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Abstract

Mathematical and/or statical models are used to help predict fu-
ture value and variance of the financial market variables. One model
used is Value at Risk. It describes potential losses attached to an
investment. This thesis will use the joint estimation of an AR(p)-
GARCH(1,1) model to develop a model for Value at Risk. This thesis
concentrates on the difference between one data-set containing the re-
turns for report days and another set were these are excluded. The
results reveal that for the stock Swedbank.A the exclusion of reports
seem to give a better fit for our model.
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1 Introduction

Risk is calculated in order to optimize exposure to it. Having only a vague
or no estimate of risks may lead to catastrophic outcomes. Investment
banks, insurance companies and government institutions did not have full
awareness of their risks in 2008. This contributed to the collapse of banks
like Lehman Brothers, the bailout of AIG for 85 billion US dollars and
ultimately escalated to a world-wide recession. To avoid a new crisis, the
period after the crises was filled with new regulatory rules aimed to
minimize the risks in financial markets. In Europe the EBA (European
Banking Authority) were formed by the EU in 2012. Since its formation the
EBA has made stress tests on all major banks in Europe. The tests were
conducted in 2014 and can be found on http://www.eba.europa.eu/. A
new stress test has been announced to be carried out in 2016. With risk so
high up on the agenda we will try and measure the risk for one stock listed
on Nasdaq Stockholm. The method used is Value at Risk.

The Value at Risk (VaR) was developed in the late 1980:s by
J.P Morgan to estimate the risk of a portfolio or asset. VaR is a point
estimate of the worst potential loss that will not be exceed more than a
certain percentage of times. One way to obtain the VaR is to use historical
data to estimate the empirical distribution of the underlying financial asset.
With this distribution we may calculate the p:th quantile. This quantile can
then be used to estimate the VaR. This thesis estimates the quantile and
models the empirical distribution.

One of the many problems when using the time series approach to VaR is
that financial time series commonly possess autocorrelation and
heteroskedasticity. This occurs when the time series are dependent on the
previous outcome. If a crisis hits, the volatility in the financial market would
be higher for a period of time and not just one day. Given this information,
a approach where we let all observed data have the same weight for todays
distribution is problematic.

To be able to predict future distributions, methods for autocorrelation and
heteroskedasticity has been developed. If the return of an underlying
financial asset is observed to have patterns in it, we have autocorrelation.
This is adjusted for with an autoregressive model. The model tries to catch
these patterns and can be used to help predict future patterns in the return
of a asset. Heteroskedasticity is dealt with trough a GARCH model. The
GARCH model uses todays variance to predict tomorrows.


http://www.eba.europa.eu/

The complex behaviour of the financial market has been studied
intensively under the last decades. One of the models developed will be
used in this paper, namely the joint model of a AR(p)-GARCH(1,1) model.
This model will be used to try and a predict future VaR. The estimated
AR(p)-GARCH(1,1) model uses the last p days to determine the mean
model of the distribution and yesterdays variance to predict todays variance.
We will in this paper set up two models were the first one is the time series
with all data observed 2007-2015, the other with the days when Swedbank
report their quarterly results excluded out of the data. Both models will
follow the same framework, that is AR (p)-GARCH(1,1) but because we have
different databases the number of parameters and estimates for them will
differ. The reasoning to exclude report days is that report days are known to
the trader and have a expected high volatility and can be assumed to lack
characteristic of heteroskedasticity. The efficient market hypothesis says
that if new information reaches the market the price of the security react
and price this information directly [12](page. 141). We will in this thesis
assume that the market on the day for quarterly reports are efficient and
will price this new information accordingly.

1.1 Aim of thesis

The aim of this thesis is to estimate VaR for the traded stock ”Swedbank.A”.
We will do this with the AR(p)-GARCH(1,1) model. An attempt to improve
the model will be done by excluding the return for the report dates. We
will use the same method but with a different data set the parameter esti-
mates will look different. A comparison between the models will be done to
determine what model seem to estimate VaR better.

2 Data

The data for this paper is collected from Yahoo Finance. Throughout
we use the adjusted close price, this is to adjust for the dividend and
splits out of the data. When using one single asset for calculations of
VaR, one has to be aware of quarterly reports. Quarterly reports are
normally when new information reaches the market, with the assumption
of a efficient market on report dates the reports will directly be visible in
the data. Big jumps in the stock price are to be expected. We will also
make a subset of our data where we exclude the return for report days.
The dates for report days are found on https://www.avanza.se/aktier/
om-aktien.html/5241/swedbank-a where we manually read the charts for
7Swedbank.A”.


https://www.avanza.se/aktier/om-aktien.html/5241/swedbank-a
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3 Theoretical Background

In this section we will describe the theory behind the methods used to
calculate VaR. The theory for this section can be found in [!], in chapters
1,2,3 and 7 unless otherwise is stated.

3.1 Characteristics of a time series

A univariate time series {X(¢),tf > 0} is a statistical process where
observations are taken on set times, this could be daily, monthly or yearly
observations. Time series could be Markov chains, how wind changes over
time in a certain location or as in this paper a financial time series.
A time series {X (¢),t > 0} is said to be stationary if the series are indepen-
dent of time. This means that for all (n,s) X (t1), X (t2),,,, X (tn—1)X (t,) has
the same joint distribution as X (t1+s), X (t2+s),,,,, X (th—1+5), X (tn+5)

[5]-

Weakly or a second-order stationary time series requires the two first
moments to be finite and time invariant i.e. E[X (t)] = ¢, where ¢ is a con-
stant. The covariance Cov[X (¢), X (t+5)] is also independent of time (t), this
means that Var(t,) = Var(t,—,), with a is a constant [3].
Normally one assumes that financial time series are weakly stationary. [1] .

The time series that we will be working with in this paper is:
e = pie + arZy (1)

where Z; is assumed to be a white noise series. A white noise series refers to
a time series that is uncorrelated, stationary, that F[Z;] = 0 and has a finite
constant variance [8]. The mean p; can be modelled with a
autoregressive model and the variance ¢ with a generalized autoregressive
conditional heteroskedasticity model. We will return to these subjects later
in the text.

3.2 Return series

When measuring profit or loss in the financial market, we talk about return.
Return unlike the price is a scale free measurement for a movement over
time of the asset. Consider a person telling you ”the upside of Apple is 1
dollar”, the number has no value if not compared to something. If we know
that the Apple stock originally was traded at 1 dollar a share that would be
a return of 100%, if the share was valued at 100 dollar it would a return of
1%. The return defined as

Py P —P

-1

R, —
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gives the recipient an idea of profit or loss of an investment. Also in
being a scale free measurement, the return has better statistical proper-
ties and makes it easier to compare different financial assets. The theories
and models for financial time series are built around the log return. It is
defined as

P
re = log(p—) = log(Ri +1) (2)

Where log is the natural logarithm.

3.3 Autocorrelation function (ACF)

Time series may have elements that are correlated to previous observed
data. Autocorrelation meaning that the covariance between any r: and r;_y
is not zero. [9], page 24. In financial time series, autocorrelation is often
present. ”When the linear dependence between r; and its past values r;_; is
of interest, the concept of correlation is generalized to autocorrelation. The
correlation coefficient between 74 and r;_y is called the lag-f autocorrelation
of r; and is commonly denoted by py, which under the weak stationarity
assumption is a function of ¢ only.”[l](page.31). The correlation between
two elements are given by:

_ Cov(rs, mi—y)
\/Var(rt)Var(rt,g)

With the assumption of second order stationarity we have that the denomi-
nator becomes /Var(r¢)Var(r,_s) = Var(r;). Since Var(r;)>0 for all t we
can confirm that iff Cov(ry,r,._p) is equal to 0, then py=0. The empirical
estimation of Equation (3) is:

. EtT:eH(""t =) (re—g —7)

ZtT:1(7“t —7)?

p1, P2,... is called the sample autocorrelation or autocorrelation function(ACF)
of our return series.

A Ljung-Box test will be used to check for autocorrelation within the sam-
ple, the statistic is given by:

P (3)

(4)

m.o .9
Qm) =T(T+2) Y (5)
(=1



T being the endpoint or length of .. The test has the null-hypothesis Hy :
"no autocorrelation” and the alternative H; : ”autocorrelation”. Q(m) is
under the null-hypothesis y? distributed with m degrees of freedom. If the
p-value obtained from the test is strictly larger than 0.05 we cannot reject
the null-hypothesis. The choice of m differs in various literature. In this
paper we will use m=In(# of observations). If we have autocorrelation the
time series are not uncorrelated.

3.4 Autoregressive models

If autocorrelation is found in an data material, a autoregressive model
(AR-model) can be used to model the mean, u; in our time series model,
Equation (1). The AR(p) model uses the prior {ry_,,7—pi1,,,,7t—1} obser-
vations to predict 7. The AR model of order p takes the form of:

re= @0+ O17—1 + .. + Pri—p + ar (6)

If the AR model by itself describes our data then {a;} is assumed to e white
noise series. To estimate the parameters in an AR-model the maximum
likelihood method will be used, see Appendix 8.3.

3.5 Heteroskedasticity

Financial assets do normally not have a constant variance. This variance
within the variance is dependent of time, we say that one day of high volatil-
ity is often followed by another day of big movements in the market. Shocks
can be triggered by financial news, natural disasters or political actions.
The phenomenon is called heteroskedasiticity. When heteroskedasticity is
present the variance today is conditionalized by the past observed variance.

VCLT‘(Xt ‘ thla Xt727 IER) 7)
If heteroskedasticity is found in a data-material a GARCH- model can be
applied to predict Var(X 1 | X¢, Xi—1,,,).
3.6 ARCH and GARCH models
3.6.1 ARCH

The ARCH model was firstly introduced by Engle in 1980 [0] to describe the
variance within the British inflation. An ARCH model of order m is given by:

m
2 2
ay = 042, oy = og + E Qiap_; (7)
i—1



Where Z; is a white noise series. To estimate the parameters in an ARCH
model we use the conditional maximum likelihood estimation (MLE). The
maximum likelihood uses the distribution for the innovations (a;) to de-
termine the parameters. For a more detailed version on the conditional
maximum likelihood estimation see Appendix 8.3.

3.6.2 GARCH

The Generalized AutoRegressive Conditional Heteroskedasticity model (GARCH)
was introduced in 1986 by T. Bollersky [7]. The model uses the past so called
innovations a; = ry— u; = 01 Z; and the past o2, {i = 1,,,t—1} to determine

02, Z; is assumed to be a white noise series.

m
at = O'tZt, O'tz = ag + Z Ckia%_i + Z ﬂjO'tQ_j. (8)
i=1 j=1
There are different methods described in the literature on how to estimate
a GARCH model. This paper will be using a maximum likelihood estima-
tion to determine the coefficients «; and B; of the GARCH model. Since
a maximum likelihood method will be used the distribution of the innova-
tions will determine how the parameters will be estimated, see Appendix
8.3. A compression of a GARCH(m,s) and ARCH(m) revels that Equation
(7) is a GARCH(m,0) model. The restrictions of a GARCH model is that
Z?iaf(m’s) o; + B; < 1 and that ag > 0, ay,8; > 0. The last restraints to
make sure that the unconditional variance

Qg
L= S 0+ )
has Ela?] < co. Equation (9) is also the called the long term volatility. It

can be proven that when forecasting a GARCH model, the forecast N times
ahead of today is Equation (9), N — oo.

B(a) =

(9)

Once a model is fitted to our data we want to check if it is adequate. To do

this we introduce the standardized residuals a;:

ag

ay = —
Ot

Where a; and o4 comes from Equation (8). If the model catches the autrore-

gressive and heteroskedasticity of the data, {a;} will be an white noise series.



3.7 Akaike information criterion (AIC)

Akaike information criterion or AIC uses the maximum likelihood function
to evaluate a model for a time series. The AIC is defined as:

AIC = —In(L()) + 2p (10)
In(L(6)) is the likelihood equation for the model under consideration and
p is the number of parameters used. We will use the AIC when comparing
models. The lower the AIC the better the model will fit [4].

3.8 Value at Risk (VaR)

VaR is a measurement for the risk a financial position holds. VaR uses
the underlying distribution of the observed data to create an estimate for
how big this risk is. [5][Page.106]. We may view VaR as the upper tail (p)
behaviour for the distribution of our loss series —r;.

VaRy(r) = inf{F(r;) > p} = F;'(q), q¢=1-p (11)

A VaR of 95% should not be exceeded in 95% of trading days. That is,
VaR< observed outcome in 95% of cases.

An illustrative example of VaR can be found in Figure 1. Figure 1 shows a
normal distribution. We say that a violation of VaR is
every observed data point to the left of the red line. It is important to
remember that VaR measures the maximum loss that will be exceeded p%
of the time. If we have a VaR of 1000$ on the 5% level we say that in 5%
of trading days the loss will be greater than 1000$ but not with how much.
The tail behaviour to the left of red line in Figure 1 can be estimated but
is outside the scope of this thesis.



Illustration of VaR
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Figure 1: An illustration of VaR. An observation to the left of the red line
is a violation of VaR,

4 Models and Methods

In this chapter we will analyse our data and apply models to describe it.
We will test the assumption of normality, autocorrelation and any ARCH-
effects. If data contains only autocorrelation but not heteroskedasticity
we will appply a AR(p) model to our data. If the data contains only
heteroskedasticity but no autocorrelation we will chose to model data af-
ter a GARCH(1,1) model. If it contains both autocorrelation and het-
eroskedasticity a AR(p)-GARCH(1,1) model will be chosen. To build a
AR(p)-GARCH(1,1) model 5 steps will be taken. They are summarized
below.

1. First we want to check our data for autocorrelation. If autocorrelation
is present we implement an adequate AR(p) model for our mean.

2. Test the residuals of our AR(p) model for any ARCH-effects.

3. If heteroskedasticity is found in the residuals we do a joint estimation
for an AR(p)-GARCH(1,1) model.

4. With the AR(p)-GARCH(1,1) model we drop the variables not being

significant. We will use the normal 5% significance level.

5. With a finished AR-GARCH model we backtest the model to see if it
is adequate.
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4.1 Descriptive analysis

First we look at our data. Figure 1 show the adjusted closing price for
”Swedbank A” from 2007-2016. The crash that occurred 2008-2009 is clearly
visible in the data. The ease of monetary policy and the other factors that
lead to the recovery 2010-2012 are also visible before the Greek crisis hit
2012. The period 2012-2016 is seen to the right in Figure 2 and is a stable
period for the stock market.

Swebank A, adjusted close price

150 200
|

Closing price
100
l

2008 2010 2012 2014 2016

Figure 2: Adjusted close price for the stock Swedbank A.

Figure 3 shows the log return for Swebank.A. The red dots indicating re-
port days. We observe that | r; | for a number of the report days are large
compared to its surroundings. From the plot it seems like the a report does
not trigger a longer shock i.e. the characteristic of heteroskedasticity is not
apparent. If this is to be the case we would see no difference in number
of violation of VaR between a set containing the reports and a set without.
The set containing reports would simply treat the reports as shocks and shift
its curve, leading to a overestimation of VaR. This overestimation may be
costly for companies, it implies extra holdings of capital to counter the risk
in the market. With this in mind we will create a subset for our data where
we exclude the report days. For this data we will use the same procedure

as for the original and see if any differences are to be seen when backtesting
VaR.

11



Log return for Swedbank.A
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Figure 3: The log returns for Swedbank A. Fach line representing the log
return for one day. Red dots indicating report day.

Next thing we want to check is the assumption of stationary in the loss re-

turn series. In figure 3 we see the log return series, we see that the volatility
varies with time and does not seem to be constant in the series. With this
result we discard the assumption that r; is a stationary time series. With-
out further investigation we will assume that the time series are a weakly
stationary time series [2].

4.2 Test for normality

The assumption of normality in financial time series is often false. Financial
data often inherits fatter tails and has a bigger peak around its mean [l]
(p-16). Both these phenomenon can be described with kurtosis. A kurtosis >
3 has a higher peak and heavier tails than the normal distribution. Negative
or positive skewness of data can sometimes also be found in data. This means
that data are not centred around its mean but rather ”tilted” towards either
the right or left.

12



With report | Without Report
Skewness -0.218216 -0.2436351
Kurtosis 10.76969 10.70831
P-value skewness-test 0.00002 0.000002
P-value kurtosis test 0 0

Table 1: Reported point estimates and test if these estimates # 0

Table 1 tells us that we have significant skewness and kurtosis for both

data sets (that they are similar is to be expected due to the similarity of
the series), design of tests may be found in Appendix 8.4. The skewness of
-0.21 tells us that data is shifted to the left i.e a heavier tail on the ”left”
side of the mean. A skewness of -0.21 does not justify the use of a skewed
distribution, we would want the value to be larger for that. To further
confirm symmetric distribution we look at Figure 4. The two pictures to
the right shows two symmetric t-distributions, with apparent skewness we
expect alot of points to be on one side of the line. With roughly the same
amount of points around the line a symmetric distribution seems to fit the
data and will be used.
The kurtosis of the series is high. This means that we have fat tails and high
peak for the empiric distribution compared to the normal distribution. A
distribution with heavier tails and higher peak than the normal distribution
is the t-distribution. In Figure 4 we see how well the empirical distribution
for our two data sets fit a normal distribution and a t-distribution. Based
on the QQ-plots we can conclude that a t-distribution seem to fit our data
better than the normal distribution. There might be another distribution
that fits data better. One could consider using the result of extreme value
theory. In this thesis we have adopted the t distribution. It seems to fit
data good enough based on result found in Figure 4.

13



Normal Q-Q Plot Q-Q plot for t-distribution
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Figure 4: The first row shows the QQ plots for the data with reports to
the left for the normal distribution for a t-distribution with 3 degrees of
freedom. The second row QQ plots for data without reports, the left for a
normal distribution and the right a t-distribution with 3 degrees of freedom.

4.3 Test for autocorrelation

Knowing that data may hold patterns for its mean we test for autocorrelation
within data. To do this, we firstly plot our AFC. Normally we expect around
5% of observations to be outside of the 95% confidence interval, in Figure
5 seen as dotted lines. Given the fact that more than 5% of observations
are outside of the confidence interval for both data sets hints that further
investigation might be needed, we proceed using a Ljung-Box test. In our
Ljung-Box test we will use In(# number of observations) as our m. The
return series with reports has 2254 observations, the series without has 2219
entries, this gives a m of 7.7 for both Ljung-Box tests. The first Ljung-Box
test that include reports gave a p-vale of 0.04292, this is < 0.05. We may say
that autocorrelation is present on the 5% significance level, even if barely.
For the return series without reports the p-value obtained is 0.0037, we can
say that we have autocorrelation on the 1% significance level. With this
result we proceed to apply a AR-model to our data.
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ACF for Daily log returns ACF for series without reports
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Figure 5: ACF-function for ry

4.3.1 Applying an AR-model

To determine the order of our AR(p) model we use the AIC. This method
uses a predetermined real value integer k and then builds a model for each
AR(i), i=1,,,k. This integer k can be obtained by the PACF, see Appendix
8.2. The AR model that minimizes the AIC will then be used to test for an
ARCH-effect.

When a model is fitted with the method described above we want to test if
all the ¢; in our model are significant. We do this with a t-ratio, the t-ratio
is defined as.

pe
l—1 A9
\/1+2Zi:1 p;/T
Where T is the number of observations in our data. In the test we have

that Hy :pp = 0 and H; : py # 0. The decision rule is to reject Hy if
| t ratio [> Z, /2, Z being the standard normal distribution. [1].

t-ratio =

(12)

The PACF plot found in Figure 6 shows multiple observations outside of
the dotted confidence limit. The choice of k is arbitrary and could here be
made for several lags. Our choice fell on k=13 for the data with report dates
and at lag-15 for the series without report dates. The reasoning behind this
is that if the AR model does not hold any ARCH-effect this will be the final
model. If the AR model has an ARCH-effect we will proceed by doing a
joint estimation of an AR-GARCH model and the order of the AR model
will be re-evaluated.
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PACF for data with reports PACF for data without reports
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Figure 6: To the left, the PACF for data with reports. To the right the
PACF for data with report dates excluded.

With report | Without report
Order based on AIC 5 12

AIC for full model -9746.9 -9615.72

o? for full model 0.0007706 0.0007587
Significant parameters b3, O5 b3, D10, P12

AIC* -9753.15 -9697.12

o2* 0.0007712 0.0007623

Ljung-Box p-value on residuals 0.9826 0.8553

Table 2: Reported values for the choice of AR model. * indicates the model
were insignificant parameters are removed.

With the number k determined the next step is to calculate the AIC
for all {AR(1), AR(p),,,AR(k)}. The AR(i), i=1,,,,k with the lowest AIC
will be used as the full model. Calculating the AIC gave the lowest AIC for
the AR(5) for the data with reports and AR(12) for the data without. The
significant parameters for the AR(5) model were ¢3, ¢5 and ¢3, P10 and @19
for the series without report dates. The results with reported AIC is found
in Table 2.
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4.4 Test for heteroskedasticity in residuals

With our selection of AR models in previous Section 4.3.1 we now seek
to test the residuals of these models for heteroskedasticity. To do this we
take the residuals of the AR model and square them i.e. taking a? from
Equation (6). The ACF plots can be found in the Appendix 9. The plots
shows that all observations are outside of the confidence limits. A Ljung-Box
test is performed to verify the existence of heteroskedasticity. The p-value
for both models are very close to zero (2.2 x 10716), we can on any signif-
icance level conclude that heteroskedasticity needs to be addressed. With
both autocorrelation and heteroskedasticity in the residuals of the AR model
we proceed by doing an joint estimation of a AR(p)-GARCH(1,1) model.

4.4.1 Applying an AR-GARCH model to data

With heteroskedasticity found in the residuals of the AR-models we continue
to do a joint estimating of an AR(p)-GARCH(1,1) for both our data sets. To
estimate the model will will start by setting up an AR(5)-GARCH(1,1) and
an AR(12)-GARCH(1,1) for the series with and without reports. We use
these numbers as a consequence of Section 4.3.1. We will use a backwards
elimination on the mean model when estimated in conjunction with the
GARCH model. The backwards elimination means that we first estimate
all ¢; in both models, the parameter that is most insignificant to the model
will be removed. When the parameter is removed a new joint estimation
of the AR-GARCH model will be done, again removing the parameter with
the highest p-value. When all parameters in the mean model are significant
on the 5% level we are content with the models. The two models obtained
by the backwards elimination can be found in the table below.

Parameter With report Without report

7 0.00774 (0.00307)* 0.000665(0.000292)*
o1 NA -0.049466 (0.021206)*
®5 -0.059(0.020709)** -0.055905(0.021234)**
g 0.000001924 (0.00000091)* | 0.000001948 (0.00000082)*
aq 0.063253 (0.011193)*** 0.066982 (0.013136)***
B1 0.935745 (0.009348)*** 0.930854(0.011186) ***
AIC -4.9931 -5.0568

p-value Ljung-Box test for ay 0.9711 0.2228

p-value Ljung-Box test for d;> 0.2561 0.5256

Table 3: Parameter estimates for both models. The ”*” in the tables indicate
the significance level, ”*” indicating 5% level, ”"**” 1% and 7***” 0.1%.
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In both models the choice fell on a AR(5) model with the difference that
the data without reports had a lag-1 factor in in. The Ljung-Box test on
the standardized residuals together with the graph found in Appendix 8.5.1
reveals that d; and d;? for both models behave like white noise series. QQ-
plots for a; can be found in Appendix under Figure 10 and Figure 12 giving
more confirmation about the standardized residuals being an iid series. The
difference in AIC is around 1 percent, a difference too small to make any
statement about what model fits data better. We are content with both
models but can not make any statements about which one seems better for
estimating VaR.

4.5 Backtesting

Backtesting will be done with a rolling window. A rolling window as the
name implies ”rolls” over the data. One window size will be set to 504 ob-
servations, this is roughly two years if we approximate one year as 252 days
(the number of days that the stock exchange normally is open in a year).
We chose this size due to the length of the crisis (approximately two years)
and the two years of relative stability after the crisis but before the Greek
crisis 2012. The rolling window will hence use the last 504 days to predict
todays volatility. We will also report the result of the backtesting when
setting the window size equal to 700 and 1000. This is done to see if any
differences occur. A violation occurs when VaR< 7y, were r; is the loss series.

To test if we have the expected number of violations we will use Kupiec
unconditional coverage test, it measures the proportions of failures (POF).
The test is given by [11]

51(p)

por ~n((1=1)) (2"

{1 if VaR < 7y

With:

0, otherwise

Where r; is the loss function and T is the total number to days we are back-
testing. The test has the null hypothesis Hy : ” Correct exceedence” and the
alternative Hy : ”Incorrect number of exceedences”.

If p=0.05 in Equation (11) and the observed outcome is 5% violations the
test will produce a statistic of 1. If on the other hand observed outcome
+ 5% the statistic is under the null-hypothesis asymptotically x? with one
degree of freedom.
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4.6 Software

To model our AR-GARCH model we will use the software R, R can be found
at https://www.r-project.org/ . The packages used to make the calcula-
tions under "Models and Methods” and” ”Results” are ("QRM”,”rugarch”).

5 Result

In this section we will present the results of the backtesting for the two
models devolved in the previous section.

The first table of the section reports the backtesting of our two models.
The period of testing is the last 2000 days of the sample. The result is
presented below.

Window Size=504

Backtest length=2000 | With report | Without Report
Expected exceed, 5% VaR 100 100
Actual exceed, 5% VaR 122 (6.1%) 118 (5.9%)
POF p-value 0.029 0.072
Expected exceed, 1% VaR 20 20
Actual exceed, 1% VaR 16 (0.8%) 20 (1%)
POF p-value 0.35 1

Table 4: Backtesting with window size=504. For the test p-value, if it is
written in bold text means that we do not discard the null.

As seen in the Table 4 the data set with reports performed worse when
measuring the 5% VaR and we can reject the null hypothesis of correct
exceedance. On the 1% level the AR-GARCH without reports hit the ex-
pectation and therefore led to a p-value of one. The AR-GARCH with
reports overestimated the risk, but not by that much so that we can reject
the null. The graphs for the test can be found in the appendix.

Backtesting was also testing with different sizes of the window. The re-
sult is presented in the tables on the next page.
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Window size=700

Backtest length=2000 | With report | Without Report
Expected exceed, 5% VaR 100 100
Actual exceed, 5% VaR 118 (6.1%) 114 (5.7%)
POF p-value 0.072 0.16
Expected exceed, 1% VaR 20 20
Actual exceed, 1% VaR 16 (0.8%) 22 (1.1%)
POF p-value 0.35 0.658

Window size=1000

Table 5: Backtesting with window size=700. For the test p-value, if it is
written in bold text means that we do not discard the null.

Backtest length=2000 | With report | Without Report
Expected exceed, 5% VaR 100 100
Actual exceed, 5% VaR | 116 (6.1%) 114 (5.7%)
POF p-value 0.109 0.16
Expected exceed, 1% VaR 20 20
Actual exceed, 1% VaR 16 (0.8%) 22 (1.1%)
POF p-value 0.35 0.658

Table 6: Backtesting with window size=1000. For the test p-value, if it is
written in bold text means that we do not discard the null.

We note that letting the window size increase helped increase the accu-
racy of VaR especially for the AR-GARCH model with reports. We also not
that the increase in window size from 700 to 1000 did not change any values
for the AR-GARCH without reports.

To visualize differences between the series Figure 7, show the result of back-
testing on the 1% for both models. In Figure 8 we have zoomed in on the
period late 2011-mid 2014. In Figure 8 one observation is highlighed in blue,
this is a report day were the price of the stock ”Swedbank.A” gained 10%
in one day. The following days we see no extreme observations. The AR-
GARCH(1,1) reacts to this report as a shock and the curve shifts outwards.
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Figure 7: The 1% backtesting, to the left for the model without reports and
the right with. Red dots indicating a violation of VaR. The window size is
504.
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Figure 8: Zoomed in on the period 2012-mid 2014. To the left without
reports and the right with reports. The blue dot indicating a highlighted
report, red dots being violations of VaR. The window size is 504.
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6 Discussion and conclusion

In this thesis we have created two data sets, one set with the all daily
returns and one where the dates when Swedbank published a quarterly
report excluded out of the return series. The series without reports lay closer
to the targeted expected number violations of VaR in the backtesting. The
result also reveal that the series with report dates may overestimate the risk
after a report. This is a limited study were we have not investigated by
how much the data with report overestimated VaR after a report. We have
only concluded with that shift outward of the curve happened after a report.

With reports being known for about a year in advance the exclusion of
reports make sense. It is easy for a trader to close his or her position if trad-
ing with a mathematical program i.e. not trading based on expectations or
feeling. It also makes sense out of a cost perspective. With new regulatory
treaties for cash requirements a overestimate of VaR forces bigger investors
and funds actors to hold more capital, this is costly.

We have not looked at different lengths of the backtesting or at other data
than just ”Swedbank.A” during 2007-end of 2015. We can not conclude
that we should generally exclude reports to get a better estimate for VaR.
What we can say is that during the period 2007-end of 2015 we should ex-
clude reports for the stock ”Swebank.A” if we want to calculate VaR.

Further research could be done for the stock market around report dates,
where more data is collected and examined. Alot of studies has been made
on post earnings announcement behaviours in finance. Using the knowledge
from finance new ways of using the AR-GARCH model when estimating
VaR could be developed. One could also measure the distance from the
actual returns to the estimated AR-GARCH curve in the periods after a
report to see if there is any systematic overestimation of risk after a report.

The main focus of this report has been to model a AR-GARCH model
for a rather small data set. The estimates and the backtesting has all been
within the same sample. For further research one may consider using a big-
ger material and dividing it up. With a divided material we can use one
part to estimate the models and the other part for backtesting a so called
out of sample test.
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8 Appendix

8.1 Distributions

Normal distributi(z)n:

_(z—p)
f(z) = - 1%6 202 , iff 4 = 0 and 02 = 1 we have a standard normal
distribution.

T—distribqrtlion:

vl v+1

ft) = \;V(—ﬂf(%)) (1—&-%)_% where I is a gamma function i.e ['(¢) = [;° '~ e *du,
and v is the degrees of freedom. It can be shown that when v — oo the
t-distribution converges to a standard normal distribution.

x? distribution

fr(x) = % where I' is the gamma function and r is the degrees of
2

freedom. It can be shown that x? = >_'_, Y;? where {Y7,,Y;} are indepen-

dent standard normal distributions.

8.2 Partial Autocorrelation Function

The Partial Autocorrelation Function (PACF) can be used to determine the
order of an AR model. The PACF can be described by:

Ty = ¢o1 + P11 + ay
Tt = Qo2 + P12 + P2211-2 + ay
Te = P03 + P1,3 + P23 + P3374-3 + g

n—1
Tt = Z ¢i,n + (Z)n,nrt—n + aq

i=0
Where n can be any positive integer. The parameter ¢;; or the lag-i PACF
describes the added contribution of r,_; to r; [I]. With this definition the
order p of an AR(p) model can be determined. If plotted the PACF plot
shows ¢;;. Any violation of the given confidence interval may be used as
our order p.

8.3 Maximum likelihood estimation

Let {z1,x2,,,,x,} be realizations of the random variables { X1, Xo,,,, X, },
where X; are all iid. The maximum likelihood estimation method is the
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estimation that maximizes the joint probability function for {X,,, Xy }:

L=T] fx,(x:)
=1

To ease the calculation of the L the transformation into log-likelihood is
made:

[=1log(L) =) fx,(z:)
=1

When estimating a GARCH model the returns are not independent of each
other so the joint probability function is not [, fx,..x.(z1,,,,2n). The
density function of X; is conditional on X;_ 1, X;_o,,,,, X7 hence we can
write the joint density function as.

th,,,,,Xl (mta IR 7'%.1) = th‘Xt—I””Xl (Z't ’ Tt—1399 .Tl)

Again X;_1 is conditional on X; o, ,,, X1 so that:

thle (IL’t, 19 CCl) = th‘Xt_l,,,,Xl (l’t ‘ Tt—155, 7x1)th_1|Xt_2,,,X1 (l't_l | Tt—25 555 .'171)

Iterate this t times will yield the joint probability density function for
fx.,,,x.- When modelling for a GARCH model we are interested in the
variance. For the normal distribution the estimation would become:

1 (—(act —p)? 1 — (241 — p)? 1 —(z1 — #)2)

L= exp ) exp( | exp(
202, [2no? 202 | \/2mo? 207

\/2mo?

With a rather long but simple calculation the log likelihood becomes:

t 1< 1< (z; — p)?
_ ) P —

i=1 i=1 t
Replacing 02 = ap+a1a?_+B102 ; gives the log likelihood for a GARCH(1,1),
given that the innovation are normally distributed. The theory for this sec-
tion can be found in [10], page 7.

8.4 Central moments

In this text we have been working with the first four central moments for
random variables. These are the mean, the variance, the skewness and the
kurtosis. When working with central moments, we do not regard data as
observations in a time series but rather as realizations of a random variable.
This implicates that the order, that is characteristic for a time series are no
longer relevant. Let R be a random variable and {ry,,,r7} be its T realiza-
tions. To underline the fact that we in this section see the observations as
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independent of time we denote the realizations as r; instead of r;. The first
moment, also know as the sample mean is defined as:

=l

1 T
fir == ) 7 (13)
i=1

The sample variance is defined as:

1 I
o7 = 1i-7 (ri = fur)’? (14)

=1

The third central moment or sample skewness:

5 = g3 S — i)’ (15)

When working with kurtosis there are two different kurtosis. The fourth
central moment or the excess kurtosis. Excess kurtosis compares the sample
kurtosis with the kurtosis of the standard normal distribution. In this paper
we will only work with the central forth moment and not the excess variant.
The kurtosis is then given by:

. 1 £l
K(r)= T=1)5 ;(Tz’ — fr)? (16)

If kurtosis > 3 we say that the distribution is leptokurtic and has a bigger
peak around its mean and heavier tails compared to the normal distribution.
A test with Hp: S(r)=0 H;: S(r)#0 is given by.

S(r)

J6/T

The test is under the null a normal standard distribution.

A test for excess kurtosis with the hypothesises Hy: K (r) — 3=,
Hy:K(r) — 3 #0 is given by:

K(r)—3

/24T
The statistic is under the null a normal standard distribution. Under the
chapter "Models and Methods” a distribution for our data will be fitted.
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8.5 Graphs

With report Without reports
| w0
o o
< | < |
o o
[sp) _ [sp) _
o o
u u
(@] Q
< <
(o] _ o™ _
o o
N N ‘ J l
o (=)
o o
T T T T | R B .
5 10 15 20 25 30 5 10 15 20 25 30
Lag Lag

Figure 9: ACF for squared residuals of the AR models in section 4.3.1
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8.5.1 Graphs for fitted GARCH models

std - QQ Plot

Sample Quantiles

Theoretical Quantiles

Figure 10: QQ-plot for residuals in the AR-GARCH model for data with
reports.
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ACF of Standardized Residuals ACF of S5quared Standardized Residuals
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Figure 11: ACF for residuals in AR-GARCH model for data with reports.
The picture to the left looking for autocorrelation and the picture to the
right looking for a ARCH-effect.
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std - QQ Plot
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Figure 12: QQ-plot for residuals in the AR-GARCH model for data without
reports.

8.5.2 Graphs for backtesting
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Figure 13: ACF for residuals in AR-GARCH model for data with reports.
The picture to the left looking for autocorrelation and the picture to the
right looking for a ARCH-effect.
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Figure 14: 1% VaR for the AR-GARCH without report dates, red dots
indication violation of VaR. The window size is 504.
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Figure 15: 5% VaR for the AR-GARCH without report dates,red dots indi-
cation violation of VaR. The window size is 504.
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Figure 16: 1% VaR for the AR-GARCH with reports dates, red dots indi-
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Figure 17: 5% VaR for the AR-GARCH with reports dates, red dots indi-
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cation violation of VaR. The window size is 504.
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