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Abstract

The foreign exchange market is the largest financial market in the
world and forecasting exchange rates are not solely an important task
for investors, but also for policy makers. Since market participant
do not have access to future information, they try to model the ex-
change rate by past information. In this thesis an ARIMA(1,1,0) and
a VAR(1) model with the trade balance in the EU and the interest
rate differential as additional variables are evaluated in a forecasting
purpose. It is concluded that a VAR(1) generates the most accurate
forecasts during a 1-month horizon, while the ARIMA(1,1,0) is the
more suitable model during a 3-month horizon. Both model outper-
forms a random walk, which usually is considered to produce the most
accurate forecasts.
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Abbreviations

ACF autocorrelation function

ADF augmented Dickey-Fuller

AIC Aikaike information criteria

AICc Aikaike information criteria with correction for finite samples

AR autoregressive

ARIMA autoregressive integrated moving average
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FPE final prediction error
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i.i.d. independent and identically distributed
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RIRD real interest rate differential

SARIMA seasonal ARIMA
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TB trade balance
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VECM vector error correction model
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1 Introduction

The foreign exchange market is the largest financial market in the world and
forecasting exchange rates are not solely an important task for investors,
but also for policy makers. The exchange rate has direct impact on nations’
international trade, economic growth as well as on their interest rate. Thus,
in a globalized world it is just as important for small open economies as
for large economies to understand what causes exchange rate fluctuations.
However, the international financial market is rapidly changing due to the
constant access generated by electronic trading (King and Rime, 2010). The
rapid changes cause the currency investments to entail an inevitable and
uncontrollable risk. As a result, investors and policy makers constantly try
to forecast the change of the exchange rate in an attempt to minimize the
risk of holding currency.

The main purpose of this thesis is to present a validate model which is
able to forecast the real EUR/USD exchange rate in a statistical satisfying
way. We will in our pursuit of the best suitable model first try to explain the
exchange rate by its historical values in a linear manner by determining a
univariate ARIMA model in section 4. However, macroeconomic literature
often suggest that the exchange rate is better modelled by other economic
variables. For example, the International Fisher Effect theory states that
the future spot exchange rate can be determined by the nominal interest rate
differential. Although, since we in this thesis try to model the real exchange
rate, we will instead make use of the related ”real exchange rate - real
interest rate differential” (RERI) relationship when making exchange rate
predictions. This differential variable as well as the trade balance in Europe
will be the supplementary endogenous variables in our vector autoregressive
model, also referenced to as the economic model, in section 5. These two
models’ predicting capability will then be compared to a random walk in
section 6 by computing forecast values for three succeeding months and then
compare these to the observed ones.

First following this introduction is a brief review of the existing literature
on exchange rate modelling as well as a synopsis of some recent papers on
exchange rate forecasting. Thereafter, the theoretical framework in this
thesis will be outlined in section 3 including theory of specific models and
test before we begin to analyse the models above. Lastly, a discussion an
conclusions will be made in section 6 and 7 respectively.
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2 Literature review and previous work

There exist extensive literature on exchange rate modelling and forecast-
ing. The numerous modelling approaches clearly emphasise the challenging
nature of finding a representative model describing the fluctuations in the
foreign exchange market. And as yet in literature, there is no specific model
approach that fruitfully elucidate the changes of the EUR/USD exchange
rate. The problem of forecasting was illustrated by Meese and Rogoff in
1983 when the authors compared out-of-sample forecasts from both struc-
tural and time series models. Meese and Rogoff (1983) find that although
the models fit very well in-sample, none of the models make more accurate
point forecasts than a random walk, when the forecast accuracy was com-
pared by computing the root mean squared forecast error. Since the journal
article was written, many authors have tried to refine the models used, par-
ticularly by incorporating the fact that the regressand in the study, the
natural logarithm of the exchange rate, likely is non-stationary.

Akincilar, Temiz and Şahin (2011) fit several models to daily data in a
forecasting purpose of the USD/TL, EURO/TL and POUND/TL and finds
that the autoregressive integrated moving average (ARIMA) models gives
comparable accurate forecasts. Additionally, Ayekple et al (2015) consider
an ARIMA model for predicting the dynamics of the Ghana cedi to the US
dollar. They find small differences between the out-of-sample forecasts for
the ARIMA and the random walk. However, some literature emphasises
the fact that fundamental macroeconomic variables may contain predictive
power for exchange rate movements in the long-term. Weisang and Awasu
(2014) presents three ARIMA models for the USD/EUR exchange rate using
data of monthly macroeconomic variables and concludes that the exchange
rate is best modelled by a linear relationship of its past three values and the
past three values of the log-levels share price index differential.

Another traditionally-used linear time series model that incorporate mul-
tivariate systems is the vector autoregressive model (VAR) and the vector
error correction model (VECM). Yu (2001) examines the monthly exchange
rate for three North European countries by employing a VAR, restricted
VAR, VECM and a Bayesian VAR with several macroeconomic variables
such as domestic and foreign money supply, output, short-term interest rate
and price level. The conclusions are that the random walk has better fore-
casting accuracy in the short term but that the models beat the random walk
in the long term. Additionally, Mida (2013) compare 12 out-of-sample fore-
casts of the monthly USD/EUR exchange rate between a random walk and
a VAR with inflation, interest rate, unemployment rate and industrial pro-
duction index. Mida (2013) concludes that the VAR model outperforms the
random walk in the short term, namely one to three months, but is heavily
outperformed in the longer horizon of six, nine and twelve months. Further-
more, Sellin (2007) evaluates the forecast ability of the Swedish Krona’s real
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and nominal effective exchange rate by estimating a VECM model. Sellin
includes a cointegrating relationship between real exchange rate, relative
output, net foreign assets and the trade balance and finds the model to
make accurate forecast once the model has been augmented with an interest
rate differential.

In this thesis, we aim to construct an adequate model for EUR/USD real
exchange rate forecasting. Due to earlier research with varying outcomes, we
first use past values to predict future values (our ARIMA model). Secondly,
a VAR model with interest rate differential and trade balance in the Euro
zone as additional variables is estimated. At last, the two models’ predicting
abilities are evaluated.
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3 Theory

In the following section the theoretical framework used in this thesis will be
outlined, including theory for the specific models and tests.

3.1 Macroeconomic variables

The theory in the following two subsections is from Blanchard, Amighini
and Giavazzi (2013).

3.1.1 Real exchange rate

The real exchange rate (RER) compares the purchasing power of two cur-
rencies at the current nominal exchange rate and prices. Thus, the real
exchange rate can be expressed as

RER = e · P*

P
(1)

where e is the nominal exchange rate expressed as the domestic currency
price of a foreign currency, P* the foreign price of a market basket and P
the domestic price of a market basket.

3.1.2 Real interest rate

The real interest rate (RIR) is the rate of interest an investor receives after
accounted for the inflation rate. The Fisher equation formally expresses the
RIR as

RIR ≈ i− π (2)

where i is the nominal interest rate and π the inflation rate.

3.1.3 The RERI relationship

The real exhange rate - real interest rate differential (RERI) relationship is
central to most open economy macroeconomic models and the reduced form
of the equation is

RER = µ+ β(RIRt − RIR*t) + wt (3)

where the RER and RIR variables follow the previous notations in (1) and
(2) respectively and RIR* denotes foreign RIR and wt is a disturbance term
(Hoffman and MacDonald, 2003). The term RIRt−RIR*t is called the real
interest rate differential (RIRD).
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3.2 Time series

A time series {Xt} is a set of observations xt indexed in time order t. If
the observations in a time series are recorded at successive equally spaced
points in time it is called a discrete-time time series. (Brookwell and Davis,
2002). These kind of time series will be dealt with in this thesis as the data
points are recorded once every month.

3.2.1 Stationarity

The theory in this subsection can be found in Tsay (2010, chapter 2).

When performing different time series techniques one often assumes that
some of the data’s properties do not change over time. The most fundamen-
tal assumption is that the data is stationary. A time series {Xt} is said to
be strictly stationary if the joint distribution does not change when shifted
in time. A more commonly and weaker version of stationarity is often used
and that is when both the mean of {Xt} and the covariance between {Xt}
and {Xt−l} is time invariant, l being an arbitrary integer. This leads us to
the definition of a weakly stationary time series:

Definition 3.1. A time series is said to be weakly stationary if

• E[Xt] = µ and

• Cov(Xt, Xt−l) = γl

where µ is a constant and γl only depends on the lag length l.

Hence, the two first moments of the distribution is of interest when
examining a time series weak stationarity properties. This is shown in a
time plot as the data points fluctuating with a constant variance around
a fixed mean. A time series that are stationary in levels is denoted I(0),
whereas if a first difference is needed for the series to fulfil the requirements
is denoted I(1). Weak stationarity is of special interest when one wants to
make inference about future observations.

3.2.2 AR

The theory in the following five subsections can be found in Cryer and Chan
(2008).

The autoregressive (AR) model is used when the output variable depends
linearly on its past values plus an innovation term et that incorporates ev-
erything new in the series at time t that the past values fail to explain.
Specifically, a pth-order autoregressive process {Xt} can be expressed as

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + et, (4)

where we assume et is independent of Xt−1,Xt−2,Xt−3,... .
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3.2.3 MA

The moving average (MA) process can be expressed as a weighted linear
combination of present and past white noise terms. The moving average
process of order q satisfies the equation

Xt = et − θ1et−1 − θ2et−2 − ...− θqet−q. (5)

3.2.4 ARMA

If a series have traits from both an autoregressive - and a moving average
process, we say that the series is a mixed autoregressive moving average
(ARMA) process. In general, if the series {Xt} can be expressed as

Xt = φ1Xt−1 +φ2Xt−2 + ...+φpXt−p+et−θ1et−1−θ2et−2− ...−θqet−q (6)

we say that {Xt} is an ARMA(p,q) process.

3.2.5 ARIMA

If a time series does not exhibit the features connected to stationarity one
looks for transformations of the data to generate a new series with the
desired properties. If the data requires differencing to become stationary one
talks about the class of autoregressive integrated moving average (ARIMA)
models. These models are a generalization of the class of ARMA models
discussed previously and with ∆Xt = Xt − Xt−1 an ARIMA(p, 1, q) takes
the following form:

∆Xt = φ1∆Xt−1 + φ2∆Xt−2 + ...+ φp∆Xt−p+

et − θ1et−1 − θ2et−2 − ...− θqet−q.
(7)

3.2.6 SARIMA

If a time series is a non-stationary seasonal process one may use the impor-
tant tool of seasonal differencing. The seasonal difference of period s for the
series {Xt} is denoted ∇sXt and is defined as

∇sXt = Xt −Xt−s

A process is said to be a multiplicative seasonal ARIMA (SARIMA) model
with nonseasonal orders p, d and q, seasonal P , D and Q, and seasonal
period s if the differenceed series ∆Xt satisfies

∆Xt = ∇d∇Ds Xt (8)

We say that {Xt} is a SARIMA(p, d, q)(P,D,Q)s model with seasonal period
s.
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3.2.7 VAR

The theory in the succeeding two subsections can be found in Lütkepohl,
Krätzig and Phillips (2004, chapter 3).

Ordinary models usually consider a unidirectional relationship where the
variable of interest is influenced by the predictor variables, but not the op-
posite way. However, in many macroeconomic models the reversed is often
also true - all the variables have an effect on each other. When studying a set
of macroeconomic time series vector autoregressive (VAR) models are fre-
quently used. The structure is that each variable is a linear function of past
lags of itself and past lags of the other variables. With vector autoregressive
models it is possible to approximate the actual process by arbitrarily choos-
ing lagged variables. Thereby, one can form economic variables into a time
series model without an explicit theoretical idea of the dynamic relations.

The basic model for a set of K time series variables of order p, a VAR(p)
model, has the form

yt = A1yt−1 + ...+ Apyt−p + ut (9)

where the Ai’s are (KxK) coefficient matrices and ut is a vector of assumed
zero-mean independent white noise processes. The covariance matrix of the
error terms, E(utut’)=Σu, then assumes to be time-invariant and positive
definite. The error terms ui,t may be contemporaneously correlated, but are
uncorrelated with any past or future disturbances and thus allowing for es-
timation following the ordinary least square (OLS) method. By introducing
the notation Y =

[
y1, ..., yT

]
, A =

[
A1 : ... : Ap

]
, U =

[
u1, ..., uT

]
and

Z =
[
Z0, ..., ZT−1

]
, where

Zt−1 =

yt−1...
yt−p


the model can be expressed as

Y = AZ +U .

and the OLS estimator of A is

Â =
[
Â1 : . . . : Âp

]
= Y Z ′

(
ZZ ′

)−1
.

The covariance matrix Σu may be estimated in the usual way. By denoting
the OLS residuals as û = yt − ÂZt−1 the matrix

Σ̂u =
1

T −Kp

T∑
t=1

ûtû
′
t (10)
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where T is the number of observations and Σ̂u is an estimator which is
consistent and asymptotically normally distributed independent of Â.

Furthermore, the process is defined as stable if the determinant of the au-
toregressive operator has no root in/on the complex unit circle. Otherwise,
some or all of the time series variables are integrated.

3.2.8 VECM

If the variables in the time series vector yt has a common stochastic trend,
there is a possibility that there exist linear combinations of the variables that
are I(0), even though the individual time series are I(1) . This phenomenon is
called cointegration and two or more variables are cointegrated if there exists
a long run equilibrium relationship between them. In that case a vector error
correction model (VECM) is useful since the model supports the analysis of
the cointegration structure by combining levels and differences. The VECM
is obtained from the VAR(p) model by subtracting yt−1 from both sides and
rearranging. The result is the following form

∆yt = Πyt−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 + ut (11)

where Π = −(Ik−A1− ...−Ap) contains the cointegrating relations and is
called the long run part. Likewise, Γi = −(Ai+1 + ...+Ap), (i=1,...,p− 1),
is referred to as the short run or the short term parameters. The same
assumptions about the error terms, ut, as in the VAR model also holds
here.

3.3 Statistics and tests

The theory in the succeeding three subsections can be found in Tsay (2010,
chapter 2).

3.3.1 Augmented Dickey-Fuller test

If a time series appears non-stationary one may verify the existence of a unit
root in a AR(p) series by performing an augmented Dickey-Fuller (ADF)
test. The null hypothesis H0 : β = 1 is tested against the alternative Ha :
β ≤ 1 using the regression

Xt = ct + βXt−1 +

p−1∑
i=1

∆Xt−i + et

where ct is a deterministic function of the time index t and ∆Xj = Xj−Xj−1
is the differenced series of Xt. Thus, the ADF-test is the t-ratio of β̂ − 1
expressed as

ADF-test =
β̂ − 1

std(β̂)
(12)
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where β̂ is the least-squares estimate of β. The interpretation of the ADF-
test is if the null hypothesis is rejected, then the time series is stationary.

3.3.2 Autocorrelation and partial autocorrelation functions

The autocorrelation function (ACF) is considered when the linear depen-
dence between Xt and its past values Xt−i is of interest. The autocorrela-
tion coefficient between Xt and Xt−l is denoted ρl which under the weak
assumption of stationarity is a function of l only:

ρl =
Cov(Xt, Xt−l)

Var(Xt)
(13)

where ρ0 = 1, ρl = ρ−l and −1 ≤ ρl ≤ 1.

The partial autocorrelation function (PACF) is a function of ACF and is
the amount of correlation between a variable and a lag of itself that is
not explained by correlations at all lower-order-lags. Considering the AR
models:

Xt = φ0,1 + φ1,1Xt−1 + e1t,
Xt = φ0,2 + φ1,2Xt−1 + φ2,2Xt−2 + e2t,
Xt = φ0,3 + φ1,3Xt−1 + φ2,3Xt−2 + φ3,3Xt−3 + e3t,
Xt = φ0,4 + φ1,4Xt−1 + φ2,4Xt−2 + φ3,4Xt−3 + φ4,4Xt−4 + e4t,

...

where φ0,j , φi,j and eit are, respectively, the constant term, the coefficient
of Xt−i and the error term of an AR(j) model. Since the equations are
in the form of a multiple linear regression we may estimate the coefficients
using the ordinary least-square method. The estimates φ̂1,1, φ̂2,2 and φ̂k,k of
respective equation are called the lag-1, lag-2 and lag-k sample PACF of Xt.
Thus, the complete sample PACF describes the time series’ serial correlation
with its previous values of a specific lag controlling for the values of the time
series at all shorter lags.

By looking at the ACF and PACF plots one can tentatively identify
the number of MA and AR terms needed. If the PACF displays a sharp
cutoff and/or the lag-1 autocorrelation is positive, then the series could be
explained by adding AR terms to the model. The lag at which the PACF
cuts off is the indicated number of AR terms. In a similar manner, the lag
at which the ACF cuts off indicates the number of MA terms. However, if
both the ACF and PACF cuts off at a low lag order, a mixed ARMA model
could be considered.
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3.3.3 Ljung-Box Portmanteau test

A Ljung-Box Portmanteau test is performed to jointly test if several auto-
correlations of Xt are zero. The null hypothesis H0 : ρ1 = ... = ρm = 0 is
tested against the alternative hypothesis Ha : ρi 6= 0 for some i ∈ {1, ...,m}
with the test statistics

Q(m) = T (T + 2)

m∑
l=1

ρ̂2l
Tl

(14)

where T denotes the sample size, ρ̂2l the sample autocovariance at lag l and
m the number of autocovariances tested. Q(m) is asympototically a χ2(m)
variable under the assumption that Xt is i.i.d.. The null hypothesis is thus
rejected if Q(m) > χ2

α, where χ2
α denotes the 100(1 − α)th percentile of a

chi-squared distribution with m degrees of freedom.

3.3.4 Johansen cointegration test

The theory in this subsection can be found in Burke and Hunter (2005,
chapter 4).

Johansen cointegration test uses two test statistics do determine the number
of cointegration vectors. The first, the maximum eigenvalue statistic, tests
the null hypothesis of H0 : r ≤ j − 1 cointegrating relations against the
alternative of Ha : r = j cointegrating relations for j ∈ {1, 2, ..., n}. It is
computed as:

LRmax(j − 1, j) = −T · log(1− λj) = λmax(j − 1) (15)

where T is the sample size. Thus, the null hypothesis of no cointegrating
relationship against the alternative of one cointegrating relationship is tested
by LRmax(0, 1) = −T · log(1− λ1) where λ1 is the largest eigenvalue.

The second test statistic, the trace statistic, tests the null hypothesis
H0 : r ≤ j − 1 against the alternative Ha : r ≥ j for j ∈ {1, 2, ..., n}, and is
computed as:

LRtrace(j − 1, n) = −T

[
n∑
i=j

log(1− λi)

]
= λtrace(j − 1) (16)

Both tests rejects the null hypothesis for large values of the test statistic.
Thus, if cv stands for the critical value of the test and λ(j− 1) the statistic,
the form of the test is:

Reject H0 if λ(j − 1) > cv

The critical values for the two tests are different in general (except when
j = n) and come from non-standard null distributions that are dependent on
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the sample size T and the number of cointegrating vectors being tested for.
The interested reader can further read on the distribution theory leading to
the critical values of the test in appendix D in Burke and Hunter (2005).

3.3.5 Model specification methods

There is a number of approaches to choose the right ARMA(p,q) model.
One of the most common is the Aikaike information criteria (AIC). This
criterion chooses the best model as the model that minimizes

AIC = −2log(maximum likelihood) + 2k,

where k is the total number of parameters; k = p + q + 1 if the model
contains an intercept or constant term and k = p + q otherwise. The last
term operates as a ”penalty function” where larger models are penalised
due to many parameters. This helps to ensure the selection of parsimonious
models (Cryer and Chan, 2008).

Another approach is to select the model that minimizes the Bayesian
information criteria (BIC). This criterion is defined as

BIC = −2log(maximum likelihood) + klog(n) (17)

and is known to return consistent p and q orders when the true process
follow an finite ARMA(p,q) process. On the other hand, if the process is
not of a finite order ARMA process, the AIC will return the best suitable
model that reflects the true process.

Even though AIC is commonly used in model selection, it should be
known that it is a biased estimator and that the bias can be noticeable for
large parameter per data ratios. Though, the Aikaike information criteria
with correction for finite samples (AICc) is an estimator which is shown to
approximately eliminate the bias by adding one more penalty term to the
AIC. It is defined as

AICc = AIC +
2(k + 1)(k + 2)

n− k − 2
, (18)

where n is the sample size. It is suggested that for cases where k/n ≥
10% AICc outperforms many selection criteria, including the AIC and BIC
(Huruvich and Tsai, 1989).

Furthermore, when deciding on the appropriate lag order in a VAR model
there are three other model selection criteria used, the Hannan-Quinn (HQ),
Schwarz criterion (SC) and final prediction error (FPE) (Pfaff, 2008). They
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are defined as

HQ = log det(
∑
u

(p)) +
2log(log(T ))

T
pK2, (19a)

SC = log det(
∑
u

(p)) +
log(T )

T
pK2, (19b)

FPE =
(T + p∗

T − p∗
)K

det(
∑
u

(p)) (19c)

where Σu(p) = T−1
∑T

t=1 ûtû
′
t and p∗ is the total number of parameters in

each equation and p the lag order.

3.3.6 Root mean square error

Since the aim of this thesis is to construct and compare models for real
exchange rate forecasting we need a measure of the models’ adequacy. The
root mean square error (RMSE) measures the actual deviation from the
predicted value to the observed value.

Let X̂i be the predicted value of the corresponding observed values Xi

at time i, then the root mean squared error is computed as

RMSE(X̂) =

√
MSE(X̂) =

√√√√ 1

n

n∑
i=1

(X̂i −Xi)2 (20)

where n is the number of observations.

3.4 Forecasting time series models

As the main purpose of this thesis is to compare different models’ forecasting
accuracy by computing the root mean square error we need to be able to
make out-of-sample forecasts. An ARIMA(1,1,1) model will be illustrated as
an example of the procedure of ARIMA forecasting . The example below is
a modified example of the one illustrated in Hyndman and Athanasopoulos
(2014, chapter 8.8).

An ARIMA(1,1,1) is on the form

∆Xt = φ1∆Xt−1 + et − θ1et−1

and by utilizing that ∆Xt = Xt−Xt−1, the equation above may be written
as

Xt = (1 + φ1Xt−1)− φ1Xt−2 + et − θ1et−1. (21)

Hence, by replacing t by T + 1 we get

XT+1 = (1 + φ1)XT − φ1XT−1 + eT+1 − θ1eT
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where, by assuming observations up to time T , all values on the right hand
side are known except for eT+1, which is replaced by zero, and eT which is
replaced by the last observed residual êT . Thus, the forecasted value in time
T + 1 is

X̂T+1|T = (1 + φ1)XT − φ1XT−1 − θ1êT .

Furthermore, a forecast of XT+2 is obtained by instead replacing t with
T + 2 in equation (20) above. All values on the right hand side will be
known at time T except XT+1, which is replaced by X̂T+1|T , and eT+2 and
eT+1, which both are replaced by zero. A forecasted value of XT+2 is thus
given by

X̂T+2|T = (1 + φ1)X̂T+1|T − φ1XT .

The process continues in this manner to get point forecasts for all future
time periods.

When plotting predicted values one usually depicts a shaded prediction
interval in the plot. A prediction interval is an estimated interval in which
future observations will fall, with a certain probability, given what has al-
ready been observed. The calculation of ARIMA prediction intervals is
difficult and the derivation cumbersome, not providing a simple interpreta-
tion. Thus, the interested reader can find the details of multi-step forecast
intervals in Brockwell and Davis (2002, chapter 6.4). However, the first
prediction interval is easy to compute and is given by

X̂T+1|T ± c1−γ/2σ̂, (22)

where c1−γ/2 is the (1− γ/2) · 100 percentage point of the standard normal
distribution and σ̂ the standard deviation of the residuals.

In a similar manner, one may forecast a VAR model according to theory
in Lütkepohl, Krätzig and Phillips (2004, chapter 3). Forecasts are generated
in a recursive manner for each variable in the VAR model following the
notation in equation (9). Assuming a fitted VAR model by OLS for all
observations up to time T the h-step ahead forecast is generated by

X̂T+h|T = Â1XT+h−1 + ÂpXT+h−1.

The corresponding forecast error is

XT+h − X̂T+h|T = uT+h + φ1uT+h−1 + . . .+ φh−1uT+1

where it can be shown by successive substitution that

φs =

s∑
j=1

φs−jAj , s = 1, 2, . . . ,
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with φ0 = Ik and Aj = 0 for j > p. The ut is the one-step forecast error
in period t − 1 and as the forecasts are unbiased, the forecast errors have
expectation 0. The mean square error of an h-step forecast is

Σy = E{(XT+h − X̂T+h|T )(XT+h − X̂T+h|T )′} =

h−1∑
j=0

φjΣuφ
′
j .

If the processXt is Gaussian, implying ut ∈ i.i.d.N(0,Σu), then the forecast
errors follow a multivariate distribution. Thus the prediction interval is given
by

Xk,T+h|T ± c1−γ/2σ̂k(h) (23)

where σ̂k(h) is the square root of the kth diagonal element of Σy(h)
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4 Univariate analysis

The most important step in building dynamic econometric models is to get
an understanding of the characteristics of the individual time series variables
involved. This section will contain a thorough analysis of the EUR/USD real
exchange rate as well as a somewhat lighter analysis of the real interest rate
differential and the trade balance in the Euro zone, all series covering the
period from January 1999 to February 2016. The analysis is important since
the properties of the individual series will increase our understanding when
we later analyse them together in a system of series. The central part of this
univariate time series analysis is to discover if the series are stationary, since
this will play a role in our vector autoregression modelling later. However,
we will perform a more extensive analysis of the real exchange rate series
with the aim to find a suitable ARIMA model for this series alone, as this
is one of the models whose predicting ability will be compared.

It is worth to mention that there are many other important determinants
of exchange rate changes that involves political and economic stability and
the demand for a country’s goods and services. However, increasing the
number of variables in a single time series study does not generally lead to
a better model since it makes it more difficult to capture the dynamic,
intertemporal relationships between them. Therefore, the multiple time
series analysis that follows in section 5 will focus on three variables, namely
the real interest rate differential, the trade balance in the Euro zone as well
as the variable of interest; the real exchange rate.

4.1 EUR/USD real exchange rate

The data for the real exchange rate in the following analysis is downloaded
from the Statistical Data Warehouse of the European central bank (ECB). It
is measured as the European price level relative to the American price level
expressed in US dollar.

We start our analysis of the EUR/USD real exchange rate by plotting the
series in figure 1. As visible in the plot, the exchange rate fluctuates consid-
erably and appears to exhibit non-stationarity. This appearance is confirmed
by the slow decay of the upper autocorrelation function plot in figure 2 as
well as the augmented Dickey-Fuller (ADF) test presented in table 1. To be
able to preform different time series techniques on the data it is important
to adjust for the non-stationarity. Thus, a first difference is applied to the
series in an attempt to achieve a stationary time series. Table 1 contains
the ADF test when a first difference is applied to the series. The lag order is
determined by the ar function which uses the AIC criterion and the result
is later compared to ACF and PACF plots if it seems reasonable. Since the
plot of the real exchange rate in levels in figure 1 and the plot of the differ-
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enced series in figure 13 in appendix B do not reveal a linear deterministic
trend a priori, both series is tested based on a model without a trend. Fur-
thermore, the mean of the differenced series is not significantly different from
zero when a t-test is preformed and is therefore tested without a constant.
On the contrary, the mean of the levels series is significantly nonzero and
is thus tested based on a model with a constant. The test results in table
1 indicate that the series is not stationary in levels but stationary in first
difference. The appropriateness of a first difference is also demonstrated in
the differenced ACF in figure 2 where there is now a drop to zero quickly. It
is therefore concluded that the RER is integrated of order 1, I(1), and that
we cannot reject a unit root in the levels series.
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Figure 1: The monthly real Euro/US dollar exchange rate

Augmented Dickey Fuller Unit Root test

Variable Deterministics Lag order P-value

RER constant 2 0.6063
Diff RER 1 <0.01

Table 1: Unit root test for the levels and first differenced Real Exchange
Rate series

In an attempt to find a suitable ARIMA model the autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF) are used. The
correlograms are visible in figure 2 for the levels and the differenced series
respectively. As stated previously, the slow decay of the positive sample
autocorrelation function for the levels series suggests the appropriateness of
an ARIMA model.
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Since the first lag is significant in both the ACF and PACF plot of the
differenced RER series potential p and q values are 1. Therefore, a possible
candidate is an ARIMA(1,1,1) model. To investigate the matter further we
employ the auto.arima function in R which uses a variation of the Hyndman
and Khandakar algorithm [5] to obtain a suitable ARIMA model. This
algorithm combine unit root tests, minimization of the AICc and maximum
likelihood estimation (MLE). The reader is referred to appendix A for further
information of the steps.

As a result, the function returns an ARIMA(2,1,2) model with a seasonal
AR at the 12th lag of order 1, a SARIMA(2,1,2)(1,0,0)12 model. Since it
is not advantageous from a forecasting point of view to choose large p and
q we restrict the auto.arima function to not look for seasonal components.
This decision is based on the observation that we do not see a clear seasonal
pattern in the series or a single significant spike at lag 12 in the PACF. With
the imposed restriction, the auto.arima function return an ARIMA(1,1,0)
model. Consequently, this initial analysis suggests three potential models
for the real exchange rate series. The models are fitted and the supplied
information criterion values computed. The results can be found in table 2
below.
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Figure 2: The acf and pacf for the levels series to the left and for the
differenced series to the right. The lags on the y-axis are scaled by a 10−1-
multiple.

The obtained AIC and AICc values in table 2 advocate the
SARIMA(2,1,2)(1,0,0)12 as the most suitable model out of the three consid-
ered. However, the BIC implies that the ARIMA(1,1,0) is the appropriate
model and that the SARIMA model is the least appropriate model. Though,
as one can see, the values obtained do not differ greatly between the models
and since there were not much evidence of a seasonal effect in our data we

22



Information criterion values

Model AIC AICc BIC

ARIMA(1,1,1) 641.16 641.28 651.13
SARIMA(2,1,2)(1,0,0)12 639.63 640.05 659.56
ARIMA(1,1,0) 640.2 640.26 646.84

Table 2: Information criterion values for the different suitable ARIMA mod-
els

choose to proceed our analysis with the ARIMA(1,1,1) model as well as the
ARIMA(1,1,0).

Thereon, we verify that the residuals of the fitted models possess the
wanted properties by first establishing that they are normally distributed
by normal quantile-quantile plots in figure 3 below.
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Figure 3: Normal Q-Q plots of the residuals from the ARIMA(1,1,1) model
to the left and the ARIMA(1,1,0) model to the right.

The linearity of the points in figure 3 suggests that the data are normally
distributed. There is one data point that deviates from the rest and we
detect it as the one for November 2008. This is due to the financial crisis
and a possible model for step response intervention could be employed but
as the data point do not seem to interfere with the normality assumption
more than appearing as an outlier we simply leave it and proceed with the
possibility of changing the model specification with a dummy variable later.

Thereon, we continue by plotting the standardized residuals together
with the sample ACF. These can be found in figure 14 and 15 in appendix
B. The plots of the standardized residuals obtained from both models gives
no indication of a nonzero mean, trend or changing variance and thus re-
sembles white noise. The sample ACF of the residuals further indicates that
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they are independent and identically distributed (i.i.d.) since no significant
autocorrelation is present. Lastly, a Ljung-Box Portmanteau test of the
residuals is performed. The test statistics leads us not to reject the null
hypothesis of independence and the associated p-values for all lags up to 10
can as well be viewed in figure 14 and 15 in appendix B. As a result, there
is no cause to reject the fitted models. We continue by plotting the one-step
in-sample forecast generated from the fitted models in figure 4 and 5.
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Figure 4: Time series plot of the in-sample forecast generated by the
ARIMA(1,1,1) in pink and the EUR/USD real exchang rate in blue
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Figure 5: Time series plot of the in-sample forecast generated by the
ARIMA(1,1,0) in red and the EUR/USD real exchang rate in blue

The lines of the fitted ARIMA models look almost the same which is
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also strengthen by the similar values of the squared correlation between the
observed and in-sample forecast values, approximately 0.9874 and 0.9873
respectively (a difference of 5.66e-5). This states that both models make a
good description of the past. However, a good fit does not necessarily lead
to a good forecast. For example, overfit models will usually have very small
in-sample errors, but not lead to favourable out-of-sample forecasts. Hence,
we will return to the fitted ARIMA model equations and find a bootstrap
confidence interval of the coefficients using model-based residual resampling
conditioned on the first (p + d) initial values and test for these being zero.
The fitted ARIMA models are given by the following equations

xt = 0.1496
(0.1768)

xt−1 + et + 0.1913
(0.1715)

et−1 (24a)

xt = 0.3185
(0.0666)

xt−1 + et (24b)

where xt = Xt − Xt−1, xt−1 = Xt−1 − Xt−2 and et is the random shock
noise occurring at time t. The corresponding standard errors are presented
under respective parameter estimation. First, the associated parametric
95% confidence interval of the coefficients are presented in table 3 below.

Parametric 95% Confidence Intervals

Model AR1 MA1

ARIMA(1,1,1) (-0.197,0.496) (-0.145,0.527)
ARIMA(1,1,0) (0.188,0.449)

Table 3: Parametric 95% confidence intervals of the parameters in the fitted
models

Table 3 reveals that both of the parameters in the fitted ARIMA(1,1,1)
model has 0.0 inside the interval and thus indicating insignificant param-
eters. For comparison, the bootstrap confidence intervals can be found in
table 4.

Bootstrap 95% Confidence Intervals

Model AR1 MA1

ARIMA(1,1,1) (-0.688,0.868) (-0.762,0.823)
ARIMA(1,1,0) (0.183,0.448)

Table 4: Boostrap 95% confidence intervals of the parameters in the fitted
models

The confidence interval based on the bootstrap method for the
ARIMA(1,1,0) yield a similar interval as the parametric whereas the boot-
strap confidence interval for the ARIMA(1,1,1) is wider, which is generally

25



the case, and still includes 0.0. Therefore, we conclude that the parameter
estimates in the ARIMA(1,1,1) model is insignificant at the 5% level. To give
the reader a more intuitive sense of the confidence intervals, histograms of
respective bootstrap distribution for the parameter estimates can be found
in figure 16 and 17 in appendix B.

Since the estimates of the coefficients in the ARIMA(1,1,1) are insignif-
icant we discard this model as suitable for the real exchange rate series.
Thus, we continue our analyze with solely the ARIMA(1,1,0) model. By
utilizing that xt = Xt −Xt−1 and xt−1 = Xt−1 −Xt−2 equation (24b) can
be written on the equivalent form

Xt = 1.3185Xt−1 − 0.3185Xt−2 + et (25)

Its predicting ability will later be compared to the one of the economic model
in section 7.
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4.2 Macroeconomic variables

The real interest rate differential is computed as the 3-month real Euribor
rate minus the 3-month Libor rate in USD adjusted for the inflation in the
US. Moreover, the terms of trade is computed as the ratio between export
prices and import price. The data for the 3-month Euribor rate is down-
loaded from the Statistical Data Warehouse of the ECB whereas the data for
the export price index in the Euro zone is downloaded from Eurostat. Lastly
the data for the import price index in the Euro zone, the inflation rate in
the US as well as the 3 month Libor rate in USD is downloaded from the
Federal Reserve Bank of St. Louis.

In this section a lighter analysis of the two macroeconomic variables; real
interest rate differential (RIRD) and European trade balance (TB) will be
made. We start by plotting the series in figure 6 and 7 respectively and we
notice that both series appear non-stationary with high volatility around
the immediate time and in the reverberations of the financial crisis. As a
consequence of the non-stationary characteristics, a first difference is applied
to both series and as observable in figure 18 and 19 in appendix B, the
transformation seems to be satisfying in a stationary purpose. Though, the
time series of the differenced RIRD appear to exhibit an outlier and we
identify it as the one for December 2008. The outlier is not adjusted for
now, but we may have to adjust the vector autoregressive model with a
dummy variable if the multivariate normality assumption is violated.

Next, an ADF test is used to detect whether the differenced series possess
a unit root. Both the series are modelled without a constant since the
respective t-tests do not reject a zero mean. The resulting p-values are
presented in table 5.

Augmented Dickey Fuller Unit Root test

Variable Deterministics Lag order P-value

Diff RIRD 1 <0.01
Diff trade balance EU 1 <0.01

Table 5: Unit root test for the differenced macroeconomical variables

The ADF tests conclude both series to be I(1). This discovery will play a
significant role when we define an economic model in the next section since
there is a possibility that the time series exhibit a common stochastic trend
due to all being I(1). However, before we proceed with finding a valid vector
model some descriptive statistics of the differenced series are displayed in
table 6 and 7 below.

The informative descriptive statistics in table 6 reveal that both of the
macroeconomic series, but principally the differenced TB, is closely oscil-
lating around zero. Table 7 display the covariance of the three differenced
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series with respective sample variance on the diagonal.
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Figure 6: Time series plot of the real interest rate differential
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Figure 7: Time series plot of the trade balance in the Euro zone

Descriptive statistics

Variable Mean Highest value Lowest value

Diff RIRD 0.0068 1.5322 -1.6653
Diff trade balance EU -0.0002 0.01372 -0.0154

Table 6: Descriptive statistics for the differenced real interest rate differential
as well as for the differenced trade balance.
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Covariance matrix

Diff RER Diff RIR Diff TB

Diff RER 1.4564 -0.1285 0.0017
Diff RIR -0.1285 0.1492 -0.0003
Diff TB 0.0017 -0.0003 2.697e-05

Table 7: Covariance matrix of the three differenced series. The figures are
rounded to 4 decimals.
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5 Economic model

In this section, we will define the model which includes endogenous macroe-
conomic variables. Since the results of the stationarity test according to
ADF indicate that all series are stationary in their first difference, we initi-
ate this section by testing for cointegration to detect if there exist a linear
combination of the variables that is stationary. The results of the Johansen
test for cointegration using the maximum eigenvalue statistic can be found
in table 8 whereas the test with trace statistic can be found in table 9.

Statistic 10% 5% 1%

r ≤ 2 1.27 7.52 9.24 12.97

r ≤ 1 2.44 13.75 15.67 20.20

r = 0 14.86 19.77 22.00 26.81

Table 8: Johansen test for cointegration rank: Max eigenvalue statistic

Statistic 10% 5% 1%

r ≤ 2 1.27 7.52 9.24 12.97

r ≤ 1 3.71 17.85 19.96 24.60

r = 0 18.57 32.00 34.91 41.07

Table 9: Johansen test for cointegration rank: Trace statistic

Both test statistics reject the hypothesis of a cointegrating vector at all
significance levels. Hence, we continue by estimating a VAR model with
the differenced series. The lag order is first specified by the model selection
criteria described in section 3.3.7. All the criteria selects a VAR(1) as the
most suitable model. Values of the different criteria for up to six lags can
be found in table 11 in appendix C.

Thereafter we proceed with estimating a VAR(1) model by utilizing or-
dinary least square per equation. The model is estimated without a constant
term. This do not seem contradictory since we tested the sample means of
the first-differenced series and none of the means were significantly different
from zero. We therefore restrict the vector autoregressive model to exclude
deterministic drifts in the individual series. As in the case of the ARIMA
models in section 4, we initialize by performing a multivariate Ljung-Box
Portmanteau test to test for autocorrelation in the residuals. The test is
preformed to detect if the choice of one lag is to restrictive and if the data
instead should be modelled with a higher lag order. Autocorrelation in the
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residuals is an unwanted trait, since autocorrelation biases the estimators
and makes them less efficient. However, the test statistics leads us not to
reject the null hypothesis of independent residuals (associated p-values for
up to ten lags can be viewed in figure 20 in appendix B). Additionally, we
compare the distribution of the residuals received from the RER equation
to a normal distribution using a normal qunantile-quantile plot in figure 8.
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Figure 8: Normal Q-Q plot of the residuals from the RER equation in the
VAR(1) model

The Q-Q plot in figure 8 do exhibit some kurtosis but not enough to
violate the normal distribution assumption. Again, we observe an outlier
and identify this as the one for November 2008. A modification of the VAR
model can possibly be made where a dummy variable for this specific point
could be added to adjust for the outlier. However, we forego doing so as this
would require an additional parameter to estimate in the VAR(1) model and
that the data point does not appear to interfere with the normality assump-
tion. Further diagnostic plots can be found in figure 21 in appendix B. None
of the plots give a reason to question a normal distribution assumption of
the residuals and we may proceed with the VAR(1) model.

Usually, the estimated VAR coefficients are not reported since they are
poorly estimated and, except for the first lag, often insignificant (Canova,
2007). However, since we will use the model in a forecasting comparison
purpose, depicting the equation could result in a intuitive sense of the model.
Consequently, the equation for the differenced RER takes the form

RERt = 0.34768
0.07148

RERt−1 + 0.07769
0.21660

RIRDt−1 −19.66126
16.06442

TBt−1 + u1t (26)

where the standard errors are stated below the corresponding parameter
estimate and u1t is the error term. All time series Xt in the above equation
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should be considered as Xt −Xt−1 since they are all differenced. The table
with all of the estimated parameters can be found in table 12 in appendix
C. The corresponding covariance matrix of all error terms, u1t, u2t and u3t,
in the VAR(1) model is given by

Σu =

 1.3094 −0.1056 0.0008
−0.1056 0.1327 −9.252e− 05
0.0008 −9.252e− 0.5 0.2170e− 05


As a model validation check for a VAR model one can make use of the

formula for covariance of the causal series in Brockwell and Davis (2004,
section 8.4). The authors derive the covariance of the series for a VAR(1)
with one lag as

Σy = Σu +AΣuA
′

By computing the matrix A with the parameter estimate table 12 in ap-
pendix C we get the variance for differenced RER series to 1.4707, which is
similar to the value in the covariance matrix in section 4 which was 1.4564.

An initial observation of the RER equation is that the parameter esti-
mate for the RERt−1 is quite similar to the estimate in the ARIMA(1,1,0) in
section 3, with an additional value of approximately 0.03. Furthermore, it is
worth to remark that the absolute contribution from the two macroeconomic
variables are quite small considering that both of these differenced series are
closely oscillating around zero. Thus, the resemblance of this model with
the ARIMA(1,1,0) is palpable. Furthermore, a 95% bootstrap confidence
interval of the parameter estimates indicates, as outlined by Canova (2007),
only the lagged RER to be significant.

Instead of parameter estimates one usually report functions of the VAR
coefficients which tend to summarize information better and have some eco-
nomic meaning whilst they are generally more precisely estimated (Canova,
2007). Thus, before we move on to the main purpose of this thesis; fore-
casting, we analyze the responsiveness of the dependent variable RER to
exogenous impulses, which in macroeconomic modelling often is referred to
as shocks, to the other macroeconomic variables. This analysis will be car-
ried out by impulse response functions and will describe what sign the effect
has on the response variable as well as how long the effect will last. In this
way we are able to detect dynamic relationships over time.

The idea is to look at the adjustment of the variable after a hypothetical
shock at time t. This adjustment is then compared with the time series
process without a shock, that is, the actual process. The impulse response
sequences plot the difference between the two time paths.

• Shocks to the real interest rate differential - When the RIRD
increase, the exchange rate is supposed to appreciate. This is because
higher interest rate in a country make the currency more valuable
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relative to the country offering lower interest rate. We can see that
this also is the case as depicted in figure 8 where the exchange rate
responded positively on a shock to the RIRD.

• Shocks to the trade balance - As depicted in figure 9, an increase
in the trade balance has a negative effect on the exchange rate. This
is in line with theory; if the export price index of European goods
increase, American importers will lower their demand for European
currency and thus making the currency less valuable.
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Figure 9: Impulse responses for the shocks to the real interest rate differen-
tial with a 95% bootstrap confidence interval
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Figure 10: Impulse responses for the shocks to the trade balance with a 95%
bootstrap confidence interval
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Since the real exchange rate responds according to theory after shocks
to the macroeconomic variables we will continue analyzing the estimated
VAR(1) model in a forecasting purpose in the next section.
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6 Forecasting

The main purpose of this thesis is to forecast the real EUR/USD exchange
rate for the four months succeeding February 2016 and compare these pre-
dicted values to the observed values. We will compare the forecast accuracy
of the ARIMA(1,1,0) and the VAR(1) with a random walk, which is often
considered to produce the best forecasts. The predicted values from the
random walk is thus the value of the latest observation, X̂t = Xt−1, which
corresponds to 96.7301. The choice of test period is set to three months.
This is due to the fact that an ARIMA(1,1,0) would converge to a random
walk when the amount of forecast steps increase.

Below, three out of sample forecasts from the ARIMA model are depicted
together with a lighter shaded 80 % and a darker 95 % prediction interval
in figure 11 whereas the three out of sample forecast from the VAR model
are depicted with a corresponding 95 % prediction interval in figure 12.
The intervals are calculated by using the formulas for prediction interval
in equation (22) and (23) respectively. The variance of the ARIMA(1,1,0)
model was estimated to 1.31 and the variance of the RER equation in the
VAR(1) model was derived and estimated to 1.4707 in section 5.

It is difficult to notice any obvious differences between the predicted
values based on the plots and this is not surprising since the two fitted models
are similar, as remarked in section 4. After examining the point forecasts
more thoroughly we conclude that both series of the predicted exchange rates
are steadily depreciating for the three out of sample forecasts, where the first
value of the forecast for March 2016 from the VAR(1) model is slightly lower
than the corresponding forecast obtained from the ARIMA(1,1,0) model.
However, the two point forecast obtained for April and May 2016 are lower
for the ARIMA model. The predicted values can be viewed in table 13 in
appendix C.
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Figure 11: Three out of sample forecasts from ARIMA(1,1,0)
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Figure 12: Three out of sample forecasts from VAR(1)

To compare the forecast accuracy, the root mean square error (RMSE)
of the out of sample forecasts are computed. The values can be depicted
in table 10 where the values for the random walk (RW) model also are
computed.

Time horizon ARIMA(1,1,0) VAR(1) RW

1 month 0.8302 0.8053 1.3987

3 months 1.5722 1.6001 2.2714

Table 10: Root mean square errors for the ARIMA, VAR and RW models.

According to the RMSE in table 10, the VAR(1) outperforms both the
ARIMA(1,1,0) and the RW during a 1-month horizon. However, the ARIMA
model produce more accurate predictions during the 3-month horizon. This
contradicts the finding by Meese and Rogoff (1983) and a possible explana-
tion is that we have incorporated that the real exchange rate time series is
non-stationary in levels, a feature that was not considered in their paper.
Another explanation is that EUR/USD real exchange rate experiences a pe-
riod of successive deprecation causing the forecasts from the random walk
to continuously overshoot.

Nonetheless, in our setting, with access to the actual values for the three
succeeding months, we may conclude that the random walk is outperformed
by both models and that the VAR model seem to be better used in a one-
step forecast purpose. However, the rather small difference in RMSE values
during the 1-month horizon between the two models implies that a simple
ARIMA(1,1,0) captures dependencies in the data in a sufficient manner.
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7 Discussion

The purpose of this thesis was not to discover new results in the field of
exchange rate modelling and forecasting. However, it is still interesting to
compare the findings in this thesis to conclusions made in the literature on
econometric models and ARIMA models fitted to exchange rate time series.

In section 3 and 5, an ARIMA(1,1,0) model and a VAR(1) model with
additional macroeconomic variables were fitted to the EUR/USD real ex-
change rate data. Both of these models were concluded to make better
predictions than a random walk after the comparison of root mean square
error values as a measure of forecast accuracy in section 7. This finding
contradicts the conclusion in the paper of Meese and Rogoff (1983). The
authors found that the random walk model was superior to an ARMA model.
However, a possible explanation of the diverging conclusion is that Meese
and Rogoff (1983) did not incorporate the fact that the exchange rate series
probably was non-stationary in levels. Though, after examining equation
(25) we realise that the sum of the AR coefficients are 1 and thus, unless
the past values have changed remarkably during the last two periods, we see
that our ARIMA(1,1,0) has similarities to a random walk.

The VAR(1) model in section 5 was derived with additional macroeco-
nomic variables for the real interest rate differential and the trade balance
in the EU. The parameter estimates for the lagged additional variables were
proven to be insignificant. However, economic theory suggests that there
are several important exchange rate determinants and other variables may
explain the exchange rate fluctuations in a more sufficient manner. The find-
ings of Yu (2001) and Mida (2013) diverges in the short- and long run. Yu
(2001) concludes that neither a VAR, restricted VAR, VECM or a Bayesian
VAR generates better forecasts than a random walk in the short run but
that the models have better forecast accuracy in the long run. Meanwhile,
Mida (2013) find the VAR model to outperform the random walk in the
short run but not in the long run. Sellin (2007) also finds a VECM model
for the Swedish Krona’s real and nominal effective exchange rate to make
accurate forecasts once the model has been augmented with an interest rate
differential. The diverging results are most likely due to differing exchange
rates and the usage of different macroeconomic variables. Thus, finding
significant explanatory variables to an exchange rate is troublesome since
insignificant variables for one exchange rate may contain valuable informa-
tion in explaining another.

Lastly, we have used monthly time series data for the period from Jan-
uary 1999 to February 2016 in this thesis. Since the models are based on
explaining the past, they will be biased toward the past in the sense that they
will weigh historical information more heavily than newer information. This
will usually lead to poor prediction performance and is a problem when de-
riving models that aim to forecast. Thus, using fewer variables and lags in a
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model are usually beneficial in a forecasting perspective since overfit models
often have small in-sample errors, but not lead to favourable out-of-sample
forecasts. However, our ARIMA only have one AR-term and our VAR is
made up by solely three first-lagged variables. So the problem of overfitting
is not applied here. Though the choice of other macroeconomic variables in
our VAR may have yielded more accurate out-of-sample forecasts.

Additionally, new information is incorporated quickly on foreign ex-
change markets due to its easy access for market participants. Market forces
tend to adjust the market to a new equilibrium within a short time frame,
often faster than a monthly or even a weekly frequency. Therefore, using
monthly data do not allow one to quantify how the foreign exchange market
react to some new information, e.g. a change in interest rates or a change
in price level, since the change has already occurred and been consumed by
the time you predict it. Thus, daily data is probably more reliable when
predicting exchange rate movements.
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8 Conclusions

The main purpose of this thesis was to find a model that makes accurate
predictions of the real EUR/USD exchange rate for the three months suc-
ceeding February 2016. It was first concluded that the real exchange rate
was non-stationary in levels but stationary in first difference after exam-
ining the ADF-test presented in table 1 and the ACF and PACF plots in
figure 2. Thereafter, we presented three different ARIMA models based on a
built-in algorithm for automatic ARIMA modelling in R as well as from ex-
aminations of the ACF and PACF plots in section 4.1. The candidates were
an ARIMA(1,1,1), SARIMA(2,1,2)(1,0,0)12 and an ARIMA(1,1,0) model.
Based on values of the Bayesian information criterion (BIC) as well as no
significant 12th lag in the PACF plot in figure 2, the SARIMA(2,1,2)(1,0,0)12
was considered the least appropriate model and the two remaining models
were further analysed. The ARIMA(1,1,1) and ARIMA(1,1,0) displayed
similar one-step-in-sample forecasts in figure 4 and both models’ residuals
were presumably from a normal distribution based on quantile-quantile plots
displayed in figure 3. As the confidence interval for the parameters in the
ARIMA(1,1,1) model included 0.0, and thus were insignificant, we reached
to the conclusion that the ARIMA(1,1,0) was the most appropriate one of
the three models we had begun our univariate analysis with.

Thereafter, in section 5, an economic model with trade balance in the EU
as well as the interest rate differential as additional variables was estimated.
Since all the variables were stationary in their first difference according to
the ADF-test in table 5, there was a possibility that there existed a linear
combination of the levels series that were stationary, and thus a long run
relationship between the variables. This kind of cointegrating relationship
was tested for by two different Johansen test statistics, both rejecting such
hypothesis as observed in table 8 and 9. Thus, a VAR model with the first
differenced series was estimated. It was concluded that a VAR model with
variables of first lag was selected by all model selection criteria and that the
residuals with the real exchange rate as dependent variable in the VAR(1)
model demonstrated residuals with desired properties; no autocorrelation
and white noise resemblance. However, an outlier in the quantile-quantile
plot in figure 8 was observed, but since the normality assumption was not
violated, a dummy variable was not added to the model.

When examining equation (26) of the real exchange rate, it was remarked
that the equation resembled the one from the estimated ARIMA(1,1,0) in
equation (25). As a last part of the analyze of the VAR(1) model, the real
exchange rate impulse response to exogenous shocks to the other macroe-
conomic variables were presented in figure 9 and 10. The conclusions were
that the response of the RER variable was in line with theory; an increase
in the RIRD caused an appreciation, whereas an increase in the TB caused
a depreciation.
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Although economic theory suggests that other macroeconomic variables
improve the explanation of exchange rate fluctuations, it is observed in sec-
tion 7 that a simple ARIMA(1,1,0) model gives comparatively good one-
step-forecast and even outperforms the VAR model during a 3-month time
horizon, when comparing RMSE with actual observed forecast values from
ECB in table 10. Furthermore, the random walk is outperformed by both
models during both 1-month and 3-month horizon. This suggests that the
most important variable to explain the real exchange rate is the lagged vari-
able itself, which also is in line with the parameter estimations in the VAR
model in section 5 where only the first lagged RER variable was significant.
Thus, this thesis concludes the ARIMA(1,1,0) with its simple interpretation
captures dependencies in the data in a relatively sufficient manner.

9 Further research

Since the models are derived to explain the past, new information is not
incorporated in the model. Thus, one possible extension to this thesis is
to use rolling window forecasts where the parameters are re-estimated after
each step in which we includes a new true observation. Furthermore, it
would be interesting to include a dummy variable in the model since we
observed an outlier in our quantile-quantile plots for the residuals in both the
ARIMA(1,1,0) model and the VAR(1) model. Lastly, the inclusion of other
macroeconomic variables may yield a different result where the parameters
estimates are significant.
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Appendices

A Functions in R

A.1 The auto.arima function

The Hyndman-Khandakar algorithm for automatic ARIMA modelling fol-
lows these steps (Hyndman and Athanasopoulos, 2014, section 8.7):

1. The number of differences d is determined using repeated KPSS tests.

2. After differencing the data d times, the values of p and q are chosen by
minimizing the AICc in a stepwise search to traverse the model space

(a) The model with the smallest AICc is selected from the following
four:

• ARIMA(2,d,2)

• ARIMA(0,d,0)

• ARIMA(1,d,0)

• ARIMA(0,d,1)

If d=0 then the constant c is included. For d ≥ 1 c is set to zero.
This is called the current model.

(b) Then variations of the current model are considered:

• Vary p and/or q from the current model with ±1;

• Include/exclude c from the current model.

The best model after that is either the current model or one of the
variations. The best model then becomes the new current model.

(c) Repeat Step 2(b) until no lower AICc can be found.

The algorithm works in a similar manner when seasonal components are
allowed.
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Figure 13: The monthly differenced real euro/us dollar exchange rate
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Figure 14: Diagnostic plots of the ARIMA(1,1,1) model
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Figure 15: Diagnostic plots of the ARIMA(1,1,0) model
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Figure 16: Histograms of bootstrap distribution for the parameter estimates
of the ARIMA(1,1,1) model
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Figure 17: Histograms of bootstrap distribution for the parameter estimates
of the ARIMA(1,1,0) model
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Figure 18: Time series plot of the differenced real interest rate differential
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Figure 19: Time series plot of the differenced trade balance in the Euro zone
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Figure 20: P-values of the multivariate Ljung-Box Portmanteau test
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Figure 21: Diagnostics test of the RER equation in the VAR(1) model rep-
resenting the residuals, estimated distribution function, acf and pacf of the
original as well as the squared residuals

C Tables

VAR model selection criteria

Criteria 1 2 3 4 5 6

AIC(n) -12.42 -12.36 -12.28 -12.25 -12.22 -12.26
HQ(n) -12.33 -12.22 -12.08 -11.98 -11.89 -11.77
SC(n) -12.21 -12.01 -11.78 -11.59 -11.41 -11.20
FPE(n) 4.05 e-06 4.28 e-06 4.66 e-0.6 4.79 e-06 4.94 e-06 5.26 e-06

Table 11: Approximated model selection criteria for the VAR with differ-
enced time series variables.
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Parameter estimation VAR(1)

Equation number 1 2 3

Variable RER RIRD TB

RERt−1 0.34768 -0.03878 0.0019242
Standard error 0.07148 0.02275 0.0002912
P-value 2.32e-06*** 0.089836 . 3.42e-10***
t-value 4.864 -1.704 6.608

RIRDt−1 0.07769 0.25927 -0.0007509
Standard error 0.21660 0.06895 0.0008824
P-value 0.720 0.000222*** 0.396
t-value 0.359 3.760 -0.851

TBt−1 -19.66126 -7.52898 -0.0328862
Standard error 16.06442 5.11362 0.0654421
P-value 0.222 0.142493 0.616
t-value -1.224 -1.472 -0.503

Table 12: Estimated coefficients for the first lag with corresponding values
of standard error, P-value and t-value

Out of sample forecasts

Model ARIMA(1,1,0) VAR(1)

1M 96.1616 96.1367
2M 95.9806 95.0066
3M 95.9229 95.9887

Observed values

1M 95.3314
2M 93.8515
3M 94.4420

Table 13: Three out of sample forecasts for the real exchange rate from
VAR(1) and ARIMA(1,1,0) in the left tabular. The right tabular displays
the real observed valus for March, April and May 2016 with data from ECB.
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