page 21 we have drawn four ACF plots.

The ACF will be used to both on returns and on squared returns, as will be
discussed in section 4.1 where we do an exploratory data analysis.

2.3 GARCH Models

In this subsection we introduce the GARCH model, we are used to forecast volatility.
Then we define standardized residuals. We specify how the GARCG parameters are
estimated, and discuss information criterions as well as unconditional variance and
persistence. Following that, we introdce the rolling window procedure. Lastly, RME
is defined.



2.3.1 The GARCH model

The autoregressive conditional heteroscedastic (ARCH) model developed by Engle
(1982). This model was generealized to a Generalized ARCH (GARCH) by Bollerslev
(1986). For details see Tsay (2010:109-173).

In the GARCH modelling framework we let

e = Ut + € = bt + 02 (5)

where ¢; is the innovation (also called shock). The random variable z; will—in this
thesis—be assumed to follow a t distribution. If the variance 0,52 = var(r¢|Fi—1) can
be described by
2 _ 2 2

of =w+a1g;_q + Bioy_4 (6)
then we say that e; follows a GARCH(1,1) process, given that the constraints w > 0,
a1 >0, 81 >0 and a; + 31 < 1 are fulfilled. Equation (6) is also called the volatility
equation whereas equation (5) is called the mean equation. For daily data we can

often assume that u; = 0 for the mean equation, which implies e;_1 = 74_1.

2.3.2 The ARCH model

The ARCH(m) model was developed by Engle in 1982. It has a similar setup as the
GARCH model but differs mostly in the volatility equation which is

m
2 2
o =w+ E OLET_k
k=1

in other words that today’s variance depend on past squared innovations. The value
of m is often decided using maximum likelihood estimation.

2.3.3 Standardized Residuals

In the GARCH model we impose a theoretical distribution on the white noise term z;
for example a t distribution. This assumption is tested by plotting the standardized
residuals

€ = — (7)
where €, = r; — [i;. By comparing the white noise term

&t
Zt = —
Ot



and the formula for € we see that it is logical to evaluate if the assumed distribution
of z; is an appropriate assumption by plotting é;.

To evaluate whether the standardized residuals seem to be white noise, the auto-
correlation function, in which there should be no apparent autocorrelation, as well as
the Q-Q plot, where the standardized residual should follow the assumed distribution.
This is done in the Data Analysis under subsection 4.3.

2.3.4 Parameter Estimation: MLE

Given that the random variable Y takes on the value y the conditional density of the
random variable X is fy,(2;0) = fzy(7,v;0)/fy(y;0) or equivalently

fey(@,y;0) = fu(y;0) - fay(z;0).

This fact from probability theory is used in MLE. For a time series {r;} we have

f(?“l,TQ, ceey IS 9) = f(r1;9) . f(T’Q ’ 7’1;9) . f(?’g ‘ 7'1,7’2;9) et f(T’T ’ r1,79, ...,TT_l;H)
or more compactly written

T

flri,ra, ., rp;0) = f(r1;0) - Hf(Tt | 71,y 713 0)

t=2

where f(r1;0) is the marginal density of the very first observation, and f(ry | r1,...,7—1;6)
is the conditional distribution.
If the conditional distribution is N (¢, o) then 8 = (u¢, o) so the likelihood is

2 1 (re — Mt)Q

implying that the log-likelihood is
T

Tt — Mt 2
In f(ry,re,...,rp;0) =1In f(r1;6) — %Z <1n(27r) *Infor) + <2M)> (8)

o
t=2 t

(Tsay, 2010:15). The maximum likelihood estimate 0y, is the value of § that maxi-
mizes equation (8) in other words we define the maximum likelihood estimate as

éML = arg m@axlnf(rl,rg, ey 773 0). 9)



2.3.5 AIC and BIC

The parameters are estimated so that the log-likelihood function is maximized. Even
so, the log-likelihood is not just a tool that gives us the estimated parameters—it can
also be used when comparing two models. If model w have a higher likelihood than
model b then the former fits better to the data. Of course, we want parsimonious
models and that is where information criterions come in. An information criterion is
a function of the likelihood value (high value is good) and the number of parameters
in the model (high number is bad). A few frequently used information criterions are
AIC, BIC, Shibata and Hannan-Quinn. We will use AIC and BIC. The definitions are

AIC=2p—2( and BIC = —20+ pln(T) (10)
where T is the sample size, p is the number of estimated parameters in the model,

and / is the log-likelihood value. As we see in the formulas, AIC and BIC penalizes a
model with many parameters but rewards a high likelihood.

2.3.6 Unconditional Variance and Persistence

The weight ~v is put on the unconditional variance V;,. We have that
w=Vg. (11)

This form is used for estimating the parameters, i.e. w, a; and B;. The relationship
between the parameters are

Yyt+ar+pr=1land a; + 1 <1

so in order for the weight on v to take on a positive value needed for a stationary
process. If v < 0 then the process will not have mean reversion. Mean reversion
is when the level of variance returns to normal levels after experiencing some shock.
(Hull, 2012:502f)



We will also use the concept of half life. Define

] —In(2)
hal =
alfiife In Persistence

Persistence = a1 + 51

which is interpreted as the number of days it takes for half of the reversion back to
the unconditional volatility V7.

2.3.7 Rolling Window Procedure

When calculating the GARCH parameters and forecast the volatility, we will use a
rolling window procedure.

Two Windows

To backtest the models the data set is divided into two different parts. For easier
notation we distinguish between t and t* according to Table 1.

t* t window name

1 1 —n(wg) estimation window
estimation window

n(wg) 0 estimation window

n(wg) + 1 1 forecasting window

e . forecasting window

n(wg +wr) n(wr) forecasting window

Table 1: Window definitions.

In the estimation window wg the parameters for the GARCH model are estimated.
We use these estimates to forecast volatility and mean—which are then used to cal-
culate VaR;. The forecasting window goes from ¢ = 1 to t = n(wp) as defined in
Table 1. In this thesis n(wg) = 1000.

Volatility and Mean Forecasts

The estimate of d¢ is set equal to the sample standard deviation in the estimation
window. The first estimate of the variance can then be calculated using

= &+ dagg + Prog



| Entire data sample

—

| First estimation window |

| Second estimation window |

[ I

t=T-1
| Last estimation window |
| |

Figure 1: Rolling window procedure. Using the first estimation window we forecast
the first VaR. This continues until the last estimation window which is used to forecast
the last VaR.

where €2 is the last squared innovation in the estimation window (or 7 if the mean is
assumed to be zero).

This procedure continues until we have forecasts of 67 Vt € wg. The procedure
is illustrated in Figure 1. Using the first estimation window we forecast the first VaR.
This continues until the last estimation window which is used to forecast the last
VaR. In the forecasting window we get the VaR foreacsts VaRi,VaRo,...,VaRign0
and these are then backtested.

Updating Parameters

In the previous paragraph we saw how to use these parameters to forecast the
one-day-ahead VaR. In order for the parameters to not be outdated and produce bad
forecasts, we will do a re-estimation of these parameters every 20 days—so that the
values of these parameters will not be the same throughout wg. The first parameters
estimated using wg are labelled by a (1) in the exponent to indicate the first estimate
of the parameters so that we get

oM &l pwn,

For the first 20 days of t € wp we use these parameters but for the next 20 days (i.e.

day 21 to 40) we use Q(Q),d?), BEQ) and the 20 days after that (i.e. day 41 to 61) we
use w<3>,a§3>,3§3) and so on. The length of wp is 1000 and we refit every 20 days

making it 1000/20=50 different volatility estimates for every parameter.

10



2.3.8 Root Mean Error

The GARCH model is used to produce volatility forecasts. To compare the forecasts
between models, we need a measure. Root Mean Error (RME) is a forecast perfor-
mance measure. We define

error; = 62 — r? (12)

where 62 is the forecasted variance and as a proxy for the true variance o7 = var(ry |

Fi_1) we use squared realized return r2. It is a noisy proxy but the reasoning behind
using it is that when returns are close to zero, as it is with daily data, we have that
o2 ~ r? because E|[(ry — iut)? | Fi—1] = E[(ry — 0)? | F;_1]. Given this definition of the
error, we have that

1 n(wr)
RME = error 13

where n(wp) = 1000 is the length of the forecasting window used in this thesis. RME
have well documented statistical properties. It also has a nice economic interpretation
that we will introduce later on. The forecast measure RME will be used together with
the Kupiec’s unconditional coverage test and Christoffersen’s conditional coverage test
which are both introduced under forthcoming section 3.

11



3 Value at Risk

In this section we discuss requlation, define VaR and describe how to calcualte it.
Backtesting using Kupiec’s unconditional coverage test and Christoffersen’s conditional
coverage Test is thoroughly described.

3.1 Regulation

VaR is "the worst loss over a target horizon that will not be exceeded with a given
level of confidence", Jorion (2007:viii). This risk measure can be used to estimate the
risk in an investor’s portfolio or for an entire financial institution. During times of
financial crisis we are reminded of the importance of accurate risk management, and
VaR is one of the most heavily used ways of measuring risk. (Duffie and Pan, 1997).

For financial institutions to be prepared to incur losses, regulators enforce capital
requirements. One important regulation is the Basel Accords. The accords are de-
veloped by Basel Committee on Banking Supervision. It is currently adopted by for
example the United States and the European Union. This regulation pressures the fi-
nancial institution’s measurements of their risk via backtesting. Financial institutions
that fails to meet the validity requirements are penalized. This makes is essential for
banks to accurately calculate their VaR.

3.2 Formula for Value at Risk

Even though the quote from Jorion above is correct, we need a more precise definition
of VaR in order to be able to work with it. As mentioned in 2.1.1, losses recorded in
L, will be denoted as positive numbers. VaR is concerned with the upper of the loss
distribution. VaR is defined as

VaRl_p = mf{Lt ’ CDFt(Lt) > 1-— p} (14)

In other words
PriLy <VaRi_p| >1—p

In this thesis we use a value of p = 0.05. The more correct VaRy g5 is sometimes
abbreviated VaR for ease of notation. Figure 2 displays the VaR as the dotted line.

Let fi; be the estimated mean in the rolling window. Let ¢g.95(v) be a 95 percent
quantile from the t distribution with  degrees of freedom—for example t¢ 95(7) ~ 1.9
and t.95(999) ~ 1.65. Let 6¢ be the estimated volatility from the GARCH model.
Given these three values [it, t9.95(7) and 6, the formula for calculating VaR is

VaRt = ﬂt — to,g5(ﬁ)5‘t. (15)

12



The knowledgeable reader might know the usual VaR formula is VaR; = (i —
t5.0.950¢)Value;—1 where Value,—1 is the asset (or portfolio) value. In this thesis
we will assume Value; = 1 for simplicity, and this assumption can be made without
loss of generality.

3.3 Backtest Value at Risk

The estimated VaR needs to be evaluated to decide if they are good or not. One way
to evaluate it is to define an indicator variable I; for the forecasted at time VaR; as

(16)

;o Jo Lz VaRi,
"7, if Ly < VaRy_py

This indicator variable I; counts every time the observed return is lower than the
forecasted VaR, so when I; = 1 we say that a violation has occured.

An effective VaR measure satisfies two properties according to Christoffersen (1998).
Property 1: E[I;] = p in other words the expected number of violations is indeed the
stated p. Property 2: E[I; | F;—1] = p in other words that violations not are clus-
tered. To test these properties we will be using Kupiec’s Unconditional Coverage test
for property 1 and Christoffersen’s Conditional Coverage test for property 2. The two
tests are summarized by Jorion (2007:143-152).

3.4 Unconditional Coverage Test

To test property 1 we use the unconditional coverage test—from here on abbreviated
uc-test. This test evaluates if the actual number of violations are the same as the
stated number. (Kupiec, 1995)

Figure 2: PDF of a random loss variable L;. VaR is at the dotted line, with 5 percent
density to the right of the dotted line.

13



Let p be the VaR coverage ratio from the subsection above. Let T" be the number
of out-of-sample estimates and N be the number of violations. ! We test the null
hypothesis

Hp.cc: p=0.05

against Hy : p # 0.05. The test statistic is

LR,. = —2In (—p)" " (17)
- (1-3)" <%>

Under the null hypothesis LR, is asymptotically distributed as x?(1). We will per-
form the test for a 95% confidence region, so the critical value is LR#cal = 3,84 A
higher LR value leads to the rejection of the null, which is logical since a LR is high
when the numerator and denomator are different indicating that p £ 0.05.

We wish to accept the null hypothesis, since we want the actual number of violation
to be close to the stated 5 percent. The higher the p-value of the cc test the better
the model is, because a high p-value indicates that the null is in fact correct.

3.5 Conditional Coverage Test

To test property 1 and 2 we use a the conditional coverage test—from here on abbre-
viated cc test. This test evaluates actual number of violations are the same as the
stated number and if violations are clustered. (Christoffersen, 1998)

The violations I; can be modelled with a Markov chain having transition proba-

bilities
|:7T00 7T01:| (1 8)
7m0 711

where mgq is the probability to go from a non violation at day ¢t —1 to a non-violation at
day t. In other words the first number in the subscript refers to the value of I;_; and
the second number in the subscript refers to the value of I;. More formally this can
be written as m;; = Pr(Iy = j | I;—1 = i). Obviously moo + mo1 = 1 and w9+ 711 = 1.

We want to test if violations are clustered or not, and it is possible to test this at
the same time as we test if the stated p is the correct one. A cc test achieves this.

The null hypothesis is
1_
Hoce : [Woo 7T01} _ [ p p] (19)
0 11 l-p p

and in this thesis the coverage rate is p = 0.05. Let Tj; be the actual number of

In this thesis T has the value of 1000 and since p = 5% we will observe N = 50 or N = 49 or
N =51 for a good model.

14



times I;_1 = 4 is followed by I; = j so that T;; is the “empirical” m;;. The test statistic
is

(1 _ p)Toome (1 _ p)TlopTll
(1 — 7T00)T007Tg})1 (1 — 7T10)T107Tf111

LRee = —2In (20)

Christoffersen showed that under the null LR, is distributed as x?(2). For a 95
percent confidence level we reject the null hypothesis if LR.. > LR = 6. Thus
we can test property 1 and property 2 at the same time with a cc test. In this sense,
the cc test incorporates the uc-test.

We wish to accept the null hypothesis. As with the simpler uc-test we have for
the cc test that a high p-value is a sign of a good model. The reason is that we do
not want violations to be clustered and we want to have the my; = m1 = 0.05 since
we want the actual number of violation to be close to the stated 5 percent.

As a final warning, from the definition m;; = Pr(I; = j | I;—1 = i) we see that the
definition of violation is crude since it only have a “memory” of one day. For financial
reasons it might be interesting to look two days back and consider the probability
Pr(I; = j | I;—o = i) but this is not implemented and is a flaw.

15



4 Data Analysis

In this section begin with an exploratory data analysis. Then a GARCH(1,1)-t model
is fitted to data from the estimation window of the two return series, after which the
differences are discussed. Lastly, we test if the GARCH model assumptions are met.

4.1 Exploratory Data Analysis

In this subsection we perform seven steps, each with a conclusion that takes us one
step further in arriving at what model is suitable for modelling the return series.

Step 1: Plot prices together with returns and test stationarity using the ADF-test.
Conclusion: Returns are stationary.

Step 2: Tabulate summary statistics and Q-Q plots of the return. Conclusion:
Returns are closer to a t distribution than a normal distribution.

Step 3: Plot ACF of return to view autocorrelation and test it using Ljung-Box
test. Conclusion: Returns are correlated.

Step 4: Test if the mean return is zero with a t-test. Conclusion: Returns are not
statistically significantly different from zero, hence we use a constant for the mean
equation.

Step 5: Plot ACF of squared return to view autocorrelation and test it using
Ljung-Box test. Conclusion: Squared returns are correlated.

Step 6: Test if the mean squared return is zero with a t-test. Conclusion: Squared
returns are statistically significantly different from zero, hence we need to model the
variance equation using an ARCH or GARCH model.

Step 7: Discuss if ARCH or GARCH should be used. Conclusion: A GARCH
model is better than an ARCH model.

4.1.1 Description of Data

Data from 2001-01-04 to 2016-01-01 on the daily prices of Morgan Stanley stock
and the GSPC index is downloaded from Yahoo Finance. From the daily prices we
calculate the returns. We reserve the 1000 data points (approximately four years) for
backtesting making the estimation window go from 2001-01-04 to 2014-01-07. GSPC
is often called S&P500. It consists of the 500 most frequently traded stocks in the US.
The GSPC index is weighted by market capitalisation. Note that Morgan Stanley is
included in the index.

4.1.2 Stationary of Prices and Returns

In Figure 3 we plot the prices and returns of the index and the stock. During the
period 2009 to 2013 the index seem to trend more upwards than stock does. According
to the different scaling of the y-axis we see that stock is more volatile than the index
is.

16



We need the data to be stationary. According to an ADF-test the prices are not
stationary since the p-values are close to zero. The return series is stationary so we
can model the return series.

GSPC.Value GSPC

Value
1000 1200 1400 1600
Value

-0.05 000 005 0.10

800

o
bl
?

rrrrrrrrrrrrrrrrrrrrrel rrrerrrrrrrrrrrrrrrrrrel
2001-01-02 2004-07-01 2008-01-02 2011-07-01 2001-01-03 2004-07-01 2008-01-02 2011-07-01

MSTN.Value MSTN

Value
40 60 80
Value
00 02 04 06

20
-0.2

rrrrrrrrrrrrrrrrrrrrrel rrrerrrrrrrrrrrrrrrrrrel
2001-01-02 2004-07-01 2008-01-02 2011-07-01 2001-01-03 2004-07-01 2008-01-02 2011-07-01

Figure 3: Price (left) and return (right) for the index (upper) and the stock (lower).
Note that the different scales of the y-axis. Only data in estimation window have been
used.

4.1.3 Summary Statistics and Q-Q Plots

In Table 2 the volatility of GSPC is lower than that the bank’s which is logical since
GSPC is an index and carries lower risk than an individual stock. Both means are
close to zero, as expected since we have daily data and there is no time for a return
to occur. Moreover, neither mean is statistically significantly different from zero—
performing a one-sample t-test of the null hypothesis “mean is zero” give a p-value
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of less than 1 percent for both assets. Hence the higher return of the stock is not
statistically significant. Lastly, the table presents skewness and kurtosis. Q-Q plots
will be used to draw conclusions that data is not normally distributed. The kurtosis
is much larger than 3 which is the kurtosis of a standard normal, in other words both
return series exhibit fat tails.

n.Obs NA Min Mean Max Var Stdev Skew Kurt

index 2772 0 -0.0947 0.00000 0.1096 0.00020 0.01380 -0.17 7.61
stock 2772 0 -0.2997 -0.00050 0.6259 0.00130 0.03650 1.41 42.58

Table 2: Summary statistics for our returns data in the estimation window.

In Figure 4 four Q-Q plots are shown. The upper part is for index returns and the
lower part for stock returns. On the y-axis we have the theoretical quantiles and on
the y-axis we have the sample quantiles. Theoretical distribution in the Q-Q plot is
the normal distribution (left part) as well as the t distribution (right part). For both
index returns and stock returns we can see that a t distribution better fits the return
data than a normal distribution does. It is a better fit because the points lie closer
to the line—for a perfect fit all points would lie on the line since then the theoretical
quantiles would exactly match the sample quantiles.

This is important to check because in the GARCH-model on page 6 the white
noise term z; is assumed to follow some distribution (for example normal or std) and
as is evident from the formula the assumed distribution of z; is connected with the
distribution of returns. Our data clearly shows that returns are closer to follow a t
distribution than a normal, hence these plots suggest that it is more reasonable to
assume z; ~ t(v) than to assume z; ~ N(0, 1). Of course the shape parameter v needs
to be estimated using MLE which increases the number of parameters, but given the
huge difference in the Q-Q plots between normal and t distribution in the estimation
window it should be better to use a t distribution. Our MLE of the shape parameter
for from data in the estimation window is 21 = i.df = 2.63 and 5 = s.df = 2.28 for
index returns and stock returns respectively.

None of the return series, however, show a perfect fit. Especially the tails deviate
from the t distribution. For probabilities less than 1 percent or greater than 99 percent
(as indicated by the y-axis) our data do not fit a t distribution since the points are
far away from the line. If one cares about a 1 percent VaR or 1 percent CVaR 2
then it would be more appropriate to use another distribution or perhaps model the
tails using Extreme Value Theory. This thesis is concerned with 5 percent VaR so the
departure from normality at the 1 percent level it is not a major issue. 3

2 CVaR is a measure similar to VaR but concerns the expected tail loss and is calculated by
integrating the return distribution from —oo to VaR.

3 It would, though, be an issue for this thesis to use a normal distribution; if we see look on the
plots to the left for index returns (the top left plot) and focus closely on the y-axis at the 5 percent
level we can see that the points the points lie to the left of the line. By doing the same exercise for
stock returns (the bottom left plot) we see that also there the return depart from normality at the 5
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Figure 4: Q-Q plots of index returns (above) and stock returns (below) for two different
distributional assumptions. A t distribution (right) is clearly more appropriate than
a normal distribution (left).

4.1.4 Mean Equation and ACF of Returns

In Figure 5 we show four ACF plots. The upper part is for index returns and the
lower part for stock returns. On the y-axis we have the value of 44 and on the x-axis
we have the number of lags k. The left part is an ACF plot of the returns. The right
part is an ACF plot of the squared returns. An ACF plot is used to see if our data is
serially uncorrelated. If the ~y; lies within the dotted lines for many values of k£ then
data is serially uncorrelated. A formal statistical tests may be done—in this case the
Ljung-Box test—and we use it together with the ACF plots.

By looking at the left part of Figure 5 we see that returns are correlated according
to the ACF plots. But a t-test show that they are not statistically significantly different
from zero. Moreover, the autocorrelation of returns are weak in comparison to the
autocorrelation of squared returns as can be seen by at the y-axis of a plot to the left
compared with the x-axis of a plot to the right (0.05 < 0.3). Even though returns
appear to be correlated according to ACF, we will not model the mean equation g
with an ARMA model but instead use a constant mean p_in our models.

percent level. This is important since VaR is nothing but a quantile—see equation (14)—so in order
to get the correct VaR estimates we should definitely assume a t distribution for our innovations.
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4.1.5 Volatility Equation and ACF of Squared Returns

In the right part of Figure 5 we see that r? are correlated according to the ACF plots.
A t-test show that r? are significantly different from zero since the p-value is close to
zero. So we need to model the volatility equation.

Note that the reason for looking at the ACF of squared return to determine whether
there exists ARCH effects is that the true variance of r; is var(r; | Fi—1) = E[(ry —
Blr)? | Fit] = Ele? | Fooa .

The Ljung Box-test’s p-value is close to zero, so squared returns are correlated.
Conclusively, according to formal statistical tests and ACF plots an ARCH-type model
is appropriate for our data.

4.1.6 Conclusion of EDA and Model Discussion

We have established that there exists ARCH effects in the data. When choosing an
appropriate model we need to decide if we will use an ARCH or GARCH model, how
many parameters the model should have, and what distribution we should assume for
the white noise term z;.

Should we use an ARCH or a GARCH model to capture the conditional het-
eroskedasticity? We would need over m = 10 lags in an ARCH-model. But we don’t
want to include so many lagged squared returns, therefore we use a GARCH model
instead.

How many parameters should we use? We will use a GARCH(1,1) model because
it’s the most parsimonious GARCH model there is. Of course some alternatives are
(2,1) and (1,2) or even (2,2) but that may be subject to another thesis. Besides being
the most parsimonious—making the model more interpretable for us—for financial
data the GARCH(1,1) model is the most used, so we are not alone in choosing this
model for the volatility equation.

What distribution should be assumed for the white noise term? According to
Figure 4 using a t distribution is a better fit than a normal distribution for both
returns series. Since the assumed distribution of z; impacts the assumed distribution
of ry via ry = py + 042 and we have seen that a t distribution is the better choice for
r; we will assume a t distribution for the white noise term z;.

Conclusively, we will use a GARCH(1,1)-t model for both index returns and stock
returns.

4.2 Fitting the GARCH model

In this subsection we fit a GARCH(1,1)-t model to both return series in the estimation
window. The parameter estimates as well as the information criteria for the models

are tabulated. We also plot the mean forecasts and volatility forecasts generated by
the GARCH model.
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Figure 5: ACF plots Squared returns (right) and returns (left) for GSPC (upper)
and the bank stock MSTN (lower). Squared return have high ACF so the volatility
equation need to be modeled. Only data in estimation window have been used.
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4.2.1 Estimated Coefficients

In Table 3 we have labeled the model fitted to index returns as m.index and the model
fitted to stock returns as m.stock. We use data in the estimation window to fit models
to our return series. The purpose of using only the estimation window, and not the
entire sample is that we want to reserve the forecasting window to test our model.

m.index m.stock

Unc. Mean 0.0009  0.0002
Unc. Variance 0.0002 0.0017
alphal 0.0721 0.0679
betal 0.9212  0.9300
Persistence 0.9933 0.9979
Halflife 103 334
Likelihood 8433 6430
AIC -6.007 -4.635
BIC -5.997 -4.625

Table 3: Coeflicient Comparison.

In Table 3 the most important values are alphal, betal, Persistence. The Persistence
is a bit higher in m.stock than in m.index but they are very close, i.e. &y —1—31 ~ Qq —1—31,
so let’s study these in detail. For both assets, betal is close to 1 and alphal close to
zero. This is to be expected with financial data. Recall that §; is the coefficient in
front of o;_1 so a high beta means that volatility is persistent in the sense that yes-
terday’s volatility greatly impacts today’s volatility. Recall that «aq is the coefficient
in front of ;1 so a high alpha means that volatility is spiky since a shock yesterday
(caused by an unusually high or low return yesterday) affects the volatility of today.

The betal is higher in m.stock than in m.index, and the interpretation of this is
that the volatility is more persistent for m.stock than for m.indezx.

The alphal is higher in m.index than in m.stock. The interpretation of this is that
the volatility is more spiky for m.index than m.stock (however both «; coefficients
are insignificant as seen by their high p-values in so we should be cautious in drawing
conclusions about the spikiness).

In Table 3 the AIC and BIC have higher absolute values for m.index than for
m.stock which suggest that in the estimation window the fitted model is more appro-
priate (w.r.t AIC and BIC measures) for m.index than m.stock.

In Table 3 we see that or the unconditional mean p we have p™indez > m.stock
which is also reported in Table 4 on the first row.
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m.index Estimate Std. Error t value Pr(>]t|)
mu 0.0009 0.00 4.77 0.000
omega 0.0000 0.00 0.39 0.700
alphal 0.0721 0.05 1.37 0.169
betal 0.9212 0.05 17.31 0.000
shape 8.1801 1.97 4.15 0.000
m.stock Estimate Std. Error t value Pr(>|t])
mu 0.0002 0.00 0.79 0.432
omega 0.0000 0.00 0.36 0.718
alphal 0.0679 0.05 1.34 0.179
betal 0.9300 0.05 18.41 0.000
shape 6.0121 0.93 6.44 0.000

Table 4: Coefficients with robust standard errors.

In Table 4 we display the maximum likelihood estimates of the GARCH coeffi-

cients, together with the Std.Error of the estimates as well as their p-values. Un-
derstanding how these coefficients impact the voltility forecast is important, so we
highlight some of the key numbers in a bullet list.

e The omega have a high p-value for both assets, which is common for financial
data. The fact that omega is not different from zero means that the uncondi-
tional long run variance is zero and this was seen in Table 3.

The betal is significant as is seen by the low p-value. So it is not only large,
as we already knew from Table 3, but also significant. This points toward the
conclusion that yesterday’s volatility does in fact impact today’s volatility.

The estimate of alphal is, on the other hand, not significant. The large Std.
Error result in a p-value so high that we cannot unfortunately reject the null
alpha; = 0 so the value of alphal need to be taken with a grain of salt.

The shape parameter is the estimated degrees of freedom in the t distribution
of our innovation €. We denote these shape paremeters v for m.index and 1o
for m.stock. Their estimated values are seen in the table and vy > 1o but only
slightly. If the values are far enough from each other one can see a difference
when plotting the PDF, but these values of 1 and ©» are so close that a density
plot would look the same.

The coefficients are not the same in our estimation window, nor are the standard
errors and thereby the p-values. During volatile periods the standard errors increase
since we get less certain about our estimates. This is one reason why models are not
as suitable during periods of high volatility. Therefore, during a crisis, we might trust
our models less.
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4.3 Asses Model Fit and Assumptions

For the model assumptions to be fulfilled we must perform some diagnostical checks on
the standardized residuals. We would like to conclude that the standardized residuals

R
€t =
Ot

to follow a white noise process. For details see equation (7) on page 6. Before we can
say that we believe € follows a white noise process we want to test some assumptions.

Assumption 1: There are no autocorrelation in the standardized residuals. This is
the case if the the ACF of standardized residuals for most lags & lies within the dotted
lines in an ACF plot for most values k or it can be tested using a Ljung-Box test.

Assumption 2: There are no ARCH effect in the standardized residuals. This is
tested the same way as above but with squared standardized residuals instead. 2.

Assumption 3: The assumed distribution for the innovations is close to the empir-
ical distribution of the standardized residuals. This is the case if the Q-Q Plot looks
like a straight line.

4.3.1 Test of First and Second Assumption

In Figure 6 we do an ACF plot to test the assumption 1 and 2. The left part is for
standardized residuals and is used to test assumption 1. The right part is for the
squared standardized residuals and is used to test assumption 2. The upper part of
the for m.index and the lower part for m.stock.

Assumption 1 is fulfilled for both m.index and m.stock since the value of ACF lies
within the dotted lines for all lags. The plot is supported by a Ljung-Box test with
p-values seen in the plot.

Assumption 2 is considered to be fulfilled for both m.index and m.stock although
this is not as clear since the value of ACF sometimes is higher than the dotted line
indicating that there is some ARCH effect left meaning that our GARCH model did
not pick up all of the conditional heteroskedasticity that existed in the returns data.
The p-values of the Ljung-Box test are high for both m.index and m.stock indicating
the same thing as we can see i the plot, namely that we accept the null although we
are not as certain that assumption 2 is fulfilled as we are with assumption 1.

To summarize, we see that the Ljung-Box test complement the ACF plot and
support us in our conclusion that assumption 1 and 2 are fulfilled.

“This is by same argument as described in the EDA section when we argued that ARCH effects
are found by plotting ACF of Squared Return
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Figure 6: ACF of Standardized residuals (left) and Standardized residuals squared
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each plot. Conclusion: Assumption 1 and 2 are fulfilled.
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4.3.2 Test of the Third Assumption

In Figure 7 we test assumption 3 using a Q-Q plot with the theoretical quantile on
the y-axis and the empirical quantiles on the x-axis, m.index is in the upper part
and m.stock in the lower part. Normal distribution is to the left and t distribution
is to the right. Firstly and most importantly the plots to the right indicate that
our standardized residuals seem to follow a t distribution hence our assumption that
€ ~ t(v) is supported by data. Thus assumption 3 is fulfilled. Secondly, and not
as important, we note that m.index is closer to the line than m.stock—so m.index
fulfills assumption 3 better than m.stock mainly due to the outlier. Thirdly, as a side
note, we can compare the left part to the right part and conclude that the t is a better
fit hence it was good to assume t distribution.

m.index Q-Q Plot m.index Q-Q Plot
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Figure 7: Q-Q plot for m.index (upper) and m.stock (lower) using theoretical distri-
butions normal (left) and t (right). Conclusion: Assumption 3 is fulfilled.

4.3.3 Conclusion of Diagnostical Tests

No model is perfect, but based on these Diagnostics checks of the residual assumption
we would argue that the GARCH(1,1)-t model is appropriate.
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5 Results

In this section we use the two models discussed in the previous section to forecast and
backtest VaR. In the first subsection one-day ahead VaR forecasts are evaluated with
standard backtesting procedures, and the results are summarized in a table. In the
second subsection we plot the VaR forecast for both models. In the third subsection we
calculate the RME. In the last subsection we conclude that the GARCH(1,1)-t model
is better for a stock than for an index.

5.1 Backtest Comparison

The size of the forecasting window is n(wp) = 1000 and p = 0.05 so the expected
number of violations is
expected = p - n(wg) = 50

but the actual violations for a model is given by

n(wp

)
actual = Z I
t=1

where I, is defined in equation (16) on page 13. The calculation of VaR; is defined
in equation (15). If actual < expected the model is said to overestimate risk. If
actual > expected the model is said to underestimate risk. Overestimating the risk
implies that the bank has unnecessary capital reserves (which is bad for the society
because capital is used ineffectively). Underestimating the risk is also bad for a bank
because it leads to punishment’s from regulators (and it is bad for society because
historically bank’s have been bailed out at tax payer’s cost). A good model will have
actual =~ expected.

expected actual cc.p uc.p
m.index 50 60 0.3620 0.1589
m.stock 50 47 0.4710 0.6603

Table 5: VaR-testing with uc-test and cc-test. Higher p-value is better. Column uc.p
is the most important.

The uc test essentially tells us if the sum of I; is correct. The cc test essentially
tells us if violations are clustered at the same time as the number of violations are
correct. For more details of these test see section 3.3 on page 13.

The calculation of (VaR;y,...,VaR,,) and the violations ([i,...,I,,) are thor-
oughly described in section 2.3.7. The results from the cc test and uc test are found
in Table 5. A key take away from Table 5 is that both models are successful, our
GARCH(1,1)-t is appropriate for both return series—especially so for the stock.
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We wish for failure of rejecting the null. Given the formulation of the null hy-
pothesis of each test we wish to “accept” the null hypothesis (or more formally “fail
to reject”). We pick a significance level of 5 percent for our test, and do note that
this percentage has nothing to do with the 5 percent of VaR. Both our models accept
the null at a significance level of 5 percent, although m.stock is close to failing the
cc test since the p-value is close to 5 percent. If both models fail to reject the null
hypothesis we may decide a winner by comparing the p-value. The higher the p-value
the better the model. With this idea, m.stock is better than m.index accoridng to
VaR backtesting because of the the higher p-value in Table 5.

5.2 VaR Forecast Plot

In Figure 8 and 9 we plot the forecasted value at risk VaR; together with the realized
return rr;. The first figure is for m.index and second is for for m.stock. The returns are
more volatile for the stock. The VaR forecast varies over time, and when returns are
more volatile the VaR forecast increases. It does so because the sigma forecast increase
because a high ;1 leads to a high ;. This plot is important for understanding that
the violations occur whenever the realized return (grey) is lower than the VaR forecast
(black) and this is the basis of our backtests.

5.3 RME Comparison

The Root Mean Error (RME) is a performance measure. In this thesis, it can be
interpreted as a measure of how snugly the estimated VaR line is to the returns. A
low RME measure will be seen in Figure 8 and 9 as having very little space between
the realized return and the VaR line. RME matters because a high RME means a
financial institution has a lot of money in its reserves. The lower the RME the better
the model. °

As seen from the formula for RME on page 11 we use the VaR forecasts and the
realized returns to compute RME value. The fraction RM E™ndex | R\ Em-stock
0.40 is small so RM E™der < RN E™stock - According to the RME measure m.index
is much better than m.stock. In financial terms this means that m.index have lower
capital charge than m.stock does. This result can be understood from looking Figure
8 and 9, since the stock have a larger range of y-values making the VaR line fit less
tightly to the realized returns.

5 If person A put away 50 USD and person B put away 60 USD as a reserve and everything goes
well then person A will have had 10 USD more to invest hence you might argue that person B have
wasted 10 USD. This argument is not entirely accurate but it serves as a description of why RME
matters.
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Figure 8: VaR Forecast Plot for m.index. The forecasted VaR is a black line and the
realized returns are gray.
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Figure 9: VaR Forecast Plot for m.stock. The forecasted VaR is a black line and the
realized returns are gray.
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5.4 Summary and Discussion of Results

Firstly, the p-value from the cc test suggests violations are less clustered in m.stock
than in m.index. Secondly, the actual violations are closer to the expected for m.stock.
However, RME is lower for m.index, due to the larger range for stock returns as seen
by the y-axis.

Is it possible to explain why? No, it is impossible to say for sure why this and
it’s very hard to pin down an exact reason for our results. Both the academic and
the practioner will have to survive with the results that this simply s and we cannot
know exactly why.

In fact it would, ex ante, be reasonable to believe that m.index would be better
according to VaR backtesting, becuase of two reasons: (a) volatility is higher for a
single stock making it harder to predict (b) market news can hit a stock worse than
a diversified portfolio.

(a) The input to the GARCH model is returns data. As seen in Figure 3 when
comparing the index returns plot and the stock returns plot we observe that stock re-
turns are more volatile. Moreover, stock specific events such as earnings and corporate
actions like mergers, product releases should have an impact on the stock price, but
none of these factors are incorporated in the GARCH model. Indices and portfolios
can, since they average the returns, smooth out these stock specific events.

(b) In the GARCH framework bad news means that ¢; < 0. Bad economical news
such as an abrupt change in FX rates hits a single stock harder than it hits a large
portfolio. This is especially true for sector-specific news. To the investor holding
a portfolio, bad news for one set of assets is good news for another set of assets
e.g. a decrease in the EURUSD rate is good for exporter/importer but bad for the
importer/exporter.

Nonetheless, VaR is a more suited risk management tool for our stock than for our
index portfolio, at least according to the backtesting procedures used in this thesis.
One possible explanation is that the tests are not very good; a lot of information is
thrown away when we apply an uc-test or a cc-test. Critique has been raised towards
these tests, and papers from Berkowitz as well as Hong and Li suggest ways of utilizing
more information to gain statistical power. It will not be discussed further or used in
this thesis, yet, if other statistical it is possible that we would have ended up with the
opposite results namely that VaR is a more appropriate risk measure to the index.

Lastly, we should repeat that both the stock and the index passed the backtesting
procedures. Hence, a financial regulator would deem the GARCH model used in this
thesis to appropriately forecast risk for both the stock and the index.
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6 Conclusions

In this section we draw conclusions from the results in the previous section. The first
sentence states the main findings and answers our research question. The following
text describe how this result was reached. A detailed discussion of our results are on
the previous page.

The two main findings are that

1. the risk measure Value at Risk—where volatility is calculated with a standard
GARCH(1,1)-t model-—is a more suitable risk management tool for our stock
than for our index portfolio, and that

2. according to cc test and uc test our GARCH(1,1)-t model adequately captures
the risk for both the stock and the index.

Given the purpose of our thesis described in section 1.1 we hope these findings answer
to what extent the risk models can be applied for a single asset as opposed to a
portfolio. To be more precise what we mean by “suitable”’, we need to briefly describe
how the index was compared to the stock. We had two different datasets: returns
on a stock index and on a bank’s stock. We used the same GARCH model for both
return series, and labelled them m.index and m.stock respectively. To forecast the
volatility we used a standard GARCH(1,1) model with t distributed innovations. Via
the formula VaR; = [iy — t9.95(7)0; the volatility forecast was used in the calculation
of the VaRyg5 The VaR forecast from these models is found in Figures 8 and 9. The
VaR forecasts can be backtested using standard backtesting procedures, in this thesis
the most important one is Christoffersen’s conditional coverage test. The results from
applying this test to our VaR forecasts is found on page 27 in Table 5 which showed
that m.stock was better than m.index with respect to VaR backtesting.
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7 Further research

In this section we suggest what can be done in order to built upon the research done
in this thesis. The suggestions can be seen as potential subjects for another B.Sc. or
M.Sc. thesis.

In this thesis VaRpg5 i.e. p = 5 % have been used. In practice financial institu-
tions often need to have p =1 % or even p = 0.1 % so another thesis might consider
a lower the value of p.

A standard GARCH(1,1) model have been used. Asymmetric GARCH models
handle a negative innovation ¢; < 0 different from a positive innovation £; > 0 so that
negative news increase the volatility forecast more than positive news does. Asym-
metric GARCH models often perform better than symmetric ones. Examples are E-,
GJR-, AV- and NAGARCH. It would be interesting to replace our standard GARCH
with an Asymmetric one, such as EGARCH, and produce the same analysis.

Even though it is standard procedure to use two parameters (1,1) as we have done
in this thesis, maybe considering £;_2 and using a GARCH(2,1) would give extra
forecasting power.

A t distribution have been assumed for the innovation. This choice was made both
with EDA and with simplicity in mind. There are, however, numerous distribution
that can be used such as: skew t, Normal Inverse Gaussian, Johnson’s Su distribution
etc.

We have used an equity index and a stock. There are many different asset classes
such as fixed income, currencies, commodities and real estate. A financially interesting
question is whether the results from this thesis is generalizable to other asset classes.

A lot of information is thrown away when applying the uc test and cc test. Other
tests such as Berkowitz test or Hong and Li test have more statistical power and are
more accurate forecasting measures.
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