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Abstract

Preceding studies show that some common variable selection meth-
ods do not conform with high dimensional data. The purpose of this
study is to introduce reduction of high dimensional data using pe-
nalized logistic regression. This study evaluates three penalization
methods; ridge regression, the lasso and the elastic net for model fit-
ting on four simulated examples of high dimensional data sets. For
each example 30 data sets were simulated containing 400 predictors
and 200 observations. Each example differed in correlation among
predictors and relation to the binary response variable. Descriptive
statistics and measures of predictive power were used to analyze the
methods. The results showed that for high dimensional correlated
data the elastic net and ridge regression dominate the lasso regarding
the predictive power. There were significant differences (P-value <

0.01) when comparing the predictive power using AUC between the
methods in 2 out of 4 examples. In conclusion, the elastic net is no-
tably useful in p ≫ n case. In addition, the lasso is not a satisfactory
method when p is much larger than n. Ridge regression is proved to
have high predictive power but is refrained from shrinking coefficients
to be exactly zero.
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1 Introduction

Logistic regression [1] is a popular method to model binary classification
problems. In the beginning, its application was mostly seen in biostatistics,
however the application has spread to areas such as credit scoring [2] and
genetics [16]. Over the years, logistic regression has become one of the most
important models for categorical response data.

In statistical theory it is often assumed that the sample size is much larger
than the number of predictor variables. Large asymptotic theory is then
used to derive procedures and assess model accuracy. However, in the high
dimensional setting where the number of variables exceed the number of ob-
servations, the large asymptotic theory assumption is violated [7], [5]. With
advances in technology, high dimensional data is becoming more frequent.
In many applications the response variable is related to a small number of
predictor variables among a large number of possible variables. Therefore,
variable selection is important to identify the relevant variables in high di-
mensional data. One attractive method is to use penalized logistic regression
[9].

Similar to ordinary maximum likelihood estimation, penalized logistic re-
gression estimates the coefficients by maximizing the log-likelihood func-
tion, but with subject to a function that imposes a penalty on the size of
the coefficients. The penalty causes the coefficients estimates to be biased,
but by decreasing the variance of the coefficient estimates it improves the
prediction accuracy of the model [13]. The penalty forces the coefficients
to shrink towards zero, that is why penalized logistic regression sometimes
is referred to as shrinkage or regularization methods. In this thesis we will
cover three methods for penalized logistic regression; ridge regression [17],
the least absolute shrinkage and selection operator (the lasso) [25] and the
elastic net [28].

Ridge regression improves prediction error by shrinking large coefficients to
reduce overfitting. In a paper by Le Cessie et al. [19] it is discussed how
ridge estimators can be combined with logistic regression to improve the
model under certain conditions. The lasso was originally proposed for lin-
ear regression models by Tibshirani [25]. In contrast to ridge regression,
the lasso tends to reduce overfitting and simultaneously perform selection of
predictor variables. Several extensions of the lasso such as the group lasso
[20] and the relaxed lasso [21] have been proposed. Later on, a new regu-
larization and variable selection method called the elastic net was proposed
by Zou et al. [28]. It was shown that the lasso had some limitations [28]
regarding variable selection and the elastic net regularization was proposed
to overcome these. Elastic net regularization has been applied to portfolio
optimization [24] and genomics [4] amongst others.
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The purpose of the study is to introduce reduction of high dimensional data
using penalized logistic regression. This study evaluates the three penal-
ization methods; ridge regression, the lasso and the elastic net for model
fitting. A simulation study is conducted to do a comparative analysis of the
penalization methods on four examples of high dimensional data sets. We
want to investigate how these methods can be applied to logistic regression
to improve the parameter estimates and diminish the error made by further
predictions.

To begin with, we provide the statistical theory in Section 2. It is followed by
specific statistical theory that is relevant for the modelling and the compar-
ative analysis of the methods. In Section 3 we introduce the simulated data
and apply the theory to compare the shrinkage methods. In Section 4 we
provide the most important results, that is later on discussed and analyzed
in Section 5.

2 Theory

The theory section will cover the necessary theory to explain the modelling
and simulation that is later on conducted in the report. In the beginning of
every subsection the main source will be referred to. If nothing is mentioned,
the reference will appear throughout the report.

2.1 High dimensional problems, p� n

Many traditional statistical methods for classification are generally intended
for problems with a large sample size and a lower dimension. Here, dimen-
sion refers to the number of predictor variables, p. In the recent period of
time, the collection of data has changed in fields such as finance, marketing
and medicine [14]. It is prevalent for businesses and researchers to have
access to large amounts of data associated with each object or individual.
Hence, the dimensionality of the data is very high. Such data sets, that con-
tains more predictors than observations, are referred to as high dimensional
[18], [14].

In high dimensional data it is probable that the predictors suffer from mul-
ticollinearity [1]. Multicollinearity occurs when several variables in a regres-
sion model are correlated. If the variables are correlated, any variable in the
model can be expressed as a linear combination of all the other variables
in the model [7]. Multicollinearity tends to increase the variance of the re-
gression coefficients and the more variance they have, the more difficult it
is to interpret the coefficients. As a result, it is difficult to determine which
predictors that are related to the response [18].
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In general, adding predictors to the model that are associated with the re-
sponse will improve the fitted model and lead to a lower prediction error.
Though, adding predictors that are not associated with the response will
lead to an increase in prediction error. Adding such predictors increase the
dimensionality and aggravate the risk of overfitting without improving the
prediction error [13]. Including a large number of predictors can lead to
improved predictive models if they are associated with the response. Oth-
erwise, they will lead to worse results.

2.2 Variable selection and shrinkage methods

Variable selection methods aim to find the best subset of predictors for the
final model. Methods such as forward- and backward stepwise selection [13]
can not be used for high dimensional data. Specifically, when the number of
predictor variables are large or if the predictor variables are highly correlated
[9]. Backward selection is limited to be used when n > p and forward
selection is not computationally possible if the amount of data is large.
Another method, best subset selection, has been shown to be inappropriate
when p > 30 since the number of all possible subsets for high dimensional
data would be exponentially large [25].

Dimension reduction methods such as principal components analysis (PCA)
can also be applied to high dimensional data. PCA is a popular approach for
reducing the dimension of a data set. It uses an orthogonal transformation
to convert possibly correlated variables into a set of linearly uncorrelated
variables called principal components [18]. In this study the main scope is
to introduce penalized logistic regression methods, but we refer to [13] for
further reading about PCA.

2.3 The bias-variance trade off

From now on, we refer to training data as the set of data used to fit the final
model. We refer to test data as the set of data that is used to assess the
prediction accuracy of the final model. In the following section all theory is
referred to [13].

Model selection is the exercise of choosing a statistical model among several
aspirant models. To make a comparison of different models there are some
things that need to be considered. Firstly, we want to develop a function
that can be used for future predictions of the response variable. Secondly,
we want to estimate the prediction error in order to assess how good the
constructed model is. One way to estimate the prediction error is to average
the misclassification error over the training data, called the training error
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(Rt),

Rt =
1

n

n∑
i=1

I(yi 6= ŷi). (1)

Equation 1 refers to the number of incorrect fractions determined by whether
the observed data yi differs from the estimated ŷi. The observed and esti-
mated data is a binary response variable with two possible outcomes 0 and
1. Let P (Y = 1 | x) = f(x). If the estimated function f̂(x) ≥ 0.5 then
ŷ(x) = 1 and the reverse is true for ŷ(x) = 0.

The training error (1) is not a good estimate of the test error. Generally, as
the model complexity increase the training error converges to zero. If a very
complex model is selected, the model typically overfits the training data and
predicts poorly on new observations. The expected prediction error or the

Figure 1: The bias-variance trade off. The test error and training error is
showed as a function of model complexity. As model complexity increase the
training error steadily decrease. The test error initially decrease but reaches
a minimum because of the bias-variance trade off and then steadily increase.
(figure from [13], p.38.) [13]

test error (Rg) can be expressed as,

Rg(x) = σ2ε + V ar(f̂(x)) + bias2(f̂(x)), (2)

where σ2ε is the irreducible error, the variance of the error term ε. The second
term is the variance and the last term is the squared bias, the measure of how
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much the average of the estimate differs from the mean [10]. The test error
is calculated by averaging the misclassification error over the observations
in the test set.

If a model f̂(X) with high complexity is selected then it is able to follow
the relationship between X and Y more closely, resulting in a lower bias
but a higher variance. Overfitting will adapt the model too close to the
training data and there will be a large test error when predicting on the
test data. However, if the model is too simple it will underfit the data
and instead have a large bias. The optimal model f̂(x) is chosen such that
the variance and bias is minimized simultaneously and gives a minimal test
error. Consequently, that is the model that should be selected for future
prediction [13].

2.4 Multiple logistic regression

In the following section all theory is referred to [1]. Logistic regression is
frequently used to model binary classification problems where the response
variable can take one of two outcomes, usually denoted by 0 and 1. In
general, the response variable Y is a Bernoulli random variable. The event
Y = 1 is seen as success and Y = 0 as failure. The conditional probability
that P (Y = 1) is denoted π(x) where x is a vector containing the predictors.
Binary data frequently result in a non linear relationship between x and
π(x). For such data a multiple logistic regression model is appropriate and
the conditional probability is,

π(x) =
exp(α+ β1x1 + β2x2 + ...+ βpxp)

1 + exp(α+ β1x1 + β2x2 + ...+ βpxp)
. (3)

The alternative formula, showing the linear relationship by the log odds is,

logit[π(x)] = log
[ π(x)

1− π(x)

]
= α+ β1x1 + β2x2 + ...+ βpxp. (4)

The log odds transformation is often referred to as the logit. This relates
the logit link function to the linear predictor.

Maximum likelihood estimation is used to estimate the regression coefficients
of logit models. The likelihood function is maximized to find an estimator
that corresponds to the observed data. The likelihood function is given by,

L(β, yi) =

n∏
i=1

πyii (1− πi)1−yi . (5)
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By taking the log of Equation 5, we receive the log-likelihood function,

l(β, yi) =
n∑
i=1

{
yi · log(π(xi)) + (1− yi) · log(1− π(xi))

}
. (6)

The coefficient estimates β̂ are obtained by differentiating Equation 6 with
respect to β and setting the derivatives to zero [1].

2.5 Penalized Logistic Regression

Penalized regression or shrinkage methods are an alternative regression method
that involves penalizing the size of the coefficients. Shrinkage methods use
a penalty that shrinks the coefficient estimates towards zero. As a result, it
improves the prediction accuracy by avoiding overfitting and the resulting
model is easier to interpret. Furthermore, it overcomes the problem in high
dimensional correlated data [22]. Shrinkage methods are therefore useful to
achieve stable and accurate models for high dimensional data.

By incorporating a penalty term in the log-likelihood function (6) the pe-
nalized log-likelihood [9] function is obtained,

lp(β0;β;λ) = −l(β0;β) + λP (β), (7)

where l(β0;β) is the log-likelihood function seen in Equation 6, λ ≥ 0 is the
regularization parameter that adjusts the amount of shrinkage and P (β) is
the penalty function.

The penalized log-likelihood (7) is minimized to find the coefficient esti-
mates. The penalty function is a shrinkage penalty that exhibits a size
constraint on the coefficients. When there are a large number of correlated
variables in a regression model, their coefficients can be poorly determined
and exposed to high variance. A large positive coefficient can be cancelled by
a large negative coefficient if the corresponding variables are correlated. The
penalty impose a size constraint on the coefficient to allay the cancellation
[13].

2.5.1 Regularization parameter

The regularization parameter λ controls the relative effect that the penalty
function has on the coefficient estimates. Notice that, the penalty is not
applied to the intercept β0. Penalization of the intercept would make the
procedure depend on the origin which is not supported [13]. When λ → 0
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the penalized log-likelihood (7) converges to the log-likelihood (6). Con-
sequently, the fitted model tends to overfit the data resulting in a model
with high variance. When λ→∞ the coefficient estimates approaches zero,
the fitted model tend to underfit the data and is too simplistic and may be
potentially biased. Thus, the regularization parameter λ directly controls
the bias-variance trade off that was earlier described in Section 2.3. In this
study, cross-validation (Section 2.6) is used to select λ.

In this report we will consider three penalty functions. In the following three
sections we present the penalty functions for ridge regression, the lasso and
the elastic net.

2.5.2 Ridge regression

Ridge regression was originally introduced by Hoerl et al. [17]. It was pro-
posed as an alternative to ordinary least squares regression when collinearity
was detected among the predictors. Today, it is applied to the logistic re-
gression model as well [19]. Ridge regression solves the following penalized
log-likelihood function,

lp(β, yi) =
n∑
i=1

{
yi · log(π(xi)) + (1− yi) · log(1− π(x))− λ

p∑
j=1

β2j

}
. (8)

Generally, ridge regression includes all predictor variables but with smaller
coefficients [13]. In Equation 8 it can be seen that when λ = 0 the penalized
log-likelihood function equals the log-likelihood function without a penalty.
The solution to Equation 8 is,

β̂Ridge = argmin
β

{
− l(β, yi) + λ

p∑
j=1

β2j

}
. (9)

As a remark, ridge regression does not perform variable selection. It shrinks
the coefficient estimates toward zero but is refrained from putting them
exactly to zero [17]. As a result, ridge regression is restricted to include all
predictor variables in the model. Thus, when p is very large the model is
difficult to interpret. Although it does not result in a sparse model, ridge
regression has shown to achieve high prediction accuracy when the predictor
variables are highly correlated [17]. Since high correlation is frequent in high
dimensional data, ridge regression is regularly used [5].
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2.5.3 Least Absolute Shrinkage and Selection Operator - The
LASSO

The least absolute shrinkage and selection operator (the lasso) was origi-
nally proposed by Tibshirani [25]. The method maximize the log-likelihood
function subject to a constraint on the sum of the absolute values of the
regression coefficients. The constraint enables the lasso to perform variable
selection by setting some coefficients to be exactly zero. Ultimately, the
lasso shrinks some coefficients and sets some of them to zero, which is a
combination of best subset selection and ridge regression. The penalized
log-likelihood function for the lasso is,

lp(β, yi) =

n∑
i=1

{
yi · log(π(xi)) + (1− yi) · log(1− π(x))− λ

p∑
j=1

∣∣βj∣∣}. (10)

As can be seen in Equation 10 there is a similarity to ridge regression. In
contrast to ridge regression, the lasso penalty maximizes the log-likelihood
subject to the absolute β-value instead of the squared β-value in Equation
8. The solution to Equation 10 is,

β̂Lasso = argmin
β

{
− l(β, yi) + λ

p∑
j=1

∣∣βj∣∣}. (11)

If there is a group of highly correlated predictor variables, the lasso tends
to randomly select one predictor variable of that group and neglect the
remaining predictors [28]. In addition, the lasso is restricted to select a
maximum of n predictor variables in the model [5]. Consequently, when
p� n it follows that no more than n predictor variables can be included in
the model [28]. As a consequence, there could be more than n coefficients
that are non-zero, but the predictors are restricted to enter the model [26].

2.5.4 The elastic net

The elastic net was suggested by Zou et al. [28]. It was introduced to
compensate for the limitation that the lasso was unable to identify more
predictors than the number of observations. Additionally, it promotes a
grouping effect [28]. A method exhibits the grouping effect if the coefficients
of a group of highly correlated variables are nearly equal.

The elastic net adopts a combination of the penalty terms of ridge regression
and the lasso from Equation 8 and 10. The purpose of adding the quadratic
part of the penalty (Equation 12) is to remove the limitation on the number
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of selected variables [28]. The penalized log-likelihood function for the elastic
net is,

lp(β, yi) =
n∑
i=1

{
yi·log(π(xi))+(1−yi)·log(1−π(x))−λ

p∑
j=1

(1−α)β2j+α
∣∣βj∣∣}.

(12)

The parameter α adjusts the penalty term such that when α is close to zero
we obtain the ridge penalty and if α is close to one we obtain the lasso
penalty. This linear combination of the lasso and ridge penalty term was
suggested as penalty function by Friedman et al. [12]. The solution to
Equation 12 is retrieved by using coordinate descent [28]. The solution is
given by,

β̂Elastic net = argmin
β

{
− l(β, yi) + λ

p∑
j=1

(1− α)β2j + α
∣∣βj∣∣}[12]. (13)

In contrast to the lasso, the elastic net can select all p predictor variables
even though p � n [28]. Furthermore, it removes the constraint that was
caused by grouped correlated predictors that was mentioned earlier for the
lasso in Section 2.5.3. Conclusively, the elastic net encourages a grouping
effect that is to eliminate the trivial predictors, but to include all groups of
correlated predictors [26].

2.6 Cross-validation

This section provides a general description of cross-validation. In Section 3.3,
we describe how cross-validation is used to find the regularization parameter
λ and the fitted model.

Cross-validation is validation method for models that is used to estimate the
performance of a predictive model. It is a widely used method for estimating
prediction error. Moreover, K-fold cross validation is a procedure that set
aside one part of the data to fit the model and a different part to test the
model [13]. Consider a data set with n observations. For K-fold cross-
validation the n observations in the data set is split into K roughly equal-
sized subsets. The k-th subset is used as a validation set and the K−1 other
subsets are combined training sets to fit a model. The model fitted to the
training data is then used for prediction on the validation set, the k-th set
of the data. This is done for every subset. Figure 2 illustrates the procedure
for K = 5, where the fourth subset is used as a validation set and the other
four subsets are used as combined training sets. By averaging the prediction
errors for the K validation sets we obtain the cross-validation estimate of
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the prediction error. That is an overall measure of prediction accuracy [13].

Figure 2: 5-fold cross-validation. The n observations are divided into five
subsets. A model is fitted to the validation subset by using the four training
subsets. This is done for all five subsets.

When choosing the optimal K we must consider the bias-variance trade off
(Section 2.3). Leave-one-out cross-validation (LOOCV) refers to the case
where K = n. For LOOCV the bias is low due to subsequent fitting of n
subsets. However, LOOCV yields high variance. When we move on to the
next observation the previous validation set is included in the new training
set. Since this is done for all n subsets, the training sets are overlapping
resulting in a higher variance. In this study 10-fold cross validation is used
because it has been shown to have some advantages over other choices of
K [6]. It is also less computationally intensive than LOOCV for large data
sets. For K-fold cross validation, the variance is lower because the number
of folds is less, instead the bias is slightly increased.

2.6.1 One-standard-error rule

In the simulation in Section 3.2, the cross-validation error estimates the
prediction error at fixed values of the regularization parameter λ. For each
λ cross-validation is repeated. We choose λ according to the one standard
error rule [25]. We start with the estimate of λ that minimizes the cross-
validation error, then we increase λ such that the regularization increase but
it remains within one standard error of the minimum,

λ∗ = min
{
λ : CV (λ) ≥ CV (λ̂) + s.d(λ̂)

}
. (14)

Thus, we choose the most regularized model such that the cross-validation
error is within one standard error of the minimum. This is motivated by
that the λ that achieves the smallest cross-validation error does not yield
enough regularization [13].
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2.7 Generalized Linear Models

In the simulation study in Section 3 we use generalized linear models. From
now on, we will refer to them as GLMs. A GLM is built of three components:
a random component, a systematic component and a link function. We
will not provide a complete theory about GLMs in this study. For specific
information regarding GLMs we refer to [1].

2.7.1 GLM for penalized logistic regression in R

In the simulation study (Section 3) R Statistical Software [23] is used. The
glmnet [11] package for R fits a generalized linear model via penalized max-
imum likelihood. The glmnet solves the following problem where the penal-
ized log-likelihood is maximized,

max
β0,β

1

N

N∑
i=1

[yi(β0 + βTxi)− log(1 + eβ0+β
T xi)]− λPα(β). (15)

The maximization problem consists of the log-likelihood part and the pe-
nalization part which is,

Pα(β) = (1− α)
||βj ||22

2
+ α||βj ||1 = λ

p∑
j=1

{
(1− α)

β2j
2

+ α
∣∣βj∣∣}. (16)

The regularization parameter λ is chosen over a grid of values, referred to as
the regularization path. To find an optimal estimate of λ the regularization
path consists of large range of values [12]. For each value of λ, K-fold cross-
validation is performed resulting in estimates of the prediction error. In
Figure 5 the estimates of misclassification error is shown as a function of
log(λ). Standard error bars are displayed for each λ, which are the standard
errors of the individual misclassification error rates for each of the K parts.
The penalty term is controlled by α where α = 0 corresponds to ridge
regression, α = 1 corresponds to the lasso and 0 < α < 1 corresponds to the
elastic net penalty.

2.8 Summarizing the predictive power

In ordinary regression the coefficient of determination R2 or the multiple
correlation R [3] are used as measures of predictive power. For GLMs other
measures are proposed [27]. In this section we cover the measures that are
used to assess how good a logistic regression model is for prediction.
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2.8.1 Contingency table and classification measures

Figure 3: Contingency table. Table over observed class and predicted class.
Categorizing all observations into four classes: true positive, false positive,
true negative and false negative. The first row adds to the total positives and
the second row adds to the total negatives.

For each example in Section 3, a contingency table (Figure 3) was produced.
The contingency table cross-classifies the predicted value with the observed
value. The predicted value is determined by a threshold that, by default,
is set to π0 = 0.5, such that if π < 0.5 then ŷi = 0 and if π < 0.5 then
ŷi = 1. Given that we have two classes Y = 1 and Y = 0, there are four
possible outcomes. If the observed value is 1 and it is classified as 1, then it
is counted as true positive. If it would be classified as negative it is counted
as false negative. True negative and false positive is defined analogously [1].
The true positive rate (TP ) of an estimated classifier is,

TP =
# true positives

# total positives
. (17)

In the same way the false positive rate (FP ) is,

FP =
# false positives

# total negatives
. (18)

The misclassification error rate (ME) denotes the fraction of incorrect clas-
sifications over all observations and is,

ME =
# observations incorrectly classified

# total observations
. (19)

2.8.2 Receiver Operation Characteristic

The receiver operation characteristic (ROC) [27] is a description of classi-
fication accuracy. The ROC curve plots the TP on the y-axis versus the
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FP on the x-axis. Each point in the plot reflects a pair of (FP, TP ) for a
given threshold. The ROC curve shows how well the classifier distinguishes
the two classes for different thresholds, hence it summarizes the predictive
power for all possible thresholds.

The optimal result is a concave shaped ROC curve toward the upper left
corner. Such a curve implies a high true positive rate and a low false positive
rate. On the contrary, a straight line y = x through the origin (0, 0) repre-
sents the strategy of a random guess. Thus, if the classifier randomly guess
half the time it is expected to get half the positives and half the negatives
correct. Such a line is not informative since it reveals no association [1].

Figure 4: Plot of a ROC curve and a straight line y = x. The true positive
rate is plotted against the false positive rate. The ROC curve is concave
shaped toward the upper left corner, indicating a better classifier than a
random guess.

The plot in Figure 4 depicts which classifier is the best by noting which
one is most skewed toward the upper left corner. However, it is not always
easy to determine which classifier is optimal by examining a plot. As a
complement, we may compute the area under the ROC curve (AUC) that
is another measure of predictive power to compare classifiers.

The AUC is a measure of discrimination and takes values between 0 and 1.
The AUC of a classifier is equivalent to the probability that the classifier
will rank a randomly chosen positive observation higher than a randomly
chosen negative observation. An AUC value toward 1 suggests better dis-
crimination. The area under the straight line through the origin equals 0.5.
For instance, AUC ≥ 0.9 implies excellent discrimination and represents a
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good classifier [1].

3 Modelling

This section begins with a description of the simulated data set. Then we
will present how the simulation is conducted. The theory from Section 2 was
applied to perform model selection and validation. We investigated three
methods for penalized logistic regression; ridge regression, the lasso and the
elastic net. The statistical analysis was implemented using R Statistical
Software [23].

The simulated data consisted of four independent high dimensional data
sets. Each data set was divided into a training set and a test set. The three
methods were used to fit a corresponding model to each of the training sets.
The fitted models were used to make predictions for each of the correspond-
ing test sets. Finally, we computed the AUC, the misclassification error
and extracted the number of non-zero β̂-coefficients. The procedure was
repeated 30 times per example.

3.1 Simulated data

The purpose of the simulation study was to investigate if there was a dif-
ference in the predictive power between the three regularization methods;
ridge regression, the lasso and the elastic net, when they were applied to
high dimensional data. Furthermore, we considered the interpretability of
the model, hence how many variables were selected to be included in the final
model. Each method was evaluated using four simulated examples (Section
3.2) of high dimensional data sets.

The simulation study was inspired by the paper by Tibshirani where the
lasso was introduced [25]. However, adjustments were made to the simulated
data sets. Firstly, we increased the number of predictors such that p � n
and the data qualified as high dimensional. Specifically, we simulated p =
400 and n = 200. Secondly, all predictor variables X were continuous
multivariate normal distributed except for the binary response variable Y .
A multiple group of predictors with varying strength of correlation were
simulated for each data set.

The predictors were generated by sampling from a multivariate normal dis-
tribution with the following probability density function,

pX(x) =
( 1

2π

)n/2
· 1√

det(Σ)
· exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
(20)
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where µ is the mean vector and Σ is the covariance matrix. For all x we set
µ = 0 and V ar(x) = 1. Thus, Σ equaled the correlation matrix of x, since
by definition the correlation is

ρij =
σij
σiσj

(21)

and we have set σi = σj = 1 for all i, j = 1, 2, ..., 400. The correlation
matrices for Example 1-4 are defined later in Section 3.2 but the general
form of a correlation matrix is,

Σ =


1 ρ12 ... ρ1p
ρ21 1 ... ρ2p
...

...
. . .

...
ρp1 ρp2 · · · 1

 . (22)

Each predictor variable was assigned a predetermined β-value. Consequently,
we obtained a β vector that consisted of the corresponding β-values. The
response variable were simulated by running the simulated data through the
inverse logit function,

π(x) =
1

1 + e−XTβ
. (23)

As a result, we retrieved a value of the conditional probability, π. Given the
threshold value π0 = 0.5 the observed value was categorized into one of two
classes; Y = 1 if π > 0.5 and Y = 0 if π ≤ 0.5.

Consequently, we obtained a vector Y and a matrix X consisting of 200
observations of the binary response variable and the predictor variables re-
spectively. The simulated data set was divided into a training set n = 120
and a test set n = 80.

3.2 Simulation

We considered four examples of high dimensional data sets. In this section
detailed information about the four examples is provided.

1. In Example 1 we set the pairwise correlation between Xi and Xj pre-
dictors to Corr(i, j) = 0.5 |i−j|. We assigned the first 49 β-coefficients
a specified vector that consisted of random values within the range
[2, 5]. The remaining coefficients were set to 0.

2. In Example 2 we set the pairwise correlation between Xi and Xj pre-
dictors to Corr(i, j) = 0.5 |i−j|. We set all coefficients to be β = 0.85.
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3. In Example 3 the pairwise correlation between Xi and Xj predictors
were Corr(i, j) = 0.9 |i−j|. The coefficients were split into 8 groups,
where the coefficients were set to pairwise be 0 and 2,

β = (2, 2, ..., 2︸ ︷︷ ︸
50

0, 0, ..., 0︸ ︷︷ ︸
50

2, 2, ..., 2︸ ︷︷ ︸
50

0, 0, ..., 0︸ ︷︷ ︸
50

... 2, 2, ..., 2︸ ︷︷ ︸
50

0, 0, ..., 0)︸ ︷︷ ︸
50

. (24)

4. In Example 4 the pairwise correlation between the first 200 predictors,
Xi and Xj (1 < i, j ≤ 200), were set to Corr(i, j) = 0.5 |i−j| and the
pairwise correlation for the remaining predictors were set to 0. We set
the first 200 coefficients to β = 3 and the remaining coefficients to 0,

β = (3, 3, ..., 3︸ ︷︷ ︸
200

0, 0, ..., 0︸ ︷︷ ︸
200

. (25)

3.3 Model fitting and selection

Each one of Example 1-4 was considered separately. Ridge regression, the
lasso and the elastic net were fitted to the same data set simultaneously. We
used GLMs (Section 2.7.1) to fit the models to the data set.

The regularization parameter λ was found by 10-fold cross-validation. The
regularization path for λ for ridge regression and the lasso was defined as
100 values in the range (10−2, 102). The regularization parameters (α, λ) for
the elastic net were determined by searching through a grid of values that
consisted of all possible combinations of λ and α. We let α take 10 values
between (0.05, 0.9) and the regularization path for λ consisted of 20 values
between (10−2, 102). By default, α = 0 for ridge regression and α = 1 for
the lasso (Equation 16).

3.3.1 Model selection algorithm

For λj , j = 1, 2, ..., l:

1. The training set was randomly divided into 10 roughly equal-sized
subsets.

2. One of the three variable selection methods ridge regression, the lasso
or the elastic net was chosen to construct a model for prediction of yi.

For each i = 1, 2, ..., 10 subset samples:

(a) The K−1 subsets were used to fit a model with the chosen method.

(b) The model was then used to predict yi for the K-th subset.
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The procedure was made for each of the K subsets.

3. Predictions of yi was made for every subset. The prediction error was
calculated as the average cross-validation error over all subsets,

CV =
1

10

10∑
i=1

I(yi 6= ŷi) (26)

where yi and ŷi is the binary observed and predicted response value
respectively.

4. We choose λ∗ according to the one-standard-error rule such that

λ∗ = min
{
λ : CV (λ) ≥ CV (λ̂) + s.d(λ̂)

}
. (27)

The fitted model for λ∗ was used for prediction on the test set.

Figure 5: Cross validation plot for the lasso for one simulation. The cross-
validated ME and standard deviations for each value of log(λ). As log(λ)
increase, the number of non-zero coefficients decrease as indicated by the
axis above the plot. The vertical lines show the locations of the minimum λ
and the λ∗ according to the one-standard-error rule.

The model selection algorithm was repeated 30 times per example. As a
result, we obtained 30 fitted models for ridge regression, the lasso and elas-
tic net respectively. Given the fitted models, we made predictions on the
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corresponding test sets. The ME, the AUC and the number of non-zero β̂-
coefficients were calculated and averaged. In order to verify if the differences
in AUC and ME between the methods were significant, a non-parametric
Friedman’s test [8] was conducted. As a complement to the Friedman’s test,
we performed pairwise comparisons of the methods using Conover’s post-
hoc test [8]. The Conover’s post-hoc test determined which differences were
significant.

4 Results

The simulation of Example 1-4 was repeated 30 times. For every simulation
we calculated AUC, ME and their standard deviations (s.d.). In addition,
the average number of selected variables by the lasso and the elastic net
was calculated. The results are summarized in Table 1. The results from
the Friedman’s test and Conover’s post-hoc test showed that the pairwise
comparisons of AUC were significant (P-value < 0.01 ) between ridge regres-
sion, the lasso and the elastic net in Example 2-4. The difference between
ridge regression and the lasso was not significant in Example 1. Moreover,
the pairwise comparisons of ME were not significant between the elastic
net and ridge regression in Example 3 or between ridge regression and the
lasso in Example 1. However, the other pairwise comparisons of ME were
significant (P-value < 0.01 ).

In Example 1, a small subset of predictors were assigned non-zero β-coefficients.
On average, the lasso and the elastic net selected 31 and 109 variables re-
spectively. In Table 1 we see that the elastic net had the highest AUC
and lowest ME. The Friedman’s test showed that the difference between
the elastic net and the other methods was significant. Furthermore, the
Conover’s post-hoc test showed that there was not a significant difference
between ridge regression and the lasso.

In Example 2 the predictors were assigned coefficients of β = 0.85 with
relatively high correlation among predictors. As demonstrated in Table 1,
ridge regression improved over the other methods considering AUC and
ME. As mentioned in Section 2.5.2, ridge regression tends to perform well
under the circumstances in Example 2. Moreover, the average number of
coefficients for the lasso and the elastic net was 42 and 252 respectively.
Due to the one-standard-error rule (Section 2.6.1) the lasso chose a highly
regularized model. In this setting, the elastic net identified a larger number
of coefficients that were correlated and non-zero. The lasso, on the other
hand, resulted in a sparse final model but identified less of the non-zero
coefficients. Instead, the chosen model resulted in a high misclassification
error (Table 1).
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AUC ME Coefficients

Ave. sd. Ave. sd. Nr. of β̂ 6= 0

Example 1

Ridge 0.8275 0.0441 0.2744 0.0466 400

Lasso 0.8242 0.0616 0.2602 0.0633 31

Elastic Net 0.8492 0.0544 0.2430 0.0599 109

Example 2

Ridge 0.8342 0.0445 0.2601 0.0514 400

Lasso 0.6554 0.0710 0.3862 0.0504 42

Elastic Net 0.8029 0.0526 0.2776 0.0456 252

Example 3

Ridge 0.9635 0.0171 0.1186 0.0324 400

Lasso 0.9201 0.0292 0.1666 0.0472 35

Elastic Net 0.9586 0.0179 0.1174 0.0318 193

Example 4

Ridge 0.8433 0.0679 0.2552 0.0664 400

Lasso 0.7315 0.0724 0.3400 0.0662 42

Elastic Net 0.8138 0.0739 0.2658 0.0690 190

Table 1: Average of AUC, ME-values and number of non-zero β̂-coefficients
for ridge regression, the lasso and the elastic net. The simulation was re-
peated 30 times for each example and the corresponding values of ME, AUC
and number of non-zero β̂-coefficients were averaged.

22



In Example 3 the predictors were divided into 8 groups and pairwise as-
signed coefficients of 0 and 2. Comparable to Example 1, ridge regression
outperformed the lasso and the elastic net in view of the AUC. Since the
elastic net and ridge regression performed considerably similar, they seem to
perform equally as good in this setting. As discussed earlier (Section 2.5.2),
ridge regression included all predictors in the final model and resulted in
a less interpretable model. However, the elastic net identified on average
193 non-zero coefficients. Supposedly, the elastic net adopted the grouping
effect and correctly identified almost all non-zero coefficients simultaneously
as it achieved high prediction accuracy.

In Example 4 the predictors were divided into two groups of equal size that
were assigned with β = 3 and β = 0 respectively. The first 200 predictors
were correlated while the remaining 200 predictors were uncorrelated, hence
they were independent of the outcome. As seen in Table 1, ridge regression
achieved the highest AUC while the elastic net attained the lowest ME.
In addition, the elastic net succeeded to identify approximately all non-zero
coefficients as a result of the grouping effect.

Figure 6: Coefficient path plot for the lasso for one simulation. Each colored
line represents the value taken by a different coefficient in the model. As λ
decreases the coefficient size increases as indicated by each line (from right to
left). The axis above the plot indicates the number of predictors for different
values of λ.

The number of non-zero coefficients for the lasso and the elastic net through-
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out Example 1-4 was determined by the penalty term. Each model generated
several coefficient paths for every coefficient. In Section 2.5.1 we discussed
how the penalty is imposed on the coefficient estimates. Figure 6 emphasizes
the coefficient path for the lasso for one of the simulations in Example 1.
The vertical purple line marks the final model corresponding to the optimal
value of λ found by 10-fold cross-validation.

Figure 7: Cross-validation accuracy versus λ for the elastic net for different
mixing percentage. Accuracy refers to the fraction of correctly classified
predictions. Mixing percentage refers to the value of α, while regularization
parameter refers to λ.

In Figure 6 each colored line represents the profile of a coefficient in the
model. The values of the regularization parameter λ is the weight put on
the penalty term. When log(λ) = −2 all coefficients were essentially zero.
As λ approached zero, the coefficients increased from zero and the model
approached the ordinary maximization function (Section 2.5). More predic-
tors entered the model when we relaxed λ. When a predictor entered the
model it affected other coefficient paths if they were correlated. As a result,
some coefficients were reduced to zero as other variables entered the model.
The size of a coefficient reduced to zero if other variables apprehended the
effect as they entered the model. As a result from the bias-variance trade-
off, the optimal λ produced a model with lower complexity. Consequently,
the variables that entered the model early were the most predictive and the
variables that entered the model later were less important.
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As a remark, we observed that the regularization parameter α that controlled
the weight of the absolute and quadratic term for elastic net generally was
close to zero. In Figure 7 the prediction accuracy for one simulation is
plotted against λ for different mixing percentage of α. As demonstrated
by the blue line, α = 0.2 achieved the highest prediction accuracy. On
average, the mixing percentage was less than 0.5 in approximately 90 % of
the simulations. Supposedly, the elastic net approached ridge regression by
putting more weight to the ridge penalty than to the lasso penalty.

4.1 Summary

The results showed that the three methods performed well in the sense that
AUC ≥ 0.5 in Example 1-4. As discussed in Section 4, the simulations in
Example 1 confirmed that the lasso accomplished to quickly identify a small
number of important predictors. The results coincided with the conclusions
drawn by Tibshirani [25]. Furthermore, we observed that despite the fact
that ridge regression tended to spread the coefficient shrinkage over a larger
number of coefficients, it achieved high predictive power throughout Exam-
ple 1-4. Especially the results in Example 3 demonstrated the capacity of
ridge regression. We identified that when the number of predictors were
very large and a larger fraction of them should be included in the model,
ridge regression dominated the lasso and the elastic net. Consequently, it
confirmed that ridge regression is a satisfactory method for prediction on
correlated data sets [17]. The results from Example 2 determined that the
lasso is outperformed by the elastic net. Furthermore, we observed that
the elastic net benefits from the adaptability to put a larger weight to the
quadratic penalty, while it simultaneously shrinks some coefficients to zero
by the absolute penalty.

Moreover, we observed that ridge regression and the elastic net generally im-
proved over the lasso. Specifically, ridge regression dominated the lasso in
correlated samples. We asserted that the elastic net approximately identified
all non-zero coefficients in the simulations. Generally, the elastic net pro-
duced a final model that included all the important predictors. In Example
4 the elastic net performed grouped selection and showed to be a better vari-
able selection method than the lasso. Even though ridge regression did not
incorporate variable selection it achieved high prediction accuracy through-
out Example 1-4. Therefore, we observed that if the interpretability was not
fundamental, ridge regression managed to accomplish high predictive power.
Ultimately, the elastic net had the advantage of incorporating variable se-
lection. Consequently, its final model was more interpretable than that of
ridge regression.
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5 Discussion

In Section 4 we observed that the lasso is outperformed by ridge regression
and the elastic net. The study showed that ridge regression is a satisfactory
method when the final model should include a larger number of coefficients.
Throughout Example 1-4, ridge regression resulted in a final model with
high predictive power. However, we showed that the elastic net had high
predictive power and produced a relatively sparse, more interpretable model.
Moreover, if prediction accuracy is the solemn purpose, ridge regression
proved to be one possible good solution. However, variable selection is often
of great importance. It is often essential to determine which variables that
have significant impact on the response variable. The results showed that
the lasso, in general, was not a satisfactory method for high correlated data.
The lasso identified a small number of predictors resulting in a sparse model,
but it did not achieve high predictive power when it was compared to ridge
regression or the elastic net. We observed that ridge regression and the
elastic net were better justified approaches for high dimensional correlated
data. Instead, the choice of method should be supported by whether variable
selection is of importance or not.

In the simulation, we assumed that the partitioning of training and test
data yields similar data sets. Since the partitioning of training and test
data is random, we assume that it could result in some dissimilar parti-
tions. Furthermore, the partitioning of folds for 10-fold cross-validation is
performed randomly. Consequently, we expected fluctuations in the results.
As demonstrated by Figure 6, the methods add the predictors individually
to the model. The correlated predictors that enter the model later influ-
ence the previously included predictors. Thus, the collection of correlated
predictors in the final model could be affected by the sampling. Therefore,
the simulation was repeated multiple times. Moreover, it would be ideal to
increase the number of simulations to be larger than 50. [25] However, it
is shown in Table 1 that averaging the results over 30 simulations does not
result in large standard deviations. In addition, the Friedman’s test and
Conover’s post-hoc test verified that a principal part of the differences in
AUC and ME between methods were significant.

Furthermore, we note that determining the optimal value for the regulariza-
tion parameter is one of the most relevant problems of penalized regression
and can be problematic or result in heavy computation for higher dimen-
sional problems. However, in this study cross-validation was not too com-
putationally intensive and proved acceptable to determine the value of the
regularization parameters.

As a remark, we observed that the dimension of the correlation matrix in-
creased as the number of predictors increased. As a consequence, we noted
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that the non-degenerate matrix assumption for multivariate normal distri-
bution was almost violated, since the determinant goes to zero [15]. The
correlation matrix could therefore cause problems in larger dimensions. For
further simulation of higher dimensional problems sampling from a multi-
variate normal distribution, we advise that this should be taken in consid-
eration.

Before concluding this discussion, we declare that several model selection
and validation procedures exist. Ultimately, there is no procedure that out-
performs all the others. Generally, different procedures conquer in different
situations. In this study, we observed three penalization methods that were
used for model fitting to high dimensional data. We showed that they were
adequate methods that can be appropriately applied to high dimensional
data. Conclusively, they could function as a complement to logistic regres-
sion as well as stepwise regression and best subset selection amongst others.

6 Conclusion

In this study we introduced three penalized logistic regression methods; ridge
regression, the lasso and the elastic net. We illustrated how the methods
could be implemented when analyzing high dimensional data. Emphasis
was put not solemnly on the predictive performance of the methods, but
also on the removal of predictors that were uncorrelated with the response.
It seems that in high dimensional data regularization is an adequate method
to achieve good prediction performance. Since ridge regression, the lasso and
the elastic net can be applied to much larger data sets than other variable
selection methods, they provide a solution for high dimensional classification
problems. In conclusion, we showed that the elastic net is notably useful
in the p � n case. In addition, the lasso is not a satisfying method when
p is much larger than n. Moreover, ridge regression is proved to have high
predictive power but is refrained from shrinking coefficients to be exactly
zero. As a suggestion for future research, this study could be extended to
investigate additional penalty functions such as the relaxed lasso [21] or the
adaptive elastic net [4]. Furthermore, an amplification of this study could
be to include other dimension reduction approaches such as PCA.
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