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Abstract

Value at Risk (VaR) is a risk measure that quantifies the maximal
loss we may incur under normal market conditions, given a confidence
level and a fixed time horizon. Due to this intuitive interpretation and
its applicability VaR has become the most widely used risk measure
today. In this thesis we will compare one day ahead VaR forecasts
from an AR(1)-GARCH(1,1) time series model with either normal or
t distributed innovations with the corresponding models where the
Peak-Over-Threshold (POT) method has been used in order to model
the tails of the innovations. For further comparisons we also include
an unconditional model where the VaR estimates are the quantile
estimates based on the General Pareto Distribution. By using several
backtest procedures on historical daily log-returns for five stock indices
we find that the models made using the POT method outperforms the
other included models at the higher confidence levels.
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1 INTRODUCTION

1 Introduction

1.1 Background

The globalization of financial markets has naturally induced an increased
volatility in the prices of the traded assets. All participants in the finan-
cial and commodity markets share the necessity to accept the risk of losing
parts of or all of their investment, and are now more than ever dependent
upon global speculation. This development emphasizes the need for risk
management in order to control for e.g. market risk (the risk that a market
participant incurs losses due to unfavorable market movements) where finan-
cial crises such as the subprime mortgage crisis in 2007 serves as a school
book example of the potential consequences of deficient risk management.

Value at Risk (VaR) is the most widely used market risk measure today
which in a simple way may be described as the worst potential loss over a
given time period that will not be exceeded with a given level of confidence.
This intuitive interpretation along with the fact that it may be used in order
to encompass other sources of risks such as commodities, foreign currencies,
and equities (Jorison 2007, pp. 16) has paved the way for its popularity.

From a mathematical point of view VaR is a quantile of the distribution of
the returns series of a portfolio or any other asset over a prescribed time
period and in this thesis we will be concerned with tail estimation for several
negative log return series from a number of selected stock shares retrieved
from Nasdaq OMX.

When estimating VaR you may either choose a non-parametric or paramet-
ric approach where historical simulation and the implementation of different
generalized autoregressive conditional heteroscedastic (GARCH) models are
the most frequent methods in each approach. Historical simulation is basi-
cally the empirical distribution of past gains and losses of the asset and the
major advantage of this approach is that it is easily implemented and require
few assumptions. The major drawback lies in the fact that extrapolation
beyond past observations is impossible, meaning that historical simulation
won’t be able to forecast events or volatile periods which have not been pre-
viously observed (McNeil et al. 2005, pp. 50-51).

Previous parametric approaches using GARCH modeling for estimating VaR
has been proven to successfully capture the volatility clustering observed in
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1 INTRODUCTION

financial markets, however they often fail to capture the heavy-tailedness of
the asset returns by assuming that they are normally distributed, thereby
underestimating the occurrence of extreme outcomes or events.

When estimating VaR there is no optimal model or general feasible approach
available and in this thesis we will compare some of the previous used mod-
els (where the residuals or innovations are either standard normal or t dis-
tributed) with a relatively new approach based on Extreme Value Theory
(EVT).

1.2 Aim and purpose of the thesis.

In this thesis we aim to model conditional volatility for the negative log re-
turn series for a number of selected stock shares retrieved from Nasdaq OMX
inspired by the approach first introduced by McNeil & Frey in their paper
from 2000. In short we will use GARCH models in which the parameters are
obtained through maximum likelihood estimation. The innovations or the
distribution of the residuals will be modeled using Extreme Value Theory
and more specifically by applying the Peaks-Over-Threshold method (POT
method). From this distribution we will be able to obtain a quantile of cho-
sen significance level which along with the estimates of the conditional mean
and volatility allows us to calculate the one day ahead VaR forecasts. The
evaluation methods used are the back testing procedures described in the
oncoming section 5.5.

1.3 Previous research

In this subsection we intend to present some previous research on how to
calculate Value at Risk by the use of Extreme Value Theory. However this
is a relatively difficult task because of the large amount of previous studies
done on the subject. Therefore we chose to present a selection of papers we
find particularly interesting and at the same time demonstrating the broad
scope of applicability of EVT. The readers who wish to learn more about
time series analysis and EVT are referred to Tsay 2010, McNeil et al. 2005,
and Embrechts et al 1997 which we refer to several times in the sections
covering EVT and the time series models used in this thesis.

Since McNeil & Frey published their paper in 2000 promoting a conditional
approach when calculating VaR many other papers followed (e.g. Gençay
et al. 2003 and Kuester et al. 2005), however the use of EVT has been
found useful in several studies promoting an unconditional approach when
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1 INTRODUCTION

calculating VaR. In fact Danielsson & de Vires 2000 propose the use of a
semi-parametric method for estimation of tail probabilities after showing
that conditional parametric methods, such as GARCH with normal innova-
tions under predict the VaR for stock returns at the 1% risk level (or below).
They do not favor an unconditional approach above a conditional one but
argues that the choice of methodology should depend on the situation and
question at hand (Danielson & de Vires 2000, pp. 241).

Bali argue that methods based on parametric distributions assume that in-
terest change is normally distributed, however there is now strong evidence
that they are not (Bali 2003, pp. 83). In his paper he uses Extreme Value
Theory and a stochastic differential equation in order to calculate VaR for
U.S. Treasury yields. Using this unconditional approach he finds that the
statistical theory of extremes provides a more accurate approach to risk
management and VaR calculations in relation to its unconditional normal
counterpart (Bali 2003, pp. 106).
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2 THEORETICAL FRAMEWORK

2 Theoretical framework

In the following section we will present the theoretical tools and concepts
needed in order to understand the analysis related to the thesis.

2.1 Log returns

We start by defining simple return before moving on to the log returns.
Let Pt be the daily closing price of an asset at time point t. Then holding
the asset for one time period from say t−1 to t would result in a simple gross
return Rt we choose to express as

1 +Rt =
Pt
Pt−1

←→ Rt =
Pt
Pt−1

− 1.

This is directly related to the continuously compounded return or log return
rt which is the natural logarithm of the simple gross return.

rt = log(1 +Rt) = log( Pt
Pt−1

) = log(Pt) − log(Pt−1) (1)

This compounding method makes it easy to calculate the multi period return
by simply summing over every one-period log return involved (Tsay 2010, pp.
5).

Usually our main concern when working with Value at Risk is the expected
loss of our investment, therefore we will exclusively use the loss series when
carrying out the numerical analysis. Note that the losses are simply the neg-
ative log returns. This is done because of the convenience that follows from
estimating positive VaR limits.

Further it is important to keep in mind that Value at Risk does not contain
any information regarding the size of the potential loss −rt. This will be
further addressed in the upcoming section where we formally define Value
at Risk and account for a number of shortcomings.

2.2 Value at Risk

Given a fixed time horizon and confidence level, the Value at Risk (VaR) is an
estimate of the maximal loss we may incur under normal market conditions.
In order to exemplify, VaR can help us to calculate what the worst expected
loss would be 99 days out of 100. This is equivalent that VaR gives us an
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2 THEORETICAL FRAMEWORK

estimate of the minimal loss associated with extraordinary market condi-
tions. However both definitions imply the same method in order to quantify
financial risk (Tsay 2010, pp. 325-326).

Mathematically VaR can be defined through the distribution of the asset
return in the following way:

Definition (Value at Risk): Given a confidence level α ∈ (0,1) and a time
horizon of k days, the k-day Value at Risk, expressed as a percentage of the
value of the asset at time t, is given the smallest number xk such that the
probability that the loss Xt exceeds xk is no larger than (1 − α). Formally,

V aRα,k = inf{xα ∈ R ∶ P (Xt;k > xα) ≤ 1 − α} = inf{xα ∈ R ∶ Fx;k(xα) ≥ α}.
(2)

Where FX;k is the distribution function of the losses over a k-day period
(McNeil et al. 2005, pp. 38).

It is common to express VaR as a numerical value rather than a percentage
which is easily calculated by multiplying the percentage VaR presented in
definition (2) by the value of the portfolio or asset.

2.2.1 Alternatives to VaR

There are no substantial reasons to doubt that VaR is the most popular risk
measure in use, but that does not mean that it alone guarantees a com-
plete analysis that answers all the interesting lines of inquiry. In fact the
usefulness of VaR has been questioned and complementing risk measures ac-
counting for some shortcomings of VaR has been proposed (see e.g. Acerbi
& Tasche 2002).

The popularity of VaR is usually explained by its ability to capture an essen-
tial aspect of risk, namely how bad things can get with a certain probability.
The fact that it is probabilistic separates VaR from previous risk measures
such as Risk-Adjusted Return On Capital (RAROC) or Sharpe's single fac-
tor beta model (Jorison 2007, pp. 16) which makes it easily communicated
and somewhat intuitively understood.

The deficiencies commonly referred to when discussing VaR is its lack of
accounting for parameter uncertainty. VaR is a forecast concerning possible

9



2 THEORETICAL FRAMEWORK

loss of an asset given a certain confidence level and time horizon. Therefore it
should be computed using the predictive distribution of future returns of the
financial position. From a statistical viewpoint the predictive distribution
takes into account the parameter uncertainty in a properly specified model.
However, the predictive distribution is usually difficult to obtain, and most
of the available methods for VaR calculation ignore the effects of parameter
uncertainty (Tsay 2010 pp. 328).

From the definition presented earlier VaR can be viewed as a quantile of the
negative log returns. It is important to note that it does not fully describe
the upper tail behavior of the distribution for the negative log returns. This
means that even if two different assets have the same VaR, they may still
experience different losses when the VaR is exceeded. Put in other words,
VaR accounts only for if an exceedance takes place, but not the magnitude
of the exceedance.

In addition to what has been mentioned above, the lack of sub-additivity of
VaR is recurrent in contemporary literature on the subject. If a risk measure
is sub-additive the merging of two assets should not be greater than the sum
of their individual risk measures before they were merged, which calls for
extra care when using VaR in order to quantify risk for several assets (Tsay
2010, pp. 328)

One risk measure that accounts for the characteristics of the tails and of-
ten works as a complement to VaR is the Expected shortfall which can be
described as the expected value of the loss given that the VaR quantile is ex-
ceeded. However we have due to limitations when writing this thesis chosen
to only consider VaR in the rest of the analysis. For the interested reader,
we refer to McNeil & Frey 2000 who complement their analysis of the VaR
estimates by also forecasting expected shortfall.
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3 EXTREME VALUE THEORY

3 Extreme Value Theory

Extreme value theory (EVT) has been proved to be a useful analytical tool
in a wide spectrum of different fields. It can be used in order to analyze e.g.
natural disasters, life spans and loss returns for a financial time series (de
Haan & Ferreira 2006, pp. 7). All mentioned examples share the feature of
in some way analyzing or forecasting the probability for rare and extreme
events. In other words EVT concerns the tail behavior of random variables,
which is useful when estimating VaR. Up until today there are two available
approaches to the analysis of extremes that is offered by EVT.

The first is based on the Fisher-Tippett-Gnedenko theorem that mainly con-
cerns the limit distribution of centered and normalized sample maxima. In
short the theorem states that the maximum of a sample of i.i.d. random
variables after proper renormalization can only converge in distribution to
one of three possible distributions, the Gumbel distribution, the Fréchet dis-
tribution, or the Weibull distribution (Embrechts et al 1997, pp. 121).

The second approach is focusing on the excesses of random variables over
a certain threshold, and this approach will be the one used in this the-
sis. Therefore we start by introducing the Generalized Pareto Distrubution
(GPD), which is used to model this phenomena. In the following we assume
that the distribution of the excesses X over some threshold u follows a GPD,
and where y = x − u.
The cumulative distribution of the GPD is given by:

Gξ,β(y) =
⎧⎪⎪⎨⎪⎪⎩

1 − (1 − ξy/β) if ξ ≠ 0

1 − exp(−y/β) if ξ = 0

Where the scale parameter β > 0, the support is y ≥ 0 and 0 ≤ y ≤ β/ξ when
ξ < 0.
We also introduce the excess distribution function:

Fu(y) = P (X − u ≤ y∣X > u) = F (y + u) − F (u)
1 − F (u) (3)

According to the Pickands-Balkema-de Haan theorem y is well approximated
by the GPD (Embrechts et al 1997, pp. 354), and

Fu(y) ≈ Gξ,β(y) as u→∞
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3 EXTREME VALUE THEORY

for a large class of distribution functions, including the Pareto distribution
and log-normal distribution. This result directly relates to our implementa-
tion when calculating VaR by using the Peak over threshold model.

3.1 Implementation of EVT

We now move on to what is commonly referred to as the Peak-Over-Threshold
method (POT method). Remember that in this frameworkX1,X2, ...,Xn are
assumed to be independent and identically distributed random variables.
Again we chose a threshold u and define every exceedance Yi as Yi = Xi − u
for i ∈ (1,2, ...,Nu) where Nu represents the total number of exceedances.

Here we are particularly interested in the excess distribution function of X
that was introduced in the previous section in (3). If we are to consider the
complementary event

F u(y) = P (X − u > y∣X > u) = F (y + u)
F (u)

⇔ F (y + u) = F u(y)F (u).

Then according to Embrechts et al. 1997 (pp. 354) a natural estimator for
F (u) is given by the empirical distribution function

F̂ (u) = 1

n

n

∑
i=1
I{Xi>u} =

Nu

n
.

The Pickands-Balkema-de Haan theorem motivates an estimator of F̂u(y)
on the form

F̂ u(y) = Gξ̂,β̂(y)

for an appropriate ξ̂ = ξ̂Nu and β̂ = β̂Nu . What is meant by appropriate will
be further discussed in section 5.4.

By merging these results, we may obtain an estimator of the tail F (y + u)
for y > 0 on the form

F̂ (y + u) = Nu

n
(1 + ξ̂ y

β̂
)−

1

ξ̂ .

However, an estimator for the quantile xq is obtained by inverting the for-
mula. This inversion is of particular interest since it provides us a way of
calculating the Value at Risk for a chosen quantile q denoted V aRq

12



3 EXTREME VALUE THEORY

VaRq = xq = u +
β̂

ξ̂
(( n

Nu
(1 − q))−ξ̂ − 1).

In the implementation below, we will follow McNeil & Frey and apply the
POT model to the standardized residuals of an AR(1)-GARCH(1,1) model,
that will be applied and presented in the oncoming section.

13



4 TIME SERIES MODELS

4 Time Series Models

In this section, we present all of the time series models used in the analysis
with a brief explanation in how they provide forecast estimates.

4.1 Autoregressive models

A model describing the linear dependence of Xt on previous observations is
the autoregressive model of order p, or the AR(p)-model:

Xt = φ0 + φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + εt (4)

Where εt is a white noise series with mean zero and variance σ2ε . Note fur-
ther that in (4) p ∈ N, demonstrating that the previous p variables jointly
determine the conditional expectation of Xt given previous data (Tsay 2010,
pp. 38).

The AR(p)-model makes it possible to calculate the `-step ahead forecast
based on the minimum squared error loss function (for details see Tsay 2010
pp. 54), which can be expressed as:

X̂h(`) = φ0 +
p

∑
i=1
φiX̂h(` − i).

Where h is the current time index and ` the forecast horizon.

In this thesis we will use an AR(1)-model in order to model the dynamics
and calculate the one day ahead forecast of the conditional mean. Knowing
the general form of an AR(p) model the AR(1) model is simply expressed
as:

Xt = φ0 + φ1Xt−1 + εt. (5)

Where Xt represents the negative log return at time point t.

4.2 Conditional Heteroscedastic Models

4.2.1 Autoregressive conditional heteroscedastic model

The main idea behind the autoregressive conditional heteroscedastic model
(ARCH) first introduced by Engel 1982 is that the shocks εt of an asset re-
turn are indeed dependent but serially uncorrelated and their dependence

14



4 TIME SERIES MODELS

can be described by a function of its lagged values (Tsay 2010, pp. 116-117).

In order to be more accurate we may define an ARCH(p) process in the
following way:
If we let Zt be a white noise process with zero mean and unit variance
then the mean adjusted process Xt − µ = εt, is an ARCH(p) if it is strictly
stationary and satisfies for all t ∈ Z and for strictly positive valued process
σt the equations:

εt = σtZt

σ2t = ω +
p

∑
i=1
αiε

2
t−i

and ω > 0, αi ≥ 0 for i ∈ (1,2, ..., p) (McNeil et al. 2005, pp. 139).
The general ARCHmodel above illustrates that if any or more of ∣εt−1∣, ∣εt−2∣, ..., ∣εt−p∣
are particularly large, then εt will be drawn from a distribution represented
by large variance, and may itself be large. This is how the ARCH model
imitates volatility clustering (McNeil et al. 2005, pp. 139).

4.2.2 Generalized autoregressive conditional heteroscedastic model

Although the ARCH model is simple and widely implemented, it often re-
quires many estimated parameters to adequately describe the volatility pro-
cess of an asset return (Tsay 2010, pp. 131). In order to account for this
Bollerslev (1986) introduced an alternative model called the Generalized
ARCH model (GARCH). The GARCH model is a generalized form of ARCH
in the sense that the variance σ2 depends on previous values of the variance,
as well as the previous values of the process.

If we again define Zt as a white noise series with zero mean and unit variance,
and εt as the mean adjusted series εt =Xt − µ.
Then the GARCH(p, q) model may be defined as:

εt = σtZt

σ2t = ω +
p

∑
i=1
αiε

2
t−i +

q

∑
j=1

βjσ
2
t−j .

Where ω > 0, αi ≥ 0 for i ∈ (1,2, ..., p) and βj ≥ 0, j ∈ (1,2, ..., p).
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4 TIME SERIES MODELS

In this thesis we will limit our focus to the simplest of all GARCH models,
namely the GARCH(1,1) model, which conditional variance can be expressed
by:

Xt = µt + εt (6)

σ2t = ω + α1ε
2
t−1 + β1σ2t−1. (7)

Where α1 + β1 < 1 has to be fulfilled in order for εt to be strictly stationary.

Later on we will use the GARCH(1,1) model in order to calculate the one
day ahead volatility forecast through the following:

σ2h+1 = ω + α1ε
2
h + β1σ2h.

Where h represents the forecast origin and where we assume that εh and σ2h
are assumed to be known at time h. For further details see Tsay (Tsay 2010,
pp. 133).
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5 METHODOLOGY

5 Methodology

We start this section by presenting the software used to obtain the results and
proceed with a brief overview of our included data sets. In the remaining we
will carry out a fundamental data analysis in order to motivate the choice
of time series models and the implementation of Extreme Value Theory.
Furthermore we will introduce all the methods used when carrying out the
analysis as well as briefly explain how they are implemented.

5.1 Software

The code used in the graphical and numerical analysis was written in the
open source program R, and can easily be downloaded through the following
link: https://www.r-project.org/.

The packages included in the making of this thesis are listed in table 1, along
with their authors, recent publication year and in what purpose they were
used.

Package Authors Year Usage
evir Pfaff, McNeil & Stephenson. 2012 Implementation of EVT.

fExtremes Wuertz. 2013 Implementation of EVT.
fGarch Wuertz & Chalabi. 2008 Fitting time series models.
ggplot2 Wickham & Chan. 2016 Graphical illustration of data.
gridExtra Auguie & Antonov. 2016 Graphical illustration of data.
timeSeries Wuertz & Chalabi. 2010 Process data.

Table 1: List of included R packages.

5.2 Initial data analysis

All of the included data sets can be accessed online via the link leading to
the homepage of Nasdaq OMX Nordic http://www.nasdaqomxnordic.com/
and are listed in table 2 below.

Since we have chosen to include several stocks in our analysis we limit the
initial data analysis to thoroughly present the data analysis to the reader in
the case of the stock for Danske Bank, and we begin by plotting the negative
log return series for the stock, which is calculated as presented in (1) and
multiplied by (−1).
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5 METHODOLOGY

Stock Acronym Sector Nr. of obs. From To
Astra Zeneca AZN Health Care 4525 1999-04-06 2017-03-31

Autoliv SDB ALIV SDB Automobiles & Parts 5007 1997-05-26 2017-04-26

Danske Bank DANSKE Financials 4125 2000-10-16 2017-04-05

Hennes & Mauritz B HM B Consumer Services 6762 1990-01-02 2017-03-29

Scandinavian airlines SAS Airports & Air Services 3963 2001-07-06 2017-04-07

Table 2: List of included data sets.

Figure 1: Negative log returns for Danske Bank

As seen in figure 1 the presence of volatility clustering is clear where we can
observe several periods characterized by increased volatility, where the most
volatile period seems to be located between the years of 2008-2010. This
may not be surprising if we remember that this is the period following from
the global financial crisis starting in 2007 in the subprime mortgage market
in the USA.

Before we consider to fit a time series model to our data, it may be appro-
priate to inspect the data sets to guarantee that they fulfill the requirements
that our models rely on them to do. Therefore, we must first ensure the
presence of autocorrelation and fat-tailedness in our stocks. This will be
done through graphical analysis, or more specific with the use of QQ plots
and by plotting the autocorrelations functions.

ARCH models have been proven useful when analyzing financial time series

18



5 METHODOLOGY

Figure 2: Autocorrelation function for the negative log returns (Left) and the
squared negative log returns (Right) for Danske Bank. The dashed red lines denotes
a 95% confidence bound.

characterized by little or no serial correlation in the daily returns but strong
serial correlation in the squared returns (see e.g. Engel 2001). In figure 2 we
can see how the autocorrelation in the squared data exhibit signs of relatively
strong autocorrelation for the last 20 days, in relation to the autocorrelation
in the non-squared data. The characteristics of the autocorrelation found in
the negative log returns motivates the use of an ARCH model when estimat-
ing the volatility of the data series. We supplement the graphical analysis
with the Ljung-Box test.

Series: Danske bank χ2 statistic Lag D.f. p-value
Negative log returns 22.372 log(4124) log(4124) 0.005225

Squared negative log returns 1942 log(4124) log(4124) < 2.2e-16

Table 3: Summary of the Ljung-Box test for the negative log returns for Danske
bank.

The null hypothesis of the Ljung-Box test stipulates that the autocorrelation
up to the p:th lag is zero whilst the alternative hypothesis assumes that the
autocorrelation is nonzero. As seen in table 3 the null hypothesis is rejected
at all conventional significance levels. This means that even if the autocor-
relation function is relatively weaker in the non-squared series (which can
be seen by looking at the y-axis) the negative log returns exhibit significant
serial correlation in the squared as well as in the non-squared series. When
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5 METHODOLOGY

fitting an AR(1)-GARCH(1,1) model to the data series, we expect that the
model extracts the serial dependence found in the data, which means that
the model residuals should not be autocorrelated. This will be examined
after we have inspected the fat-tailness of the data.

We have already mentioned that our aim is to use EVT in order to estimate
the one day ahead Value at Risk for the negative log returns of our included
stocks. It is therefore motivated to determine whether the tails of the dis-
tribution of the negative log returns are heavier than those of the standard
normal distribution. This will be done using a quantile quantile plot (QQ-
plot). If the observed empirical distribution correspond with the theoretical
distribution, the observations should lie on a straight line.

Figure 3: QQ-Plots of the standardized negative log returns for Danske Bank (Left)
and standardized residuals resulting from an AR(1)-GARCH(1,1) model with nor-
mal innovations (Right), both with the quantiles of the standard normal distribution
as reference.

To the left in figure 3 we are able to see that the observations are located
below the left tail and above the right tail of the standard normal distribu-
tion, indicating that the tails of the distribution of the loss series are heavier
than those for the standard normal, which motivates the use of EVT when
estimating the one day ahead VaR.

As mentioned earlier it is appropriate to check the adequacy of the AR(1)-
GARCH(1,1) model by ensuring that the model residuals are i.i.d. and
thereby not subjected to serial correlation. Therefore we fit our time series
model to the data set and check if the autocorrelation we earlier observed
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has been filtered. If our model is appropriate we expect the results from the
ACF to be similar to white noise.

Figure 4: Autocorrelation function for the standardized residuals (Left) and the
squared standardized residuals (Right) from the fitted AR(1)-GARCH(1,1) model.
The dashed red lines denotes a 95% confidence bond.

In figure 4 we see that the majority of the standardized and the squared
standardized residuals lies within the 95% confidence bound. The only ob-
servation located outside of the confidence bonds is the 18:th lag in the
non-squared series. Having said that, this breach of the confidence bound
is not to be considered major and is not a strong enough indication for us
to reject the idea that the residuals are i.i.d. In figure 5 we complement
the ACF of the standardized and squared standardized residuals by display-
ing the ACF of 10’00 i.i.d. standard normally distributed random variables.
This is meant to illustrate the occurrence of significant test results, based on
nothing but pure chance.

If we recapitulate the ACF of the loss series illustrated in figure 2, then we
remember that the squared loss series showed definite signs of autocorrela-
tion while the indication of presence of autocorrelation for the non squared
series was not as clear. Therefore we conclude this section by illustrating
the amount of significant parameters in the AR(1)-GARCH(1,1) model with
normal innovations.

As seen in figure 6 below, a majority of the GARCH(1,1) parameters used in
order to model the conditional volatility are significant while approximately
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Figure 5: Illustration of the occurrence of a significant outcome for the ACF of
10’000 i.i.d. standard normal random variables.

25% of the intercept used in the modeling of the conditional mean are sig-
nificant and roughly 50% of the estimated autoregressive parameters are
significant. However, since the main purpose of our analysis is to evaluate
the ability to forecast VaR for our included time series models, the signif-
icance for the parameters in the AR(1)-GARCH(1,1) models are of minor
interest. However it is still mentioned for the sake of completeness. In figure
9 found in the appendix we also illustrate the estimated AR1, ALPHA1 and
BETA1 parameters from our fitted AR(1)-GARCH(1,1) model with normal
innovations using a window of 500 and 1000 observations.

Figure 6: Illustration of the percentage of significant estimated parameters in the
AR(1)-GARCH(1,1) model with normal conditional distribution.
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5.3 Estimation of VaR

5.3.1 Forecasting using the AR(1)-GARCH(1,1) model

As we have mentioned earlier our aim is to use our fitted AR(1)-GARCH(1,1)
model in order to estimate the conditional mean µ̂t+1 and the conditional
volatility σ̂2t+1 using the previous 1000 observations in the negative log return
series. We recapitulate the fact that the negative log returns Xt are assumed
to be an strictly stationary time series on the form:

Xt = µt + σtZt.

We have so far not made any assumption regarding the marginal distribution
of the innovation Zt besides that they are assumed to be i.i.d. with zero
mean and unit variance. If we let It denote the known information up to and
including time point t we may define the predictive distribution for t + 1 as:

FXt+1∣It(x) = P (µt+1 + σt+1Zt+1 ≤ x∣It) = FZ(
x − µt+1
σt+1

)

(McNeil & Frey 2000, pp. 277).

From the definition of Value at Risk presented in the previous section we are
able to obtain the estimated Value at Risk quantile for the next day through

xq = inf{x ∶ FXt+1∣It(x) ≥ q} (8)

= µ̂t+1 + σ̂t+1zq (9)

which highlights the importance of the choice of distribution for the innova-
tions. If we don’t choose a distribution for the innovation term a priori we
will not be able to calculate the VaR quantile.

In this thesis we will assign two distributions for the innovation term. First
the standard normal distribution, and secondly a standardized t-distribution
with 4 degrees of freedom. From equation (9) one may realize that an esti-
mate for the one day ahead VaR given at time t with innovations following
a standard normal distribution can the be expressed as:

x̂q = µ̂t+1 + σ̂t+1Φ−1(q).
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Where Φ is the cumulative distribution function of a standard normal vari-
able for the quantile q. For further comparisons we will also model the
innovations for our time series models using a student t distribution with
4 degrees of freedom standardized in order to have variance 1. These will
later be compared to the corresponding estimates calculated by fitting a
GPD distribution to the residuals exceeding a chosen threshold. How this is
implemented is presented in more detail in the following two sections.

5.3.2 Estimation using conditional EVT

When calculating VaR the choice of distribution for the innovations is de-
cisive. In this section we will describe how to apply the Peak over Thresh-
old model first mentioned in section 3.1 to the residuals resulting from the
AR(1)-GARCH(1,1) model.

We start by fitting an AR(1)-GARCH(1,1) model to 1000 observations in our
historical series of negative log returns using maximum likelihood estimation.
By using the parameters from the fitted model we calculate the standardized
residuals

(zt−n+1, zt−n+2,⋯, zt) = (xt−n+1 − µ̂t−n+1
σ̂t−n+1

,
xt−n+2 − µ̂t−n+2

σ̂t−n+2
,⋯, xt − µ̂t

σ̂t
)

where n = 1000. Given these residuals and a threshold u we estimate a
quantile for the innovations in accordance to equation (10)

ẑq = u +
β̂

ξ̂
(( n

Nu
(1 − q))−ξ̂ − 1). (10)

Once this is done, we may proceed by calculating an estimate for VaR by
using ẑq and the parameter estimates from the fitted model through

V̂ aRq = µ̂t+1 + σ̂t+1ẑq.

In order for us to be able to compare VaR estimates from unconditional
and conditional approaches we also include an unconditional model (later
referred to as Unconditional EVT) where the VaR estimates is the quantile
estimation of the negative log returns based on GPD.
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5.4 Choice of Threshold

When applying the Peaks over Threshold model on the ordered residuals
from our respektive AR(1)-GARCH(1,1) models the choice of threshold u is
important since it effects the stability of the shape and scale parameters ξ
and β. McNeil & Frey describes that the best GPD estimates of the excess
distribution are obtained by trading bias off against variance (McNeil &
Frey 2000, pp. 7). This means that we will chose a threshold u high enough
to reduce the chance of bias while at the same time keeping N large in
order to control the variance for the estimated parameters. In our analysis,
we will follow the approach of McNeil & Frey by using the 101:st ordered
residual as the threshold, thereby making it random whilst fixating the tails
to always contain 10 % of the observations resulting from the residuals of the
moving window. We will not analyze the choice of threshold further in this
thesis, however, Kjellson & Koskinen Rosemarin showed that this choice
of u resulted in stable parameter estimates for the GPD by using Monte
Carlo simulation and quantifying the bias using the Root Mean square Error
(Kjellson & Koskinen Rosemarin 2012, pp. 23.).

5.5 Backtesting

As in every case when working with statistical models, they are only helpful
if they manage to accomplish what we expect of them. In this case if our
fitted time series model favorably manage to forecast the financial risk.

In order to verify this, we will be using a method called backtesting. Back-
testing may be described as a formal statistical framework that consists of
verifying that actual losses are in line with projected losses (Jorison 2007,
pp. 139). In fact, various backtesting methods exist. The tests used in this
thesis are referred to as the exact binomial test, the test of independence, the
unconditional- and the conditional coverage test. All tests will be presented
and implemented in the oncoming sections.

5.5.1 The Exact Binomial Test

When implementing the exact binomial test we denote the number of ex-
ceedances as n1, the total amount of VaR estimates as N and the ratio

n1
N

as the exceedance rate. In an ideal setup the exceedance rate should be an
unbiased estimator of p in V aR1−p (where (1−p) denotes the coverage rate),
and should converge to p as the sample size increased.
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We are interested in testing whether n1 is deviating to much in order for
the null hypothesis to be accepted in a total sample size of N . This test
makes no assumption regarding the distribution of the returns, making this
a non-parametric approach (Jorison 2007, pp. 143). The data we are to test
is basically a sequence of exceedances and non-exceedances (here coded as
zeros and ones), which is often referred to as bernoulli trials in statistical
literature. Under the null hypothesis these exceedances are independent
making the total numer of exceedances n1 to follow a binomial probability
distribution on the following form:

f(n1) = (N
n1

)pn1(1 − p)N−n1 .

Note that p denotes the probability of exceeding our estimated VaR limits
which in our case will either be 0.05, 0.01 or 0.005.

5.5.2 The Conditional Coverage Test

The Conditional Coverage test first introduced by Christoffersen 1998 offers
an extension to the unconditional coverage test. Briefly explained the uncon-
ditional coverage test (just as the name indicates) ignores conditioning and
thereby time variation in the data. Hypothetically this means that we could
have a situation where our estimated VaR limits hold the expected amount
of exceedances for the whole tested period. However, if the exceedances that
takes place are clustered in a short period of time our model would not be
satisfactory. The conditional coverage test combines the unconditional cov-
erage test and independence testing in order to account for previous events
and can be expressed as:

LRCC = LRUC +LRIND ∼ χ2(2). (11)

For the complete proof regarding the construction of the LRCC test statistic,
see the appendix of Christoffersens paper (Christoffersen 1998, pp. 861). The
Unconditional Coverage test and Independence testing is explained in more
detail in the two oncoming sections.

5.5.3 The Unconditional Coverage Test

The null hypothesis for the unconditional coverage test stipulates that ev-
ery exceedance of the given VaR level is to be treated as a i.i.d Bernoulli-
distributed random variable. This is intuitive since if our model is correctly
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specified the hit sequence of exceedances should be unpredictable and thus
distributed over time as an independent Bernoulli variable.

We move on by testing whether the proportions of exceedances obtained from
our fitted model π is significantly different from the stipulated proportion p,
leading us to formulate the null and alternative hypothesis as

H0 ∶ π = p
HA ∶ π ≠ p

We test the hypothesis first by defining an indicator variable that notifies if
the negative log return in t + 1 exceeds the one day ahead VaR forecast in
time point t with a coverage rate of q

It = 1{Xt+1 > V̂ aR
t
q}

and by formulating the likelihood of an i.i.d. Bernoulli exceedance sequence
as:

L(π) =
N

∏
i=1

(1 − π)1−ItπIt = (1 − π)n0πn1 .

Where n0 and n1 represents the amount of non-exceedances, and exceedances
of the VaR quantile. The total amount of estimated VaR limits can then be
expressed as N = n0 + n1. The maximum likelihood estimator of π can then
be obtained using the conventional method as π̂ = n1

N
, which is simply the ob-

served proportion of exeedances in our sample (Christoffersen 2012, pp. 302).

If we plug this estimator into the likelihood function we can create a likeli-
hood ratio statistic on the form:

LRUC = −2ln[L(p)
L(π̂)

]

= −2ln[(1 − p)n0pn1] + 2ln[(1 − n1
N

)n0(n1
N

)n1] ∼ χ2(1).

The test statistic LRUC is asymptotically χ2 distributed with one degree of
freedom when the number of observations N goes to infinity (Christoffersen
2012, pp. 303). Our decision criterion will be based on the p-value and the
conventional significance level of 0.05 will be the chosen level for all our tests.
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5.5.4 Independence Testing

The main purpose of the independence test is to reject VaR models whose
exceedances occur during the same time or appears as clusters. In order
to establish a test that will account for this phenomena we assume that the
exceendance frequency is dependent over time and can be described as a first
order Markov sequence with transition probability matrix

Π1 = [1 − π01 π01
1 − π11 π11

] .

Where π01 denotes the probability of an exceedence tomorrow conditioned
on that for today we have no exceedence, or more explicitly

π01 = Pr(Exceedance tomorrow ∣ No exceedance today)
π11 = Pr(Exceedance tomorrow ∣ Exceedance today)

Remember that since a Markov Chain is ’memoryless’ it means that only
todays outcome effects the outcome of tomorrow. As a result of this the
probabilities π01 and π11 describe the entire process, and we may write the
likelihood function of the first order Markov chain as:

L(Π1) = (1 − π01)n00πn01
01 ⋅ (1 − π11)n10πn11

11 .

Here, nij , i, j ∈ {0,1} denotes the amount of observations in the loss series
with a j follwing an i. If we are to solve for the maximum likelihood estimates
and utilize the fact that the probabilities in the rows of the matrix have to
sum up to 1 we have that

Π̂1 = [π̂00 π̂01
π̂10 π̂11

] = [1 − π̂01 π̂01
1 − π̂11 π̂11

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n00
n00 + n01

n01
n00 + n01

n10
n10 + n11

n11
n10 + n11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If our observed exceendances are time dependent, it would mean that π01
and π11 would not be equal and we may test the independence hypothesis
π01 = π11 by the following likelihood ratio statistic.
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LRIND = −2 ln [L(Π̂)/L(Π̂1)] ∼ χ2(1).

Where L(Π̂) is the likelihood under the alternative hypothesis of the Uncon-
ditional coverage test.
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6 Results

We start this section by illustrating the one day ahead forecast VaR at the
confidence level 0.995 from the unconditional EVT model and the forecasts
obtained from from the AR(1)-GARCH(1,1) model with normal conditional
distribution (used as a reference) and the corresponding model based on
EVT.

Note that the length of the predicted period differs from that of the original
data series. This length reduction in the series of predictions is partly due
to the transformation from closing price to log returns, but mainly because
of the rolling window of 1000 observations used in the model. What this
means is that VaR will not be estimated for the 1000 first days since these
observations are used in order to calculate the first prediction, which will be
the VaR for the 1001:st day in each data series.

As seen in figure 7 the unconditional EVT model (see dashed blue line) ap-
pears to adopt slower to periods of increased volatility resulting in several
violations of the estimated VaR limit. We can also observe that the VaR
estimates from the conditional model with standard normal innovations (see
black bars) seems to quickly respond to periods of increased volatility. Over-
all the two conditional models produce similar estimates where the VaR
estimates from the conditional EVT model is slightly higher than those from
the conditional normal model. This is to be expected since the main rea-
son we applied the POT method to model the innovations was due to the
fact that it has heavier tails in relation to the normal distribution, which
is most clearly observed at the higher levels of significance (see figure 10 in
appendix). We are also able to see that the conditional EVT model is more
sensitive to volatility spikes since the red line in figure 7 is clearly above
the black lines in the more volatile periods. Furthermore, we can in the pe-
riod around 2013 observe how the VaR estimates from the conditional EVT
model recede in a slightly slower phase after a volatility spike in relation to
its normal counterpart.

Next, we summarize the numerical results from the exact binomial test and
the conditional coverage test in the 2 tables that follows. The backtesting
results from the two other backtests will also be mentioned, but in order to
facilitate the reading we have chosen to include their numerical results in
table 6 and 7 in the appendix. When deciding if we are to reject a model, we
use a significance level of 0.05 but the p-values up to three digits is presented
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for all test statistics. To give the reader an easier overview of the results we
will be using bold p-values if the tested model is rejected.

Figure 7: VaR estimates for the 0.995 confidence level for the negative log returns
of Danske Bank. The black bars illustrates the estimates obtained form the fitted
AR(1)-GARCH(1,1) model with normal innovations, the red line shows the esti-
mates from corresponding model with innovations modeled by the POT method.
The dashed blue line denotes the estimates from the unconditional EVT model.

The results from the unconditional coverage test should be in line with those
of the exact binomial test since they are both unconditional tests based on
the observed proportions of exceedances. As seen in table 4 and 6 the same
models are rejected in both tests except for the conditional normal model at
confidence level 0.95 for the Astra Zeneca data set, making them overlap to a
large extent. The results indicate that the unconditional EVT model is one
of the two worst performing models which in particular applies at the higher
significance levels. In table 4 we see that at the 0.995 level the unconditional
EVT model is rejected for three out of five data sets which indicates that the
model fails to estimate VaR limits which encloses the stipulated proportion
of observations.

The worst performing model is the conditional normal model which is re-
jected for all data sets at the higher significance levels in the case for the
unconditional coverage and the exact binomial test. This clearly indicates
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that the tails for the standard normal distribution is not heavy enough to
model the distribution for the negative log returns for our data series.

The conditional t model is rejected once at the 95% significance level and
never at the higher significance levels, which means that it is clearly outper-
forming its standard normal counterpart. It has in many previous studies
been shown that the t-distribution is preferred when estimating VaR for log
returns (see e.g. Angelidis et al. 2003, pp. 21). That being said, we are still
surprised by these great differences in performance between the conditional
normal and t-distribution models.

The EVT model with normal and t conditional distribution is not rejected at
any significance level and are to be considered the best performing models.
The results show that both conditional EVT models produces VaR estimates
enclosing a proportion of the observations which does not differ significantly
from the stipulated proportion. These results are in line with those obtained
by McNeil & Frey.

The results for the test of independence are summarized in table 6 where
we can see that at the highest significance level, all models perform rela-
tively well. In the two previous tests the unconditional EVT and conditional
normal model were rejected for several (or all) data sets at this level of con-
fidence while in this test both mentioned models are rejected only once each.
For the lowest significance level 0.95 all models are rejected for Danske Bank
and H&M indicating that all models are experiencing clustered violations of
the estimated VaR limits. Worth noting is that the EVT model with inno-
vations modeled by a t-distribution is just barely rejected at the 0.99. The
rest of the results of the independence test are in line with those previously
observed.
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Astra Zeneca Autoliv SDB Danske Bank H&M SAS
Total amount of predictions 3519 4006 3125 5761 2962

0.95 Quantile
Expected amount of exceedances 176 200 156 288 148

Conditional Normal 151 (0.053) 185 (0.310) 146 (0.435) 221 (0.000) 115 (0.005)
Conditional t 195 (0.153) 221 (0.137) 188 (0.011) 280 (0.650) 128 (0.092)

Conditional EVT Normal 182 (0.643) 214 (0.328) 168 (0.325) 304 (0.333) 148 (1.000)
Conditional EVT t 186 (0.439) 212 (0.384) 176 (0.109) 309 (0.204) 153 (0.673)
Unconditional EVT 176 (1.000) 212 (0.384) 173 (0.175) 308 (0.227) 145 (0.833)

0.99 Quantile
Expected amount of exceedances 35 40 31 58 30

Conditional Normal 54 (0.003) 60 (0.003) 51 (0.001) 85 (0.001) 41 (0.042)
Conditional t 44 (0.149) 38 (0.812) 33 (0.719) 61 (0.643) 23 (0.267)

Conditional EVT Normal 37 (0.735) 46 (0.340) 34 (0.589) 65 (0.320) 28 (0.853)
Conditional EVT t 38 (0.611) 42 (0.750) 36 (0.368) 61 (0.643) 32 (0.644)
Unconditional EVT 36 (0.865) 41 (0.874) 50 (0.002) 67 (0.208) 44 (0.012)

0.995 Quantile
Expected amount of exceedances 18 20 16 29 15

Conditional Normal 44 (0.000) 47 (0.000) 35 (0.000) 59 (0.000) 27 (0.004)
Conditional t 25 (0.092) 19 (0.911) 15 (1.00) 33 (0.401) 14 (1.000)

Conditional EVT Normal 19 (0.719) 22 (0.653) 17 (0.702) 38 (0.092) 19 (0.294)
Conditional EVT t 21 (0.402) 21 (0.822) 16 (0.899) 39 (0.061) 19 (0.294)
Unconditional EVT 19 (0.719) 30 (0.032) 24 (0.041) 33 (0.401) 27 (0.004)

* The table includes the p-values from the two-sided binomial test, the observed and
the expected number of exceedances. Bold numbers indicate rejection of the null
hypothesis.

Table 4: Results from the Exact binomial test.

Astra Zeneca Autoliv SDB Danske Bank H&M SAS
Total amount of predictions 3524 4006 3124 5761 2962

0.95 Quantile
Conditional Normal 4.949 (0.084) 1.325 (0.515) 10.895 (0.001) 23.627 (0.000) 9.751 (0.002)

Conditional t 3.03 (0.22) 2.861 (0.239) 20.922 (0.000) 6.280 (0.043) 3.398 (0.065)
Conditional EVT Normal 2.404 (0.301) 0.984 (0.611) 10.539 (0.001) 5.757 (0.056) 0.024 (0.877)

Conditional EVT t 2.339 (0.310) 0.711 (0.701) 11.718 (0.001) 7.838 (0.020) 0.288 (0.591)
Unconditional EVT 14.026 (0.001) 17.134 (0.000) 67.745 (0.000) 18.182 (0.000) 11.446 (0.001)

0.99 Quantile
Conditional Normal 8.710 (0.013) 8.708 (0.013) 12.293 (0.000) 15.444 (0.000) 5.096 (0.024)

Conditional t 2.345 (0.310) 0.892 (0.640) 0.803 (0.370) 2.072 (0.355) 1.979 (0.159)
Conditional EVT Normal 0.873 (0.646) 1.192 (0.551) 0.988 (0.320) 2.449 (0.294) 0.626 (0.429)

Conditional EVT t 0.835 (0.659) 0.629 (0.730) 1.538 (0.215) 2.072 (0.355) 4.077 (0.043)
Unconditional EVT 0.775 (0.679) 0.615 (0.735) 34.294 (0.000) 20.975 (0.000) 18.696 (0.000)

0.995 Quantile
Conditional Normal 28.278 (0.000) 26.719 (0.000) 18.63 (0.000) 29.396 (0.000) 8.596 (0.003)

Conditional t 3.105 (0.212) 0.235 (0.889) 0.17 (0.68) 0.967 (0.617) 0.178 (0.673)
Conditional EVT Normal 0.312 (0.856) 0.432 (0.806) 0.305 (0.581) 3.978 (0.137) 1.339 (0.247)

Conditional EVT t 0.866 (0.649) 0.268 (0.875) 0.174 (0.677) 4.483 (0.106) 1.339 (0.247)
Unconditional EVT 0.312 (0.856) 6.008 (0.05) 22.16 (0.000) 0.967 (0.617) 9.438 (0.002)

* The table includes all the calculated LRCC test statistics (χ2
(2) distributed) and

their associated p-value. Bold numbers indicate rejection of the null hypothesis.

Table 5: Results from the conditional coverage test
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As mentioned in section 5.5.2 there is one aspect that needs to be further
investigated. Since even if a model on average is correct it is necessarily
not the case that the degree of coverage is correct for smaller subperiods,
remembering that daily financial data is clustered. In other words, if the
model is correctly specified and fully accounts for the heteroscedasticity in
the negative log return series then the exceedances of VaR should not appear
in clusters. The test statistic for the conditional coverage test in equation
(11) in the same section is constructed by summing the test statistics from
the unconditional coverage test and the test of independence. The results
for the conditional coverage tests will thus be similar but not identical to
those obtained in the unconditional coverage testing.

In table 5 we can once again see that the unconditional EVT model per-
forms poorly at all significance levels and especially at the 0.95 level where
all models are rejected. The conditional t model is rejected twice at the
two lower significance levels but apart from that there are no considerable
differences from previous results. The two conditional EVT models perform
best overall, in particular the EVT model with innovations modeled by a
standard normal distribution with only one rejection.
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7 Discussion

The conditional coverage test implemented in section 6 and used in order
to evaluate whether the exceedances of the estimated VaR limits appears
in clusters do suffer from a substantial shortcoming. The framework of the
test results in that it only manages to consider independency between two
adjacent exceedances, or only independency in one step. Thereby it fails to
detect whether the exceedances are clustered for longer time periods. Be-
cause of this one adequate complement to this analysis could be to examine if
the conditional duration test proposed by Christoffersen and Pelletier (2004)
would give support for the our results.

As seen in figure 6 and 8 the majority of the estimated AR(1) parameters
in our models are not significant. We chose this approach in order for our
results to be comparable with those obtained by McNeil & Frey. However,
since the expected value of the log returns are close to zero we have reasons
to believe that this analysis could be carried out without the autoregressive
modeling of the mean in the different conditional models. This comment
may be a trifle but we find it difficult to justify the inclusion of the au-
toregressive component unless it contributes to improved VaR estimates in
relation to a reduced time series model (which of course could be examined).
A further analysis could include a more rigid analysis when specifying the
models before using the POT model for the innovations. By examining the
tails of the standardized residuals from from the AR(1)-GARCH(1,1) model
fitted with MLE in figure 3, we can see that the upper tail might possibly be
heavier than the lower. Perhaps an asymmetric model such as the EGARCH
would be more appropriate for the estimation of VaR for some data sets?

Even though our results speaks in favor for a conditional approach when es-
timating VaR (our best performing models where indeed conditional models)
the answer is not completely univocal if we are to remember that our worst
performing model was the conditional normal. Therefore another extension
to this analysis could be to divide the data sets where one subsample could
be used for model fitting and the other for VaR estimation. By doing so it
would be possible to incorporate the variance resulting from the estimation
of the model parameters which can be incorporated in the VaR estimates.
This might possible lead to different conclusions in the comparison of un-
conditional and conditional models.
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8 Conclusion

The main purpose of this thesis was to demonstrate how time series models
whose innovations have been modeled by the application of extreme value
theory can be used in risk management, or more specifically when estimating
the one day ahead VaR for various confidence levels. We restricted our anal-
ysis to comparing four time series models namely an AR(1)-GARCH(1,1)
model based on the assumption that the innovations either followed a stan-
dard normal or t distribution. These were then compared to two equivalent
models whose innovations where modeled using the Peak-Over-Threshold
method (POT method). In order to enable comparisons between conditional
and uncdonditional approaches, an unconditional model were included by
calculating VaR estimates by using the GPD estimates fitted on the series
of negative log returns.

These models were then evaluated using four backtesting techniques: The
exact binomial test, the independence test, the unconditional and the condi-
tional coverage test. The results from these backtests show that the AR(1)-
GARCH(1,1) model with innovations modeled by the POT method outper-
forms the other models. These results hold for all confidence levels but in
particular for the EVT model with standard normal innovations but the re-
sults become more clear at the higher significance levels since it is where the
other models generally have their worst performance. The results also indi-
cate that a conditional approach is preferable to an unconditional one. This
conclusion is based on the fact that our unconditional EVT model is one of
the two worst performing models and we have no real reason to believe that
other unconditional approaches such as Historical Simulation would alter
this statement. Worth mentioning is that these results are in line with those
of McNeil & Frey whom also estimates Expected Shortfall in their paper
inspiring us to write this thesis.
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10 Appendix

10.1 Additional figures & tables

In figure 8 we are able to observe that the estimated parameters constituting
the AR(1) components (the expected conditional mean MU and the autore-
gressive coefficient AR1 in (5)) tend to not be significant to the same extent
as the estimated parameters which consitutes the GARCH(1,1) components
(the estimated intercept OMEGA and parameters ALPHA1 and BETA1 in
(7)). This applies to all included data sets and strengthens our conjecture
that the analysis could have been carried out using a reduced model.

Figure 8: Illustration of the percentage of significant estimated parameters in the
AR(1)-GARCH(1,1) model with normal conditional distribution for the remaining
data sets.

In figure 9 below we illustrate the estimated parameters over time when
fitting an AR(1)-GARCH(1,1) model with normal innovations using a rolling
window of 500 and 1000 observations to our data of negative log returns for
Danske Bank. Note that in the figure we follow the notation in section 4.2.1
and 4.2.2 where Phi = φ̂ , Alpha = α̂1, Beta = β̂1, the estimated intercepts
are not included since they are all close to zero. In both figures we are able
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to see that the same model parameters does not seem to apply for the whole
dataset since the parameter estimates change over time. Furthermore we
can see that when we expand the rolling window to 1000 observations the
parameters fluctuate less, especially the estimated β1 parameters. This leads
us to believe that reducing the window size would not lead to further insights
regarding the VaR forecasts.

Figure 9: Parameter estimates over time from the AR(1)-GARCH(1,1) model with
normal innovations using a window of 500 observations (Left) and 1000 observations
(Right)

In figure 10 below we illustrate the difference between the one day ahead
forecasts of VaR from the AR(1)-GARCH(1,1) model with normal innova-
tions with those of the corresponding model with innovations modeled by
the POT method for all levels of significance. As mentioned in section 6
the VaR estimates from the conditional EVT model is generally higher than
those of the normal distribution, which especially applies at the higher levels
of significance. This is clearly visible since the difference is negative for most
(if not all) values in the case for the 0.99 and 0.995 confidence level.
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Figure 10: Illustration of the difference of the one day ahead forecasts of VaR
resulting from the AR(1)-GARCH(1,1) model with normal innovations and the
corresponding model with innovations modeled by the POT method for significance
level 0.95 (see black line), 0.99 (see blue line) and 0.995 (see red line). As seen in
the figure the differences are negative to a greater extent for the higher significance
levels.

On the following page we list the backtest results for the unconditional cov-
erage test and the test of independence in table 6 and 7.
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Astra Zeneca Autoliv SDB Danske Bank H&M SAS
Total amount of predictions 3524 4006 3124 5761 2962

0.95 Quantile
Conditional Normal 3.979 (0.046) 1.100 (0.294) 0.716 (0.397) 17.801 (0.000) 8.408 (0.004)

Conditional t 2.044 (0.153) 2.182 (0.140) 6.417 (0.011) 0.239 (0.625) 3.004 (0.083)
Conditional EVT Normal 0.199 (0.656) 0.966 (0.326) 0.917 (0.338) 0.914 (0.339) 0.000 (0.993)

Conditional EVT t 0.564 (0.453) 0.707 (0.401) 2.542 (0.111) 1.568 (0.21) 0.169 (0.681)
Unconditional EVT 0.000 (0.988) 0.707 (0.401) 1.841 (0.175) 1.424 (0.233) 0.069 (0.793)

0.99 Quantile
Conditional Normal 8.676 (0.003) 8.696 (0.003) 10.599 (0.001) 11.474 (0.001) 3.944 (0.047)

Conditional t 2.039 (0.153) 0.109 (0.741) 0.098 (0.754) 0.198 (0.657) 1.619 (0.203)
Conditional EVT Normal 0.087 (0.768) 0.849 (0.357) 0.239 (0.625) 0.919 ( 0.338) 0.091 (0.763)

Conditional EVT t 0.213 (0.644) 0.093 (0.760) 0.698 (0.403) 0.198 (0.657) 0.188 (0.664)
Unconditional EVT 0.016 (0.898) 0.022 (0.882) 9.626 (0.002) 1.469 (0.226) 6.136 (0.013)

0.995 Quantile
Conditional Normal 27.973 (0.000) 26.417 (0.000) 17.837 (0.000) 24.374 (0.000) 8.099 (0.004)

Conditional t 2.748 (0.097) 0.054 (0.816) 0.025 (0.874) 0.586 (0.444) 0.045 (0.831)
Conditional EVT Normal 0.106 (0.745) 0.189 (0.664) 0.119 (0.73) 2.68 (0.102) 1.093 (0.296)

Conditional EVT t 0.614 (0.433) 0.046 (0.829) 0.009 (0.924) 3.263 (0.071) 1.093 (0.296)
Unconditional EVT 0.106 (0.745) 4.323 (0.038) 3.879 (0.049) 0.586 (0.444) 8.099 (0.004)

* The table includes all the calculated LRUC test statistics (χ2
(1) distributed) and

their associated p-value. Bold numbers indicate rejection of the null hypothesis.

Table 6: Results from the Unconditional coverage test.

Astra Zeneca Autoliv SDB Danske Bank H&M SAS
Total amount of predictions 3524 4006 3124 5761 2962

0.95 Quantile
Conditional Normal 0.970 (0.325) 0.226 (0.635) 10.179 (0.001) 5.827 (0.016) 1.343 (0.247)

Conditional t 0.986 (0.321) 0.679 (0.410) 14.506 (0.000) 6.041 (0.014) 0.394 (0.530)
Conditional EVT Normal 2.205 (0.138) 0.019 (0.891) 9.622 (0.002) 4.843 (0.028) 0.024 (0.877)

Conditional EVT t 1.775 (0.183) 0.005 (0.944) 9.176 (0.002) 6.270 (0.012) 0.120 (0.729)
Unconditional EVT 14.025 (0.000) 16.427 (0.000) 65.904 (0.000) 18.182 (0.000) 11.377 (0.001)

0.99 Quantile
Conditional Normal 0.035 (0.852) 0.011 (0.915) 1.693 (0.193) 3.970 (0.046) 1.151 (0.283)

Conditional t 0.306 (0.580) 0.783 (0.376) 0.705 (0.401) 1.874 (0.171) 0.360 (0.548)
Conditional EVT Normal 0.785 (0.375) 0.343 (0.558) 0.748 (0.387) 1.530 (0.216) 0.535 (0.465)

Conditional EVT t 0.622 (0.430) 0.536 (0.464) 0.840 (0.359) 1.874 (0.171) 3.888 (0.049)
Unconditional EVT 0.758 (0.384) 0.593 (0.441) 24.667 (0.000) 19.506 (0.000) 12.56 (0.000)

0.995 Quantile
Conditional Normal 0.306 (0.580) 0.302 (0.583) 0.793 (0.373) 5.022 (0.025) 0.497 (0.481)

Conditional t 0.357 (0.550) 0.181 (0.670) 0.145 (0.704) 0.380 (0.537) 0.133 (0.715)
Conditional EVT Normal 0.206 (0.650) 0.243 (0.622) 0.186 (0.666) 1.298 (0.254) 0.245 (0.620)

Conditional EVT t 0.252 (0.616) 0.221 (0.638) 0.165 (0.685) 1.220 (0.269) 0.245 (0.620)
Unconditional EVT 0.206 (0.650) 1.685 (0.194) 18.281 (0.000) 0.380 (0.537) 1.339 (0.247)

* The table includes all the calculated LRIND test statistics (χ2
(1) distributed) and

their associated p-value. Bold numbers indicate rejection of the null hypothesis.

Table 7: Results from the independence test
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10.2 Autocorrelation function

When working with time series the concept of correlation is generalized into
autocorrelation. The correlation coefficient between Xt and Xt−` is called
the lag-` autocorrelation of Xt and is denoted throughout this thesis as ρ`.
Note that since we assume that our log return series are weakly stationary
ρ` will be a function of the lags only. The autocorrelation function ACF can
mathematically be expressed as:

ρ` =
Cov(Xt,Xt−`)√

V ar(Xt)V ar(Xt−`)
= Cov(Xt,Xt−`)

V ar(Xt)
(12)

Where the last equality holds due to the fact that Xt is assumed to be weakly
stationary. For further details, the reader is referred to Tsay (Tsay 2010, pp.
31).

10.3 Ljung-Box test

The Ljung-Box test is used on order to test the null hypothesis H0 against
the alternative hypothesis HA shown below:

H0 ∶ ρ1 = ρ2 = ... = ρp = 0

HA ∶ ρi ≠ 0, for some i ∈ (1,2, ..., p)

The test statistic is formulated as:

Q(m) = N(N + 2)
m

∑
`=1

ρ̂2`
N − `

Where N is the length of the time series and ρ̂` is the autocorrelation co-
efficient at lag `. The decision rule is to reject H0 if Q(m) > χ2

α, where χ2
α

denotes the 100(1−α)th percentile of a chi-squared distribution with m de-
grees of freedom. In fact, the choice of m may affect the performance of the
test statistic. Previous studies suggest that the choice m ≈ ln(N) provide
better power performance (with an exception for time series submitted to
seasonal tends) (Tsay 2010, pp. 32-33). Since we are analyzing 5 time series
that are assumed not to be influenced by a seasonal trend, we will follow this
convention.
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10.4 ML estimation

When we are to specify or formulate a likelihood function we can practically
always assume that the observations are independent and identically dis-
tributed. This makes the computation of the likelihood substantially simpler
since it can thereby be expressed as a product sum. However, the essence of
time series analysis is to quantify serial dependence over time, which in other
words means that the analysis is based on the fact that the observations are
not independent. This gives grounds for an approach utilizing conditioning
when analyzing the serial dependency of {x1, x2, . . . , xT}, a random sample
of (negative) log-returns X including T observations.

This makes it possible to formulate the joint probability density function as:

f(xt, xt−1, . . . , x1; θ) = f(xt∣xt−1, . . . , x1; θ) . . . f(x2∣x1; θ) ⋅ f(x1; θ)

By considering the observations {x1, x2, . . . , xT} as fixed the joint density
functions parameter θ is the only parameter(s) which are allowed to vary
freely. This means that the general likelihood function L(θ;X) may be
expressed as:

L(θ;X) =
T

∏
t=1
f(xt∣xt−1, . . . , x1; θ).

In practice, it is often more convenient to work with the logarithm of the
likelihood function called the log-likelihood or the more recently established
term loglihood function:

l(θ;X) =
T

∑
t=1

log f(xt∣xt−1, . . . , x1; θ).

In this thesis we make great use of the AR(1)-GARCH(1,1) model, and
therefore we think the derivation of the maximum likelihood estimates of
the GARCH(p,q) model is motivated. For a similar derivation in the case
for the parameters of the ARCH(p) model see Tsay (Tsay 2010, pp. 120).

If we are to find an expression for the parameter vector θ including the
estimated parameters in a GARCH(p,q) model (presented in section 4.2.2)
with a further assumption that the conditional distribution of the time series
zt is standard normal. Then we may write the joint conditional density
function as:
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f(zt∣zt−1, . . . , z0) =
1√
2π
e
−
z2t
2

Knowing that εt = σtzt, we may formulate the conditional likelihood function
of εt as:

f(εt∣εt−1, . . . , ε0) =
1√

2πσ2t
e
−
ε2t

2σ2t

Therefore the conditional loglihood function for the parameter vector θ is

l(θ; εt−1, εt−2, . . . , ε0) =
T

∑
t=q+1

log f(εt∣εt−1, . . . , ε0)

=
T

∑
t=q+1

log
1√

2πσ2t
e
−
ε2t

2σ2t

=
T

∑
t=q+1

[ − 1

2
log(2π) − 1

2
log(σ2t ) −

ε2t
2σ2t

]

The ML-estimates are then obtained by differentiating the conditional logli-
hood function with respect to the parameter(s) of interest, and then set equal
to zero (simultaneously).

10.5 An illustrating example by means of simulation

In order to facilitate for those readers who are not familiar with time series
analysis and Value at Risk we decided to explicitly show how to estimate the
one-day ahead 95% VaR with an AR(1)-GARCH(1,1) model with normally
distributed innovations. In this brief example we simulate 2000 observations
from a corresponding model by using a for loop along with the garchSim()
command from the fGarch package, and iterate this 50 times. At the same
time we examine whether our model manages to produce VaR estimates that
holds the expected amount of observations.

When simulating we fix the model parameters so that ω is close to zero,
α = 0.08, φ = 0.10, β = 0.91. Since we simulate from the same type of model
that will be applied, we expect that the observed coverage rate will be close
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to the theoretical one.

We plot the results stored in the vector cover_vec in figure 11 and the reader
may produce their own results by implementing the code that follows after
loading the relevant packages.

Figure 11: Results of coverage rates from the AR(1)-GARCH(1,1) model with
normal innovations fitted on simulated data.

As seen in figure 11 the coverage proportions received from our time series
model is close to the theoretical one which is illustrated by the dashed red
horizontal line. We conclude this example by preforming a one sample t-test
where the test and alternative hypothesis may be formulated as:

H0 ∶ Estimated coverage proportions = 0.05

H1 ∶ Estimated coverage proportions ≠ 0.05

We calculate the observed test statistic tobs by constructing the following
ratio using the sample size n, the sample mean X̄, the sample standard de-
viation s and the expected value stipulated in the null hypothesis µ.

tobs =
X̄ − µ
s/√n ∼ t(n − 1)

= 0.05066 − 0.05

0.00692/
√

50
≈ 0.67487 ∼ t(50 − 1)

The corresponding p-value is 0.503 which means that we may not reject the
null hypothesis at any conventional significance level. This is reassuring since
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the code used for model making in the previous analysis closely resembles
the code presented below.
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k <− 50 # We chose to run the loop 50 t imes
nObs <− 2000 # Since we s imu la t e 2000 obs .
window <− 1000 # The r o l l i n g window of 1000 obs .
quan t i l eLeve l <− 0 .95 # Chosen VaR coverage l e v e l

# Empty vec t o r f o r s t o rage o f VaR es t ima t e s .
VaR_vec <− rep (0 , (nObs−window) )
# Empty vec t o r f o r s t o rage o f coverage r a t e s .
cover_vec <− rep (0 , k )

for ( j in 1 : k ){
# Specs f o r s imu la ted data .
spec = garchSpec (model = l i s t ( omega = 1e −6 , alpha = 0 .08 , beta = 0.91 ,
ar = 0 . 1 0 ) , cond . d i s t = "norm" )
# Simulate 2000 data po in t s .
data_sim <− c ( garchSim ( spec , n = nObs , n . start = 1000))

for ( i in 1 : ( nObs−window) ){
# The r o l l i n g window of 1000 ob s e r va t i on s .
data_i n s e r t <− data_sim [ ( i ) : ( i+ 999 ) ]
# Fi t t i n g an AR(1)−GARCH(1 ,1) model wi th normal cond . d i s t .
f i tted_model <− garchFit (~ arma (1 , 0 ) + garch (1 , 1 ) , data_i n s e r t ,

trace = FALSE, cond . d i s t = "norm" )
# One day ahead f o r e c a s t o f c ond i t i o na l mean and standard d e v i a t i on .
p r ed i c t i on_model <− predict ( f i tted_model , n . ahead = 1)
mu_pred <− p r ed i c t i on_model$meanForecast
sigma_pred <− p r ed i c t i on_model$ s tandardDeviat ion
# Ca l cu l a t e VaR f o r e c a s t
VaR_vec [ i ] <− mu_pred + sigma_pred∗qnorm( quan t i l eLeve l )

i f ( ( nObs−window)− i != 0){
print (c ( "Countdown , ␣ j u s t " , ( ( nObs−window) − i ) , " i t e r a t i o n s ␣ l e f t " ) )

} else {
print (c ( "Done ! " ) )

}
}

# Exctrac t on ly the e s t i amte s r a l a t e d to the f o r e c a s t s .
compare_data_sim <− data_sim [ (window + 1 ) : length (data_sim ) ]
# Create an empty vec t o r used in order f o r s t o rage o f VaR exceedances .
h i t <− rep (0 , length (VaR_vec ) )
# Count the amount o f exceedances .
for ( i in 1 : length (VaR_vec ) ){

h i t [ i ] <− sum(VaR_vec [ i ] <= compare_data_sim [ i ] )
}
# Ca l cu l a t e the covered propor t i ons f o r the k : th run o f the loop .
cover_vec [ j ] <− sum( h i t )/length ( h i t )

}
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