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Abstract

In this thesis, we will apply time series analysis to make wind speed

forecasts and then compute the corresponding wind energy that may

be produced. The model used in this report is linear regression with

ARMA-errors. The linear part of the model is intended to capture

the seasonal effects present in the data and is composed by Fourier

terms. A comparison between a model fitted to hourly average wind

speeds and daily average wind speeds will be performed to check which

produces the smallest forecasting errors.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: gonzalo.navarro@outlook.com. Supervisor: Mathias Lindholm, Filip Lindskog.



Contents

1 Introduction 3

1.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Other studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical framework 4

2.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 ARMA models . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 ACF and PACF . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Box-Ljung test . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Akaike’s Information Criterion . . . . . . . . . . . . . . . . . 7

3 Data 7

4 Analysis 8

4.1 Data distribution . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Seasonal effects . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Model description . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Results 12

5.1 DAWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 HAWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3 Forecasting the wind power . . . . . . . . . . . . . . . . . . . 17

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Appendix 22

6.1 A1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2



1 Introduction

Renewable energy has been a subject which has drawn much attention dur-

ing the last decades. In efforts to halt global warming, several countries have

invested in energy sources in order to reduce carbon emissions. Unlike other

energy sources, wind energy production depends on the weather conditions

which may vary throughout the day or throughout the seasons.

The subject of wind energy production estimates can be approached in differ-

ent ways. Many such methods are based on Numerical Weather Prediction

(NWP) models. These models typically generates forecasts up to 48h [4].

The NWP’s use data from large areas and of many physical variables, and

require supercomputers to run them. There are many statistical methods

that rely on much less information that either model wind speeds or wind

power [5], and can be run on ordinary PC’s.

1.1 Aim

The purpose of this report is to predict wind energy production with the

use of time series analysis. A model will be fitted to wind speed data and

then wind speed forecasts will be converted into the corresponding wind

power. We will apply methods that have been used in previous studies and

analyze wind speed data in different time scales (hourly and daily average

wind speeds).

1.2 Other studies

There are several studies that have used different variants of ARMA-models

to forecast wind speeds. A common feature is that many of these models

are designed to handle certain seasonal variations that often are present in

wind speed data.

Such an example is the seasonal ARMA-GARCH model applied by J. W.

Taylor et al. in [3] to model daily average wind speeds. J.S. Benth et al. [4]

used a similar model to both daily average wind speeds and average wind

speeds for every three hours. The seasonal parts of both these models were

Fourier series of finite order.
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Seasonal ARMA-models which are fitted to smaller time scales (hourly or

three-hourly wind speeds) are typically adjusted to daily seasonal effects

in wind data, known as diurnal variation. Such examples can be found

in [1], [2] and [4]. In all these cases except for in [1], Fourier terms have

been the method of removing diurnal and annual seasonality. Instead, in [1]

the diurnal seasonality has been removed by subtracting the average wind

speeds of the corresponding hour of the day. Brown et al. [1] has proposed

Fourier terms have been proposed as a preferred method since it reflects the

continuous nature of wind speed data and typically requires few parameters

to be estimated.

David C. Hill et al. [2] have noted that diurnal seasonality differs for different

seasons of the year, and have for this purpose fitted different Fourier terms

for each season.

2 Theoretical framework

Most of the terminology comes from the works of Tsay (Analysis of financial

time series) [6].

2.1 Stationarity

The models used in this study will be rely on the weak stationarity assump-

tion. Let {zt} be a time series. The weak stationarity assumption says that

for all t it holds that E(zt) = µ is constant and that Cov(zt, zt−l) is only

dependent on l.

2.2 ARMA models

ARMA is the abbreviation for autoregressive moving-average models. This

is a class of models which are defined as follows. Let {zt} be a weakly

stationary time series with mean µ, and let z̃t = zt − µ. Also let {εt} be

a white-noise process. A white noise series is such that it is independent,

identically distributed and has finite mean and variance. Let {εt} have

variance σ2ε and mean 0. The following equation describes an ARMA-model
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of order p, q (which are positive integers).

z̃t =

p∑
i=1

φiz̃t−i +

q∑
j=1

θjεt−j + εt (2.2.1)

We will henceforth use the notation ARMA(p,q) for an ARMA-model of

order p, q.

2.3 Fourier Series

To remove seasonal effects we will make use of Fourier series of finite order.

Let ak, bk, f be real constants. Let S(t) be a Fourier series of finite order as

defined below.

S(t) = a0 +
K∑
k=1

akcos (2πkft) + bksin (2πkft) (2.3.1)

S(t) is then a periodic function with fundamental frequency f . The function

S(t) is thus a sum of several periodic functions, each with frequencies kf ,

where k is a positive integer.

2.4 ACF and PACF

The autocorrelation function (ACF) is a measure of the correlation between

the observations (known as serial correlation). Seasonal effects may be vi-

sually detected by regular peaks in the plot of the ACF. Serial correlation is

a property of ARMA-processes and depending on the order of the ARMA-

process its ACF may exhibit certain patterns. The ACF is defined as the

following. Let {zt} be a weakly stationary time series. Then the ACF ρl of

lag l is the following.

ρl =
Cov(zt, zt−l)√
V ar(zt)V ar(zt−l)

Under the stationarity assumption, for all t and l it holds that V ar(zt) =

V ar(zt−l) and therefore it holds that

ρl =
Cov(zt, zt−l)

V ar(zt)
. (2.4.1)
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The ACF together with the partial autocorrelation function (PACF) are

tools which together may be used to determine the orders p,q of an ARMA(p,q)-

model. Unfortunately, it becomes increasingly difficult to identify the pat-

terns for ARMA(p,q)-models when both p,q are greater than 1. For models

where either p or q equals 0 the ACF is more easily identifiable.

The partial autocorrelation function (PACF) is more difficult to define.

First, let φkj be the jth coefficient of the AR(k) process. We begin by

noting that for an AR(k)-process the following holds true [7].

ρj = φk1ρj−1 + ...+ φk(k−1)ρj−k+1 + φkkρj−k j = 1, 2, ..., k (2.4.2)

This relation can be expressed as a linear system of equations. First we

define the following vectors and matrices.

φk =


φk1

φk2
...

φkk

 , ~ρp =


ρ1

ρ2
...

ρk

 , Pk =


1 ρ1 ρ2 . . . ρp−1

ρ1 1 ρ1 . . . ρp−2

...
...

... . . .
...

ρk−1 ρk−2 ρk−3 . . . 1


Pkφk = ρk (2.4.3)

The coefficients of φk are the partial autocorrelations. They can be esti-

mated by substituting the theoretical autocorrelations by their estimates

ρ̂l.

ρ̂l =

∑T
t=l+1(r − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
, 0 ≤ l < T − 1,

where r̄ = 1
T

∑T
t=1 rt.

2.5 Box-Ljung test

The Box-Ljung test is another way of checking whether serial correlation is

present in the observations. This tool will be used to check if the residuals

{εt} of the ARMA-model (2.2.1) are serially correlated. According to the

assumptions, the residuals should have no serial correlation. If serial corre-

lation is present in the computed residuals {ε̂t}, this is indicative that the

model is inappropriate. Let the autocorrelation estimates be denoted by
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ρ̂l and let T be the sample size. The Box-Ljung test statistic Q(m) is the

following.

Q(m) = T (T + 2)
m∑
l=1

ρ̂l
2

T − l

Let’s assume that {ε̂t} are i.i.d. - meaning that no serial correlation is

present. Under certain conditions, which we will assume to be fulfilled, the

statistic Q(m) is asymptotically χ2(m)-distributed [6]. The Box-Ljung test

statistic will be used to test the following hypothesis H0 : ρ1 = ... = ρm = 0

against the following alternative hypothesis.

Ha : ρi 6= 0, i ∈ {1, ...,m}

The choice of m might affect the performance of the test. For seasonal data,

it is recommended by Rob J. Hyndman [13] to select m = min(2h, T/5)

where h is the period of seasonality and T is as above.

2.6 Akaike’s Information Criterion

The choice of the order of an ARMA-model is not always obvious, and in

practice one often has to select a model among a list of candidates according

to some principle. We will try to apply the parsimony principle and pick

a model which fits well to the data and has as few parameters as needed.

Akaike’s information criterion (AIC) is a measure of how well a model fits

to data. It is defined as follows.

AIC = −2log(L(θ̂)) + 2q

q is the number of parameters in θ, and θ̂ denotes its estimate which max-

imises the likelihood L. AIC penalizes a high number of parameters and for

this reason it suits our purposes. A low AIC indicates a good fit, and a high

AIC indicates a poorer fit.

3 Data

The data used in this study has been obtained from the Western Wind Data

Set available on NREL’s (National Renewal Energy Laboratory) website.
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The Western Wind Data Set is a re-creation of the weather for western U.S.

the years 2004-2006 and is intended for use in studies of power production

estimation. This is a very large data set which contains smaller data sets

for different locations. For each location there is, besides wind speed, also a

re-creation of the power output of 10 wind turbines (of type Vestas, V90 3

MW). The power output was based on a model that mimics the randomness

found in the power output for actual wind turbines.

4 Analysis

We will fit a model similiar to that of Hill [2] and Benth [4]. First we will fit

a model to daily average wind speeds (DAWS) and then for hourly average

wind speeds (HAWS). The next step will be to check the performance of

each model and compare them on the same time scale (daily average wind

speeds). We will then find a function of wind speed which gives the power

output of ten wind turbines. Finally we calculate the power output and

compare them to the actual power output.

4.1 Data distribution

In previous studies, data has been transformed to approximate a normal

distribution. In a study by Hill [2], the transformation was needed because

of the model identification procedure that was used. Hill proposed that de-

trending the data, by removal of the annual and diurnal effects, is enough to

transform data approximately normal. Other transformation methods that

have been used are Box-Cox transformations [4] and power transformations

[1].

In this study we will apply the power transformation method used by Brown

[1]. We base this decision on two main reasons. By choosing an appropriate

power transformation of the observations, forecasted wind speeds are guar-

anteed to be positive. This is important because the ARMA-model does not

assume that the time series is positive. We also note that this is necessary

if one decides to use the ARMA-model for simulation, simply because there

are no negative wind speeds. Secondly, the parameters of the ARMA-model

will be estimated by the Maximum Likelihood method (ML) which assumes
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that the innovations are i.i.d. normally distributed.

First the data is transformed using several values of m. Let Xt denote the

wind speed at time t. The power transformation has the following notation.

Xm
t =

Xm
t , if m 6= 0

log(Xt), if m = 0

The next step is to calculate dm - a measure of the symmetry of the distri-

bution.

dm =
mean−median

scale

As the scale parameter, Brown et al. have used the interquartile range (IQ).

A value close to zero suggests an almost symmetric distribution, which is

what we desire. In figure 1 we have made a qq-plots of the DAWS and

HAWS compared to the normal distribution. The figure is a plot of the

empirical quantiles versus the theoretical quantiles of the normal distribu-

tion. A straight line suggests that data is close to being normally distributed.

Figure 1: QQ-plot of DAWS to the left and HAWS to the right, compared

to the normal distribution.
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We see that both DAWS and HAWS are positively skewed. By applying

different power transformations we obtain the values of dm shown in figure

2. We see that the best values of m are 3/8 for DAWS and 1/2 for HAWS.

Figure 2: Values of the symmetry statistic dm for the power-transformations

of DAWS (in black) and HAWS (in white).

Figure 3: QQ-plot of transformed DAWS to the left and transformed HAWS

to the right, compared to the normal distribution.
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4.2 Seasonal effects

Wind flows from high pressure to low pressure regions, and the pressure of

the air is affected by temperature changes. Regular changes in temperature

can give rise to regular changes in wind speed - sea and land breezes are

such examples [8]. For these reasons, several seasonal effects and cyclical

patterns may be present in the data.

In figure 4 we see the autocorrelation-plots for the transformed DAWS and

HAWS. There is a very clear annual seasonality in both cases. This is

observed by the regular peaks by the lags corresponding to the yearly length,

365 for the DAWS and 8760 for the HAWS.

Figure 4: Autocorrelation plots for transformed DAWS to the left and trans-

formed HAWS to the right.

In figure 5 we see the ACF-plot for HAWS up to a smaller number of

lags. We see that the ACF has high values close to the multiples of 24,

which may be indicative of a diurnal seasonal effect.
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Figure 5: Autocorrelation plot for transformed HAWS.

4.3 Model description

Our model consists of a seasonal part St and an ARMA error-term et. Let

Xt be the wind speed at time t. The model is given below.

Xt = St + et (4.3.1a)

et =

p∑
i=1

φiet−i +

q∑
j=1

θjεt−j + εt (4.3.1b)

εt ∼ N(0, σ2ε) (4.3.1c)

The parameters of the seasonal part St will be fitted by Ordinary Least

Squares estimates. The parameters of the ARMA-model of the residuals et

will be estimated separately by the Maximum Likelihood method.

5 Results

The ARMA-part of each model will be selected by the lowest AIC and

seasonal part will be chosen such the residuals εt are devoid of seasonal

effects.
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5.1 DAWS

In order to eliminate the seasonal effects we will perform a multiple linear

regression to our data set. Let xk,t = cos(2πft) and yk,t = sin(2πft), where

f denotes the frequency corresponding to the annual seasonality. The model

below is intended to eliminate the annual seasonal effect.

Xt = a0 +

K∑
k=1

akxk,t + bkyk,t + et

The equation above is a linear system of equations, and is therefore such that

the Ordinary Least Squares method can be applied for parameter estimation.

One condition required to compute the Ordinary Least Squares estimates is

that the variables xk,t, yk,t are linearly independent, or almost uncorrelated.

According to [9] it holds that the variables xk,t and yk,t are uncorrelated,

and so we should not expect any problems to compute our estimates.

In other studies leap days have been removed in order to keep the annual

frequency corresponding to 365 days as the annual period [2], [4]. In this

study we will instead let the annual frequency f correspond to the average

year length 365.25, as recommended by Rob J Hyndman [14]. Specifically,

we will let f = 1/365.25. The estimates are found in table 2.

In figure 6 we find the ACF and PACF of the residuals et. We note that

the annual effect is removed, and conclude that K = 1 is enough for this

purpose. There are two high peaks for the ACF at lags 1 and 2, as well as

a large peak at lag 1 for the PACF.

Figure 6: ACF and PACF for the residuals of the deseasonalized DAWS.
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We will now fit an ARMA-model to the residuals et. We will bound

the values p and q from above by 5 and choose the ARMA(p,q)-model with

the lowest AIC. Let Xt be the transformed DAWS. Our model is then the

following.

Xt = a0 + a1cos (2πft) + b1sin (2πft) + et (5.1.1a)

et =

p∑
i=1

φiet−i +

q∑
j=1

θjεt−j + εt (5.1.1b)

εt ∼ N(0, σ2ε) (5.1.1c)

We assume the εt to be i.i.d.. The ARMA(2,0)-model has the lowest AIC,

and thus it will be selected. The parameter estimates of the seasonal part

are shown in table 2 and those from the ARMA-part are found in table 3.

We examine if the residuals εt of the ARMA-model are i.i.d. and normally

distributed. In figure 7 we see the ACF and QQ-plot of the residuals. The

empirical quantiles do not deviate much from the line and so the normality

assumption is valid. In the ACF the residuals do not appear to be serially

correlated.

Figure 7: Dataset: DAWS. ACF (left) and QQ-plot (right) for the residuals

of the ARMA-model
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Figure 8: DAWS-forecasts. The lines are 95% prediction intervals, the white

circles are out-of-sample values and the black points are predictions.

5.2 HAWS

In the ACF of the transformed HAWS (figure 5) we see a regular pattern

of peaks every 24 lags. We conclude that there is diurnal seasonality. For

this reason we will fit the following model to eliminate both the annual and

diurnal variation.

Xt = a0 + S(t) + et

S(t) = S1(t) + S2(t)

Si(t) =

Ki∑
k=1

ak,icos(2πfit) + bk,isin(2πfit),

where i = 1, 2 and f1 = 365.25·24, f2 = 24 are the frequencies corresponding

to the annual and diurnal seasonal effects. We begin by letting K1 = 1

and K2 = 1. Again, we use the Ordinary Least Squares to estimate the

parameters of the seasonal part. In figure 9 we see that the annual effect

has been eliminated, while the diurnal effect appears to remain. We proceed

by fitting an ARMA-model to the residuals et. We compare the AIC of the

ARMA(p,q)-models of orders p ≤ 13, q ≤ 5 and find the model with the

lowest AIC to be ARMA(1,2).
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Figure 9: HAWS. The ACF of the residuals after annual and diurnal terms

have been fitted (order 1,1)

16



In the ACF of the residuals for the ARMA-model (figure 10) we observe

that diurnal seasonality has not been eliminated. For this reason we will try

other orders K1,K2 of the seasonal function S(t) and fit the corresponding

ARMA-models with the lowest AIC.

Figure 10: HAWS. The ACF of the ARMA(1,2)-residuals.

Rather than inspecting whether the residuals are serially correlated by

examining the ACF we have opted for performing a Box-Ljung test on the

residuals. The results are presented in table 4, where we have used the

notation FOU(i, j) for a model with orders Ki,Kj for the seasonal part

S(t). The Box-Ljung test reject the absence of serial correlation, and by

inspecting the ACF’s we see that there are peaks at multiples of 24, so the

diurnal seasonality has not been erased for these models.

5.3 Forecasting the wind power

The wind turbine used in this study is of the model Vestas V90. It only

operates at certain wind speeds. The smallest speed at which the turbine

generates power is called the cut-in wind speed (VI) and the largest velocity

is called the cut-off wind speed (VO). The wind turbine is designed to

produce constant power, known as the rated power (PR), between the so-

called rated wind speed (VR) and the cut-off wind speed (VO). In theory [8],
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the following expression holds for this kind of wind turbine:

P (V ) =


PR

V n–V n
I

VR–V n
I

, if VI ≤ V ≤ VR

PR if VR < V ≤ VO

0 otherwise,

(5.3.1)

where P (V ) is the power output at the velocity V and nis known as the

power proportionality. The values of the different wind speeds VI , VR, VO

corresponding to the Vestas turbine are found in table 1. Ideally n equals

3, but in practice this expression does not apply since the speed of the

wind passing through the turbine cannot be measured precisely [8]. This

occurs because the wind measurements are usually made at a distance from

the actual wind turbines. Other sources of deviation from the theoretical

expression are explained by variations in air density [8].

There are different ways of forecasting the wind power produced by a

wind farm. The method in this study is to use a deterministic model for the

relation between wind power and wind speed, as in the study by Brown [1].

Since we have wind power data from 10 wind turbines, we could compare

our wind power forecasts to actual observations. It does however become

problematic for various reasons. It is unrealistic to assume that all wind

turbines produce the same amount of power for a given wind speed. In

other words, multiplying the power function (2.9.1) by 10 may not suffice.

The problem lies in finding an adequate deterministic function which can

estimate the total power produced by ten wind turbines corresponding to

the wind speeds.

S. Mathew [8] has proposed a method to determine the power proportionality

of one wind turbine. By calculating the correlation of the observed wind

power and the wind power P (V ) of with power proportionalities n Mathew

chooses n that gives the highest correlation. For practical reasons, we will

perform a similar selection of n, but instead we will choose n such that the

correlation between 10P (V ) and the observed power output is as high as

possible. Since the power curve gives the power produced for instantaneous

wind velocity, we will study the correlation of the ten-minute observations

of the power output and 10P (V ).
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In figure 11 we see the correlations plotted against the power proportionality.

n = 2 gives the highest correlation, and so we select the corresponding

power curve for our forecasts, which is plotted in figure 12. The wind power

forecasts of the DAWS-model are shown in figure 13.

Figure 11: Correlations plotted against the power proportionality n.

Figure 12: Power curve, n = 2.
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Figure 13: Daily Average Power-forecasts, forecasted by the DAWS-model.

5.4 Discussion

We will now examine how well the DAWS- and HAWS-models are at fore-

casting. We begin by defining the Root Mean Square Prediction Error

(RMSE) as follows. Let X̂t be the forecast of the wind speed Xt.

RMSE =

√√√√ 1

n

n∑
t=1

(X̂t −Xt)2

This quantity measures how large the prediction errors are. The HAWS-

model we will choose for this comparison is the FOU(1,1)+ARMA(1,2)-

model. This model is chosen because has the fewest numbers of parameters.

In order to compare the DAWS-model with the HAWS-model we will trans-

form the hourly forecasts back into the units of the original measurements.

The hourly forecasts are then averaged corresponding to each day. The

results are presented in table 5. We see that the RMSE-values for the

HAWS-model are higher than those of the DAWS-model. Similar results

were found by Benth [4], who suggests that predictions based on HAWS are

more inaccurate than that for DAWS due to hourly wind data being much

more noisy.

We were unable to eliminate the diurnal seasonal effects from the HAWS

data. In the study by Hill [2] the diurnal component was found to vary

among the four seasons of the year, with Spring and Summer having a

stronger diurnal component than Winter and Autumn. One could fit a
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model similar to that used by Hill by fitting a different diurnal model for

each season of the year. The problem with such a model, as stated by Hill,

is that there can be abrupt changes where the seasons meet.

Another problem with the method of our study is how the parameters have

been estimated. We have opted for estimating the seasonal parameters by

the Ordinary Least Squares method, and the ARMA-parameters by the

Maximum Likelihood method separately. According to Pankratz [10] this

could lead to several unwanted consequences, such as the estimators not

having minimum variances or that the forecasts become inaccurate. This

problem could be eliminated by performing a joint estimate of the parame-

ters, but that requires knowledge of more advanced methods.
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6 Appendix

6.1 A1 Tables

Operating data

Rated power 3.0 MW

Cut-in wind speed 3.5 m/s

Rated wind speed 15 m/s

Cut-out wind speed 25 m/s

Table 1: Vestas V90 specifications

Parameter

a0 1.87135

a1 0.03424

b1 0.12567

R2 7.791%

Table 2: DAWS dataset. OLS-estimates for the seasonal function.

σ2ε φ1 φ2

0.0815 0.4660 -0.0789

Table 3: DAWS dataset. Estimates of the ARMA-parameters

Model P-value (box-test)

FOU(1,1)+ ARMA(2,2) 0.0004

FOU(1,2)+ ARMA(1,3) 0.0020

FOU(1,3)+ ARMA(1,3) 0.0017

FOU(2,1)+ ARMA(2,2) 0.0005

FOU(2,2)+ ARMA(2,2) 0.0030

FOU(2,3)+ ARMA(1,3) 0.0020

Table 4: HAWS dataset.
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1-day ahead 3-day ahead 5-day ahead 7-day ahead

DAWS-model 2.703379 2.634034 3.346102 2.994439

HAWS-model 3.488577 3.031512 3.579653 3.184506

Table 5: RMSE of daily wind forecasts.
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