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Abstract

The optimal scenario for perhaps every actor in the financial world
would be to be able to control risk. Knowing what scenarios and events
that would take place in the future would probably due aswell. The
best an analyst in the financial market could do is to model and fore-
cast the risk. This translates to model and forecast volatility. One
particular asset in the financial market that is regarded to have a great
economical impact and has fluctuated a lot during the last ten years is
the oil price. In this paper the GARCH(1,1) and IGARCH(1,1) mod-
els’ ability to forecast the volatility of the Brent Oil one day ahead
is evaluated. The forecasting performance is first evaluated with re-
gards to unconditional coverage. It is concluded that the GARCH(1,1)
model using a Student-t distribution is the only model that on average
forecasts adequately. It is then evaluated whether this model’s sym-
metric prediction interval is satisfactory, in particular for the extreme
observations. Finally, the entire distribution for the 1-step-ahead fore-
cast is examined. The result is that the GARCH(1,1) model using a
Student-t distribution performs well in every aspect considered when
producing 1-step-ahead forecasts.
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1 Introduction

In the financial world, the concept of volatility and ways of modelling volatil-
ity are highly stressed. Here volatility means the conditional standard devi-
ation of the underlying asset. Volatility has many applications, for instance
it can be used in options trading and risk management.

A common way to price options is to use the famous Black-Scholes model.
In this model the volatility is assumed to be constant which is a simplification
of reality since in financial time series “large changes tend to be followed by
large changes-of either sign-and small changes tend to be followed by small
changes” (Mandelbrot, 1963, p.418), a phenomenon referred to as volatility
clustering. In other words, the volatility evolves over time and violates the
assumption of homoscedasticity. However, this evolution can be modelled
by using models that allow for heteroscedasticity, referred to as conditional
heteroscedastic models.

According to Tsay (2010, p.113) conditional heteroscedastic models can
be classified into two different categories, those which describe the evolu-
tion of the volatility by an exact function and those which use a stochastic
equation. This paper will only consider models from the first category.

The fact that the volatility is not directly observable makes the evalua-
tion of the forecasting performance a challenge. A lot of research has been
done to try to create and evaluate different proxies for the volatility. It has
been suggested that an estimate of the daily volatility can be obtained by
using high-frequency data, such as 10-minute returns. Other proxies could
be deduced from option prices by assuming that the prices are governed by
an econometric model such as the Black-Scholes formula. These obtained
proxies are then refereed to as implied volatility, implied by the price and the
econometric model. This paper use a different approach outlined in section
4.2.

This thesis will in Section 2 shortly present previous studies including
their results and models used where the volatility have been forecasted based
on daily Brent Oil spot prices. Section 3 provides the theoretical framework
needed. Section 4 will shortly describe how a time series should be dealt
with when modelling and the evaluation procedures used in this paper will
also be described. The initial data analysis of the log return series is done
in Section 5, appropriate models are fitted in Section 6 and the results from
the different evaluation methods are presented in Section 7. In Section 8 the
results and the weaknesses of the tests will be discussed and the conclusions
will be summarized in Section 9. Finally, Section 10 will suggest interesting
ways to extend the paper with other tests and methods.
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1.1 Background

The challenge with heteroscedasticity will always be regarded as needle in
the eye of a statistician. However for statistcians and analysts modelling
volatility the struggle was clearly alleviated when the American economist
Robert F. Engle in 1982 introduced the autoregressive conditional het-
eroscedastic model, the ARCH model. As the name implies it uses past
values in order to predict the future volatility. Shortly, the variance for
the error term is assumed to be described as a linear function of its past
squared values. In 2003 Engle together with Granger received the Swedish
Riksbank’s prize in Economics in Memory of Alfred Nobel for their methods
modelling economical time series.

Four years later, in 1986 Tim Bollerslev extended the ARCH model to a
more general form by letting the variance term not only be a linear function
of its past squared values but also of its past conditional variances, giving
birth to the generalized autoregressive conditional heteroscedastic model,
the GARCH model.

A special case of the GARCH model is when the autoregressive polyno-
mial in the GARCH process has a unit root, meaning that the coefficients
in the GARCH model sum to one. The model is then referred to as an
integrated GARCH model, IGARCH for short.

A weakness when modelling financial data with these models are that
they respond equally to positive and negative shocks as seen in (3), (4) and
(5). It is known that financial data in practice does not, see Tsay (2010,
p.119). In particular, to allow for asymmetric effects between volatility and
returns Nelson introduced the exponential GARCH, EGARCH.

There are many other extensions of the GARCH model which has differ-
ent implications and capture different anomalies but the only ones discussed
in this thesis is ARCH, GARCH, IGARCH and EGARCH.

1.2 Aim and purpose

The aim with this thesis is to fit appropriate time series models by inspecting
the log return series of the Brent Oil price from January 4 2000 to January
2016 and evaluate the models’ ability to forecast the volatility 1-step-ahead.
The evaluation methods used are the back testing procedure described in
section 3.3.8 and density forecast evaluation described in section 3.3.11.
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2 Previous work

In order to get a sense of how the subject of this paper can be approached
this section gives a general overview of what techniques that can be used
and presents what has been done on the subject earlier including the results
and different models used. All different techniques and models mentioned
in this section that can and have been used are not further explained, they
are presented to get a quick overview and hopefully to engage the interested
reader to read up on and apply for him or herself.

According to Behmiri and Pires Manso (2013) the methods used to fore-
cast the volatility based on the crude oil price can be either quantitative or
qualitative, where the quantitative methods can be divided into econometric
methods and non standard methods. This paper is solely using time series
models which is an econometric method. Other econometric methods used
are financial models and structural models. The non standard or computa-
tional approaches used are Artificial Neural Networks and Support Vector
Machines.

Moreover, the most frequently used techniques in descending order are
time series econometrics, financial methods, structural models and non stan-
dard computational models and the least used is qualitative knowledge based
methods (Behmiri and Pires Manso, 2013).

Turning to the econometric time series models which are used in this
paper, when modelling stocks and different index returns using daily data
the volatility clustering property of the time series usually suggests using
autoregressive conditional heteroscedasticity models. Just as stocks and
index returns, the oil returns are experience volatility clustering and different
types of autoregressive conditional heteroscedasticity models seems to be
common practice. Considering only the previous work where the crude Brent
Oil spot price have been used there are three studies of interest.

Cheong (2009, cited in Behmiri and Pires Manso, 2013, p.32) uses daily
spot prices for the period from 4th January 1993 to 31st december 2008 to
estimate out-of-sample forecasts for horizons of 5, 10, 20 and 100 days. The
models compared are GARCH, asymmetric power ARCH (APARCH), frac-
tionally integrated GARCH (FIGARCH) and fractionally integrated asym-
metric power ARCH (FIAPARCH), all using normal and Student-t distri-
bution. The GARCH models using normal and Student-t distributions are
best for the 5 and 20 day forecasting horizons while the APARCH model is
best for the longer forecasting horizons 60 and 100 days.

Kang, Kang and Yoon (2009, cited in Behmiri and Pires Manso, 2013,
p.33) uses daily spot prices for the period from 6th January 1992 to 31st
December 2009 to perform out-of-sample forecasting analysis on 1,5 and 20
days forecasting horizons. The models compared are GARCH, component
GARCH (CGARCH), IGARCH and FIGARCH. The FIGARCH model out-
performs the other models on all forecasting horizons.
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Wei, Wang, and Huang (2010, cited in Behmiri and Pires Manso, 2013,
p.33) use daily spot prices for the period 9th January 1992 to 31st Decem-
ber 2009. The work is an extension from the work by Kang, Kang and
Yoon (2009) and the out-of-sample forecasting analysis is also performed on
1,5 and 20 days forecasting horizons. The models included are RiskMetrics,
GARCH, IGARCH, Glosten-Jagannathan-Runkle GARCH (GJR-GARCH),
exponential GARCH (EGARCH), APARCH, FIGARCH, fractionally as-
symetry power ARCH (FIAPARCH) and hyperbolic GARCH (HYGARCH).
With regards to six loss functions there is no evidence that the model per-
formance differently. However the linear GARCH models perform better
when forecasting on 1 day horizons and the nonlinear performs better for 5
and 20 day forecasting horizons.

These studies have been done for roughly the same periods and models
for both symmetric and asymmetric effects have been used. Overall linear
GARCH models not allowing for asymmetric effects tend to perform best
when estimating forecasts on short horizons as is the aim of this paper.
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3 Theory

In this section the theoretical framework for the succeeding sections are
presented, including theory for the specific models and tests.

3.1 Return

The theory in this subsection is from Ruppert (2004, section 3.3).

When modelling a financial time series the log return series rather than
the price series is usually modelled. Let the simple return be defined as

Rt =
Pt − Pt−1

Pt−1
=

Pt
Pt−1

− 1.

A common model is to assume that the simple returns are mutually
independent, identically normally distributed. However this model has two
problems. Firstly, the returns are greater than −1 since it’s not possible
to lose more money than invested. This is a problem since a normally
distributed random variables can take any value on the interval [−∞;∞].
Secondly, the multiperiod gross return 1+Rt(k) = (1+Rt)(1+Rt−1) · · · (1+
Rt−k+1)1 is a product of normally distributed random variables, which is not
normally distributed.

In order to get around this problems the simple log return is defined as

rt = ln(1 +Rt) = ln

(
Pt
Pt−1

)
(1)

where 1+Rt is the simple gross return. The simple log return has appealing
properties. Firstly, just as a normally distributed random variable it can
take any value value on the interval [−∞;∞]. Secondly, the multiperiod log
return ln(1 + Rt(k)) = ln((1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1)) = ln(1 +
Rt) + ln(1 + Rt−1) + ... + ln(1 + Rt−k+1) = rt + rt−1 + ... + rt−k+1 is a
sum of normal random variables which is normally distributed. Another
accompanying property of the log return is that it is symmetric around zero
if the mean of the return is zero.

3.2 Time series

The theory in the preceding sections regarding time series and tests are
found in Tsay (2005, chapter 1-3).

The process of log returns can be defined as

rt = µt + at (2)

where µt is the expected value of the process {rt} and {at} is a sequence
of independent and identically distributed random variables with mean zero
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and conditional variance σ2
t . The sequence of {at} is referred to as shocks

or innovations at time t. The equations that describe µt and σ2
t separately

are referred to as the mean and variance equations respectively.
A time series is said to be weakly stationary if two conditions are met.

Firstly, the mean of the return series {rt} should be constant, E(rt) = µ.
Secondly, the covariance between different values, the autocovariance, should
only depend on the lag length l, Cov(rt, rt−l) = γl. The basic idea behind
stationarity is that the series is time independent.

If {rt} is a sequence of independent and identically distributed random
variables with finite mean and variance then the time series is called white
noise. In particular, if the {rt} is normally distributed with mean 0 and
variance σ2

t it is called Gaussian white noise.

3.2.1 AR

The autoregressive model is used when µt can be expressed as a linear func-
tion of the time series previous values. This linear function is often referred
to as the mean equation. An AR model is useful for instance when there is
a trend in the series. An AR(p) model has the form

µt = φ0 +

p∑
l=1

φlrt−l + at,

where

∣∣∣∣∣
p∑
l=1

φl

∣∣∣∣∣ < 1.

3.2.2 ARCH

The idea of ARCH models are that the the shock at is serially uncorre-
lated but dependent where this dependence can be described by a quadratic
function of its lagged values as in (3).

at = σtεt σ2
t = α0 +

m∑
i=1

αia
2
t−l (3)

where {εt} is a sequence of random variables with mean 0 and variance 1,
α0 ≥ 0, αi ≥ 0.

As seen from (3) large values of the squared previous shocks {a2
t−l}mi=1

implies that a large conditional variance σ2
t for the shock at is probable. In

other words, a large shock a2
t−1 tend to be followed by another large shock

a2
t generating the behavior of volatility clustering.

The ARCH model responds slowly to large isolated shocks and tend to
overpredict the volatility. It also responds equally to both to positive and
negative shocks.
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3.2.3 GARCH

The ARCH model often requires many lags to capture the behaviour of
the volatility. However Bollerslev (1986, cited in Tsay, p.131) proposed an
extension of the ARCH process, the generalized ARCH (GARCH).

The idea is the same as for an ARCH model and in addition the condi-
tional variance σ2

t also depends on its previous values. Thus the a GARCH(m, s)
model can be written as

at = σtεt, σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j , (4)

where {εt} again is a sequence of standardized random variables, α0 ≥ 0,

αi ≥ 0, βj ≥ 0 and
∑max(m,s)

i=1 (αi + βi) < 1 in order for the process to be
stationary (Li, 2007, p.4). Following from the last condition that the sum
of all parameters is less than one, a GARCH process is a mean reverting
process.

In particular, if m = s = 1 which correspsond to a GARCH(1,1) process
the variance equation in (4) is given by

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1.

The maximum likelihood estimation of the parameters in a GARCH(p, q)
model and in particular in a GARCH(1,1) model is described in Appendix
B.1.

3.2.4 IGARCH

If the process describing the variance equation in (4) is a unit root process,

meaning that

m∑
i=1

αi +

s∑
i=j

βj = 1, then it is referred to as an integrated

GARCH process, IGARCH for short. In an IGARCH process the shocks are
said to be persistent, meaning that the variance process is mean reverting
slowly. An IGARCH(m, s) can be written as

at = σtεt σ2
t = α0 +

m=s∑
i=1

(1− βi)a2
t−i + βiσ

2
t−i, (5)

where {ε} is defined as earlier and 0 < βi < 0 as. Specifically, if m = s = 1
in (5) is given by

σ2
t = α0 + (1− β1)a2

t−1 + β1σ
2
t−1,
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3.2.5 Forecasting GARCH and IGARCH

The conditional variance of the GARCH model in (4) at time h+ 1 is given
by

σ2
h+1 = α0 +

m∑
i=1

αia
2
h+1−i +

s∑
j=1

βjσ
2
h+1−j ,

where at time h all the past values a2
h+1−i and σ2

h+1−j are known for all
i ≤ m and j ≤ s. Thus the 1-step ahead forecast from forecast origin h
σ2
h(1) equals σ2

h+1 and is given by

σ2
h(1) = α0 +

m∑
i=1

αia
2
h+1−i +

s∑
j=1

βjσ
2
h+1−j .

In particular for a GARCH(1,1) process with α0 = 0, the 1-step-ahead
forecast from forecast origin h is

σ2
h(1) = α1a

2
h + β1σ

2
h. (6)

Specifically, for an IGARCH(1,1) process with α0 = 0, the 1-step-ahead
forecast from forecast origin h is

σ2
h(1) = σ2

h (7)

3.3 Statistics and tests

3.3.1 T-test

A t-test is used to test whether a value of a parameter, usually the mean,
is significantly different from a prespecified value under the null hypothesis
on a given level of significance. It is assumed that the sample values used
to estimate the mean is independent and normally distributed. The null
hypothesis H0 : µ = 0 is tested against the alternative H1 : µ 6= 0. The test
statistic is

T =
x̄− µ0

s/
√
n
∼ tn−1 (8)

where x̄ and s is the sample mean and standard deviation respectively. The
test statistic is t-distributed with n− 1 degrees of freedom.

3.3.2 Autocorrelation, ACF

Autocorrelation is a generalization of the concept of correlation, it quantifies
the linear dependence between rt and its past values of lag l, rt−l. Under
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the assumption of weak stationarity, the autocorrelation is a function of the
lag length l only. In line with the definiton of the correlation coefficient of
two random variables, the autocorrelation coefficient is defined accordingly

ρl =
Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

=
Cov(rt, rt−l)

V ar(rt)
=
γl
γ0
, (9)

where V ar(rt−1) = V ar(rt) since the series {rt} is weakly stationary. It
should be noted that ρ0 = 1, ρl = ρ−l and −1 ≤ ρl ≤ 1 by definition.

To test the null hypothesis H0 : ρl = 0 versus the alternative Ha : ρl 6= 0
it can be used that if {rt} is independent and identically distributed then

ρ̂l
asy∼ N(0, 1

n) (Brockwell and Davis, 1991 cited in Tsay, 2005, p.31). The
test statistic is

T =
ρ̂l√

1 +
2
∑l−1
i=1 ρ̂

2
i

n

∼ tn−1, (10)

where n is the number of observations in the time series and ρ̂l is the sample
autocorrelation of lag length l.

3.3.3 Partial autocorrelation function, PACF

The partial autocorrelaton function is a function of its ACF. It describes the
partial correlation of the time series with its own lagged values, controlling
for the values of the time series at all shorter lags. It is useful to determine
the lag order p of an AR(p) process. Considering the AR models:

rt = φ0,1 + φ1,1rt−1 + e1t

rt = φ0,2 + φ1,2rt−1 + φ2,2rt−1 + e2t

...

rt = φ0,k + φ1,krt−1 + φ2,krt−2 + ...+ φk,krt−k + ekt

where φ0,j , φi,k and {ejt} are respectively, the constant term, the coefficient
of rt−i, and the error term of an AR(j) model. These models are in the form
of a multiple linear regression hence the coefficients can be estimated using
the OLS method. The estimates φ̂1,1, φ̂2,2 and φ̂k,k of the respective equa-
tions are called the lag-1, lag-2, and lag-k sample PACF of rt respectively.
Thus the complete sample PACF describes the time series’ serial correlation
with its previous values of a specific lag controlling for the values of the
time series at all shorter lags. The lag order is chosen where the PACF cuts
off, where the lag-p sample is nonzero and where φ̂j,j is close to zero for all
j > p.
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3.3.4 Box Ljung

To jointly test whether several autocorrelations of rt are zero, the null hy-
pothesis H0 = ρ1 = ρ2 = ... = ρm = 0 can be tested against the alternative
that ρl 6= 0 for at least one l. The t Portmanteau statistic modified by Ljung
and Box (1978, cited in Tsay, p.32) can be used,

Q(m) = n(n+ 2)
m∑
l=1

ρ̂2
l

n− l
∼ χ2(m), (11)

where m is the number of lags and n again is the number of observations in
the time series.

3.3.5 Skewness

The third central moment measure the symmetry of a random variable X
about its mean. The sample skewness Ŝ(x) is calculated according to

Ŝ(x) =
1

(n− 1)σ3
x

n∑
i=1

(xi − µx)3. (12)

A positive sample skewness is indicating that the tail on the right side of
the probability density function is longer or fatter than the corresponding
left and vice versa.

3.3.6 Kurtosis

The fourth central moment measure the tail behaviour of a random variable
X. The sample kurtosis K̂(x) is calculated according to

K̂(x) =
1

(n− 1)σ4
x

n∑
i=1

(xi − µx)4. (13)

A sample value of the kurtosis greater than three is indicating that the prob-
ability density function is leptokurtic compared with a density of a normal
distribution. A leptokurtic density function is characterized by a high, thin
peak around its mean and heavy tails.

3.3.7 Kolmogorov Smirnov

The theory in this section is based on the theory in Bagdonavičius, Julius
and Nikulin (2011, chapter 3).
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It can be tested whether a sample from an unknown distribution F
is equal to a particular distribution F0 by formally testing the hypothesis
H0 : F = F0 against the alternative Ha : F 6= F0. This can be done with a
Kolmogorov Smirnov test.

Let the empirical cumulative distribution function Fn for independent
and identically distributed observations xi from a sample of size n be defined
as

Fn(x) = P (X ≤ x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I(Xi ≤ x) is an indicator function taking value 1 if a given sample
point is below or equal to x and 0 otherwise.

The law of large numbers implies that

1

n

n∑
i=1

I(Xi ≤ x)→ E [I(X ≤ x)] = P (X ≤ x) as n→∞,

thus
Fn(x)→ F (x) as n→∞.

This means that the sample distribution will converge to the underlying
distribution F as the sample size increases and will thus not approximate or
depend on the reference distribution F0. It follows that the distribution of
Dn under H0 can be tabulated for each n with no regards to the reference
distribution. The test statistic used is the following

Dn =
√
n sup
x∈R
|Fn(x)− F0(x)|,

where n is the sample size and supx∈R |Fn(x)−F0(x)| is the largest distance
from the sample c.d.f and the reference c.d.f for some observation xi. The
null hypothesis is rejected when the test statistic Dn exceeds a tabulated
threshold value cα for a given level of significance α, otherwise it is not
rejected.

3.3.8 Back testing

The theory in this section is based on Christoffersen (1998).

In the back test, a given model is fitted for rolling windows over the
entire log return series. From every window 1-step-ahead forecasts of the
volatility is predicted with a belonging double sided 95 % prediction interval
PI0.95. When rolling the windows of a given length from start to end of the
log return series it is of main interest to test whether the actual degree
of coverage equals the degree of coverage implied by the prediction interval
PI0.95. The procedure of using rolling windows is further explained in section
4.2.
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Let It be an indicator variable defined according to

It =

{
1 if rt ∈ PI0.95

0 if rt /∈ PI0.95.

Since the GARCH model is conditioned on the past values, the successive
1-step-ahead forecasts are independent. So whether the observed log returns
are inside its prediction interval can be seen as independent Bernoulli trials.
The test can be formalized with the hypothesis

H0 : p = 0.95
Ha : p 6= 0.95,

where under the null hypothesis It ∼ Be(n, p) and
n∑
t=1

It ∼ Bin(n, p) where

n is the number of observations.
This could be tested with a likelihood ratio test, where the likelihood

under the null hypothesis is

L(p; I1, I2, ..., IT ) = (1− p)n0pn1 ,

and under the alternative

L(π; I1, I2, ...IT ) = (1− π)n0πn1 .

So the likelihood ratio test is formulated according to

LRuc = 2log (L(π̂; I1, I2, ..., In)/L(p; I1, I2, ..., In)) ∼ χ2(1),

where the ML-estimate π̂ = n1
n0+n1

and the degrees of freedom is one since
there is one free parameter under the alternative hypothesis and zero under
the null, thus the difference is one. The null hypothesis is rejected on 5%
significance level if the LRuc exceeds the critical value χ2

0.05, otherwise not.
If the null hypothesis is rejected then the degree of coverage of the model is
not what the prediction interval imply that it should be.

To obtain a confidence interval for the degree of coverage it is used that
the sum of the indicator variable It are binomial distributed with parameters
n and p. The likelihood for p is then given by

L(p) =

(
n∑n
i=1 xi

)
p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi .

After some tedious steps and manipulations done in Appendix C the
(1− α)% Wald confidence interval for p is given by
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(∑n
i=1 xi
n

)
±

zα/2

n

√(
1∑n
i=1 xi

+
1

n−
∑n

i=1 xi

) ,
where zα/2 = Φ−1(1− α/2).

If p = 0.95 does not lie within this confidence interval then the null hy-
pothesis that p = 0.95 is rejected, otherwise not.

3.3.9 Joint test of conditional coverage and independence

The test above tests the coverage on average, the unconditional coverage.
However even if the model on average is right it is necessarily not the case
that the degree of coverage is correct for smaller subperiods. Daily financial
data is clustered and heteroscedastic volatility models try to account for that
fact. So a model choice should not be regarded as successful if the outliers
after trying to account for this effect still would be clustered. Christoffersen
(1998) suggest that this could be tested with an appropriate likelihood ratio
test. More specifically he suggests that the process describing an observation
of going from being inside or outside the forecast interval to the preceding
observation being inside or outside could be described as a Markov chain.
The Markov chain has two states since the indicator variable is binary and
the transition matrix is given by

Π =

(
1− π01 π01

1− π11 π11

)
, (14)

where the first and second row (column) represents starting (ending up) in
a position inside and outside the forecast interval respectively.

If Ii is independent and identically distributed for all values of i then
the probability of an observation being inside the forecast interval is the
same no matter if the observation one step before were inside or outside the
forecast interval, i.e. P (It = 1|It−1 = 0) = P (It = 1|It−1 = 1). The test of
conditional coverage independence is formalized with the hypothesis

H0 : π01 = π11

Ha : π01 6= π11

where πij = P (It = j|It−1 = i).

However, since financial data is assumed to respond differently to posi-
tive and negative shocks it would also be of great interest to test whether the
coverage in the left tail and the right tail jointly performs as the model spec-
ifies. Testing for this could hint whether a model that allow for asymmetric
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effects might be called for. The idea of transitions between the two states be-
ing inside or outside the forecast interval can be refined to three states, being
smaller than the lower forecasting bound, greater than the upper forecasting
bound and being inside the forecasting interval. The transition matrix (14)
could be extended to incorporate these three states accordingly

Πa =

 πll 1− πll − πlu πlu
πml 1− πml − πmu πmu
πul 1− πul − πuu πuu

 (15)

where the subindexes l, m and u denotes the states lower, middle and upper
respectively.

Let S be the random variable that indicates what state the process sit-
uates in, then the approximate likelihood function for this process can be
expressed as

L(Πa;S1, S2, ..., Sn) = πnllll (1− πll − πlm)nml ...(1− πul − πuu)numπnuuuu , (16)

where nij is the number of observations that made the one step transition
from state i to state j. It is approximate because it is conditioned on the
first observation. Since this observation is the starting point a transition
from a state in an earlier time period did not occur. The ML-estimates
deduced in Appendix B.2 are given by

π̂ij =
nij

nil + nim + niu
, (17)

for i = l,m, u , j = l, u.

Under the the assumption the state is independent of the previous state
and that the tail probabilites are equal and prespecified according to some
significance level α = 1− p the transition matrix is specified according to

Π0 =

(1− p)/2 p (1− p)/2
(1− p)/2 p (1− p)/2
(1− p)/2 p (1− p)/2

 , (18)

which has the likelihood

L(Π0;S1, S2, ..., Sn) = (1− p)(nll+nlu+nml+nmu+nul+nuu)p(nlm+nmm+num).
(19)

Testing whether the matrix (15) equals the matrix (18), can be formal-
ized by the hypothesis’

H0 : (1− p)/2 = πll = πlu = πml = πmu = πul = πuu
Ha : at least one of the equalities under the null does not hold.
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The null hypothesis can be tested against the alternative using the like-
lihood ratio

LR = 2log
(
L(Π̂a;S1, S2, ..., Sn)− L(Π0;S1, S2, ..., Sn)

)
∼ χ2(6), (20)

since the difference in free parameters between the alternative and the null
hypothesis is six. There are six free parameters under the alternative hy-
pothesis and zero under the null.

The null hypothesis is rejected if the observed LR-statistic is greater
than the critical value χ2α(6), otherwise not.

3.3.10 Root mean squared error, RMSE

Even if observations are inside the models’ prediction intervals it does not
say anything regarding how far away the predictions are from the actual
observations. Even if the model has the implied degree of coverage it perhaps
underestimates the volatility completely when the prediction interval fail to
include the observation or perhaps it overestimates the volatility and render
wider prediction intervals than necessary. To measure the actual deviation
from the predicted and the observed volatility the root mean squared error
can be used.

Let Ŷ be the predicted values of corresponding observed values Y , then
the mean squared error of the predictor Ŷ is estimated according to

RMSE(Ŷ ) =

√
MSE(Ŷ ) =

√√√√ 1

n

n∑
i=1

(Ŷ − Y )2, (21)

where n is the number of observations.

3.3.11 Density forecast

A more general approach to consider whether a model is appropriate would
be to focus on how well the model forecast not only in the upper and lower
quantiles but also how well it perform over all possible percentiles. In other
words how well the model predict with regards to the entire distribution,
thus evaluating the complete density forecast.

Let Y = FX(X). Then the probability integral transform states that
for any continuous random variable X with distribution function FX , Y is
uniformly distributed on [0,1] (Held and Sabanés Bové, 2014, p.309-310). It
follows since

FY (u) = P (Y ≤ u) = P (FX(X) ≤ u) = P
(
X ≤ F−1

X (u)
)

= FX
(
F−1
X (u)

)
= u,

19



so Y ∼ U(0, 1) by definition.

Specifically, if Xt+1 denotes the distribution for the log returns in a
GARCH(1,1) process at time point t+1 then the distribution for the random
variable

Yt+1 = FXt+1|t(Xt+1) = P (Xt+1 ≤ Xt+1|FXt) = P (σt+1εt+1 ≤ Xt+1|σt+1)

(22)

= P

(
εt+1 ≤

Xt+1

σt+1

∣∣∣∣σt+1

)
= Fεt+1

(
Xt+1

σt+1

)
∼ U(0, 1), (23)

which shows that the cumulative distribution function for the standardized
residuals εt+1 evaluated in the observed points xt+1

σt+1
should be uniformly

distributed on the interval [0,1] for all t. To formally test the null hypothesis
against the alternative accordingly

H0: Yt+1 is uniformly distributed on [0,1].
Ha: Yt+1 is not uniformly distributed on [0,1],

the Kolmogorov-Smirnov test described in section 3.3.7 can be used.
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4 Methodology

The data used is the Brent Oil spot price from January 4 2000 to January
22 2016 from which the log returns are calculated according to (1). This log
return series is the time series which is subject to investigation.

4.1 Dealing with time series

A time series is usually not white noise, it is usually serially dependent
meaning that the future values to some extent depend on the past values
of different lags. In order to be able to forecast the future values of a time
series behaving in a certain way this serial structure need to be identified
and captured to some extent. It can be captured using more or less so-
phisticated mathematical models. However, these models are as all models
a simplification of reality and should not be seen as the true model of the
underlying time series, i.e. the price of a stock is not programmed to behave
as a certain model. Every model is a simplification of reality so there exist
no such model as a true model. The goal when dealing with time series is
narrowed to successively navigate stepwise towards finding the best model
at hand. In order to identify the serial structure it is suggested that the
autocorrelation function is used. The autocorrelation is a generalisation of
ordinary correlation which is nothing but a measure of linear correlation be-
tween the observations and its past values. The sample autocorrelations for
all lags are computed according to (9) and plotted in correlograms including
their 95 % confidence limits. Based on this the structure of the log return
series is identified and appropriate models are fitted.

4.2 Forecast evaluation

In order to test how well the model predicts volatility it would be of interest
to calculate the deviance from actual volatility, σ2

forecast−σ2
actual. However,

the actual volatility cannot be observed. What actually can be observed is
the log returns rt which can be used as a proxy for σactual. Let Ft−1 denote
all available information up to and including time period t− 1. Then

E(rt|Ft−1) = E(µ+ σtεt|σt) = µ+ σtE(εt|σt) = µ+ σtE(ε) = µ

V ar(rt|Ft−1) = V ar(µ+ σtεt|σt) = σ2
t V ar(εt|σt) = σ2

t V ar(ε) = σ2
t ,

so the observations rt should with (1− α)% confidence be contained within
the 1-step-ahead prediction intervals constructed according to
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PIt|Ft−1 =

{
µ± zα/2σt−1(1) using a normal distribution

µ± tα/2(df)σt−1(1) using a Student-t distribution,
(24)

where σt−1(1) is calculated according to (6) and (7) for GARCH(1,1) and
IGARCH(1,1) models respectively.

In order to assess how well a given model perform the back testing pro-
cedure described in section 3.3.8 is used. The models are fitted on one hand
with the assumption that the random variable ε in (4) and (5) are normally
distributed and on the other assuming it is Student-t distributed. In sections
6.1 and 6.2 it is motivated that the models GARCH(1,1) and IGARCH(1,1)
seem to resemble the underlying process of the log return series. Hence the
models subject to 1-step-ahead forecast evaluation with accompanying dis-
tributions are:

• GARCH(1,1) using a normal distribution

• GARCH(1,1) using a Student-t distribution

• IGARCH(1,1) using a Normal distribution

• IGARCH(1,1) using a Student-t distribution.

For a given model rolling windows are used according to the following
procedure. For instance when using a rolling window of length one year a
model is fitted to the set of Brent Oil log returns using the observations
for the first year in the time series. For this particular window the pa-
rameters in the model are estimated and a 1-step-ahead forecast σh(1) is
calculated according to (6) and (7) for the GARCH(1,1) and IGARCH(1,1)
models respectively with the including 95% prediction intervals (24). Then
the window is moved one step forward, corresponding to one day when using
a daily time series. The new window leaves out the first observation and
includes the first observation in the next year. So the window still includes
log returns for a period of one year but is moved one day ahead. Again
the model is fitted to the Brent Oil log returns that the window includes
and a 1-step-ahead forecast is made and accompanied by a prediction inter-
val. This procedure is repeated throughout the entire log return series until
the window includes the most recent observation. So the window is rolling
through the entire time series.
In order to get universal results the models are estimated using rolling win-
dows of eleven different lengths, from six months, one year, two years and
growing windows of one year up to and including ten years. Then for every
combination of candidate in the list above and rolling window length the
unconditonal coverage is tested as outlined in section 3.3.8. For appropriate
models, based on the test of unconditional coverage, conditional coverage
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and independence is jointly tested as described in section 3.3.9. Finally the
density forecast is evaluated according to the procedure in section 3.3.11.
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5 Data

5.1 Data analysis

In this section the price and log return series is plotted in Figure 1 and
Figure 2 to detect specific patterns or anomalies such as volatility cluster-
ing, structural breaks or seasonal patterns. Further, some sample statistics
are estimated and summarized in Table 1 accompanied with QQ-plots and
histograms in Figure 3 and Figure 4 to get a sense of how the log return
series are distributed. This could serve as a hint which distribution that
would be the most appropriate when specify the likelihood function in order
to estimate the parameters in the models.

To get a sense of how the time series is roughly behaving, the some
initial plots and descriptive statistics can be inspected. As seen in Figure 1
the oil price seems to be hovering around some price level for specific time
periods. That seems to be the case for the time period 2000-2005, then the
price increases to a new level which it is lingering around for about one year.
Following some volatile years including a big increase followed by an even
larger decrease during 2008, from 2011 the price again seems to linger around
some new level. The worst case scenario from a model selection perspective
is that the time series would behave homogeneously within these different
periods and at the same time heterogeneously with respect to these different
periods. Then the different periods would call for different models.

Figure 1: Daily Brent Oil spot prices from January 4 2000 to January 22
2016

The spot price of the Brent Oil is not the time series that should be
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modelled rather it is the log return. Plotting the log returns and the abso-
lute log returns could provide some useful insights, e.g. financial data tend
to exhibit distinct changes in volatility over time. The log return and in
particular the absolute log return series in Figure 2 is indicating that the
magnitude of the volatility seem to decline over time. It is even clearer that
some periods of large absolute log returns, e.g. after 2000, around 2005 and
as expected also during the financial crisis 2008 are followed by periods of
tranquility. This is an indication of volatility clustering. However the ob-
served volatility clustering is more subtle than in most financial data where
it is often very distinct.
Another observation is that the volatility appears to be smaller after the
volatile period following the financial crisis than during the period 2005-
2008, a period which itself seem to be somewhat different from the period
2000-2005. This arouses suspicion that there perhaps are structural breaks
in volatility. The volatility clustering property and the fact that the vari-
ance is not constant suggest that autoregressive conditional heteroscedastic
models would probably be good at mimicing the behaviour in the log return
series.
In addition, the log return series does not seem to have any regularly re-
peating patterns so there is no signs of seasonality.
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Figure 2: Daily Brent Oil log returns from January 4 2000 to January 22
2016: (a) log returns, (b) absolute log returns

By inspecting the descriptive statistics listed in Table 1 it is possible to
get some indications how the data is distributed. As stated in subsubsec-
tion 3.3.5 and subsubsection 3.3.6 the sample skewness and kurtosis roughly
signals how the log returns are distributed with respect to the tails. It is
common for financial data that the sample kurtosis is greater than 3, thus
being leptokurtic relatively a normal distribution.
From the the descriptive statistics in Table 1 it can be seen that the mean
is very small. So not surprisingly, when testing the null hypothesis that
the mean is zero against the alternative that it is different from zero using
the t-test in (8) the null hypothesis is not rejected. So there is no evidence
that the mean is non-zero and thus no indication of a trend in the data
over the entire time span. Whether local trends exists is further discussed
in section 6.3.1. It can be noted that the estimated standard deviation is
roughly 0.021 so in order to reject the null hypothesis of zero mean with 5%
level of significance the mean estimate need to be almost 900 times higher
than currently estimated. However, when using a t-test in this case one
should bear in mind that the test statistic is approximately t-distributed
under the assumption that the observations are independent and identically
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distributed. The log return series clearly violates the independency since it
is heavily serially correlated as seen in Figure 5.
The negative sample skewness calculated according to (12) indicate that the
tail on the left is longer or fatter than the right side. The sample kurtosis
calculated according to (13) being greater than three indicates that as for
most financial data Brent Oil log returns are leptokurtic, characterized by
a high narrow peak and fatter tails compared to a normal distribution.

Mean Standard deviation Skewness Kurtosis

0.00004739956 0.02132016 -0.1229448 6.863149

Table 1: Descriptive statistics for Brent Oil log returns from January 4 2000
to January 22 2016

As noted earlier in this section the distribution of the log return series
could serve as a hint which distribution would be the most appropriate when
specify the likelihood function in order to estimate the parameters in the
models. The shortcoming of different distributions can easily be identified
graphically by plotting a histogram or QQ-plot for the log returns. For
comparison lines corresponding to the theoretical distributions are included
in both the histogram and the QQ-plot. Large deviations between the data
and these lines are signs of that the data is not distributed according to
this particular distribution. The extreme observations in financial data are
usually not captured by a normal distribution which usually calls for another
distribution, e.g. a Student t distribution which has heavier tails. Having in
mind that the the sample kurtosis for the log return is greater than three, it
would not be surprising if a normal distribution does not fit the data well.

Together the QQ-plot and histogram in Figure 3 demonstrates what
the sample kurtosis quantifies. From the QQ-plot in (a) it is clear that
the tails are heavier than those of a normal distribution so as expected it
does not capture the tail behaviour of the log returns. The histogram in
(b) demonstrates the high and thin peak. The log return series is clearly
leptokurtic and not normally distributed.
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Figure 3: The distribution of the daily Brent Oil log returns from January 4
2000 to January 22 2016 illustrated in a: (a) normal QQ-plot, (b) histogram
with a normal density curve

When choosing between rather simple distributions with few parameters
such as the normal and Student-t distribution it is a trade off between hav-
ing heavy tails and a high, thin peak around the mean. As seen in Figure 4
the tails of the Student-t distribution with six degree of freedom seem to be
equally heavy as the tails of the log return series. Bearing in mind that the
sample skewness is negative it is not surprising that the number of extreme
observations in the lower part of the QQ-plot is greater than in the upper
part. This further confirms that the left tail of the log return series is heavier
than the right one. To conclude, a Student-t distribution with six degrees
of freedom resembles the log return series and especially the tails of the log
return series fairly well.
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Figure 4: QQ-plot of the daily log returns of Brent Oil price from January
4 2000 to January 16 2016 against the theoretical quantiles for a Student-t
distribution with six degress of freedom

To summarize, the log return series are experiencing volatility clustering
and drastic changes in volatility, see Figure 2. This suggests using autore-
gressive conditional heteroscedastic models when modelling the time series.
There are no indications of an existing trend with respect to the mean over
the entire time period, see Table 1 and the text preceding it. The existence
of trends will be further investigated in section 6.3.1. There are no signs of
seasonality when inspecting Figure 2. Regarding the distribution, the series
does not seem to be normally distributed and it is relatively leptokurtic, see
Figure 3. The log return series is rather distributed according to a Student-t
distribution with six degrees of freedom, see Figure 4. In addition the series
is slightly negatively skewed, indicating that in the sample there are more
negative log returns of a large magnitude compared to large positive ones,
see Table 1 and Figure 4.
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6 Modelling

This section progress with the next step in section 6.1, clarifying how the
serial dependence in the data is structured using the sample ACF and PACF
in Figure 5. Based on the model identification an appropriate model is fitted
and its standardized residuals are graphically examined in section 6.2. Both
with regards to how they are distributed in Figure 10 and further whether
the standardized residuals have constant variance using Figure 11. In section
6.3 and section 6.3.1 it is further discussed whether it is appropriate to treat
all the rolling windows based on the model selection of the entire period. In
section 6.3.1 it is investigated whether there are local trends in the Brent
Oil log return series using a simulation study.

6.1 Model identification

It is common that financial time series’ suffer from structural breaks in
volatility and volatility clustering. Different conditional heteroscedasticity
models such as ARCH or GARCH models are frequently used to capture
this. However in order to evaluate whether these or some other models are
appropriate for the log return series at hand, the dependency structure in
the log return series need to be assessed. This is done by studying how
the log return values and its previous values cling together using different
autocorrelation plots, correlograms, for different functions of the time series.

The correlograms for the untransformed time series show how a time
series is correlated with its own previous values of different lag lengths. The
autocorrelation plot for the squared and absolute time series indicates how
the magnitude of the values of the time series is correlated with its own
previous values for different lag lengths. Thus these plots describes the
serial dependence in the time series. The partial autocorrelation plot for
a time series depict the partial correlation of the time series with its own
lagged values, controlling for the values of the time series at all shorter lags.
Thus it describes time series serial correlation with its previous values of
a specific lag. If partial correlation is significantly different from zero on a
specific lag a trend is said to exist in the time series.

By inspecting the sample ACF and PACF plots (a) and (d) in Figure 5
the log returns appear to be white noise, the serial correlation is weak if
any so there there is no indication of a trend in the data over the full time
span. However, by inspecting the sample ACF plots for the (b) squared and
(c) absolute log returns it appears that there indeed is a linear dependence
in the log return series. This linear dependence does not seem to have any
repeating patterns so there is still no signs of seasonality. These observa-
tions confirm the same observations made from Figure 2 regarding trend
and seasonality. However the autocorrelation does not seem to decay at an
exponential rate, rather at a slow hyperbolic rate. From the character of
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the squared and absolute log returns it should not be ruled out that the un-
derlying process appear to be a long memory process. In such a process the
squared and absolute log returns decay slowly even though the log return
series does not exhibit serial correlation (Ding, Granger, and Engle, 1993
cited in Tsay, 2005, p.154).

Figure 5: Sample ACF and PACF of various functions of Brent Oil log
returns from January 4 2000 to January 22 2016: (a) ACF of the log returns,
(b) ACF of the squared log returns, (c) ACF of the absolute log returns, (d)
PACF of the log returns.

In order to identify what underlying process might give rise to this real-
isation simulations from theoretical processes can be done and it can then
be evaluated whether the realisations of these simulations resemble the log
return series with respect to the sample ACF and PACF plots. Log returns
from ARCH(1) and GARCH(1,1) processes are simulated using the function
garchSim in the package fGarch in R. The parameter values used are the
ones obtained when fitting these models to the Brent Oil log return series
using a Student-t distribution. All the sample ACF and PACF plots for the
simulated GARCH(1,1) resemble the ones in Figure 5. It can be seen from
(b) in Figure 6 that the sample ACF plot for the simulated GARCH(1,1)
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absolute log returns clearly resembles the sample ACF plot (c) for the ab-
solute log return series in Figure 5. The same does not hold for the sample
ACF (a) in Figure 6 for the simulated ARCH(1) series.

Figure 6: Sample ACF of 4000 simulated absolute log returns using param-
eter estimates obtained when fitting models using a Student-t distribution:
(a) ARCH(1), (b) GARCH(1,1).

6.2 Model fitting

It has been established that a GARCH(1,1) process with Student-t distri-
bution innovations seem to behave in a similar way as the log return series.
However, since it is of interest to fit a simple model as possible a stepwise
approach is applied. So far there is no indications that the mean equation
describing µt in (2) need to be modelled in some way, the mean of the log
return series is not significantly different from zero as seen in section 5.1.
When fitting a randow walk model to the series the intercept is not signifi-
cantly different from zero. This indicates that there is no drift in the mean
equation that need to be modelled which further confirms that the mean
in the series is not significantly different from zero. Further, the ACF and
PACF plots in (a) and (d) in Figure 5 did not signal that there is a trend
that need to be modelled either. So the mean equation is assumed to be
zero. ARCH models of different lags are fitted using a normal distribution
and the standardized residuals are obtained by dividing the innovations in
the model by the estimated σt,

εt =
at
σ̂t
.

As seen in the variance equation (3), in an ARCH(m) process the squared
innovations constitutes an AR(m) process. So choosing the lag length of an
ARCH process is done in a similar manner as when choosing the lag length
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in an AR process. The sample PACF plot for the squared log returns is used
since in the ARCH model the squared shocks linearly depends on its past
squared values. As seen in Figure 7 the serial dependence seem to cling off
after lag six.

Figure 7: Sample PACF of the squared daily Brent Oil log returns from
January 4 2000 to January 22 2016

It is confirmed by fitting models using both normal distribution and
Student-t distribution that lags no less than six is needed in order for the
standardized residuals from ARCH models to be white noise. However,
when fitting models a simple model with as few lags as as possible is always
preferable. So it would be of interest to fit a simpler model with regards
to the number of parameters needed. In addition, according to Tsay (2010,
p.119), the ability to capture excess kurtosis in ARCH models of higher or-
ders is limited. Financial time series that mimic ARCH processes of higher
orders can usually be resembled by GARCH processes of lower orders and
as noted in previous sections the log return series at hand seem to mimic a
GARCH(1,1) process. When fitting a GARCH(1,1) using a normal distribu-
tion the standardized residuals does not satisfy the normality assumption.
It is illustrated in the QQ-plot in (a) in Figure 8 where the observations
in the tails do not lie on the theoretical line. The same observation can be
made from the histogram in (b) in the same figure, the normal density curve
is below the bars in the tails. In addition, the normal density curve is also
below the bars surrounding the mean in the center of the histogram. So as
in the case of the log return series, the standardized residuals after fitting a
GARCH(1,1) model using a normal distribution are leptokurtic.
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Figure 8: Plots of the standardized residuals when fitting a GARCH(1,1)
model using a normal distribution to the Brent Oil log returns from January
4 2000 to January 16 2016: (a) QQ-plot, (b) Histogram with normal density
curve.

It is concluded that the normality assumption does not hold. The tails
of the distribution of the standardized residuals when fitting a GARCH(1,1)
using a normal distribution were slightly heavier than the tails of a normal
distribution suggesting that perhaps the use of the Student-t distribution
is more appropriate. When fitting a GARCH(1,1) model with a Student-t
distribution the standardized residuals are white noise, which is depicted in
Figure 9. Testing the null hypothesis that the autocorrelations jointly are
zero using the Box Ljung test (11) is not rejected for any lag length on 5 %
level of significance. This confirms the visual conclusion.
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Figure 9: Sample ACF plots for various functions of the residuals when
fitting a GARCH(1,1) model using a Student-t distribution to the daily
Brent Oil log returns from January 2000 to January 2016: (a) ACF of the
squared residuals, (b) ACF of the absolute residuals

In order to assess whether the model assumptions hold, that the stan-
dardized residuals are identically and independently Student-t distributed
with zero mean and constant variance some model diagnostics is called for.
The Student-t distribution assumption can be adressed with a QQ-plot and
histogram. As seen in (a) in Figure 10 the standardized residuals seem to
fit fairly well to a Student-t distribution with the exception for two extreme
observations in the lower tail and that some observations in the upper tail do
not lie on the line. In addition, the density curve of a Student-t distribution
with 9.23 degrees of freedom in plot (b) follow the the bars in the histogram
very closely. Since the normal distribution has a higher peak than an ar-
bitrary Student-t distribution with finite number of degrees of freedom it
is no surprise that the density curve for the Student-t distribution is below
the bars around its mean just as in the case for the normal density curve in
Figure 8. Even though the standardized residuals are leptokurtic, assuming
that the standardized residuals are Student-t distributed seem justified.
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Figure 10: Plots of the standardized residuals when fitting a GARCH(1,1)
model using a Student-t distribution to the Brent Oil log returns from Jan-
uary 4 2000 to January 16 2016: (a) QQ-plot, (b) Histogram with Student-t
density curve

Regarding the assumption of constant variance and zero mean the model
adequately captures the heteroscedasticity in the log returns depicted in
(a) in Figure 11. This is illustrated clearly in (b) in Figure 11 where the
standardized residuals are showing constant variance and seem to have mean
zero. As expected after inspecting the QQ-plot in Figure 10 there are two
outliers in the bottom of plot (b) in Figure 11. There are also some extreme
observations in the top of the same plot.
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Figure 11: (a) Daily Brent Oil log returns from January 4 2000 to January 22
2016 (b) Standardized residuals when fitting a GARCH(1,1) using a Student-
t distribution to the Brent Oil log returns for the same period

After inspecting these plots it is clear that the GARCH(1,1) model using
a Student-t distribution seem to fit the log return series be fairly good. In
addition the standardized residuals are even more skewed than the log return
series with a sample skewness of -0.224 compared to -0.123 from Table 1.
However the kurtosis is now 4.763 compared to 6.864 in the same table. This
is indicating that the standardized residuals are more negatively skewed than
the log return series and that they are leptokurtic but to a smaller extent
than the log return series. All things considered, the Student-t distribution
does not seem to capture the extreme observations nor does it manage to
account for the skewness. It could be the case that a skewed t distribution
would account for the skewness or maybe different distributions should be
used for different subintervals. However, a Student-t distribution seems
to be fairly good and is thus justified when proceeding. Even though the
standardized residuals clearly are not normally distributed when fitting a
GARCH(1,1) model to the log return series it does not necessarily imply that
the forecasting performance of a GARCH(1,1) using a normal distribution
is poor. It would be interesting to evaluate whether the distribution will
affect the forecasting performance so model’s forecasting performance using
a normal distribution will also be evaluated.

When fitting a GARCH(1,1) using a Student-t distribution the mean
equation is assumed to be zero. Neither the intercept term in the variance
equation is significantly different from zero so the final model has the form

rt = σtεt, σ2
t = α1a

2
t−1 + β1σ

2
t−1

with the estimated variance equation
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σ̂2
t = 0.0348a2

t−1 + 0.9642σ2
t−1. (25)

Since β̂ in (25) is roughly 0.9642 it can be interpreted that the squared
volatility at time t to a very large extent depend on the preceding squared
volatility at time t− 1 rather than the preceding shock.

It is now established that this model seem to fit the log return series well.
The estimated parameters in the model sum to 0.999 so the IGARCH model
is also a possible model candidate. The sum of the parameters using rolling
windows is very close to 1 for the entire time span as seen in Figure 12. It
should be noted that the ruotine rugarch used in R imposes the restriction
that the sum of the parameters is less than or equal to 0.999 which explains
the straight lines in the top of plot (a) and in (b) in Figure 12. As seen in
plot (b) when using longer rolling windows such as five years the sum of the
parameters is 0.999 for all windows throughout the entire time span.

Figure 12: Sum of the estimated parameters α and β over time for the
GARCH(1,1) model using a Student-t distribution and a rolling window
length of: (a) one year (b) five years.

The fact that the sum of the parameters are so close to one is showing
that the variance process in the log return series is mean reverting slowly,
indicating that the shocks are persistent. This could explain why the log
return series at hand resemble a long memory process as discussed in section
6.1. When fitting an IGARCH with a Student-t distribution the standard-
ized residuals are still white noise. This is quite expected since the only
change from the GARCH(1,1) is that the condition that the sum of the pa-
rameters α1 and β1 equals 1 is imposed.
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What now is concluded is that the GARCH(1,1) and IGARCH(1,1) seem
to mimic the log return series for the entire period from 2000-2016. No
deeper evaluation regarding the fit of the models are done since the inter-
esting question in this thesis is to assess whether these models are good at
forecasting and if any of them are better than the other. However, when
using one model for the entire time period it is assumed that the the entire
time span is homogeneous which of course necessarily is not the case.

6.3 Structural breaks

As outlined in section 4.2 rolling windows should be used for which the
models at hand should be estimated and in turn used to estimate the 1-step-
ahead forecasts. It could be the case that different models are appropriate
for different periods, i.e. that the log return series are dynamic regarding
its behaviour during different circumstances or periods. That would clearly
aggravate the model fitting in previous section. A crude approach to see if
this is the case would be to find the best model for every rolling window or for
different appropriate periods. Even the issue of defining what in this context
would be appropriate periods would require considerably consideration. An
even more naive approach would be to investigate how the parameters in the
given models change over time, if they would change considerably that would
be an indication that the given model at hand would not be appropriate.
As seen in plot (a) in Figure 13 the parameters in a GARCH(1,1) using a
Student-t distribution does not change considerably over time when using
rolling windows of length one year. From the plot it can be seen that over
the full time span, the parameter fluctuation is within a range of less than
0.1 except for 2005. The longer the rolling windows grow, the parameters
fluctuates less. Plot (b) in Figure 13 depict the parameter estimates over the
full time span for a GARCH(1,1) using a Student-t distribution for a rolling
window length of five years. So based on this naive approach there is no
evident signs that the GARCH(1,1) model is inappropriate when modelling
the log return series. One interesting observation from plot (a) is that the
parameter estimation change in absolute terms more and also more abruptly
when the log returns from 2005 are included in the rolling window compared
to when the financial crisis during 2008 is included.
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Figure 13: The parameter estimtaes of α and β over time when fitting a
GARCH(1,1) model using a Student-t distribution. Using a rolling window
of length: (a) 1 year, (b) 5 years.

6.3.1 Local trends

GARCH models are trying to capture the phenomenom that volatility is
changing. Except from volatility shifts, a time series might exhibit some
local trends. If there are local trends in the log return series then perhaps
other models than GARCH(1,1) would have a better forecasting perfor-
mance such as AR(1)-GARCH(1,1). One way to investigate whether there
is a trend in form of an AR(1)-process would be to compare the distribution
of estimated AR(1) components in the data at hand with a reference distri-
bution of AR(1) estimates from a process where a trend is not present.
To obtain a reference distribution for the AR(1) components log returns are
simulated from a GARCH(1,1) process using a Student-t distribution with
the parameter estimates in (25). Then AR(1) coefficients are estimated for
a rolling window through the entire simulated log return series.
This simulation and estimation process is repeated 1000 times and all AR(1)
estimates together constitutes the reference distribution. From this refer-
ence distribution the empirical 0.025 and 0.975 quantiles are obtained. If
there is no trend resembling an AR(1) process in a given log return series
not more than 5% of the estimated AR(1) coefficients from this log return
series should be smaller or greater than these quantile values.
To check if this is the case for the Brent Oil log return series AR(1) coef-
ficients are estimated to the series using rolling windows of same length as
when obtaining the reference distribution. One approach would be to count
the AR(1) estimates from the Brent Oil log return series that are outside the
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empirical 2.5% and 97.5% quantiles and then letting π denote the proportion
of AR(1) estimates outside the empirical quantiles. Whether an estimate of
an AR(1) coefficient is outside the empirical quantiles or not can be seen
as a Bernoulli trial, where being outside is defined as a success. The sum
of these Bernoulli trials is binomial distributed if the trials are independent
and a binomial test can be performed. To test whether there is a greater
number of AR(1) coefficients than can be explained by chance, the null hy-
pothesis H0 : π = 0.05 can be tested against the alternative Ha : π 6= 0.05
by constructing a Wald confidence interval according to (29) where xi is 1
when the estimated AR(1) coefficient for a given window is outside the em-
pirical 2.5% and 97.5% quantiles of the reference distribution. It should be
noted that since the windows are rolling one step at a time the estimates in
each window are clearly dependent which contradicts the assumption that
the Bernoulli trials are independent. In order to have independent AR(1)
estimates the log return series would have to be divided into non-overlapping
windows. A problem with that is that the results could depend on where
the windows are, as compared to when using rolling windows where every
possible window is taken into account. In addition, the number of AR(1)
estimates from the Brent Oil log return series would only be 16 when using
a rolling window of one year and decrease towards one estimate when using
a rolling window of ten years.
However, the reference distribution is obtained in the exact same way with
rolling windows and will thus also render serially correlated estimates. So
5% of the AR(1) estimates for the Brent Oil log return series should lie
outside the critical empirical quantiles under the assumption that there is
no trend in the series.

The choice of the length of the rolling window would clearly affect the
results since a local trend could vanish when using a longer window. On the
other hand a local trend for very short windows would be rather unimportant
and also hard to separate from sheer chance.

Without using a formal test it can be seen in plot (b) in Figure 14 where
a rolling window of length five years has been used that after the window
starts around 2009 (an thus starting with the window 2009-2014) the AR(1)
estimates for almost all the rolling windows are above the empirical 97.5%
quantile. Not only is there a lot more than 5% AR(1) estimates outside
the critical quantiles, they are not randomly spread. The vast majority of
the AR(1) estimates outside the quantiles are after 2009 and they are all
above the 97.5% quantile, 14% to be precise. This is indication that there
is a positive trend in the Brent Oil log return after 2010. From plot (a)
in Figure 14 where a rolling window of length one year has been used it
is clear that there probably is a local trend around 2010 to 2013 since the
AR(1) estimates are above the 97.5% quantile for windows including this
period. Almost 11% of all the AR(1) estimates in the plot are above the
97.5% quantile.
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Figure 14: AR(1) estimates over time for the Brent Oil log return series using
a rolling window of: (a) 1 year, (b) 5 years. The dotted lines are 2.5% and
97.5% quantiles of the reference distribution for AR(1) estimates obtained
when estimating AR(1) estimates to a repeatedly simulated GARCH(1,1)
process. The x-axis is indicating the last date in the rolling window.

It is suspected that there is a positive local trend in the Brent Oil log
return series and that the underlying process at least for a period mimics the
AR(1)-GARCH(1,1) process. For comparison it would also be interesting to
see how such as simulated process would look like. An AR(1)-GARCH(1,1)
model is fitted to the Brent Oil log return series and the parameters is used
to simulate a process. Again, the function garchSim in the package fGarch
in R is used for the simulation. In Figure 15 the AR(1) estimates estimated
using a rolling window of one year to a realisation of such a process is plotted.
The AR(1) estimates in plot(a) in Figure 15 over time is quite similar to
the ones in plot (a) in Figure 14 considering that the estimates sometimes
are below the empirical 2.5% quantile and when they are it is for a few
subsequent windows. When the estimates are above the 97.5% quantile it
is so for a greater number of subsequent windows. By inspecting plot (b)
in Figure 15 it can be seen that the AR(1) estimates are not below the the
2.5% quantile and when it is above the 97.5% quantile it is so for very few
subsequent windows. It does not resemble plot (b) in Figure 14 where the
AR(1) estimates are above the 97.5% quantile for almost an entire span of
rolling windows for three years. The conclusion that can be made from this
is that the trend in the Brent Oil log return series seem to be a local one.

The AR(1)-GARCH(1,1) process has been simulated 1000 times and
similar behaviour is seen in a sample of these simulated processes so it is
not a special behaviour for the particular processes in Figure 15. It can be
noted that the AR(1) estimate in the AR(1)-GARCH(1,1) model is modestly
0.02.
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Figure 15: AR(1) estimates over time for a simulated AR(1)-GARCH(1,1)
process using a rolling window of length: (a) 1 year, (b) 5 years. The
dotted lines are 2.5% and 97.5% quantiles of the reference distribution for
AR(1) estimates obtained when estimating AR(1) estimates to a repeatedly
simulated GARCH(1,1) process. The x-axis is indicating the last date in
the rolling window.

The estimates that gives rise to suspicion are positive. So the test of
interest would be the one that tests the null hypothesis H0 : πu = 0.025
against the alternative H0 : πu > 0.025, where πu is the proportion of the
estimates greater than the empirical 97.5% quantile. The one-sided upper
95% Wald confidence bound for πu are calculated according to:(∑n

i=1 xi
n

)
− zα

n

√(
1∑n
i=1 xi

+
1

n−
∑n

i=1 xi

) , (26)

where n is the total number of estimates, xi is the number of estimates
greater than the 97.5% quantile and zα = Φ−1(1 − α). For a rolling win-
dow of length one year the proportion of AR(1) estimates greater than the
upper critical quantile is 0.108. The lower confidence bound obtained using
(26) is 0.100 which is greater than 0.025 so the null hypothesis is rejected
in favor of the alternative. The conclusion is that the high proportion of
positive AR(1) estimates in the log return series greater than the empirical
97.5% quantile of the reference distribution cannot be explained by chance.
The same is true when using rolling window lengths up to and including
nine years. The fact that the proportion of AR(1) estimates outside of the
the empirical 97.5% quantile is not greater than 0.025 when using a rolling
window of length ten years is is further attesting that the trend is local. A
trend that only is present for a shorter period will naturally not be discov-
ered when looking at a longer time period where no other trends are present.
The findings is in line with the observation made from Figure 14 that there
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seem to be a local positive trend in the log return series around 2010-2013.

Even though there is empirical evidence that there is a local trend in the
log return series for simplicity and in order to somewhat limit the content
in this paper it is assumed that there is not. In addition, in this paper it is
of interest to evaluate given models for the entire time span from January 4
2000 to January 22 2016 while the discovered trend seem to be present only
after 2010.

To summarize, the serial structure in the Brent Oil log return series
is resembled by a GARCH(1,1) process. Having fitted the model using a
Student-t distribution the standardized residuals are serially independent,
see Figure 9. They are also showing constant variance, see Figure 11, so
the standardized residuals seem to be white noise. In addition, assuming
that the standardized residuals are Student-t distributed seem tenable, see
Figure 10.
Since the sum of the estimates from the GARCH(1,1) model are close to 1,
see (25), the structure in the Brent Oil log return series is possibly better
resembled by an IGARCH(1,1). The process seem to large extent depend
on the preceding volatility one day before rather than the shock one day
before, see (25).
There is an indication that there is a trend in the log return series possi-
bly around 2010-2013, see Figure 14. For simplicity when continuing it is
assumed that there is no trend.
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7 Analysis and results

This section will begin with presenting the results from the back testing
procedure described in section 3.3.8 with including tests for unconditional
coverage. In order to highlight the difference between the two models
GARCH(1,1) and IGARCH(1,1) a graphical comparison between the volatil-
ity estimates conditioned on the distribution assumption is made in Fig-
ure 18. It will be followed by the results from the test of joint independent
conditional coverage as described in section 3.3.9. Then finally the density
forecast is evaluated.

7.1 Back testing

All the models independent of the length of the rolling windows that were
used seem to be quite good in predicting the volatility.

The parameter estimates in the GARCH and the IGARCH model when
using a given distribution is quite similar. Therefore it is not remarkable
that the differences between plot (a) and (c) in Figure 16 or plot (b) and (d)
is so small that they cannot visually be observed. However, when comparing
the same models using different distributions it would be expected that the
models using a Student-t distribution capture extreme observations to a
larger extent than the ones using a normal distribution since the Student-t
distribution’s tails are heavier. By comparing plot (a) with (b) and plot
(c) with (d) it is clear that that is the case, the models using Student-t
distribution follow the extreme observations more closely.
Using same reasoning, since the log return series are leptokurtic the models
using a normal distribution would be thought to follow the observations
more closely when the log return are closer its mean zero since the peak
of a normal distribution is higher than the corresponding of a Student-t
distribution. This is not observable from the plots. Using a measure such as
RMSE as described in section 3.3.10 could at best provide some information
as to what extent a given model overall is wrong.
It should be noted that the plots using longer rolling windows look similar
and the same reasoning regarding the comparisons above holds. However,
the difference is that the models using the the longer windows does not seem
to follow the extreme and sudden observations as closely. This illustrates
the fact that even though the models depend on previous values of one lag,
shorter window lengths and thus using more recent data when estimating
the parameters makes the model more sensitive to sudden changes.
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Figure 16: Brent Oil log returns from January 4 2000 to January 22 2016
in black with included forecasted 95% prediction intervals in color esti-
mated using models: (a) GARCH(1,1) normal (b) GARCH(1,1) Student-t
(c) IGARCH(1,1) normal (d) IGARCH(1,1) Student-t. Rolling windows of
length one year is used.

7.1.1 Unconditional coverage

This coverage is on average expected to be 95% since the prediction intervals
are created using 2.5 and 97.5% quantiles (24). The unconditional coverage
including its corresponding 95% Wald confidence interval is calculated as de-
scribed in section 3.3.9. Plotting these confidence interval for every window
length for a given model in a plot gives a perspicuous picture of the uncondi-
tional coverage for a given model. As seen from (a) and (c) in Figure 17 the
GARCH(1,1) and IGARCH(1,1) using normal distribution tend to underes-
timate the volatility since every Wald interval except one is below the desired
degree of coverage 95%. The unconditional coverage for the GARCH(1,1)
model using Student-t distribution is not significantly different from 95% for
any window length as seen in plot (b). For an IGARCH(1,1) using Student-t
distribution the coverage is on average not significantly different from 95%
for window lengths greater than five years. The conclusions are that with
regards to unconditional coverage there is no evidence that the assump-
tion that the standardized residuals are conditionally normal distributed
is tenable. Instead they seem to be conditionally Student-t distributed.
This is in line with the the observation made in section 6.2. Assuming
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that the standardized residuals are conditionally Student-t distributed the
GARCH(1,1) model performs better with regards to unconditional coverage
than IGARCH(1,1) which tend to overestimate the volatility for shorter pe-
riods. Bearing in mind the observation made in the previous section, that
using longer windows for estimation instead of using shorter windows that
only includes the most recent observations made the model less sensitive to
sudden changes. So the assumption of persistence in the IGARCH model is
perhaps to strong when using shorter windows. Meaning that the combina-
tion of using short windows which cause the model to respond more heavily
to shocks and the assumption that the shocks are persistent is causing the
model to overpredict the volatility.

It could also be noted that for a given model the confidence intervals
are getting wider the longer the used rolling windows are. This is the case
since the variance estimates obtained from the observed Fisher information
in Appendix C are consistent. The variances are inversely proportional to
the sample size n. Because of that it is expected that the Wald intervals
for a given level of significance would increase the longer the rolling window
lengths are. Simply because when using longer windows the windows are
rolling fewer times for a time series covering a given period.
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Figure 17: 95% Wald confidence intervals for the actual degree of cover-
age, plotted for different lengths of the rolling window for the model: (a)
GARCH(1,1) normal, (b) GARCH(1,1) Student-t, (c) IGARCH(1,1) nor-
mal, (d) IGARCH(1,1) Student-t.

The fact that an IGARCH model imposes the assumption that shocks
are persistent it would be expected that the IGARCH model would overes-
timate the volatility if the shocks in fact not are persistent. Consider the
dotted lines in plot (a) and plot (b) in Figure 18. They correspond to the
1-step-ahead forecasted volatility for the IGARCH(1,1) models using normal
and Student-t distributions respectively. These dotted lines are during tran-
quile periods above the whole lines in plot (a) and (b). These whole lines
correspond to the 1-step-ahead forecasted volatility for the GARCH(1,1)
models using normal and Student-t distributions respectively. So as ex-
pected the forecasted volatility one day ahead is for the most part greater
for the IGARCH models than for the corresponding GARCH models. It can
be noted that this difference narrows as the window length grows.
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Figure 18: Plotting forecasted σ for all models when a rolling window length
of one year is used. The plots are zoomed to highlight the difference during
tranquile periods.

The observation made from Figure 16 that the the IGARCH(1,1) using
a Student-t distribution performs well when longer rolling windows are used
suggests that longer window lengths are favorable. This fact is further sup-
ported when inspecting Figure 19 from which it can be concluded that the
forecasting error is smaller the longer rolling windows are used independent
of the model. In addition it can also be seen that the RMSE is consistently
higher for the IGARCH model than the GARCH model. Even though the
differences in absolute numbers are small it speaks in favor of the use of the
GARCH model. Another observation from the plot is that using the normal
distribution gives a higher RMSE compared to when using a Student-t dis-
tribution conditioned on what model is used. This difference is in absolute
terms very small.
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Figure 19: RMSE plotted for all different lengths of rolling windows for all
combinations of models and distributions.

From the results it seems like the GARCH(1,1) model using a Student-t
distribution is the best model. It is the only model that for all windows
lengths has has the degree of coverage 95% on 95% confidence level. In
addition the RMSE is also indicating that the GARCH(1,1) model using
the Student-t distribution is the best candidate. Next step would be to
further investigate this model with accompanying distribution.

7.1.2 Joint test of conditional coverage and independence

As discussed in section 3.3.9 there are two questions need that to be further
investigated. Firstly, even if a model on average is right it is necessarily
not the case that the degree of coverage is correct for smaller subperiods,
bearing in mind that daily financial data is clustered. If the model fully
accounts for the heteroscedasticity in the log return series then the outliers
should not come in clusters. Secondly, it is known that financial data usually
respond differently to positive and negative shocks. If the model consistently
has more outliers in the lower than in the higher tail then this would be an
indication that an asymmetric model would be preferable such as EGARCH.
Or by bearing in mind the negative sample skewness perhaps using another
distribution such as skewed-t would be motivated. It is assumed that the first
order dependency as described in section 3.3.9 is an indication of clustering
and that the two questions outlined above can be tested jointly using the
LR-statistic (20). The p-values for the test is plotted in Figure 20. It should
be noted that the p-values for longer rolling windows than seven years is not
computable since there is not enough observations nij for all i and j. The
same is the case for the rolling window length two years.
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Figure 20: P-values when jointly testing for independence and conditional
coverage of the GARCH(1,1) model using Student-t distribution. Plotted
for rolling window lengths of 6 months to 7 years.

For the window lengths that the test is possible to perform the null
hypothesis that the transition matrix is of the form

Π0 =

0.025 0.95 0.025
0.025 0.95 0.025
0.025 0.95 0.025

 (27)

is not rejected except for the window length of one year. In other words it
cannot be rejected that whether the model will fail to predict the volatility
1-step-ahead at time origin h is independent of whether the model failed
to predict the volatility 1-step-ahead at time point h − 1. At the same
time there is no empirical evidence that the probability that the volatility
1-step-ahead is lower or higher than implied by the prediction interval (24)
is different from 0.025 and 0.025 respectively.

7.2 Density forecast

A more general approach to consider whether a model is appropriate would
be to focus on how well the model forecast not only in the upper and lower
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quantiles but also how well it perform over all possible percentiles. In other
words how well the model predict with regards to the entire distribution,
thus evaluating the complete density forecast. As shown in section 3.3.11 the
cumulative distribution function for the standardized residuals evaluated in
the points xt+1

σt+1
should be uniformly distributed on the interval [0,1] for all t.

In Figure 21 Yt+1 obtained according to (22) for all t is plotted when a rolling
window of one year has been used. Both plot (a) and (b) indicates that the
cumulative distribution function for the standardized residuals evaluated in
the points xt+1

σt+1
for all t are uniformly distributed. The histograms and QQ-

plots look almost identical no matter what length of the rolling window. The
findings is further strengthened by the Kolmogorov-Smirnov test. The null
hypothesis that Yt+1 is uniformly distributed is not rejected for any rolling
window length for the GARCH(1,1) model using a Student-t distribution.

Figure 21: Distribution for the standardized residuals evaluated in the points
xt+1

σt+1
for the model GARCH(1,1) using a Student-t distribution when a rolling

window length of one year has been used. Plotted in a: (a) Histogram, (b)
QQ-plot.

To summarize the results, the GARCH(1,1) model using a Student-t
distribution is the only candidate that for every rolling window length have
unconditional degree of coverage not significantly different from 95% on 95%
confidence level, see Figure 17. The RMSE indicates the same fact and in
addition suggests that using longer windows when fitting the model would
be preferable, see Figure 19.
There is hardly no empirical evidence against the fact that the model’s pre-
diction interval 1-step-ahead should be symmetric and independent on how
the prediction interval performed in the previous time point, see Figure 20.
There is also no empirical evidence against the fact that the entire distri-
bution for the 1-step-ahead forecast is different from what the GARCH(1,1)
using a Student-t distribution implies, see Figure 21.
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8 Discussion

The method used in section 7.1.2 when evaluating whether the outliers come
in clusters suffer from a great deal of limitation. The framework that is set
up in section 3.3.9 is only considering independency of first order, the inde-
pendency in one step. It is not considering whether the outliers are clustered
for a longer period of time, in other words it is not considering independency
of a more general form. Another limitation in the current test is that there
are few observations that have made the so called transition from being out-
side the prediction interval to being outside the interval in the succeeding
time period. This made the test impossible to perform when using longer
rolling windows. It would be possible to extend the data set with more
observations. It would also be possible to lower the confidence level for the
prediction interval in (24) and test whether the model performs well on that
level instead.

Regarding the window length used when estimating the parameters more
observations is usually better since it leads to more precise estimates. How-
ever, the GARCH(1,1) and IGARCH(1,1) in this paper are used for 1-step-
ahead forecasts and should to a large extent incorporate the most recent
information in order to predict sudden changes. It is clear that when choos-
ing the window length for estimation there is a trade off between parameter
stability and given weight to the more recent information.

In Figure 17 it was observed that the unconditional coverage is signif-
icantly different from 95% for the IGARCH(1,1) model using a Student-t
distribution for shorter rolling windows and not for longer. The lower Wald
confidence bound was just above 95% degree of coverage when shorter pe-
riods were used and just below 95% for window lengths greater than five
years. It cannot from this observation be concluded that the IGARCH(1,1)
model using a Student-t distribution are better for longer rolling windows
than for shorter ones. Simply because as noted in section 7.1.1 the Wald
interval get wider for the longer windows at least partly because of that
fewer observations are made.

However the forecasting error with regards to RMSE were almost con-
sistently lower the longer estimation windows were used which suggests the
use of longer windows is preferable. The RMSE were especially small for
windows of length nine and ten years. Since the Brent Oil log return series
in this paper started in the beginning of 2000, these windows are the only
ones that include the financial crisis during 2008 for the first estimation
windows. So the models using a rolling window length of nine and ten years
do not forecast during the financial crisis, a period which was very volatile
and probably resulted in high forecasting errors.

As seen in plot (a) and (b) in Figure 2 some periods during 2001, 2002
and 2005 were very volatile. So when the models are estimated using shorter
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windows these extremely volatile periods are rendering large forecasting er-
rors. This is probably contributing to the fact that the RMSE when using
shorter windows are higher than when using longer ones. So even though
there is a lot of indications that longer rolling windows are prefereable it is
necessarily not the case. To compare different window lengths perhaps the
RMSE should be calculated for the exact same periods instead.

9 Conclusion

In section 5.1 it is concluded that the log return series are experiencing
volatility clustering and drastic changes in volatility, see Figure 2. This sug-
gests using autoregressive conditional heteroscedastic models when mod-
elling the time series. There are no indications of an existing trend with
respect to the mean over the entire time period, see Table 1 and the text
preceding it. The existence of trends will be further investigated in section
6.3.1. There are no signs of seasonality when inspecting Figure 2. Regard-
ing the distribution, the series does not seem to be normally distributed
and it is relatively leptokurtic, see Figure 3. The log return series is rather
distributed according to a Student-t distributed with six degrees of freedom
when focusing on the tails, see Figure 4. In addition the series are slightly
negatively skewed, indicating that in the sample there are more negative log
returns of a large magnitude compared to large positive ones, see Table 1
and Figure 4.

In section 6 it is concluded that the serial structure in the Brent Oil
log return series is resembled by a GARCH(1,1) process. Having fitted the
model using a Student-t distribution the standardized residuals are serially
independent, see Figure 9. They are also showing constant variance, see
Figure 11, so the standardized residuals seem to be white noise.
Since the sum of the estimates from the GARCH(1,1) model are close to 1,
see (25), the structure in the Brent Oil log return series is possibly better
resembled by an IGARCH(1,1). The process seem to large extent depend
on the preceding volatility one day before rather than the shock one day
before, see (25).
There is an indication that there is a trend in the log return series pos-
sibly around 2010-2013, see Figure 14. For simplicity when continuing it
is assumed that there is no trend and that the models GARCH(1,1) and
IGARCH(1,1) are assumed to be appropriate for all rolling windows.

In section 7 it is concluded that the GARCH(1,1) model using a Student-
t distribution is the only candidate that for every rolling window length have
unconditional degree of coverage not significantly different from 95% on 95%
confidence level, see Figure 17. The RMSE indicates the same fact and in
addition suggests that using longer windows when fitting the model would
be preferable, see Figure 19.
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There is hardly no empirical evidence against the fact that the model’s pre-
diction interval 1-step-ahead should be symmetric and independent on how
the prediction interval performed in the previous time point, see Figure 20.
There is also no empirical evidence against the fact that the entire distri-
bution for the 1-step-ahead forecast is different from what the GARCH(1,1)
using a Student-t distribution implies, see Figure 21.

In section 8 the weaknesses of the joint test of conditional coverage and
independence in section 7.1.2 is discussed. The test is only considering inde-
pendency of first order, the independency in one step, and is not considering
whether the outliers are clustered for a longer period of time. It is also stated
that the test was not performable when longer rolling windows were used
so data set covering a longer period could be used. Or the confidence level
for the prediction interval in (24) could be lowered in order to get more
observed transitions and test whether the model performs well on that level
instead. It is also concluded that the even though there is indications that
it would be preferable to use longer rolling windows, see plot (d) in Fig-
ure 17 and Figure 19, it cannot be ruled out that these indications can be
explained by logical means. Concerning plot (a) in Figure 17, when longer
rolling windows are used fewer observations are made. Thus the Wald confi-
dence interval get wider as noted in section 7.1.1 and therefore includes the
95% level. Regarding the indication in Figure 19 this could be explained by
the fact that the models using longer windows are not forecasting during
some of the Brent Oil log returns’ most volatile periods, the financial crisis
especially.

This paper concluded that the GARCH(1,1) model using Student-t dis-
tribution performed well in every aspect considered when producing 1-step-
ahead forecasts. The fact that the use of a model that allows for asymmetry
such as an EGARCH model is not called for is in line with the findings
of Wei, Wang, and Huang (2010) who found that linear GARCH models
perform better when forecasting on 1 day horizons than nonlinear GARCH
models do.

10 Further research

The standardized residuals when fitting the GARCH(1,1)-model using a
Student-t distribution to the data were asymmetric. Combined with the
fact that the fitted Student-t distribution does not seem to fit the stan-
dardized residuals perfectly in the QQ plot in Figure 10 it would be of
interest to find a distribution which does and evaluate the forecasting per-
formance of a GARCH(1,1) using this particular distribution. It would also
be very interesting to incorporate models allowing for assymmetry such as
EGARCH/TGARCH/APARCH for comparison.

Bearing in mind that there seem to be a positive local trend in the Brent
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log return it would be interesting to evaluate the forecasting performance
of an AR(1)-GARCH(1,1). Since the trend is local the AR(1) component
would be more or less redundant for the most part of the time span. So
even though it would perform better during the period when the trend is
present it is not sure that the performance over the entire time span would
be better than the simpler GARCH(1,1) model.

This paper has only evaluated the different models performance using
1-step-ahead forecasts and a natural next step would be to produce fore-
casts on longer horizons and evaluate these. As noted in section 2 Kang,
Kang and Yoon (2009, cited in Behmiri and Pires Manso, 2013, p.33), Wei,
Wang, and Huang (2010, cited in Behmiri and Pires Manso, 2013, p.33) and
Cheong (2009, cited in Behmiri and Pires Manso, 2013, p.32) found that
other models than GARCH performed better on longer forecasting hori-
zons. Even though other models are better it would be interesting to see
how the performance of the models in this paper change on longer horizons.

The test for clustered outliers can be refined to test for independence
of a more general form. The duration-based tests of independence that
Christoffersen and Pelletier (2004) use can be used.

In light of the discussion that volatile periods render high forecasting
error, it would also be of interest to evaluate and compare the given models
specifically during the financial crisis.

As for the auther’s own interest and development in the area fitting
models such as Stochastic Volatility Models, Artificial Neural Networks and
Support Vector Machines would be an inspiring challenge.
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Appendices

A Distributions

A.1 Normal distribution

The density function for a normally distributed random variable X is

fX(x) =
1

σ
√

2π
e

(x−µ)2

2σ2 for x ∈ (−∞,∞).

A.2 Student-t distribution

The density function for a Student-t distributed random variable X is

fX(x) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
νπ
·
(

1 +
x2

ν

)− ν+1
2

for x ∈ (−∞,∞),

where ν is the number of degrees of freedom.

B Maximum likelihood estimation

The theory in this section is from Li (2007, section 3.2).

The maximum likelihood estimate vector θ̂MLE is the estimate that is
most likely given the sampla data, defined as

θ̂ = arg maxθ∈ΘL(θ).

Assuming that the vector of random variables X = (x1, x2, ..., xn) are
independent and identical distributed θ̂MLE is vector that maximizes the
joint likelihood

L(θ;X) = f(X; θ) =

n∏
i=1

f(xi; θ).

Taking log on both sides yields the log likelihood function

l(θ;X) =
n∑
i=1

logf(xi; θ).

The Score and Fischer information are given by

S(θ;X) = ∇l(θ;X) =
δl(θ;X)

δθ
, J(θ;X) = E

(
−δ

2l(θ;X)

δθδθT

)
The estimates can be estimated using iterative methods. Let θj denote

the parameter vector after the jth iteration. θj+1 is then calculated using
the Newton Raphson method according to

θj+1 = θj + J(θ)−1S(θ). (28)
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B.1 Time series

The theory in this section is from Tsay (2005, section 3.4) and Li (2007,
section 3.2).

When specifying a likelihood function it is usually used that the ob-
servations are independent and identically distributed. Thus the likelihood
equation is a product sum which often could be easy to deal with. In time
series applications assuming that the log returns {rt} are independent is not
tenable. This motivates an approach that uses the serial dependency by
conditioning on the previous observation. More formally, using that

f(x2|x1) =
f(x2, x1)

f(x1)
⇔ f(x2, x1) = f(x2|x1)f(x1),

can be generalized to

f(xt, ..., x1) = f(xt|xt−1, ..., x1)f(xt−1, ..., x1)

= f(xt|xt−1, ..., x1)f(xt−1|xt−2, ..., x1)

= f(xt|xt−1, ..., x1)f(xt−1|xt−2, ..., x1)...f(x2|x1)f(x1)

So the general joint likelihood can be written as

L(θ;X) =
n∏
i=1

f(xi|xi−1, ...x1; θ)

and the joint log likelihood as

l(θ;X) =
n∑
i=1

logf(xi|xi−1, ...x1; θ)

Specially, estimating a GARCH(p, q) defined as in (4) assuming that εt
is standard normal then

f(εt|εt−1, ..., ε0) =
1√
2π
e−

ε2t
2 .

Using that at = σtεt the conditional likelihood function of at is

f(at|at−1, ..., a0) =
1√

2πσ2
t

e
− a2t

2σ2t ,

which gives the conditional log likelihood of the parameter vector θ

l(θ; at−1, ..., a0) =

n∑
t=q+1

logf(at|at−1, ..., a0) =

n∑
t=q+1

log

{
1√

2πσ2
t

e
− a2t

2σ2t

}

=

n∑
t=q+1

(
−1

2
log(2π)− 1

2
log(σ2

t )−
a2
t

2σ2
t

)
,
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where θ = (α0, α1, ..., αq, β1, ..., βp)
T . So

δl(θ)

δθ
=

1

2σ2
t

(
a2
t

σ2
t

− 1

)
δσ2

t

δθ
,

and

δ2lt(θ)

δθδθT
=

1

2σ2
t

(
a2
t

σ2
t

− 1)

)
δ2σ2

t

δθδθT
+

1

σ4
t

(
1

2
− a2

t

σ2
t

)
δσ2

t

δθ

δσ2
t

δθT
,

where
δσ2
t

δθ = (1, a2
t , ..., a

2
t−q, σ

2
t , ..., σ

2
t−p)

T +

p∑
i=1

βi
δσ2

t−i
δθ

.

Thus the Score vector

S(θ) = 1
2

n∑
t=q+1

1

σ2
t

(
a2
t

σ2
t

− 1

)
δσ2

t

δθ
,

and the Fisher information matrix

J(θ) = 1
2

n∑
t=q+1

E

(
1

σ4
t

σ2
t

δθ

δσ2
t

δθT

)
.

In the special case of GARCH(1,1) model specified according to Equa-
tion 4, the vector θ = (α0, α1, β1)T should be estimated. Then

S(θ) = 1
2

n∑
t=2

1

σ2
t

(
a2
t

σ2
t

− 1

)
δσ2

t

δθ
,

and

J(θ) =
1

2

n∑
t=2

E

(
1

σ4
t

σ2
t

δθ

δσ2
t

δθT

)
.

The Score vector and Fisher information matrix are then used in the
Newton Raphson method in (28) to obtain the vector θ̂ with maximum
likelihood estimates.

If instead εt is assumed to be standardized Student-t distributed then the
probability density function of εt for a given number of degrees of freedom
ν is

f(εt|ν) =
Γ(ν+1

2 )

Γ(ν2 )
√

(ν − 2)π

(
1 +

ε2t
ν − 2

)− ν+1
2

for ν > 2.

Using again that at = σtε gives the conditional likelihood function of at
is

f(at|at−1, ..., a0) =

n∏
t=q+1

Γ(v+1
2 )

Γ(v2 )
√

(v − 2)π

1

σt

(
1 +

ε2t
(v − 2)σ2

t

)− v+1
2

.
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Let At−1 = at−1, ..., a0, then the conditional log likelihood of θ is

l(θ;At−1) = −
n∑

t=q+1

[
log

(
Γ(v+1

2 )

Γ(v2 )
√

(v − 2)π

)
+

1

2
log(σ2

t ) +

(
v + 1

2

)
log

(
1 +

a2
t

(v − 2)σ2
t

)]
.

The Score vector, Fisher information matrix and is obtained using the
same procedure as when εt was assumed to be standard normal. Then again
the Newton Rapshon method in (28) is used to obtain the vector θ̂ with
maximum likelihood estimates.

B.2 Markov process

Let a Markov process have the transition matrix

Πa =

 πll 1− πll − πlu πlu
πml 1− πml − πmu πmu
πul 1− πul − πuu πuu

 ,

where the subindexes l, m and u denotes the states lower, middle and upper
respectively.

The approximate likelihood function for this process is

L(Πa;S1, S2, ..., Sn) = πnllll (1− πll − πlu)nlm ...(1− πul − πuu)numπnuuuu

=
∏

i=l,m,u

πnilil (1− πil − πiu)nimπniuiu ,

where nij is the number of observations with value i followed by j. It is
approximate because it is conditioned on the first observation since this
observation is the starting point so a transition from a state in an earlier
time period did not occur.

The log likelihood becomes

l(Πa;S1, S2, ..., Sn) =
∑

i=l,m,u

nillog(πil) + nimlog(1− πil − πiu) + niulog(πiu).

So the Score vector S(Πa) = δl(Πa)
δπij

for i = l and j = l, u is

(
δl(Πa)

δπll
,
δl(Πa)

δπlu

)T
=

(
nll
πll
− nlm

1− πll − πlu
,
nlu
πlu
− nlm

1− πll − πlu

)T
.

Putting this Score vector to zero yields after some tedious manipulation

πll =
nll(1− πlu)

nlm + nll
, πlu =

nlu(1− πll)
nlm + nlu

.

.
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Substituting πlu into the expression for πll and πll into the expression
for πlu yields after tedious manipulation

πll =
nll

nll + nlm + nlu
, πlu =

nll
nll + nlm + nlu

.

By obtaining the Score vectors for i = m,u the corresponding estimates
for πml, πmu, πul and πuu are obtained in the same way. The maximum
likelihood estimates for Πa are thus given by

π̂ij =
nij

nil + nim + niu
for i = l,m, u and j = l, u.

.

C Wald interval for a binomial test

To obtain a confidence interval for the degree of coverage it is used that the
sum of the indicator variable It are binomial distributed with parameters n
and p. The likelihood for p is then given by

L(p) =

(
n∑n
i=1 xi

)
p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi .

.
The log likelihood is

l(p) ∝

(
n∑
i=1

xi

)
log(p) +

(
n−

n∑
i=1

xi

)
log(1− p) + C,

and the Score function

S(p) =
δl(p)

δp
=

∑n
i=1 xi
p

−
n−

∑n
i=1 xi

1− p
.

Putting the Score function to zero and solving for p through some tedious
manipulation yields p̂MLE

p̂MLE =

∑n
i=1 xi
n

.

The expected Fisher information and estimated expected Fisher infor-
mation is after tedious manipulation given by

J(p) = −E
(
δ2l(p)

δp2

)
= n

(
1

p
+

1

1− p

)
,

and

J(p̂) = n2

(
1∑n
i=1 xi

+
1

n−
∑n

i=1 xi

)
.
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The Wald statistic, TW , which under the null hypothesis follow a stan-
dard normal distribution can be used to create a confidence interval for the
degree of coverage p.

TW =
(p̂− p)
se(p̂)

∼ N(0, 1)

=⇒ TW = (p̂− p)J(p̂)
1
2

=

(∑n
i=1 xi
n

− p
)
n

√(
1∑n
i=1 xi

+
1

n−
∑n

i=1 xi

)
∼ N(0, 1).

Thus the Wald confidence interval CIp for p is given by(∑n
i=1 xi
n

)
±

zα/2

n

√(
1∑n
i=1 xi

+
1

n−
∑n

i=1 xi

) . (29)

where zα/2 = Φ−1(1− α/2).
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