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Abstract

Asian options are a type of financial derivative constructed for
assets with low liquidity (that are thus susceptible to price manipula-
tion), such as crude oil. Depending on the averaging type they use in
the payoff function, they may or may not have closed-form solutions
for their prices. In this thesis, I examine the latter case (Monte Carlo
simulation – MC) and a technique which reduces variance (Antithetic
Variates – AV). I find that the use of the variance reduction is not
justified by the stock distribution created by the two approaches, but
rather by descriptive statistics of the two samples. Finally, I exam-
ine the rate of convergence for AV and pinpoint when its use is more
effective than MC.
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“We make ourselves significant by the courage of our questions, and the depth of our

answers.”
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Chapter 1

The object, the problem, and the

method

1.1 A brief description of options

Options have existed in financial transactions since ancient days. According to sources,

the first mention of option buying is credited to Thales of Miletus in ancient Greece,

and options have continued to exist ever since. However, with the establishment of the

Chicago Board Options Exchange in 1973, the idea of options was reinvented for the

finance world in a more detailed and standardized manner, so that everyone could deal

with these instruments on the same basis. Ever since, options have continued to grow in

both complexity and usage from investors and traders, since options are highly versatile

financial instruments which can be used in a plethora of ways. Traders, being typically

interested in maximizing profit, use options to speculate – a relatively risky practice; on

the other hand, hedgers, who are focused on risk reduction, use options to reduce the

inherent risk of holding an asset. This has incentivized the academia to the point where

finding a ”fair” price for an option, i.e. a price that does not allow for risk-free profit,

has given birth to a special branch of Applied Mathematics dealing with this problem.

Options are most commonly divided in two large categories: vanilla and exotic. As

indicated by their labels, vanilla options (namely American and European) are fairly

”simple” in their description – though not necessarily as simple in their calculations

– whereas exotic options offer more of a challenge, since they have more complicated

formulations.

1



Chapter 1. The object, the problem, and the method 2

The pricing of one such exotic option will be the topic of this thesis. We will see how the

”correct” price of the Arithmetic Asian call option can be found, what are the problems

it poses, and how one can get around those problems.

1.2 The Asian option in detail

There are numerous permutations of an Asian option, but as mentioned above, we will

work with the call version for the sake of simplicity, but the results can of course be

extended by changing the payoff function in the algorithms used later.

Formally, an Asian call underwritten on asset S at t = 0, with time to maturity T and

a fixed strike price K has payoff

C(T ) = max{S̄[0,T ] −K; 0},

where S̄[0,T ] denotes the average of the asset (most commonly a stock) price over the

time interval [0, T ]. Here, we see immediately what separates an Asian option from

vanilla options: the payoff function is dependent on the average of the stock price over

the time period and not only on the final price ST . This constitutes this type of option

as path-dependent, i.e. we are interested in the entire course the stock has taken, not

only an individual price as it is with European and American options.

Regarding the average S̄[0,T ], there are different ways of obtaining it. Typically, the

choice is an arithmetic average. In the continuous case, this means that

S̄[0,T ] =
1

T

∫ T

0
S(t)dt.

However, since we are working in discrete monitoring (where the monitoring times are

the subperiods
kT

n
, k = 1, . . . , n), the above translates to

S̄[0,T ] =
1

N

N∑
k=1

S(tk).

Here, N signifies the total number of partition points of the [0, T ] interval. For reasons

of simplicity but without any loss of generality, we choose T = 1. Needless to say, the

efficiency and precision of the binomial tree (presented below) depends on an analogous

relationship between N and T : the longer the time to maturity of the option, the more

partitions are required to sufficiently path out the asset’s trajectory.
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In addition to the arithmetic, another case is that of the geometric average:

S̄[0,T ] = exp

(
1

T

∫ T

0
ln(S(t))dt

)
.

One major difference between these two ways is that geometric averaging options can in

fact be priced with a closed form (analytic) solution. This happens because, just as the

underlying price process itself, its geometric average follows a lognormal distribution, a

condition which no longer holds under arithmetic averaging. This result was presented

in [1]. Because of these findings, this thesis focuses on pricing Asian options where the

averaging is done arithmetically, since we are using Monte Carlo simulations and it still

remains an issue with activity in the research area. Hence I will omit onward the word

”arithmetic”.

1.2.1 Status quo

As mentioned above, due of its nature, there is no closed-form solution for the arbitrage-

free price of an Asian option. There have been developed various methods to this

problem, such as the Effective Classical potential ([8]), or the PDE approach ([11]). The

method we will focus on in this thesis however is the Monte Carlo simulations method.

Simply put, the Monte Carlo method consists of simulating as many price paths of the

stock as possible, in order to make use of the Law of Large Numbers (LLN) which states

that, given enough 1 simulations, we will get a reasonable price for our option.

1.2.2 The Law of Large Numbers

Without getting into too much detail, I present here the theorem that makes possible

the pricing of an Asian option through Monte Carlo simulations. The (Weak) Law of

Large Numbers states that the sample average of a random variable X converges (in

probability) to the ”true” mean:

X̄N
p−→

N→∞
E[X] = µ.

Translating this into our problem’s terms, we have that if we perform N simulations

(with N is sufficiently large), then according to the above, we will have

S̄N =
1

N

N∑
i=1

Si −→
N→∞

E[S].

1Since the LLN provides the convergence as a limit to infinity, we have to find a finite number of
simulations that still does the job within a sufficiently small numerical margin convergence for our price.
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After this step, the price of the option is simply calculating max{S̄N −K; 0}.

1.3 Pricing the option

In order to create the necessary simulations for the method described above, I will use

the Cox-Ross-Rubinstein (CRR) method of the stock evolution over time, also known

as the binomial model. This method makes use of certain characteristics (initial price

of the stock at t = 0, time to maturity T, number of periods n, risk-free rate r, stock

volatility σ) of a stock share in order to create a tree of possible price nodes that the

stock can take. An illustration of a two-period tree is presented below:

S0

S0 · d

S0 · u

S0 · d2

S0

S0 · u2

(1− q)

q

q
2

(1− q)q

(1−
q)q

(1− q) 2

where u = eσ
√
T/n, d = e−σ

√
T/n = u−1, and q =

erT − d
u− d

.

As we can see, the tree is recombining, meaning that an ”up” and then ”down” movement

leads to the same result as a ”down” and then ”up” one. Clearly, the tree will change

based on the values that we give the parameters, in particular that of duration T and

number of periods n. Since this tree will provide us with the stock prices required to

calculate the option (and, in a sense, models the ”reality” of the stock), we want to

make it as detailed as possible while at the same time keeping it as small as possible.

In other words, we want to have as many time periods n as possible – which will give

us more possible final values for ST at the end of the tree – but we also want to keep it

small enough so that the computer does not waste too much memory on the calculation

of the tree, so as to prioritize focus on the number of simulations N we will run.
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1.3.1 The Monte Carlo method

The Monte Carlo (MC) method for pricing an Asian option is directly linked to the

LLN. Using the CRR tree as the set of all possible events, the MC method consists of

the following steps:

1. Define the jump factors u and d, the risk-free rate r, and the risk-neutral proba-

bility of an upward jump q = Q[Si+1 = Si · u], i = 1, . . . , n− 1.

2. Perform the desired amount of simulations.

3. Average the results accordingly so as to get the final price of the option.

Note that in this method, one does not actually have to construct the entire tree itself,

which in fact we do not need. The u & d factors, along with q, ensure that the stock

can only take prices from the tree that is created by said factors. The tree was only

mentioned in order to help visualize the problem, since each simulation is in fact one

path (out of all the possible outcomes) on the tree.

Let’s say (for now) that we also chose our n (for example n = 250) and now we have a

model for the stock evolution over the next year. We can then use the tree to simulate

possible paths of the stock in the following way: at every time point t = 1, . . . , n, the

price of the stock can be described as St = St−1 · [Ztu+ (1−Zt)d], where Zi, i = 1, . . . , n

are iid1 Bernoulli distributed with probability of success q as calculated above. In

other words, each simulation is fully characterized by the triplet {S0,Z, {u, d}}, where

Z = (Z1, . . . , Zn)T is the vector of the up-or-down jumps that decide how the stock

price will move, and u = u(r, σ, n), d = d(r, σ, n) are the jump factors, indicated here

that they are also a function of the number n of time periods we have chosen for our

model. Clearly, if one wishes to get one simulation of the final price ST (and therefore

also of the path that lead to that price), one needs a vector of n total Z ′is, whereas if

we want to do N simulations, one needs to simulate a matrix of n × N ; each column

corresponds to one unique simulation path:

Z =


Z1,1 Z1,2 . . . Z1,T

Z2,1 Z2,2 . . . Z2,T

...
...

. . .
...

Zn,1 Zn,2 . . . Zn,N

 ,

which is a matrix of ones and zeros. In conclusion, n decides the ”length” (or steps) of

each simulation, whereas N decides how many simulations we get.

1Independent and identically distributed.
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For each simulation k, we take the average price of the stock in that path, and calculate

the value of the option as if that path were the only one:

Ck(T ) = max{S̄k[0,T ] −K; 0}.

We repeat the process for all the simulations we ran, and then we average the option

prices we found. Discounting the result to its present value will give us the final price

of the option:

C(0) = e−rT C̄(T ) = e−rT

(
1

N

N∑
k=1

Ck(T )

)

1.3.2 The antithetic variates technique

While the MC method does solve the problem, it presents a significant issue: the number

of simulations required is very high. Having done the method for an Asian option in

a previous work, I found that even after setting the sample to N = 200, 000 and the

time steps to n = 2, 000 (i.e. trading approximately every business hour of the day for

250 days), the time during which the code was running was fairly high (≈600 seconds),

particularly when running the code on an Intel i7-3770K 8-core processor with CPU @

3.50 GHz. Even though the five prices found (one price for each repetition of the algo-

rithm) were consistent with each other to a certain extent, there were still divergences,

namely a maximum difference of 0.076% and standard deviation 0.0274 for the option

price. These are differences that, at least under certain circumstances, might be too

large to be acceptable, especially when the simulation sample and trading frequency

are that high. While the sample variance above might seem small, the bigger indicator

that we can still improve the process is the maximum difference (in that particular case,

0.076%). This is an issue that cannot be ignored. So what can we do about it?

One advantage of working with Monte Carlo simulations is that they allow for a wide

range of variance reduction techniques. The most commonly used such methods are:

common random numbers, antithetic variates, control variates, importance sampling,

and stratified sampling.

The weapon of choice for this thesis is the antithetic variates (AV). The reason I chose

this method is because it offers a clever workaround for the problem of simulation size,

and also because it can be implemented by making a very minor modification to the

source code that I used to generate the simulations. In other words, one might say that

the AV method occurs naturally when seeking to reduce variance of Asian options priced

via Monte Carlo simulations.
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Take the case of the CRR tree with n periods (so no simulations yet). Since the tree

is recombining, the total amount of possible outcomes for ST is n+1, so one needs to

run as many simulations as possible to sufficiently cover that spectrum of prices, i.e. we

want a very high N . Suppose we choose N = N∗ and create my sample, which we can

call sample A (which was created using the matrix ZA of 1’s and 0’s). Using antithetic

variates, we can create a matrix ZB which has – in comparison to ZA – half the amount

of unique columns (i.e. the vectors Z1, Z2, . . . , ZN∗/2), and fill in the remaining half by

mirroring these same vectors, i.e.

ZB =


...

...
...

...
...

...

Z1 Z2 . . . ZN∗/2 1− Z1 1− Z2 . . . 1− ZN∗/2
...

...
...

...
...

...

 ,
where 1− Zj means component-wise deduction, i.e. 1− Zj(i), i = 1, . . . , n.

In other words, we use the first half of ZB in order to mirror the initial ”half-sample”,

by taking half1 of its simulated paths, and then mirroring each path at each step so that

wherever simulation #1 goes up (down), simulation #
N∗

2
+ 1 goes down (up) and so

on. In other words, for sample B we use only half the amount of simulations we did in

A, and we complete the other half by mirroring these paths.

As the name suggests however, this is a technique that not only reduces the size of

samples to be generated, but also reduces the variance. Suppose that we want to estimate

the quantity θ = E [h(X)] = E [Y ], where h : R → R some deterministic function.

To do this, we generate two samples, say Y1 and Y2. An unbiased estimator of θ is

θ̂ = (θ̂1 + θ̂2)/2, whose variance is

V[θ̂] =
V [Y1] + V [Y2] + 2Cov(Y1, Y2)

4
.

If the two samples are independent, then Cov(Y1, Y2) = 0 so V[θ̂] = V(Y1)/2. In the

antithetic variates however, the second sample is created in such a way that Y1 and Y2

are no longer iid and Cov(Y1, Y2) < 0, which results in a reduced V[θ̂]. In the stock path

case, this translates to the creation of ZB as described above.

1.4 The methodology ahead

Of course, for the LLN to work, we need independence within our sample observations,

and sample B is anything but that. However, for a large enough N∗, the two samples

1Due to this division by two, we get the minor limitation that the number N of simulations has to
be even, in order for the matrices to be created.



Chapter 1. The object, the problem, and the method 8

A & B may start ”looking” similar, i.e. their distributions (or at least their descriptive

statistics) will be similar. This is what I will examine in Chapter 2, namely, what is

the minimum value of N∗ such that the two samples A & B of final stock values SAT

and SBT exhibit similar distribution properties. After examining this minimum N∗ via

three different methods of statistical tests, I move on to Chapter 3, where I will use only

the AV method – which, as showed, provides a ”similar” sample to the independence

method but with half the simulation cost – in order to zero in as much as possible on

the price of an Asian option.

Remark: Ideally, the problem would be solved by finding an analytic lower bound

(n∗, N∗). However, due to the non-linear nature of the problem, and more importantly,

the notion of equality by distribution for the two samples, such an analytic bound would

be very difficult to find, if not impossible.

Figure 1.1: Results when N < N∗.
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Figure 1.1 shows the differences between the MC (independent) and the AV method

when (n,N) = (200, 500). As one can see, the distributions of the two different vectors

for ST differ greatly, making it highly improbable that they are equal.

On the graph below however (fig. 1.2), we see that for (n,N) = (500, 10000), the differ-

ences are fewer (from a statistical point of view). This reinforces the intuitive idea of

the AV, that is, if we repeat the self-dependent process long enough, the end result will

be similar to independence.

Figure 1.2: Results when N > N∗.



Chapter 2

Delineation of convergence

2.1 Statistical methodology

The purpose of this chapter is, as mentioned earlier, to find the minimum N for which the

MC and the AV methods show no statistical difference with regards to the distribution

of ST . The way I chose to go about this is as follows:

1. Choose a starting value N0 for the number of simulations.

2. Perform 100 simulations for each of the two methods with this given N0.

3. Check if the distributions of the resulting ST are the same (for each pair of the

100 simulations).

4. If more than 1 pairs of samples exhibit different distributions (i.e rejecting the null

hypothesis), increase N0 and repeat the process until at least 99 pairs of the total

100 have the same distribution. When that happens, the resulting threshold of

the method is the minimum N∗ is the number we are looking for.

As one can see from the above description, the methodology is nothing more than a loop

with an if condition that will help us reach the conclusion we seek in order to continue

exclusively with the AV method in Chapter 3. As described, we get one sample from

MC and one from AV for the N0 we chose, then check to see if they have the same

distribution, and repeat this process 100 times to make use of the LLN. We stop when

no more than 1% of the pairs differ in distribution. The beginning value for N0 is of

course what defines by how much we will increase it on step 4. As seen on the end of

the previous chapter, there seems to be a very satisfactory behaviour for N = 10, 000,

but since we want to examine the rate of convergence (and at the same time find the

10
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minimum N for which we get a good enough result), starting so high may be a waste of

computational power, so the starting point is set to be N0 = 1, 000. Special consideration

is given at step #3: to perform the check for distribution equality I will employ three

different methods of statistical testing which are described below.

2.2 Anderson-Darling test

2.2.1 Description

The 1-sample Anderson-Darling (AD) test [3] is a statistical test that checks whether a

given sample of data comes from a specified probability distribution. Even though my

first idea was to use the Kolmogorov-Smirnoff (KS) test [4], the AD choice might a better

alternative for the particular samples to be examined: according to theory (i.e given a

high enough n), the distribution of ST is lognormal, which is a heavy-tailed distribution

– an assertion that can be easily confirmed visually by the graphs at the end of Chapter

1. I thus chose the AD test over the KS, since the former is more effective when dealing

with heavy-tailed distributions as it takes more into account the tail events.

However, since I am not comparing one sample against a fixed distribution but two

samples on whether they come from the same distribution, the version I had to use

was the 2-sample AD test. This presents a challenge because the AD test assumes no

parameters of the target distribution to be estimated, so the set of critical values is

distribution-free. While this is a desired quality from a statistical viewpoint, it also

means that the test’s critical values have to be approximated. Luckily, I was able to

find a previous work on this issue done by Bahr ([2]), in which he describes the AD test,

its computational challenge, and also writes the code for the 2-sample version. If each

sample has size ni, i = 1, 2, the formula for the test is

AD =
n1n2

(n1 + n2)2

∫ ∞
−∞

w(x) [F1(x)− F2(x)]2 dF12(x)

where F1(x) (resp. F2(x)) is the ecdf (empirical CDF) of the sample produced by the

MC simulation method (resp. from the AV method), F12(x) is the joint ecdf of both

samples, and

w(x) = [F12(x)(1− F12(x))]−1 .

Perhaps it is noteworthy to mention here that the AD test is directly derived from the

Cramér-von Mises test simply by adding the w(x) factor, which increases when F12(x)

approaches 0 or 1. Interpreting this fact, we get an intuitive explanation of the test

formula: we want the AD quantity to be ”small” (since we do not want to reject H0),
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which means we want w(x) to be small as well. This happens when F12(x) is not too

close to either 0 or 1, so if F12,ST
(x) = P

[
S1
T ≤ x, S2

T ≤ x
]

is the theoretical joint cdf,

we see that w(x) stays away from edge probabilities when both S1
T and S2

T remain close

to the same value x with the probability of deviating on either side of x being equal to

1/2. This confirms the intuition that we expect the two samples to have come from the

same distribution when their ecdf’s do not look too different.

2.2.2 Results

Implementing the algorithm for the AD test gives the following results. As described

in the methodology, after choosing N, I performed 100 repetitions of the simulation

process, and in the second column I write the amount of cases where the distributions

were deemed not equal. The reason for the running time being so high is that, for a

chosen N, the amount of simulations is 150N , and that is only with regard to the final

values ST , i.e without taking into account the previous n − 1 pseudo-random binary

realizations required to produce a single simulation for the stock path, which means

that the total number of simulations is 150× n×N .

N # of rejections Running time

1,000 10 249.241 s
2,000 7 466.555 s
5,000 7 1118.292 s
10,000 7 1709.702 s
20,000 12 3735.779 s

Table 2.1: Analytics of the 2-samples Anderson-Darling test.

Interestingly enough however, when looking at the profile summary of the code, it is

not the number of simulations itself that makes the time increase so much, but the

procedure of testing with AD. As mentioned in the description above, the many-samples

version of the test has - to the extent of my knowledge - no official function integrated

into MATLAB, so the reason it increases the time is because of its repetitive structure for

approximating the p-value via iterative loops (even with N = 1000 and a single 1 × 2

vector of samples to consider, the running time was high enough).

2.3 An unexpected brick wall

At this point the analysis starts breaking down. The custom AD test function written

by Bahr begins to take so much time to analyze the 100, 2-pair samples that it becomes

essentially impossible to increase the sample in search of a better result, at least with
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this method, since we do not observe the number of rejections going down when N ↑,
as it was expected.

To try and tackle this issue, I employed a battery of different approaches. First, I

increased the total amount of simulations to the maximum capacity allowed by my

computer: (n,N) = (1000, 900000) (the running time to create the simulations alone

was about 20 minutes and the size of the simulated data was over 3GB). This way, I

wanted to make sure that if there are any desired effects in the data within this kind of

numerical range, I would be able to capture them by analyzing the numbers. The next

step was to perform a wide range of tests on the data to see if the conclusions would

allow me to proceed further.

Without manipulating the data in any way, I wanted to see how the distribution of ST

looked for the two different methods:

Figure 2.1: Histograms of ST for MC (left) and AV (right).

Even though the graphs are not in the same scale, a quick eyeballing (by looking at the

y-axis) would suggest that the distributions appear similar. This hypothesis however

proved to be notoriously difficult to handle, as different methods of testing provide

different answers. If we check the empirical CDF’s of the two samples, we see that they

differ around the center but not so much at the tails:
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Figure 2.2: Empirical distribution functions for MC and AV.

A Q-Q plot confirms this, and the slight S-shape of the line shows that the MC method

produces a range of ST that has heavier tails than its AV counterpart:

Figure 2.3: Q-Q plot of MC (x -axis) against AV (y-axis).
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Since the visual inspection methods are susceptible to subjective interpretation, I pro-

ceeded to test the two samples using strictly statistical measures. The KS test rejected

the null that the two samples have the same distribution, but other methods gave dif-

ferent results. Namely, the Kruskal-Wallis one-way ANOVA by ranks (a non-parametric

test for checking whether samples come from the same distribution) does not reject the

same H0:

Figure 2.4: Kruskal-Wallis boxplot.

Figure 2.5: Kruskal-Wallis ANOVA table.
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Another method I used to examine this discrepancy even further was to log the stock

prices and then check the resulting samples for normality, since it is known that if

X ∼ N(µ, σ2), then Y := eX ∼ LN(µ, σ2).

Figure 2.6: Histograms of logST for MC (left) and AV (right).

Different conclusions are reached here depending on the test one uses. The KS test

rejects the null of the two samples coming from the same distribution, but it also rejects

the null that each of the individual samples comes from a distinct normal distribution

(even if we fit a normal distribution to the data and run the test against a distribution

object with the resulting parameters). The Jarque-Bera test on the other hand, an

omnibus, goodness-of-fit test which checks if the data have the skewness and kurtosis

of a normal distribution (with unspecified parameters), does not reject H0 for either

of the two samples. This means that, according to the KS test, the resulting ST ’s are

not lognormal in either case, whereas according to JB, both samples follow lognormal

distributions.

Lastly, I fit a multitude of distributions to the data using the allfitdist.m function written

by Mike Sheppard. The results here were also rather strange. The best fit for MC was

a Birnbaum-Saunders distribution, although the lognormal fit had the same value of

log-likelihood and the same values for the three information criteria (AIC, BIC, AICc)1

1For details regarding the information criteria as well as a brief description of the allfitdist.m function,
check Appendix.
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when compared to the best fit, so we may well consider the best fit to be a lognormal.

Figure 2.7: Fitted distributions of ST (MC).

Distribution Parameter 1 Parameter 2

Birnbaum-Saunders β = 102.0135 (scale) γ = 0.1000 (shape)
Inverse Gaussian µ = 102.5240 (scale) λ = 1.022×104 (shape)
Lognormal µ = 4.6251 (log location) σ = 0.0999 (log scale)

Table 2.2: Fitted distributions to ST (MC) and their estimated parameters.

Similar findings appear when running the analysis for the AV sample of ST . Here, the

lognormal distribution seems to be the first choice, and one can notice how close the

parameters are to those from the MC sample, especially when comparing the lognormals.

One detail which seems to come up often is that the AV sample creates a more compact

(i.e more density in the center) range than that of the MC, as noted earlier in the Q-Q

plots. This is a result that is to be expected, since the AV method spreads the prices in

a more even way by definition. This leads me to believe that even more simulations may

be required to achieve a good behavior just from the MC method, which is unfortunately

outside the possible range of computational abilities for my hardware.
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Figure 2.8: Fitted distributions of ST (AV).

Distribution Parameter 1 Parameter 2

Lognormal µ = 4.6052 (log location) σ = 0.1021 (log scale)
Birnbaum-Saunders β = 100.0000 (scale) γ = 0.1022 (shape)
Inverse Gaussian µ = 100.5221 (scale) λ = 0.9602×104 (shape)

Table 2.3: Fitted distributions to ST (AV) and their estimated parameters.

Due to the findings in page 12, I conclude that the AD test I used appears to be too time

consuming (and possibly unstable) for usage in large data. Therefore I cannot conclude

with certainty a sufficiently good value for N given the machine I use, at least with the

tests and methods conducted so far. Note however that this applies not only to AD but

the whole variety of tools used above. Thus, the results of the two next sections are not

definitive values for N , rather different pieces of the same puzzle.

2.4 Epps-Singleton test

2.4.1 Description

The Epps-Singleton test (ES) [5] has the same null hypothesis with AD, but approaches

the problem in a different way. In statistical testing, the p-value of a test is the prob-

ability of falsely rejecting H0 (in this case that both samples are drawn from the same
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population). The ES test checks for discrepancies not by comparing the ecdf’s F1 and F2

but their Fourier transforms instead, i.e the empirical characteristic functions (cf) φ1(t)

and φ2(t), and one of its advantages is that it belongs in the class of omnibus moment

tests, which assess simultaneously whether skewness and kurtosis of the data samples

are consistent with each other (in the univariate case, the assessment is done against the

target distribution). For more details on this and the next page, please check [6].

Remark: One important arising issue is that the application of the ES test requires all

observations to be independent, both within and across the samples. The later condition

is easily met: the matrices generating the simulations for MC and AV are independent

from one another by design. The first condition, however, is more problematic, since the

nature of the AV method makes the corresponding sample inherently dependent on itself

(we generate the first half of the paths and fill the remaining half by inverting the first

one). Despite this, I believe it is not a breach of logic to apply the test nevertheless, since

we are hoping to achieve a ”pseudo-independence” after sufficiently many simulations

with the AV method. In other words, it is expected that the test will reject H0 in the

beginning of the algorithm, since the dependence will create too much interference which

will mess up the distribution of ST . As indicated by the previous section though, this

interference might decay (depending on which test we ”ask”) after a certain point of

simulations, which is exactly what we are trying to pinpoint in the first place. The null

hypothesis of the test is

H0 : φ1(t) = φ2(t),−∞ < t <∞.

The cf is defined as φk(t) =
∫∞
∞ eitxdFnk

(x), where t ∈ R and i =
√
−1. If each sample

k has size nk, we denote by Xkm the m-th observation of sample k and by Fnk
(x) the

ecdf of that sample, so the (empirical) cf becomes

φnk
(t) =

∫ ∞
−∞

eitxdFnk
(x) = n−1k

nk∑
m=1

eitXkm

For its use, the ES test requires the use of a set of parameters t1, t2, . . . , tk (in this case

k = 2), which then need to be calibrated. In the original publication, Epps and Singleton

find that t1 = 0.4 and t2 = 0.8, which they then standardize by an estimate of scale σ̂,

so the test is implemented with t̃j = tj/σ̂, j = 1, 2 and σ̂ is the semi-interquartile range:

σ̂ =
1

4
[(YU + YU−1)− (YL + YL−1)] ,
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where Y is the merger of both samples, in ascending order, and L is the largest integer

(n1 + n2)/4 and U = n1 + n2 − L. Each Xkm requires a transformation by

g(Xkm) = (cos t1Xkm, sin t1Xkm, cos t2Xkm, sin t2Xkm)′ ,

which makes it into a 4 × 1 vector. We then average the transformed samples into gk,

k = 1, 2:

gk = n−1k

nk∑
m=1

g(Xkm).

The ES test statistic is given by

W = (n1 + n2)(g1 − g2)′Ω̂−1(g1 − g2),

where Ω̂ is an estimator of the covariance matrix of
√

(n1 + n2)(g1 − g2):

Ω̂ =
1

2

(Ŝ1 + Ŝ2)(n1 + n2)
2

n1n2
,

with Ŝ1 and Ŝ2 being the sample covariance matrices of g1 and g2, as given by

Ŝk = n−1k

nk∑
m=1

g(Xkm)g(Xkm)′ − gkg′k

We have that W ∼ Aχ2(r), where r =rank(Ω̂−1). As seen from its formula, W measures

the statistical difference between the ecdf’s of both samples, standardized by the covari-

ance matrices, with the cfs portraying the underlying distributions of the two samples.

Epps and Singleton compared their test with the Anderson-Darling, the Cramér-Von

Mises and the Kolmogorov-Smirnoff tests by performing simulations, and found [5] that:

� If the data used are realizations of discrete random variables, apply the ES test.

� If the data comes from a continuous distribution, the KS test usually has a lower

power than the ES test.

� Sometimes, the Anderson-Darling and the Cramér-von Mises tests can have a

higher power than the ES test.

2.4.2 Results

After running the algorithm with the ES test for (n,N) = (250, ·), the results are as

follows:
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N # of rejections Running time

1,000 3 12.878 s
2,000 2 23.615 s
5,000 1 59.116 s
10,000 5 118.644 s
20,000 16 235.804 s

Table 2.4: Analytics of the 2-samples Epps-Singleton test.

It is clear that the erratic behavior seen in the AD test continues here as well. The only

difference is that the running times are significantly lower, which allows for an increase

in the parameter values. Taking advantage of this, I increased n to 500, and the results

I got were

N # of rejections Running time

20,000 20 476.713 s
30,000 45 700.667 s
40,000 83 1177.321 s

Table 2.5: Extended analytics of the 2-samples Epps-Singleton test.

It is clear that these tests do not give the results that I was expecting to get; if anything,

one might say the give the exact opposite ones, adding further evidence to the notion

that the two samples cannot be of the same distribution. Even in this case though, it

is perhaps still possible to credit this discrepancy between tests to the relatively small

amount of simulations I was able to create for the analysis. In the end, what matters is

that the AV sample achieves lognormality, which seems to be the case, as the results in

section 2.3 show.

2.5 A numerical method

2.5.1 Description

The last method for comparing the samples is not an exact statistical test as the previous

cases were; instead, it is a more crude approach to the issue, but given the indecisive

answers from the previous sections, I felt the need to examine the problem from more

than one aspects, so I also included this method (provided to me by Robert Fitzner) for

the sake of curiosity.

If we define µMC = S̄T
MC and σMC =

1

N − 1

∑N
l=1(S

MC
T (l)− S̄TMC)2 (and identically

for the AV case), then we create the following metric:

Q =
|µMC − µAV |

max {σMC , σAV , |σMC − σAV |}
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and we preselect a certain numerical threshold q such that we deem the two samples as

being ”too different” whenever Q > q. Since this is an ”artificial” method, the tricky

part is to pick the proper value for q such that the analysis makes sense and that we do

not make mistaken decisions due to being off scale.

If we examine Q, we see that the term |σMC − σAV | will be very close to 0, so we

can ignore it. Since both σMC and σAV are strictly positive, we find that Q ∈ [0,∞).

We want the sample means to be as close to each other as possible (sample standard

deviations were found to relatively deviate very little), we would ideally see µMC ≈ µAV ,

so with enough simulations we will (hopefully) have Q→ 0+. Thus, a reasonable room

for error could be q = .05.

2.5.2 Results

Due to the lack of intensive statistical testing, this method allows for higher starting

values for (n,N). I start with n = 500 and reach the following numbers:

N # of rejections Running time

5,000 6 117.840 s
10,000 3 233.861 s
20,000 0 463.633 s
50,000 0 1175.881 s

Table 2.6: Analytics of the means comparisons for q = 0.05.

2.6 The final threshold

The table above shows convergence to happen rather quickly, so this method is the only

one that gave an explicit answer to the question we posed, namely that N = 20, 000.

This is thus the number from which I will start trying to apply the AV method in

order to calculate the ”right” price of the Asian call option. The efficiency of this lower

bound however will be tested in accordance to how different the prices resulting from

the algorithm will be. This means that a large increase of N may likely be required

before we start seeing a strong enough convergence.
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Implementing antithetic variates

The purpose of this chapter is rather straightforward: to take the low enough N from

the previous chapter and start increasing it into simulations until we get a good enough

price. This however presents us with other challenges. The results from Chapter 2

are deemed inconclusive, so the starting point of N = 20, 000 might be inefficient. In

addition, what defines a ”good enough” price? In other words, when does convergence

of the option price start being sufficiently good?

To answer these two issues, let’s look at them by the order in which they appear:

1. The methodology I will follow is to simulate k = 100 times for a given N (resulting

in 100 prices) and compare the prices with each other to see how much they differ.

For bigger values of N (where hopefully convergence has started to take effect). If

the value of N is too low, it will show up immediately by the distribution of the

prices: the ideal distribution is highly centered around the ”true” price with very

few deviations from it.

2. Obviously, convergence is in relation to this real price of the option I mention

above. The idea was to use real data, but Asian options are not traded in the

same volume as vanilla options, so an internet search on market prices for Asian

options gave back zero results (after consulting with Jonas Gudmundsson, Head

of Risk & Valuation Services at SEB, he told me that I would not be able to get

access to that kind of data from any public database). As such, it is not possible

to compare against a target value, and I am thus limited to checking statistical

properties of the results.

23
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Despite this, there are certain theoretical limits to the option price, which we can at least

check to see if the resulting prices make sense. Since a geometric average is always lower

than an arithmetic average ([12]), we know that a geometric Asian option’s price will be

a lower bound for that of the respective arithmetic one. In [1], Kemna & Vorst show that

the price of an arithmetic Asian option cannot be computed analytically because the

distribution of the arithmetic sum is unknown, which is not true for the geometric case,

for which they proceeded to find a closed-form solution. They also find that the price of

an average-value option will always be lower than that of the corresponding European

option, which comes as a result of S̄[0,T ] having reduced volatility in comparison with ST .

This means that even though I have no immediate value for which to check my results,

there is at least a range in which the prices should be, and both values of the range can be

computed analytically. Lastly, if the price vector components resulting from the larger

values of N have a known distribution, I will try to create a confidence interval for the

mean value C̄0(N) =
1

k

∑k
i=1C0(i,N). Convergence is considered to be achieved when

the prices have a maximum range of around 5%, i.e when max{C0(N)}−min{C0(N)} ≈
0.05.

The parameters used were

Name Value

T (time to maturity, starting at 0) 1 year
r (risk-free rate) 2%
σ (stock volatility) 20%
S0 (starting price of the stock) 100
K (strike price of the option) S0
n (nodes for the tree) 1000
k (repetitions for each value of N) 200

Table 3.1: Parameter values.

For these values, we have that the lower bound (as calculated by the Kemna-Vorst

method) and the upper bound of the corresponding European option (as calculated by

the famous Black-Scholes formula) for the arithmetic Asian call price are

[PriceKV, PriceBS] = [4.8633, 8.9160]

Of course, as described above, these two values serve simply as flags on whether or not the

computations are correct, but they do not offer any additional information regarding the

real price of the option, particularly since arithmetic averaging is used more frequently

in practice than geometric.

Let us now finally see how the algorithm works for a range of values for N .
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Starting at N = 20, 000, I find that the benefits of the AV method are already present.

When comparing with the MC method, the resulting samples come from the same

distribution (according to a 2-sample KS test) and after I ran a 1-sample AD test

on them individually, both samples seem to come from a normal distribution (with

unspecified parameters).

However, the AV method provides a shorter range of prices when compared to MC, and

their computational times were 299.7430 s for MC and 233.2455 s for AV. It should be

reminded here that the N one feeds in the code is the number of total simulations,

so the MC methods creates N total paths whereas the AV only N/2. Therefore, it

seems irrelevant from this point forward to examine the MC method, so after that I

only examine AV.

For N = 50, 000, the differences become even smaller, and normality is again not re-

jected. However, the distance between the highest and lowest price is 0.1323, so accord-

ing to the criterion named on p.24, we are still not close to a good enough solution.

To try and narrow down the price even more, I did three more repetitions of the code,

with N = {1, 2, 3} · 105. Normality starts becoming more and more accented in the

distribution of C0, but the running time also increases significantly. For N = 2 · 105, the

difference max(C0)−max(C0) = 0.0806 which is still not close enough, and the running

time was almost 42 minutes, so the trial at 3 ·105 is probably the limit before the system

starts running out of memory.
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The results of the last run of the algorithm show a maximum difference of .0604 between

the computed prices which can be considered reasonable enough, therefore we see that

a substantial amount of computations is required to sufficiently zero in on the price of

an Asian call (MATLAB running time for N = 3 · 105 was approx. 45 minutes).

Figure 3.1: Distribution of prices with a fitted normal.

The AD test confirms here as well that the prices follow a normal distribution, with

µ̂ = 5.0495 and σ̂ = 0.0121.

Since the arithmetic Asian options do not have a closed-form solution, one might expect

that different institutions value the same option in a different way, resulting in different

prices. Therefore, we might consider the price of the option itself as a random variable.

Another assumption that sounds reasonable is that any institution who would sell such

a product can afford to perform at least 20,000 simulations as I did above, at which

point normality was already present (although this number may vary depending on the

parameters). This means that we can treat the price as a random variable coming from

a normal distribution, but with unknown σ2, since as we saw, different values of N

provided different ranges for the price.
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We can thus construct a 100(1-α)% confidence interval on µ by

x̄− t1−α/2,n−1
s√
n
≤ µ ≤ x̄+ t1−α/2,n−1

s√
n
,

and in this case, n = k, x̄ =
1

k

∑k
i=1C0(i), s = σ̂. For α = .01, the resulting CI for the

mean value of the option price is

[5.0472, 5.0517]

The following picture illustrates how convergence occurs as a result of N ↑.
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Conclusions

In general, the method was found to provide the desired results, but not in the exact

way I was looking for. While I was expecting to find that, given enough simulations, the

MC and the AV methods of generating paths would produce results with statistically

identical distributions, I found out that the opposite actually happens: when concerned

about the distribution of ST , the two methods produce different distributions, which MC

usually generating more density in the tails – a result which is to be expected, given the

construct of AV which offsets extreme movements towards any direction by mirroring

them the other way.

One suggestion for future work would be to examine the distribution of S̄[0,T ] instead of

simply ST over the two methods, since it is the average that matters and not the final

price when computing the price of the Asian option. In addition, one important factor I

found out is that the parameters (n,N) cannot be separated indefinitely: for any given

n, there is a certain range of values for N for which the analysis can produce meaningful

results. This happens because, in the recombining binomial tree such as the one I used,

the number of possible outcomes for ST is n + 1. In other words, it is excessive to

perform e.g. N = 10, 000 simulations when n = 50, just as it is inefficient to perform

N = 1, 000 simulations when n = 250. The relationship between these two parameters

has to do with how quickly the possible value spectrum for ST is covered, i.e when does

the sample size become sufficiently large (at which point one should increase n to n+ δ,

since increasing N for the initial value of n would offer no useful information and would

be just a waste of resources). This is a question that can be examined on future work by

fixing n0, testing the distribution of ST for different N ’s, and after finding the minimum

N for which said distribution is sufficiently good, increasing n0 and repeating. Note

that this is not a trivial matter void of applications: the value of T directly influences

28
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the starting value of n (n = 250 is not the same for T = 1 and T = 10 years), and there

are plenty of options, both vanilla and exotic, that have long-term maturities.

Lastly, the simulations throughout the entire analysis were generated using MATLAB com-

mands that generate pseudorandom numbers. An alternative approach to this is the

quasi-Monte Carlo method, which uses low-discrepancy sequences (also known as quasi-

random or sub-random sequences). As the name suggests, a low-discrepancy sequence

is one with the property that for all values of N (note that this is not the notation I use

to denote simulation size), its subsequence α1, . . . , αN has a low discrepancy, which is

defined for the sequence {s1, s2, s3, . . .} with respect to the interval [a, b] as

DN = sup
a≤c≤d≤b

∣∣∣∣ |{s1, . . . , sN} ∩ [c, d]|
N

− d− c
b− a

∣∣∣∣ .
The notation |{s1, . . . , sN} ∩ [c, d]| denotes how many of the first n elements of the

sequence are between c and d. Loosely speaking, the discrepancy of a sequence is low

if the ratio of points in the sequence falling into an arbitrary set B is approximately

proportional to the measure of B. The advantage of using these sequences is a faster

rate of convergence: quasi-Monte Carlo has a rate of convergence close to O(1/N) while

the respective Monte Carlo method rate is O(1/
√
N).

Figure 4.1: 256 points from a pseudorandom number source to the left, and Sobol
sequence to the right (red=1,. . .,10, blue=11,. . .,100, green=101,. . .,256). Points from

Sobol sequence are more evenly distributed. Image taken from Wikipedia.
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MATLAB code & further notes

allfitdist.m

A direct link to download the script is found in the bibliography. The function takes a

vector of the data to be analyzed as input (with specification as ”discrete” or ”continu-

ous”, depending on the type of data), and then fits a wide range of known distributions

against the data, ordering the results by three information criteria presented below:

1) AIC. Introduced in [13], the Akaike Information Criterion is a measure of the relative

quality of statistical models, given a set of data. It offers a relative estimate on the

information that is lost when a given model is chosen as a representative of the ”true”

process that generates the data. If we have a certain statistical model for some data,

with L the maximized value of the likelihood function and k the number of estimated

parameters in the model, then the AIC value of the model is

AIC = 2k − 2 ln(L)

Given a set of candidate models for the data, the model to choose (according to the

criterion) is the one with the minimum AIC value. Thus, we can say that AIC exam-

ines the relationship between goodnes-of-fit and amount of parameters, penalizing the

model when the former is not offset by the later (in a standard linear regression, more

explanatory variables always increase the variation of outcomes explained by the model;

AIC examines whether or not more variables are worth this increase they provide).

2) AICc. The corrected version of the AIC was originally introduced in [14] for linear

regression only, but instigated a series of works that started with [15] and extended the

cases in which it could be applied. AICc is a correction of the AIC for finite sample sizes,

and its formula depends on the statistical model at hand. If the model is univariate,

30
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linear, and has normally-distributed residuals, the formula is

AICc = AIC +
2k(k + 1)

n− k − 1

where n denotes the sample size and k is the number of parameters as before. As

the formula demonstrates, AICc is simply AIC but with a greater penalty for extra

parameters, thus rewarding parsimonious models. The use of AICc over AIC is preferred

when n is not many times larger than k2, otherwise the probability of overfitting (i.e.

selecting models with too many parameters) is significant. Generally, as AICc converges

to AIC as n ↑, it should be used regardless.

3) BIC. Contrary to the two previous criteria who rely on classical statistics (frequentist

inference) to maximize the likelihood function, the Bayesian Information Criterion (or

Schwarz criterion) [16] uses Bayesian inference to calculate that quantity in its formula:

BIC = −2 ln(L̂) + k ln(n)

where L̂ is the maximized value of the likelihood function of the model M , i.e. L̂ =

p(x|θ̂,M), and θ̂ are the parameter values that maximize the likelihood function. The

BIC is an asymptotic result derived under the assumptions that the distribution of the

data is from the exponential family, and it is used in model selection problems where

adding a constant to the BIC does not change the result.

The two main limitations of the BIC are that

1. the approximation under which it is derived is only valid in cases where n is much

larger than k (number of parameters in the model).

2. it cannot handle complex collections of models as in the variable selection problem

in higher dimensions.

Analytic descriptions of these criteria are beyond the scope of this thesis. For further

reading on the topic of information criteria, there is a highly extensive database of

academic articles available on the Internet, such as those cited in the bibliography.
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Programming scripts

Below are the scripts that I wrote for my analysis. Sources for the functions I didn’t

write myself (such as the 2-sample AD and ES tests, and alldistfit.m) can be found in the

bibliography. Lines 204 - 225 of the code can be found on the “Pricing Asian Options”

page of the Financial Instruments Toolbox documentation in MATLAB.

1 clc; clear all; close all;

2 e = exp(1); alpha = .01; % level of signifigance for the test

3

4 T = 1;

5 r = .02;

6 sigma = .2;

7 s = 100;

8 K = s;

9

10 n = 500;

11 N = 10000;

12

13

14 S A = [s*ones(1,N); zeros(n,N)];

15 S B = S A;

16 %F = zeros(N,1);

17 dt = T/n; % <-- important: the smaller the T, the lesser the n needed

18 u = eˆ(sigma*sqrt(dt));

19 d = 1/u;

20 q = (eˆ(r*dt)-d)/(u-d);

21 Q = binornd(1,q,[n,N]);

22 B = binornd(1,q,[n,N/2]);

23 J = ones(n,N/2);

24 %AV = [B(:,1:N/2),J-B(:,1:N/2)];

25 AV = [B, J-B];

26 for j=1:N

27 for i=1:n

28 Z = Q(i,j);

29 S A(i+1,j) = S A(i,j)*(u*Z+d*(1-Z));

30 Y = AV(i,j);

31 S B(i+1,j) = S B(i,j)*(u*Y+d*(1-Y));

32 end

33 %F(j) = max(mean(S(:,j))-K,0);

34 end

35 SA = S A(end,:)';

36 SB = S B(end,:)';

37 corr(SA(1:N/2),SA(N/2+1:end))

38 corr(SB(1:N/2),SB(N/2+1:end))

http://se.mathworks.com/help/fininst/index.html
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39 %X = [SA ones(N,1);SB 2*ones(N,1)];

40 r1 = log(SA);

41 subplot(1,2,1)

42 hist(r1,50)

43 grid on

44 r2 = log(SB);

45 subplot(1,2,2)

46 hist(r2,50)

47 grid on

48 figure

49 subplot(1,2,1)

50 hist(SA,50)

51 title('Independent paths histogram for S T')

52 grid on

53 subplot(1,2,2)

54 hist(SB,50)

55 title('Antithetic variates histogram for S T')

56 grid on

57

58 function [Q] = paths(n, N, alpha)

59 % N must be an even number, and greater than 8;

60 if mod(N,2) == 0

61 e = exp(1);

62 T = 1; r = .025; sigma = 0.2; s = 100;

63 S A = [s*ones(1,N); zeros(n,N)];

64 S B = S A;

65 dt = T/n;

66 u = eˆ(sigma*sqrt(dt));

67 d = 1/u;

68 q = (eˆ(r*dt)-d)/(u-d);

69 P = binornd(1,q,[n,N]);

70 B = binornd(1,q,[n,N/2]);

71 J = ones(n,N/2);

72 AV = [B(:,1:N/2),J-B(:,1:N/2)];

73 for j=1:N

74 for i=1:n

75 Z = P(i,j);

76 S A(i+1,j) = S A(i,j)*(u*Z+d*(1-Z));

77 Y = AV(i,j);

78 S B(i+1,j) = S B(i,j)*(u*Y+d*(1-Y));

79 end

80 end

81 SA = S A(end,:)';

82 SB = S B(end,:)';

83 %[¬, Had] = ADtest2(S1, S2, alpha); % AD test

84 %[¬, Hes] = EStest2(S1, S2, alpha); % ES test

85 %[h, p, k2stat] = kstest2(S1,S2,'Alpha',alpha); % KS test

86 muMC = mean(SA); muAV = mean(SB);
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87 sigmaMC = std(SA); sigmaAV = std(SB);

88 M = [sigmaMC, sigmaAV, abs(sigmaMC-sigmaAV)];

89 F = abs(muMC-muAV)/max(M);

90 if F > alpha

91 Q = 1;

92 else

93 Q = 0;

94 end

95 else

96 error('The number N of simulations must be even');

97 end

98 end

99

100 [f1,y1] = ecdf(SA);

101 [f2,y2] = ecdf(SB);

102 %[f3,y3] = ecdf(x);

103 figure

104 A = plot(y1,f1,'b-');

105 hold on

106 B = plot(y2,f2,'r-');

107 legend([A B],'S T (MC)','S T (AV)','Location','NE')

108 grid on

109 [parmhat, parmci] = lognfit(SB);

110 pd = makedist('Lognormal','mu',parmhat(1),'sigma',parmhat(2));

111 figure

112 qqplot(SA,SB)

113 grid on

114 figure

115 qqplot(SA,pd)

116 grid on

117

118 A = mean(S A(:,1:end));

119 B = mean(S B(:,1:end));

120 figure

121 subplot(1,2,1)

122 hist(A,50)

123 grid on

124 subplot(1,2,2)

125 hist(B,50)

126 grid on

127 figure

128 qqplot(A,B)

129 grid on

130

131 [D1, PD1] = allfitdist(SA, 'PDF');

132 [D2, PD2] = allfitdist(SB, 'PDF');

133

134 [Dr1, PDr1] = allfitdist(r1, 'PDF');
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135 [Dr2, PDr2] = allfitdist(r2, 'PDF');

136

137 [kek1, kek2] = normfit(r1);

138 j = random(noru,800000,1);

139 figure

140 qqplot(r1,j)

141 grid on

142 [kek3, kek4] = normfit(r2);

143 nyt = random(noru,800000,1);

144 figure

145 qqplot(r1,nyt)

146 grid on

147

148 muMC = mean(SA); muAV = mean(SB);

149 sigmaMC = std(SA); sigmaAV = std(SB);

150 M = [sigmaMC, sigmaAV, abs(sigmaMC-sigmaAV)];

151 Q = abs(muMC-muAV)/max(M)

152

153 function V0 = mc asian call(K,s,r,sigma,T,n,N)

154 e = exp(1);

155 S = [s*ones(1,N); zeros(n,N)];

156 F = zeros(N,1);

157 dt = T/n;

158 u = eˆ(sigma*sqrt(dt));

159 d = 1/u;

160 q = (eˆ(r*dt)-d)/(u-d);

161 Q = binornd(1,q,[n,N]);

162 for j=1:N

163 for i=1:n

164 Z = Q(i,j);

165 S(i+1,j) = S(i,j)*(u*Z+d*(1-Z));

166 end

167 F(j) = max(mean(S(:,j))-K,0);

168 end

169 V0=eˆ(-r*T)*mean(F);

170 end

171

172 function V0 = av asian call(K,s,r,sigma,T,n,N)

173 e = exp(1);

174 S = [s*ones(1,N); zeros(n,N)];

175 %F = zeros(N,1);

176 dt = T/n;

177 u = eˆ(sigma*sqrt(dt));

178 d = 1/u;

179 q = (eˆ(r*dt)-d)/(u-d);

180 B = binornd(1,q,[n,N/2]);

181 J = ones(n,N/2);

182 AV = [B(:,1:N/2),J-B(:,1:N/2)];
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183 for j = 1:N

184 for i = 1:n

185 Z = AV(i,j);

186 S(i+1,j) = S(i,j)*(u*Z+d*(1-Z));

187 end

188 end

189 Payoff = max(mean(S)-K,0);

190 V0 = exp(-r*T)*mean(Payoff);

191 end

192

193 clc; clear all; close all;

194 e = exp(1);

195 k = 200;

196 T = 1;

197 r = .02;

198 sigma = 0.2;

199 s = 100;

200 K = s;

201 n = 1000;

202 N = 300000;

203 dt = T/n;

204 %% Create RateSpec and StockSpec

205 %this section can be found on the "Pricing Asian Options" help page...

206 ... of MATLAB's documentation for the Financial Instruments Toolbox

207 StartDates = '25-August-2015';

208 EndDates = '25-August-2016';

209 Rates = r;

210 Compounding = -1;

211 Basis = 1;

212

213 RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', ...

StartDates, ...

214 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding, ...

'Basis', Basis);

215 StockSpec = stockspec(sigma,s);

216

217 % Define the Asian option

218 Settle = '25-August-2015';

219 ExerciseDates = '25-August-2016';

220 Strike = K;

221 OptSpec = 'call';

222 % Kemna-Vorst closed form model

223 PriceKV = asianbykv(RateSpec, StockSpec, OptSpec, Strike, Settle, ...

ExerciseDates);

224 PriceLevy = asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...

225 ExerciseDates);

226 PriceBS = blsprice(s, K, r, T, sigma);

227 %% Run the Antithetic Variates model
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228 C = [];

229 tic

230 C0 = zeros(k,1);

231 for i = 1:k

232 C0(i) = av asian call(K,s,r,sigma,T,n,N);

233 end

234 toc

235 figure

236 hist(C0,40)

237 grid on

238 C = [C C0];

239 [A, B] = size(C);

240 Nvec = [2*10ˆ4 5*10ˆ4 10ˆ5 2*10ˆ5 3*10ˆ5];

241 figure

242 for i = 1:B

243 for j = 1:k

244 hold on

245 scatter(Nvec(i),C(j,i),[],'k')

246 end

247 end

248 %plot(PriceKVvector,'r')

249 hold off

250 grid on

251 title('Convergence of the price value')
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