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Abstract

Public health authorities continuously monitor reported disease
cases, looking for patterns that suggest the beginnings of an outbreak.
Such analysis increasingly has to be automatized, not least due to the
sheer volume of data that is generated across hospitals and clinics
on a daily basis. Scan statistics are statistical methods for detecting
disease outbreaks in geographic and temporal clusters, which have seen
great development in the last 20 years. This thesis contributes to this
development by proposing a scan statistic based on the zero-inflated
Poisson (ZIP) distribution, that draws inspiration from a recent article
by Cançado et al. (2014). The ZIP distribution is appropriate when
some local health centers lack the facilities to diag- nose a given disease
or when reported counts are biased downwards; the latter could be
due to e.g. underreporting or the lack of access to medical care for
uninsured individuals. The performance of the proposed ZIP scan
statistic is compared to two other scan statistics, the comparison made
on both simulated and real outbreak data. Results from the simulation
study indicate that the proposed scan statistic outperforms the two
others, being able to more accurately detect outbreaks. Furthermore,
an outbreak of the diarrheal disease cryptosporidiosis in a German
city is analyzed; this outbreak was thoroughly investigated in a recent
article by Gertler et al. (2015). A final contribution of the thesis is to
provide free software in the form of an R package, scanstatistics, which
is available online. This package complements existing R packages for
disease surveillance and outbreak detection, such as the surveillance
package (Höhle et al., 2015).
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E-mail: benkjellson@gmail.com. Supervisor: Michael Höhle.
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1 Introduction

Rapid detection of emerging disease outbreaks is of high importance to public health
authorities, as an improvement of response time by weeks, days, or even hours could
save the lives of many, or simply nip the outbreak in the bud. Health authorities
conducting prospective disease surveillance hope to accomplish this feat by moni-
toring reported counts of disease cases or other non-diagnostic data collected at a
local level, searching for spatial, temporal, or spatiotemporal clusters where these
quantities are higher than expected. The aim of this thesis is to present and eval-
uate a novel method for spatial and spatiotemporal cluster detection, based on a
recent article by Cançado et al. (2014). The present chapter will provide a simple
motivating example of the type of problem the method tries to solve, and hence set
the scene for the following chapters.

Germany

Figure 1.1 Map of the 402 districts of Ger-
many, with the city of Halle
shaded in black.

Consider the outbreak of the disease
cryptosporidiosis that occurred in Au-
gust of 2013 in the German city of
Halle (Saale), following the flooding
of the river Saale. This outbreak
was studied in detail by Gertler et al.
(2015), who identified the disease vec-
tor as Cryptosporidium hominis. Cryp-
tosporidium is the microscopic para-
site that causes cryptosporidiosis, a dis-
ease symptomized by watery diarrhea,
stomach cramps, and vomiting (CDC,
2015). Figure 1.1 on the right shows a
map of Germany and its 402 districts
(Kreise), with the city of Halle marked
in black. In each of these districts,
the weekly number of cryptosporidiosis
cases reported to local health authorities
is relayed to the Robert Koch Institute,
which performs disease surveillance at a
federal level.
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Figure 1.2 shows the time series of weekly counts of cryptosporidiosis (Cryptosporid-
ium) reported to local health authorities in each of Germany’s 402 districts, super-
imposed in the same plot.
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Figure 1.2 Time series of reported cryptosporidiosis cases for all 402 districts of
Germany; each line is a time series for a single district, but most overlap
at zero at all time points. The clear outlying line shows the reported
cases for the city of Halle (Saale).

Already in week 32, it is obvious from the figure that an outbreak is emerging;
as detailed by Gertler et al. (2015), the outbreak eventually lead to 167 identified
cases of cryptosporidiosis in total. In conducting prospective disease surveillance,
concluding that an outbreak is emerging is something we would like to do as early
as possible, so that appropriate countermeasures can be taken. However, detecting
an outbreak may not always be so easy. Consider for example the norovirus, also
known as the winter vomiting bug: the time series of weekly counts for this disease,
for all German districts, are plotted for the years 2012–2014 in Figure 1.3.

It is not at all obvious from Figure 1.3 if and when an outbreak—in the sense of
unexpectedly many cases—has occurred. Cases do not seem so rare that each is
noteworthy on its own, unlike the situation for cryptosporidiosis, but zero counts
are still abundant. Further, there are clear seasonal patterns in the data, so that
however many cases one may expect to see in each week changes over the year.
When something like a flooding of a river or the contamination of locally grown and
consumed produce happens, diseases may appear quickly in nearby districts. Local
health authorities may not always be quick enough to see the link between cases
of the same disease, particularly if the increase in cases is not suspiciously large,
or if communication between different hospitals, clinics, or public health authorities
is not good enough. To overcome these difficulties—to distinguish rising outbreaks
from seasonal effects or expected random fluctuations, and to lessen the demands
on communication between local health authorities—we wish to have statistical
methods that can be employed by authorities on a national level, using the counts
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Figure 1.3 Reported cases of norovirus for all 402 districts of Germany; each line
shows the weekly number of reported cases for a single district.

reported by each district. Such methods exist, and among them is a collection of
methods called scan statistics (Glaz et al., 2009). The primary aim of this thesis
is to introduce a novel scan statistic based on the recent work by Cançado et al.
(2014), suitable for zero-inflated data. The use of zero-inflated distributions may
be appropriate when some local health centers lack the facilities to diagnose a given
disease, thus reporting counts of zero by default. These distributions may also be
appropriate when reported counts are biased downwards, which could be due to e.g.
underreporting or the lack of access to medical care for uninsured individuals. A
secondary goal of the thesis is to provide freely accessible software that implements
the proposed scan statistic and others.

1.1 Outline

The next chapter of this thesis will formalize the outbreak detection problem we
wish to solve by introducing the suitable mathematical notation. Scan statistics
will then be introduced as a methodology suitable for solving this problem. Chapter
2 will present an overview of scan statistics, describing in general terms the different
constituents of the methodology and different variations in the actual statistical
methods. Examples of two particular scan statistics will also be given with some
mathematical and statistical detail. Chapter 3 then presents two other scan statistics
in even further detail. The first of these is given as object of comparison to the
second, which is the novel contribution of this thesis. In Chapter 4, one of the scan
statistics presented in Chapter 2 and the two presented in Chapter 3 are tested on
simulated data and their performances compared. In Chapter 5, a case study is
conducted by applying these scan statistics to the cryptosporidiosis outbreak data
mentioned previously. Lastly, a discussion of the results and merits of the proposed
scan statistic is given in Chapter 6.
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2 Outbreak Detection and Scan
Statistics

The World Health Organization (2015) defines a disease outbreak as “the occurrence
of cases of disease in excess of what would normally be expected in a defined com-
munity, geographical area or season”. The outbreak detection problem considered
in this thesis emphasizes the last part of that definition: if there is an outbreak,
we want to know where it is occurring, and maximize our chances to detect it by
accounting for temporal patterns in our analysis. We look for localized and emerging
outbreaks, meaning those that are concentrated in a small part of a large area and
that have begun recently and that are still active at present. If we can detect these
types of outbreaks early, we can also stop them early, before they have spread to
a wider area. As implied, the analysis is prospective rather than retrospective—our
aim is not to detect outbreaks that have come and gone, but to find those that pose
a threat now or soon, using the currently available data.

The section below establishes the mathematical notation that formalizes this prospec-
tive outbreak detection problem, ending with a discussion of what qualities a statis-
tical method aimed to solve it should have. Scan statistics are then introduced—a
collection of methods or simply a methodology whose procedures possess these qual-
ities. The introduction will define scan statistics and provide a couple of examples
which will then serve as references when the various details of the methodology are
discussed, such as how hypothesis testing is conducted. With the overview of scan
statistics that the introduction provides, the reader will be prepared for Chapter 3,
in which the statistical methods for two particular scan statistics are presented in
greater detail.

2.1 Problem Description and Notational Setup

Our starting point is a large study area, such as a country, divided into many smaller
regions. These may be counties, municipalities, or other such administrative units
defined by geographical boundaries. We enumerate and label these regions by i =
1, . . . ,m in no particular order, so that the study area is given by A = {1, . . . ,m}.
Supposing that we are interested in detecting outbreaks of a specific disease, we
assume that health authorities in each region i reports the number of cases yit of
this disease at regular (discrete) intervals of time. This implies some amount of
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aggregation, as information about the exact time and geographical location of the
contraction or onset of the disease is lost. As exemplified in the article by Kleinman
et al. (2005) this aggregation may in some cases be mandatory due to privacy reasons
(the patients’ addresses were known in that study), and will most certainly simplify
the computational aspects of the analysis. Furthermore, any complications due to
reporting delays in the counts are ignored.

Since we look for emerging outbreaks in sequential fashion, it is convenient to count
time backwards by denoting the most recent period for which we have data by
t = 1, data from two periods ago by t = 2, and so on. Our interest lies in detecting
outbreaks that have been active for a period of time measured in days or weeks rather
than months or years. For this reason, we put an upper limit on the durations of
the outbreaks, and consider only those that have a duration of say T weeks or less,
if the unit of time is one week. We thus consider only outbreaks active in time
intervals Iu = [1, u], with u ∈ {1, . . . , T}. Because we are want to find emerging
outbreaks, which plausibly have not had the time to spread to a wider geographical
area, we are justified in only trying to detect outbreaks that begin simultaneously
in all (of the few) affected regions. There is another reason to restrict our search
in this way: trying to detect an outbreak that starts at different time points in the
different regions affected by it means a much longer computation time—time we
may not have in a disease surveillance setting. In addition to the recent data we use
for detecting outbreaks, we will assume that we have access to a baseline dataset of
counts for all regions in A. This data is assumed to be free from outbreaks, so that
it can be used to estimate parameter values for the distributions of the case counts
yit under ‘normal conditions’, still accounting for regional and temporal variation in
these parameters.

When a disease outbreak occurs, it manifests as higher-than-expected case counts
in the regions affected by the outbreak, for its duration up to the present. The
detection problem consists of concluding that there is an outbreak, and identifying
the zone Z ⊂ A = {1, . . . ,m} of regions affected by it, along with its duration
u ∈ {1, . . . , T}. That is, we want to identify the space-time window (or cluster)
W = Z × Iu containing the outbreak. Aside from the question of what qualifies
as ‘higher than expected’, it is not at all clear how to identify the outbreak zone
Z out of all 2m possible subsets of A. One idea would be to conduct a binary
hypothesis test for each of the m regions separately—the null hypothesis stating
that there is no outbreak in the region, and the alternative hypothesis stating that
there is—and take as the outbreak zone those regions whose null hypotheses are
rejected. However, such a procedure may well lead to a zone Z consisting of regions
that are geographically scattered, which is at odds with our pursuit to find localized
disease clusters. Further, if a classical testing procedure is used, conducting m tests
and using a conventional significance level such as α = 0.05 for each test is likely
to result in a large number of false positives, as the number of regions m is often in
the hundreds. Conversely, to paraphrase the argument given by Neill (2006, p. 244),
counts that are two standard deviations above the mean in multiple separate regions
may not seem indicative of an outbreak when considered on their own, but if these
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regions all lie closely together we may well suspect that an outbreak is emerging in
that area. The point is that we might gain increased detection power if we consider
multiple regions jointly in our analysis, but this would seemingly aggravate the
multiple testing problem as we now have not m but up to as many as 2m zones to
test. Of course, many of these 2m zones consist of geographically dispersed regions
and are thus of lesser interest, but even if we only consider zones that satisfy some
proximity constraints their number may still be large enough to make an analysis
computationally infeasible. What we would like is a outbreak detection methodology
that 1) avoids the multiple testing problem, 2) can use the spatial information in
our data, and 3) is computationally efficient. The next section gives an introduction
to the scan statistics methodology, which has these qualities.

2.2 Scan Statistics

Scan statistics—a name owed to the fact that a window W is used to scan over
the domain of interest in search of anomalous clusters—originated with Naus (1963,
1965a,b), who studied the clustering of points on a line and in the plane. Much later,
the papers by Kulldorff & Nagarwalla (1995) and Kulldorff (1997) brought scan
statistics closer to their current form, by formalizing the test statistics used and and
generalizing the permissible shapes of the scanning windows. Scan statistics have
been used not only in disease surveillance settings (as in e.g. Kulldorff, 2001; Neill
et al., 2005; Takahashi et al., 2008), but has also found applications in criminology
(Duczmal & Assuncao, 2004), astronomy (Moni Bidin et al., 2010), and medical
imaging (Surti & Karp, 2010), to name a few examples.

Neill & Moore (2006, p. 245) give a brief description of how scan statistics are
used to detect spatial or spatiotemporal clusters, which essentially amounts to the
following: for each spatial or spatiotemporal window W—however these are found
or selected—we assign a ‘score’ λW such that the plausibility of an outbreak in W
increases with the value of the score. If we were to look at each individual window
W and deem it to be an outbreak cluster if its score exceeds some fixed threshold,
we would see a lot of false alarms if this threshold is set too low. On the contrary,
if we set it too high our ability to detect true outbreaks diminishes, since only the
truly large outbreaks (with large scores) will exceed the threshold. But since we
are mainly focused on detecting a single outbreak cluster, another method becomes
apparent. We define the scan statistic as the maximum of all scores evaluated over
all possible windows, and then use the distribution of this maximum under the null
hypothesis of no outbreaks in the study area to compute the probability of obtaining
a value at least as large as the observed maximum. If this p-value is smaller than the
chosen significance level, we identify the most likely cluster (MLC) as the window
W that has the highest score. Secondary outbreak clusters, of particular interest
those whose spatial components do not overlap with those of the MLC, can be found
in a similar manner. In what follows, we will review—using statistical terms—the
different constituents of the scan statistics methodology, supplementing the brief
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explanation above by two concrete examples of scan statistics. The next sections
provide the details needed to understand the statistical methods of the next chapter,
and will also serve as a small survey of the literature on scan statistics.

2.2.1 Population- vs. Expectation-Based Scan Statistics

Part of the definition of an outbreak given earlier was that the counts we observe are
higher than expected. But how do we determine what to expect? Neill (2006, pp. 33–
35) distinguishes between two major approaches: population-based scan statistics
and expectation-based scan statistics. We begin by describing and exemplifying the
first kind in a purely spatial setting, as this is the setting in which population-based
scan statistics are most often used, and should moreover make the spatiotemporal
setting discussed next easier to understand. We then do likewise for expectation-
based scan statistics, but in a spatiotemporal setting, and we put some extra detail
into the example of such a scan statistic as it will serve as a base of comparison in
later chapters of the thesis.

2.2.1.1 Population-Based Scan Statistics

Population-based scan statistics were proposed in the seminal article by Kulldorff &
Nagarwalla (1995) and have been used in many articles since, primarily for cluster
detection in the purely spatial setting (and presented as such below). Here, it is
assumed that the size of the population at risk—the denominator—is known for
each region. After a possible adjustment of this denominator for covariates such as
season and whether a region is rural or urban, the null hypothesis in the population-
based approach essentially states that counts in each region are generated from a
distribution with mean proportional to the denominator, and that this proportion-
ality factor is the same for all regions. To exemplify, let us consider the Poisson
scan statistic devised by Kulldorff (1997), which can be considered an archetype of
all scan statistics proposed in the years since. Its core assumption is that the counts
{Yi}mi=1 (the random variables corresponding to the observed counts {yi}mi=1) are in-
dependently distributed according to a Poisson distribution; the null hypothesis is
then

H0 : Yi ∼ Poisson(q · ei), for all i = 1, . . . ,m, (2.2.1)

where q is the proportionality factor common for all regions, and ei is the known
population at risk for region i, possibly adjusted for covariates. Here and below, the
mean parametrization of the Poisson distribution is used, so that if Y ∼ Poisson(α),
then P(Y = y) = e−ααy/y!, for y = 0, 1, . . ..

The alternative hypothesis states that there exists a spatial zone Z for which the
shared proportionality factor for the regions in it is larger than that for the regions
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outside it. For Kulldorff’s scan statistic, as it is often called, this translates to

H1 : Yi ∼

{
Poisson(qZei), i ∈ Z

Poisson(qZei), i ∈ Z
(2.2.2)

for some zone Z ⊂ A = {1, . . . ,m}, with qZ > qZ and Z being the complement of
Z in A. The zone Z is here seen as an unknown parameter, and can be estimated
using a profile likelihood approach: for a given Z, maximum likelihood estimates
of qZ and qZ are calculated, and the likelihood is then maximized over all different
zones Z considered (Patil & Taillie, 2004, pp. 185–186). To continue the example
of Kulldorff’s scan statistic, define the quantities C =

∑m
i=1 yi and B =

∑m
i=1 ei,

and let CZ and BZ be the corresponding sums over the regions in a given zone Z,
and finally let CZ = C − CZ , BZ = B − BZ . Kulldorff (1997, pp. 1486–1487) then
shows that the maximum likelihood estimate of q is C/B, and the MLEs of qZ and
qZ are given by CZ/BZ and CZ/BZ respectively, provided CZ/BZ > CZ/BZ . If
this inequality holds, the ratio of alternative to null likelihoods for Kulldorff’s scan
statistic, conditional on the zone Z, is given by

λZ =

(
CZ

BZ

)CZ
(
CZ

BZ

)CZ
(
C

B

)−C

,

and if the inequality does not hold, λZ = 1. Finally, Kulldorff’s scan statistic λ∗

and the most likely cluster Z∗ are given by

λ∗ = max
Z∈Z

λZ , (2.2.3)

Z∗ = arg max
Z∈Z

λZ , (2.2.4)

with Z being the set of all potential spatial outbreak clusters considered. How this
set is chosen will be covered in section 2.2.6 below, but it is worth noting that this
set could potentially consist of all 2m subsets of the study area A = {1, . . . ,m}.

The advantage of the population-based approach is that it does not demand much in
the way of historical data, as we only compare the counts inside a potential cluster Z
to those outside it, and the denominators are assumed to be readily obtainable. On
the other hand, the detection power of this approach diminishes with the number
of regions affected by the outbreak, finally unable to detect those outbreaks that
affect the entire study area in a uniform manner. Neill (2006, p. 35) gives the
example of a large outbreak that affects half of the study area, increasing counts
there by 20%. Supposing counts remain at normal levels in the rest of the study area,
the null hypothesis of no outbreak would state that counts have increased by 10%
overall, so the outbreak appears smaller—and perhaps not statistically significant—
in comparison to the null hypothesis (20% to 10%) than it actually is (20% to 0%).
Further, the population-based approach is also susceptible to holiday effects and
other situations in which counts are lower than expected in parts of the study area
(according to the denominator), leading to false alarms.
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2.2.1.2 Expectation-Based Scan Statistics

In some applications, the size of the population at risk is unavailable or may be
inapplicable, such as when nonprescription medicine sales are used instead of case
counts. In this situation, past observations could be used to forecast what values we
should expect to see in each region under normal (non-outbreak) conditions, now
and in the near future. In the expectation-based approach to scan statistics, we use
historical data to estimate the mean and other parameters for each region and time
point under the null hypothesis of no outbreak. We then compare the values we
observe to the expected ones, and test if the counts are significantly higher than
they are likely to be if there is no outbreak. Because of the clear use of time
series in the expectation-based approach, this section will focus on spatiotemporal
outbreak detection, which is the topic of this thesis. Let us exemplify again, using
the expectation-based Poisson scan statistic proposed by Neill et al. (2005). Due to
its simplicity, this scan statistic will be used as a base of comparison to the two
more advanced expectation-based scan statistics presented in Chapter 3. The null
hypothesis here holds that counts are independently distributed as

H0 : Yit ∼ Poisson(µit), (2.2.5)

for all regions i = 1, . . . ,m, and all times t = 1, . . . , T , with T being the maxi-
mum outbreak duration considered. Specifying the alternative hypothesis in the
expectation-based approach is a bit more tricky. As the comparison for each win-
dow W is made against its past values rather than present values in the regions
outside it, the null and alternative hypotheses that we test are different from those
in the population-based approach. The route taken by e.g. Neill et al. (2005), Neill
(2006, 2009b) and Tango et al. (2011) is to consider a set of multiple alternative
hypotheses, each corresponding to a single space-time window W ∈ W (W being
the set of all potential space-time outbreak clusters) and stating that an outbreak
is ongoing in W . In either case, an outbreak in a window W manifests as a multi-
plicative increase in the mean of the counts inside W . In our example, this means
that we consider the alternative hypotheses

H1 : Yit ∼

{
Poisson(qWµit), (i, t) ∈ W

Poisson(µit), (i, t) ∈ W,
(2.2.6)

for all W ∈ W , with qW > 1, and each count independent of others. Under the
alternative hypothesis corresponding to a specific space-time window W = Z × Iu,
the likelihood function for a sample {yit}i=1,...,m;t=1,...,T , with corresponding mean
parameters {µit} (the indices dropped for brevity here and henceforth) assumed
known, is given by

L(qW |{yit}) =
∏

(i,t)∈W

exp(−qWµit)
(qWµit)

yit

yit!
×

∏
(i,t)∈W

exp(−µit)
µyit
it

yit!
.
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Thus, there is only one free parameter (qW ) under a given alternative hypothesis;
the uncertainty in the estimate of the parameter µit is ignored. Under the null
hypothesis there are no free parameters: the likelihood function is simply L(1|{yit}),
i.e. the same likelihood as above with qW = 1. So, for this space-time window W ,
the distribution of the counts outside W under the alternative hypothesis will agree
with that under the null hypothesis. Accordingly, the ratio of alternative to null
likelihoods will cancel the likelihood contributions (factors in the likelihood) of these
counts, so that the likelihood ratio conditional on W is given by

λW =
L(qW |{yit})
L(1|{yit})

=
∏

(i,t)∈W

exp(−qWµit)

exp(−µit)
qyitW .

Neill (2006, pp. 36–37) derives the MLE of qW using the likelihood function for the
entire sample, under the alternative hypothesis corresponding to a given window W .
An alternative argument to obtain the MLE is as follows: First, counts from outside
the space-time region W are independent of those inside it and do not depend
on qW in their distributions, so are irrelevant for inference about this parameter.
Second, since the counts Yit for (i, t) ∈ W are independently distributed as Yit ∼
Poisson(qWµit), the sum

∑
(i,t)∈W Yit is a sufficient statistic for qW and has a Poisson

distribution with mean
∑

(i,t)∈W qWµit = qW
∑

(i,t)∈W µit. The maximum likelihood
estimator of the Poisson (mean) parameter is the sample mean;

∑
(i,t)∈W yit is thus

used to estimate qW
∑

(i,t)∈W µit. Since
∑

(i,t)∈W µit is known, we see that the MLE
of qW under the restriction qW > 1 must be

q̂W = max
{
1,

∑
(i,t)∈W yit∑
(i,t)∈W µit

}
. (2.2.7)

The test statistic for the region W is then given by the likelihood ratio

λW =
L(q̂W |W, {yit}, {µit})
L(1|W, {yit}, {µit})

=
∏

(i,t)∈W

exp(−q̂Wµit)

exp(−µit)
q̂yitW .

This statistic is calculated for all regions W ∈ W , and the scan statistic λW and
most likely space-time cluster W ∗ are given by

λ∗ = max
W∈W

λW , (2.2.8)

W ∗ = arg max
W∈W

λW . (2.2.9)

Neill (2006, p. 34) notes that the expectation-based approach has a higher detection
power than the population-based approach in cases where sufficient amounts of
historical data exists. In particular, it is better at detecting outbreaks that affect a
large part of the study area, and can account for the impact of holidays and similar
events, provided these are present in the historical data.
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2.2.2 Response Distributions

In the previous section, we gave two examples of scan statistics that assumed a
Poisson distribution for the counts {yit}. Since its appearance in the 1997 paper
by Kulldorff, this distribution—attractive due to its simplicity—has found repeated
use in various scan statistic formulations, for example employed in the articles by
Duczmal & Assuncao (2004), Patil & Taillie (2004), Neill et al. (2005), and Tango
& Takahashi (2005) just to name a few. This section will provide a brief overview
of what other distributional assumptions are available in the literature on scan
statistics.

Kulldorff (1997), in addition to the population-based Poisson scan statistic, also
formulated a population-based scan statistic based on Bernoulli-distributed counts.
Variations of this scan statistic can be found in the papers by Patil & Taillie (2004)
and Christiansen et al. (2006). More recently, scan statistics based on counts that
have a negative binomial distribution (Tango et al., 2011) or a zero-inflated Poisson
distribution (Cançado et al., 2014) have been formulated. Scan statistics can also
be defined for continuous-valued values: Neill (2006) defines two scan statistics for
the normal distribution distribution with applications in neuroimaging, and Patil
& Taillie (2004) does likewise for the gamma and log-normal distributions, with
potential applications in environmental statistics.

The above distributions are used in a frequentist framework, in which the observed
value of the scan statistic is used to obtain a p-value. The latter distribution is not
available in closed form except in the most simple of cases. For this reason, most of
the previously mentioned papers on scan statistics rely on Monte Carlo simulations
to obtain the p-values—a topic to be covered in Section 2.2.5. These simulations can
at times be computationally prohibitive. To deal with such computational issues,
Neill et al. (2006) propose a ‘Bayesian spatial scan statistic’, which is shown to have
higher power and faster runtime than frequentist alternatives such as Kulldorff’s
(1997) scan statistic. Similar to Kulldorff’s statistic, the counts are assumed to be
Poisson-distributed with an expected value that is proportional to the population
at risk. The difference in this Bayesian setting is that the proportionality factor
is itself assumed to be random, being gamma-distributed with different parameters
depending on whether an outbreak has occurred or not. In this Bayesian approach
there is no need for the Monte Carlo simulations to get a p-value. Instead, expert
knowledge or historical outbreak data can be used to specify how an outbreak ought
to manifest in the monitored counts, and Bayes formula can then be employed to
obtain posterior probabilities for the occurrence of an outbreak in each potential
cluster. The Bayesian spatial scan statistic is extended to a multivariate setting
by Neill & Cooper (2010). After this overview of alternative approaches to scan
statistics, the thesis will focus solely on the frequentist methodology for count data
hereafter.
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2.2.3 Outbreak Types

Related to the choice of response distribution of the counts is the form in which out-
breaks are believed to manifest in them. In the above examples of both population-
and expectation-based scan statistics, outbreaks were assumed to manifest as a
multiplicative increase in the mean of the (Poisson) distribution, this increase being
the same for all regions and time points affected by the outbreak. Such an out-
break cluster is referred to as a ‘hot-spot’ cluster by Kulldorff et al. (2003), and its
simplicity has both advantages and disadvantages. Though it makes computations
relatively simple, it seemingly lacks some realism in the sense that outbreaks should
intuitively spread over time, and also vary in intensity over both the regions it af-
fects and the course of its duration. Capturing such phenomena is difficult, but a
few attempts have been made. Neill et al. (2005) formulates an expectation-based
scan statistic for which outbreaks are assumed to have an increasing effect on the
Poisson mean over the duration of the outbreak, this increase being the same for
all affected spatial regions. In a more recent paper, Tango et al. (2011) derive an
efficient score scan statistic for counts that are assumed to have either a Poisson or
a negative binomial distribution. Here, the mean of the counts is allowed to increase
according to a monotonically increasing function of the duration of the outbreak
(with some restrictions). In this thesis however, we focus on the simpler hot-spot
outbreak types.

2.2.4 Covariates and Parameter Estimation

When working with disease data collected at different locations and at different
times of the year, we may have reason to adjust our expectations according to these
factors. For example, in the summer people change dietary habits—they barbecue,
letting food sit in the sun, or otherwise expose food to warmth. Bacteria such
as Salmonella like these conditions, and it is therefore natural to expect a higher
number of people to fall ill due to Salmonella in the summer than in the winter.
For other diseases, we might also foresee some differences in the number of disease
cases between regions, based on e.g. population density and whether these regions
are rural or urban.

To account for regional and temporal effects in the detection of disease clusters,
Kleinman et al. (2004) propose a method based on generalized linear mixed models
(GLMMs). Here, a binomial logistic regression with fixed temporal effects and
a random effect for each region is used to estimate the probability of a disease
case at each location and time point, with the population at risk for each location
and time known. In a later paper, Kleinman et al. (2005) combines the use of
GLMMs with a scan statistic approach to cluster detection in order to adjust the
denominators (populations at risk) in the study for spatial and temporal covariates.
More relevant to the expectation-based Poisson scan statistic we considered earlier,
Kleinman (2005) evaluates and compares the performance of both fixed effects and
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mixed effects Poisson regression models. In the fixed effects model, the expected
value µit of the random count Yit (corresponding to the observed count yit) under
the null hypothesis of no outbreak is modeled as

logµit = log E[Yit] = αi +
∑
j

βjxjt, (2.2.10)

where we see that each region has a separate (fixed) intercept, but the counts in all
regions share the same coefficients for the covariates xjt (which do not necessarily
vary with time).

In the mixed effects model, the region-specific intercept is separated into two compo-
nents: a fixed effect γ that is shared by all regions, and a random effect ai ∼ N (0, σ2)
that is specific to region i and represents the temporal variability of the counts in it.
In this case, the parameter µit is the conditional expected value of yit, such that

logµit = E[Yit|ai] = γ + ai +
∑
j

βjxjt. (2.2.11)

The estimators of the ai’s are referred to as ‘shrinkage estimators’, the estimate
of the ‘total’ intercept γ + ai for a given region i improving by inclusion of the
intercept term γ common to all regions. Indeed, as Kleinman (2005) remarks, the
advantage of using the mixed effects model is that estimation of the intercept terms
have smaller standard errors than those in the fixed effects model, and estimation
improves with the number of regions m. The fixed effects approach still produces
theoretically unbiased estimates, however. Lastly, Tango et al. (2011) extends the
work on GLMMs for scan statistics by developing a new space-time scan statistic
for counts with a negative binomial distribution parametrized by its mean and an
‘overdispersion’ parameter. The authors suggest that regional random effects can
be included in the linear predictor—the logarithm of the mean—along with fixed
effects for region and time. However, the GLMM approach is not actually applied in
the data analysis section of the paper, the authors instead using a simpler moving
average method for parameter estimation.

Indeed, many papers on scan statistics indicate a preference for simpler parameter
estimation methods than those based on GLMs or GLMMs. Reasons for this could
be that not enough relevant historical data is available, as in Tango et al. (2011, p.
108), or that fitting GLMs or GLMMs is simply too time-consuming when analyses
are run daily on thousands of concurrent time series and short detection times are
critical, as alluded to in Kleinman et al. (2004) and Kleinman (2005). As an example
of how the expected values of counts—e.g. the µit for our expectation-based Poisson
scan statistic—can be estimated when no historical data is available, consider the
‘current day’ method proposed by Kulldorff et al. (2005). Here, counts are assumed
to be independently distributed across space and time, and the expected value for
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the count in region i at time t is estimated as

µ̂it =

(∑m
j=1 yjt

)(∑T
k=1 yik

)
∑m

j=1

∑T
k=1 yjk

. (2.2.12)

Other examples of these relatively simple estimation methods are the time se-
ries analysis methods employed by Neill et al. (2005), which include exponentially
weighted moving averages stratified or adjusted for day of week, and Holt-Winters
seasonal method used by Neill (2009b).

2.2.5 Hypothesis Testing

In the introduction to scan statistics given above, we stated that the distribution of
the scan statistic under the null hypothesis can be used to obtain a p-value corre-
sponding to the observed value of the statistic. If this p-value is smaller than the
chosen significance level the null hypothesis is rejected. Such a rejection indicates
that an outbreak is ongoing in the spatial or spatiotemporal cluster (the most likely
cluster, or MLC) corresponding to the observed scan statistic. But as it turns out,
this null distribution cannot be expressed in closed analytical form for any scan
statistic of practical worth. The consequence is that the p-value cannot be obtained
by a simple function evaluation or approximation. The standard workaround, sug-
gested by Kulldorff & Nagarwalla (1995) in reference to Dwass (1957), is to use
Monte Carlo simulation. Kulldorff (1999, p. 309) describes the Monte Carlo hy-
pothesis testing procedure for a scan statistic as being composed of the following
four steps:

1. Calculate the value λobs of the scan statistic using the observed data, also
noting the corresponding cluster.

2. Simulate a large number R of data sets, randomly generating these values from
under the null hypothesis of no outbreaks.

3. For each of these replicate data sets, calculate the value of the scan statistic.

4. Reject the null hypothesis of no outbreak at significance level α if the observed
value of the scan statistic is among the top 100α percent of all scan statistic
values calculated (simulated and observed).

If we want an (exact) p-value, we can use the replicate scan statistics {λsim
r }Rr=1 to

calculate it as

p =
1 +

∑R
r=1 1{λsim ≥ λobs}

1 +R
(2.2.13)
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It may also be of interest to identify other potential outbreak clusters, particularly
those whose spatial component does not overlap with that of the MLC. Kulldorff
(1997, p. 1492) states that this can be done by ranking the likelihood ratio values
of all the other potential clusters in the original data set, and comparing these to
the replicate scan statistics (which are likelihood ratios). If any of these secondary
clusters have a likelihood ratio value that would have caused the null hypothesis
to be rejected on its own, it is seemingly an outbreak cluster. This type of test is
conservative however, as a secondary cluster from the original data is compared to
the most likely clusters from the simulated data sets.

A disadvantage of using Monte Carlo simulations for hypothesis testing is the com-
putational effort involved: not only must the scan statistic be calculated for the
observed data, but new data sets must be randomly generated and the statistic
calculated on these. A second disadvantage is the inability of the Monte Carlo p-
value to help us distinguish between clusters with very large observed values of the
scan statistics, as these p-values cannot get smaller than 1/(1 + R). To investigate
potential ways of reducing computation times and also increase the precision of the
p-values, Abrams et al. (2006) compared the p-values obtained from a large num-
ber (100,000,000) of Monte Carlo replications of a spatial scan statistic, to those
obtained by fitting a number of parametric distributions (Gumbel, gamma, normal,
and log-normal) on a smaller number (999) of replicate scan statistics. The con-
clusion from this simulation study was that the p-values based on fitting a Gumbel
distribution can be preferable to the Monte Carlo p-values even when they are both
generated from the same number of Monte Carlo replicates. In a later paper, the
same authors (Abrams et al., 2010) further investigate the usefulness of the Gum-
bel distribution in obtaining p-values for spatial scan statistics that are as accurate
as those obtained from a larger number of Monte Carlo simulations. The results
indicate that about 10 times as many simulations are needed to obtain the same
(detection) power as that of the Gumbel approximation used.

Another way to reduce computation times is to use empirical values of the scan
statistic, if sufficiently many of these can be calculated from past non-outbreak
conditions. The current observed value of the scan statistic can then be compared
to these empirical values, instead of simulated values. Neill (2009a) compares the
performance of a number of spatial scan statistics—among these the expectation-
based Poisson scan statistic—on four different data sets with ‘injected’ outbreaks.
This means that extra counts are added on top of real-world non-outbreak data,
creating a synthetic outbreak in a few regions of the study area. In addition to
much-improved computation times, the results of the study by Neill indicate that
the empirical approach may even lead to faster detection times and lower false
positive rates.

Finally, Kulldorff (2001, p. 69) notes that for a surveillance system, whether a de-
tected cluster should be investigated or not should not be determined simply by
comparing the observed p-value to a strict significance level. The p-value should
instead be seen as an indicator of the evidence of an outbreak, and the initial effort
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put into an investigation of the cluster should depend on the strength of the evi-
dence. When the evidence is strong—indicated by a small p-value—a more detailed
epidemiological study using the individual cases should be carried out.

2.2.6 Cluster Shapes

In the example above, we defined the scan statistic as a maximum over a set W , the
set of all potential outbreak clusters W = Z×Iu. Because we only consider outbreaks
that begin at the same time in all of the regions in Z, the temporal component Iu
of a space-time window W is of less importance, and we focus instead on the set Z
of all spatial zones. This set could be as large as 2m, the size of the power set of
all regions in the study area A = {1, . . . ,m}, but will due to the reasons discussed
in Section 2.1 be much smaller in practice. So how is Z chosen or constructed, in
practice?

One can distinguish between two types of methods in the literature on scan statistics.
The first type uses only the spatial information of the data to construct the set Z
of all potential outbreak zones Z ⊂ A = {1, . . . ,m}. As an example, Kulldorff
(1997) constructs the zones Z by placing circles of expanding radii centered at (the
centroid of) each region i ∈ A. For a given region i, the first zone Zi1 is taken to
contain region i only; Zi1 = {i}. Next, the radius of the circle is expanded until
the centroid of another region j is covered by the circle, and new zone Zi2 is chosen
to include both i and j; Zi2 = {i, j}. This process is continued until a maximum
radius is reached; one for which no more than say a half of the population at risk
in the entire study area is included in the regions of the corresponding zone. Tango
& Takahashi (2005) consider two other approaches of constructing Z. The first
approach is similar to the circle-expanding method above, except that for a given
center region i, it is the k nearest neighbors of i that are included in each new zone,
for each k from 0 up to some maximum integer K. In the second method, subsets
of these k-nearest neighbor zones are also included: those subsets that include the
center region i and that are connected, in the sense that each region shares a border
with another region in the subset.

The second method for choosing or constructing potential clusters Z (or W ) in-
corporates not only the spatial information of the regions in which the counts are
collected, but the value of the counts themselves. The following examples provide a
short overview. Duczmal & Assuncao (2004) uses a graph-based simulated anneal-
ing strategy for detecting arbitrarily shaped clusters in the spatial-only setting; the
solutions obtained being quasi-optimal, but seemingly better at detecting clusters
that are not in fact circular (as in Kulldorff (1997)). However, the clusters found
by this method sometimes have a highly irregular shape. In a later paper, Duczmal
et al. (2007) presents an approach based on a genetic algorithm, which is shown
to outdo the simulated annealing method in terms of runtime, variance, and de-
tection power. Assuncao et al. (2006) presents two graph theory approaches based
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on minimum spanning trees (MST) which are relatively fast. One of the methods
include the upper level set windows of Patil & Taillie (2004) as a special case, but
this method has low power, and the other method tends to overestimate cluster sizes
when the true clusters are of some particular shapes. Duczmal et al. (2011) also
proposes a MST-based approach, but with a novel distance metric.

In this thesis, we consider only the k-nearest neighbor approach. This is because the
scan statistics that we consider in this thesis—the expectation based Poisson scan
statistic considered in Section 2.2.1.2 above and the two scan statistics presented
in the next chapter—are of the first type described above: they only rely on the
spatial information of the data to construct Z. When we compare these methods in
chapters 4 and 5, the shape of the spatial component of the outbreak will be under
our control, and the k-nearest neighbor approach is an attractive alternative due to
its simplicity. In settings where it is unknown what spatial shape an outbreak will
take, other approaches could be used.

This chapter has given an overview of the different constituents of the scan statis-
tics methodology. In the next chapter, we present the mathematical details of
two expectation-based scan statistics—one of which is a novel contribution of this
thesis—that are more advanced than the one given as an example in this chap-
ter.

17



3 Advanced Statistical Methods

The previous chapter introduced the concept of scan statistics in a statistical context
and gave the reader a specific example in the expectation-based Poisson scan statis-
tic. This particular scan statistic serves as a good point of reference due to its sim-
plicity. However, more advanced methods are available. In this chapter we consider
two other expectation-based scan statistics, the first being the efficient score scan
statistic developed by Tango et al. (2011), which can accommodate a negative bino-
mial distribution for the counts. The second is a novel scan statistic inspired by the
population-based ZIP scan statistic proposed by Cançado et al. (2014). This method
assumes that the distribution generating the case counts can be approximated by a
zero-inflated Poisson distribution, and uses the Expectation-Maximization (EM) al-
gorithm (Dempster et al., 1977) to obtain parameter estimates. In the next couple of
sections, we introduce these scan statistics and their advantages and disadvantages
over the expectation-based Poisson statistic.

3.1 A Negative-Binomial Score Scan Statistic

When count data has larger variance than expected value, use of the Poisson distri-
bution for detecting disease outbreaks may lead to a high number of false alarms.
Counts sufficiently larger than the estimated mean might seem strongly indicative
of an outbreak under the Poisson assumption, while they might be entirely within
what is to be expected if some other more dispersed distribution was used, if ap-
propriate. Such problems of overdispersion make it natural to consider the negative
binomial distribution, which allows the variance to be larger than the mean. For the
expectation-based Poisson statistic considered in the previous chapter, we posited
that an outbreak affecting a space-time window W would have a multiplicative ef-
fect qW on the expected values for the counts in this window. In Equation (2.2.7)
we were then able to derive an analytical expression for the maximum likelihood
estimate of this factor qW and use it to calculate a likelihood ratio statistic in closed
form for each potential outbreak cluster W . If we were to consider the same type
of outbreak model for counts with a negative binomial response distribution, we
would not be able to derive a closed form expression for this factor qW . Yet this
difficulty can be overcome—and qW even allowed to take a more general form than
a constant—as shown in the paper by Tango et al. (2011). Their starting point is to
consider counts Yit that follow a negative binomial distribution, the null hypothesis
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stating that

H0 : Yit ∼ NB(µit, ϕit). (3.1.1)

Here, the mean parametrization of this distribution is used, so that

P(Yit = yit) =
Γ(ϕit + yit)

Γ(ϕit)yit!

(
ϕit

ϕit + µit

)ϕit
(

µit

ϕit + µit

)yit

, (3.1.2)

E[Yit] = µit, (3.1.3)
Var(Yit) = µit + µ2

it/ϕit. (3.1.4)

The value of µit and ϕit are assumed to be known, but are in practice estimated from
historical data. Estimation and regression techniques for the negative binomial dis-
tribution are developed in Lawless (1987); Hilbe (2011) provides a more up-to-date
treatment, discussing various parameterizations and software implementations.

Below, we take a look at two scan statistics proposed by Tango et al. (2011) based
on the negative binomial distribution and two different types of outbreaks. The
contribution of this thesis with respect to these scan statistics is to provide a greater
mathematical detail in their derivation, compared to what was given by Tango et
al.. We begin by first considering the scan statistic for a hot-spot cluster model of
an outbreak, as was described in Section 2.2.3.

3.1.1 Hot-spot Cluster Model

Just as for the expectation-based Poisson scan statistic, a separate alternative hy-
pothesis is considered for each potential cluster W . Tango et al. (2011) consider
two types of outbreak models, the simplest being the hot-spot cluster model intro-
duced by name in Section 2.2.2. For a given space-time window W , the alternative
hypothesis states that

H1 : Yit ∼

{
NB(qWµit, ϕit), (i, t) ∈ W

NB(µit, ϕit), (i, t) ∈ W
, (3.1.5)

with qW > 1 and where W is the complement of W , i.e. the regions and time points
outside this window. As explained in Section 2.2.1.2 this means that we have a set
of alternative hypotheses, one for each W ∈ W . In this section, we derive a scan
statistic corresponding this outbreak model. It is worth noting that these derivations
are not given in the paper by Tango et al. (2011), which only gives the final result,
but rather represent an original contribution of this thesis.

The idea here is to use Rao’s score test statistic, which involves evaluating the score
function and the Fisher information derived from the log-likelihood function of the
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above model, at the value of qW under the null hypothesis. To this end, we first form
the log-likelihood for a given space-time cluster W = Z × Iu. Since qW is the only
free parameter under the alternative hypothesis (the µit’s and ϕit’s already given),
we see that when replacing µit by qWµit in Equation (3.1.2), the log-likelihood is
(up to an additive constant)

ℓW (qW |{yit}) =
∑

(i,t)∈W

[yit log(qW )− (ϕit + yit) log(ϕit + qWµit)] (3.1.6)

By differentiation w.r.t. qW of the log-likelihood, the score function and observed
Fisher information are seen to be

UW (qW ) = ℓ′W (qW |{yit}) =
∑

(i,t)∈W

[
yit
qW

− (ϕit + yit)µit

ϕit + qWµit

]
, (3.1.7)

J (qW ) = −ℓ′′W (qW |{yit}) =
∑

(i,t)∈W

[
yit
q2W

− (ϕit + yit)µ
2
it

(ϕit + qWµit)2

]
. (3.1.8)

Tango et al. (2011) define the parameter wit = 1 + µit/ϕit, which they call the
‘overdispersion parameter’ of the negative binomial distribution. Using this param-
eter, we see that evaluating the score function at qW = 1 gives

UW (1) =
∑

(i,t)∈W

[
yit −

ϕitµit + yitµit

ϕit + µit

]
=

∑
(i,t)∈W

yit − µit

ϕit + µit

ϕit

=
∑

(i,t)∈W

yit − µit

wit

Similarly, the Fisher information evaluated at qW = 1 becomes

IW (1) = E[JW (1)]

=
∑

(i,t)∈W

[
µit −

(ϕit + µit)µ
2
it

(ϕit + µit)2

]
=

∑
(i,t)∈W

µit

ϕit + µit

ϕit

=
∑

(i,t)∈W

µit

wit

.

The score statistic, corresponding to that of Rao’s score test (see e.g. Lehmann &
Romano, 2008, p. 511), is then given by

λW =
UW (1)√
IW (1)

(3.1.9)
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and has a standard normal distribution asymptotically. However, this asymptotic
normality is not used in the paper by Tango et al. (2011). Instead, the maximum
of this statistic over all space-time windows W ∈ W is taken, so that the scan
statistic—and corresponding most likely cluster—are given by

λ∗ = max
W∈W

λW , (3.1.10)

W ∗ = arg max
W∈W

λW . (3.1.11)

One reason for not using the asymptotic normality of each of the λW ’s is that the
number of counts that go into calculating this statistic can often be quite small—
it is the number of regions in the spatial component of the space-time window W
times the outbreak duration considered—and these counts may themselves be low.
In the simulation study conducted by Tango et al. (2011), the largest windows W
considered have a maximum of 10 separate regions and a maximum temporal length
of two weeks (one count per week). Next we consider the second scan statistic in the
paper by Tango et al. (2011), which corresponds to a more complex—and perhaps
realistic—outbreak scenario.

3.1.2 Emerging Outbreak Model

The hot-spot model presented in the previous section assumes that the multiplicative
increase in the mean of the count distribution is the same across all affected spatial
regions of the outbreak, as well as over time. It may seem more natural—particularly
in the context of infectious diseases—that the mean might increase over time dur-
ing an outbreak, at least initially. To detect such emerging outbreaks, the second
model proposed by Tango et al. (2011)—the emerging outbreak model—assumes
that the factor by which the counts increase is a function instead of a constant.
In this section, we present the derivation of the scan statistic for this model, with
greater mathematical detail than what was given in the paper by Tango et al. (2011).
The presentation also differs due to the choice of counting time backwards in this
thesis—in Tango, Takahashi & Kohriyama’s paper, time is counted in the forward
direction.

In the emerging outbreak model, we consider the alternative hypothesis

H1 : Yit ∼

{
NB(qitµit, ϕit), (i, t) ∈ W

NB(µit, ϕit), (i, t) ∈ W
, where (3.1.12)

qit = h(τ + βW (u+ 1− t)), (3.1.13)

for each space-time window W = Z × Iu. Again, as in Section 2.2.1.2, this means
that we have a set of alternative hypotheses, one for each W ∈ W . The function
h : R → R is assumed to be monotonically increasing over the duration of the
outbreak, but as we measure time backwards in units of time ago from the present,
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the function is monotonically decreasing in our notation. It is assumed that this
function has finite first and second derivatives, and that the value of the function
h(·) one unit of time before the start of the outbreak, i.e. at time u+1, is one. That
is, h(τ) = 1. The initial slope of the outbreak is given by

∂qit
∂t

∣∣∣
t=u

= −βWh′(τ). (3.1.14)

This reduces the alternative hypothesis to the statement that βW > 0. Tango et al.
(2011) show that even if the functional form of h(·) is unknown, and a maximum
likelihood of βW cannot be obtained analytically, the hypotheses can be tested by
deriving a score test statistic similarly to what was done in Section 3.1.1 above.
Starting with the log-likelihood, this is now given by

ℓW (βW |{yit}) =
∑

(i,t)∈W

[yit log(qit)− (ϕit + yit) log(ϕit + qitµit)] , (3.1.15)

where qit = h(τ + βW (u + 1 − t)). Differentiating with respect to βW , we get the
score function

UW (βW ) =
∑

(i,t)∈W

[
yit
qit

∂qit
∂βW

− (ϕit + yit)
µit

ϕit + qitµit

∂qit
∂βW

]

=
∑

(i,t)∈W

[
yit
qit

− (ϕit + yit)
µit

ϕit + qitµit

]
∂qit
∂βW

=
∑

(i,t)∈W

[
yit
qit

− (ϕit + yit)
µit

ϕit + qitµit

]
(u+ 1− t)h′(τ + βW (u+ 1− t)).

Letting βW = 0 so that qit|βW=0 = h(τ) = 1, and recognizing the similarity of
the expression to the score function for the hot-spot cluster model, for which we
switched to the parametrization using wit = 1 + µit/ϕit, we get

UW (0) =
∑

(i,t)∈W

[
yit − (ϕit + yit)

µit

ϕit + µit

]
(u+ 1− t)h′(τ)

= h′(τ)
∑

(i,t)∈W

yit − µit

wit

(u+ 1− t).
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Furthermore,

JW (βW ) =
∑

(i,t)∈W

[
yit
q2it

∂qit
∂βW

− (ϕit + yit)
µ2
it

(ϕit + qitµit)2
∂qit
∂βW

]
∂qit
∂βW

−
∑

(i,t)∈W

[
yit
qit

− (ϕit + yit)
µit

ϕit + qitµit

]
∂2qit
∂β2

W

=
∑

(i,t)∈W

[
yit
q2it

− (ϕit + yit)
µ2
it

(ϕit + qitµit)2

](
∂qit
∂βW

)2

−
∑

(i,t)∈W

[
yit
qit

− (ϕit + yit)
µit

ϕit + qitµit

]
∂2qit
∂β2

W

=
∑

(i,t)∈W

[
yit
q2it

− (ϕit + yit)
µ2
it

(ϕit + qitµit)2

]
[(u+ 1− t)h′(τ + βW (u+ 1− t))]

2

−
∑

(i,t)∈W

[
yit
qit

− (ϕit + yit)
µit

ϕit + qitµit

]
(u+ 1− t)2h′′(τ + βW (u+ 1− t)).

The Fisher information at βW = 0 thus becomes

IW (0) = E

 ∑
(i,t)∈W

[
yit − (ϕit + yit)

µ2
it

(ϕit + µit)2

]
(u+ 1− t)2(h′(τ))2


− E

 ∑
(i,t)∈W

[
yit − (ϕit + yit)

µit

ϕit + µit

]
(u+ 1− t)2h′′(τ)


=

∑
(i,t)∈W

[
µit −

µ2
it

ϕit + µit

]
(u+ 1− t)2(h′(τ))2

−
∑

(i,t)∈W

[µit − µit] (u+ 1− t)2h′′(τ)

= (h′(τ))2
∑

(i,t)∈W

[
µit −

µ2
it

ϕit + µit

]
(u+ 1− t)2

= (h′(τ))2
∑

(i,t)∈W

µit

wit

(u+ 1− t)2

It then becomes clear that when forming the score statistic λW as the ratio of the
score function to the (signed) square root of the Fisher information, the factor h′(τ)
will cancel, ridding the statistic of dependence on the functional form of h(·). The
score statistic becomes

λW =

∑
(i,t)∈W (yit − µit)(u+ 1− t)/wit√∑

(i,t)∈W µit(u+ 1− t)2/wit

.
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This statistic is calculated for each potential space-time outbreak cluster W = Z×Iu,
and the scan statistic λ∗ and the corresponding most likely cluster W ∗ are given by

λ∗ = max
W∈W

λW , (3.1.16)

W ∗ = arg max
W∈W

λW . (3.1.17)

3.2 An Expectation-Based ZIP+EM Scan Statistic

As was mentioned earlier, overdispersion can sometimes be a problem when the
Poisson distribution is used to model count data. Sometimes, this overdispersion is
due to an overabundance of zero counts, which—when dealing with disease data—
could be due to factors such as underreporting. One possible way to account for this
particular feature is to use a zero-inflated model. In such a model, the counts can be
viewed as generated from a mixture of two distributions: with probability p, an ex-
cess zero is generated from the distribution degenerate at zero, and with probability
1 − p, a count is generated from some other distribution, such as the Poisson dis-
tribution. In particular, the Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative
Binomial (ZINB) models have previously been used in infectious disease studies. For
example, the ZIP model was used by Vergne et al. (2014) to model avian influenza
outbreaks in Thailand during the 2005 outbreak, and the ZINB was used by Carrel
et al. (2010) in the study of cholera outbreaks associated with floodings in rural
Bangladesh.

In a recent paper by Cançado et al. (2014), a population-based scan statistic for
ZIP-distributed counts is presented in the purely spatial setting. From an inference
point of view, they adapt the EM algorithm methods developed by Lambert (1992)
for the ZIP-distribution to arrive at maximum likelihood estimates of the relevant
parameters. In this section of the thesis, we present an novel expectation-based ver-
sion of this ZIP scan statistic, which also uses the EM algorithm to obtain parameter
estimates. This scan statistic is the main, original contribution of this thesis. The
ZIP scan statistic uses (or can use) a regression approach to model both the Pois-
son means and the structural zero probabilities, whereas Cançado et al. (2014) only
made note of the possibility to do so for the excess zero probability. The scope is
also extended from the spatial to the spatiotemporal setting. Below, we present the
new scan statistic in a format similar to that given in the paper by Cançado et al.
(2014).

3.2.1 Response Distributions and Hypotheses

For the expectation-based ZIP scan statistic, we assume that the number of cases
Yit in region i at time t follows a zero-inflated Poisson distribution, independent of
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the number of cases at other times and places. The null hypothesis of no outbreak
states that

H0 : Yit ∼ ZIP(pit, µit). (3.2.1)

The ZIP distribution is specified by the probability mass function

P(Yit = yit) =

{
pit + (1− pit)e

−µit , yit = 0

(1− pit)e
−µit

µ
yit
it

yit!
, yit = 1, 2, . . . ,

(3.2.2)

which can be seen as a mixture of a degenerate distribution at zero and a Poisson(µit)
distribution. The expected value and variance of Yit are given by

E[Yit] = (1− pit)µit, (3.2.3)

Var(Yit) = E[Yit] +
pit

1− pit
E[Yit]

2, (3.2.4)

from which it is seen that Var(Yit) > E[Yit] when pit ∈ (0, 1). Thus, the zero-inflated
Poisson distribution indeed has a larger variance than the (regular) Poisson distri-
bution. For outbreaks, we again employ the hot-spot cluster model by considering,
for each space-time window W = Z × Iu, the alternative hypothesis

H1 : Yit ∼

{
ZIP(pit, qWµit), (i, t) ∈ W

ZIP(pit, µit), (i, t) ∈ W,
(3.2.5)

with qW > 1. As in Section 2.2.1.2, this means that we have a set of alternative
hypotheses, one for each W ∈ W . To test these hypotheses, we will want to define
a scan statistic as the maximum of likelihood ratios over all potential outbreak
clusters W . So let us have a look at the likelihood function for the parameters of a
ZIP distribution next.

3.2.2 Likelihoods

Suppose we are given a data set {yit} of counts and that we have been able to use
historical data to estimate the corresponding parameters {pit} and {µit}, which we
believe are accurate in non-outbreak conditions. Hence, we ignore any estimation
uncertainty for these parameters. Under the alternative hypothesis corresponding
to given space-time window W = Z×Iu , the log-likelihood function in this scenario
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is

ℓ(qW |{yit}) = log

 ∏
(i,t)∈W

P(Yit = yit)

 ∏
(i,t)∈W

P(Yit = yit)


=

∑
(i,t)∈W
yit=0

log
(
pit + (1− pit)e

−qWµit
)

+
∑

(i,t)∈W
yit>0

[log(1− pit)− qWµit + yit log(qWµit)− log(yit!)]

+
∑

(i,t)∈W
yit=0

log
(
pit + (1− pit)e

−µit
)

+
∑

(i,t)∈W
yit>0

[log(1− pit)− µit + yit log(µit)− log(yit!)] .

Note that no analytical solution for the qW that maximizes this likelihood can be
found. To overcome this problem, we adopt an EM-algorithm approach similar to
what was done by Cançado et al. (2014). First, assume that we do know whether the
zeros in the data are excess zeros or not. Let δit be a indicator variable that takes
the value 1 if the count in region i at time t is an excess zero (which happens with
probability pit), and takes the value 0 if it is not (which happens with probability
1− pit). Given the complete data, it can then be gathered that

P(Yit = yit|δit = 0) = e−qWµit
(qWµit)

yit

yit!
, yit = 0, 1, . . . ,

P(Yit = 0|δit = 1) = 1,

P(Yit > 0|δit = 1) = 0,

for (i, t) ∈ W , and we set qW = 1 to obtain the corresponding probabilities for
locations i and times t outside the window W . Now assuming that we know δit =
dit ∈ {0, 1} for each location i and time t considered, the log-likelihood function is
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given by

ℓ(qW |{yit}, {dit}) = log

 ∏
(i,t)∈W

P(Yit = yit, δit = dit)

 ∏
(i,t)∈W

P(Yit = yit, δit = dit)


= log

 ∏
(i,t)∈W

P(Yit = yit|δit = dit)P(δit = dit)


+ log

 ∏
(i,t)∈W

P(Yit = yit|δit = dit)P(δit = dit)


=

∑
(i,t)∈W

[
dit log(pit) + (1− dit) log

(
(1− pit)e

−qWµit
(qWµit)

yit

yit!

)]

+
∑

(i,t)∈W

[
dit log(pit) + (1− dit) log

(
(1− pit)e

−µit
µyit
it

yit!

)]
=

∑
(i,t)∈W

(1− dit) [yit log(qW )− qWµit] + c, (3.2.6)

where c is some constant with respect to qW . It follows that the score function is
given by

d
dqW

ℓ(qW |{yit}, {dit}) =
∑

(i,t)∈W

(1− dit)

(
yit
qW

− µit

)
. (3.2.7)

Recalling that our alternative hypothesis concerns qW > 1, we set the derivative
above equal to zero, solve for qW , and take as our maximum likelihood estimator

q̂W = max
{
1,

∑
(i,t)∈W yit(1− dit)∑
(i,t)∈W µit(1− dit)

}
. (3.2.8)

Since we do not actually observe the δit’s, we cannot use the above estimator of qW
directly. This is where the EM algorithm comes in handy.

3.2.3 EM Algorithm

For a given space-time window W , let q̂(k)W be the estimate of qW in the k’th iteration
of the EM algorithm. As usual for the EM algorithm, we define a function Q to be
the expectation of the complete data log-likelihood likelihood given the parameters
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obtained in the k’th iteration of the algorithm. That is,

Q(qW |q̂(k)W ) := E
[
ℓ(qW |{yit}, {δit})

∣∣{yit}; q̂(k)W

]
(expectation is w.r.t. all δit)

= E

 ∑
(i,t)∈W

(1− δit)(yit log(qW )− qWµit) + c︸︷︷︸
constant w.r.t. qW

∣∣∣{yit}; q̂(k)W


=

∑
(i,t)∈W

(
1− E

[
δit
∣∣{yit}; q̂(k)W

])
(yit log(qW )− qWµit) + E

[
c
∣∣{yit}; q̂(k)W

]
.

Now, note that

E[δit|{yit}; q̂(k)W ] = P(δit = 1|Yit = yit; q̂
(k)
W )

=
P(Yit = yit|δit = 1)P(δit = 1)1{yit = 0}

P(Yit = yit|δit = 1)P(δit = 1) + P(Yit = yit|δit = 0)P(δit = 0)

=
pit

pit + (1− pit) exp (−q̂(k)µit)
1{yit = 0}

=: δ̂
(k)
it ,

where 1{·} is the indicator function. Q(qW |q̂(k)W ) thus becomes

Q(qW |q̂(k)W ) =
∑

(i,t)∈W

(1− δ̂(k))(yit log(qW )− qWµit) + E[c|{yit}; q̂(k)W ]. (3.2.9)

In the maximization step of the EM algorithm, we are to maximize Expression (3.2.9)
with respect to qW > 1. From Expression (3.2.8) above, we recognize what the
required maximum must be. Our EM algorithm can thus be described as follows:

E-step at iteration k: for all pairs (i, t) ∈ W , set

δ̂
(k)
it =

pit

pit + (1− pit) exp
(
−q̂

(k)
W µit

)1{yit = 0}. (3.2.10)

M-step at iteration k + 1: set

q̂
(k+1)
W = max

1,

∑
(i,t)∈W yit

(
1− δ̂

(k)
it

)
∑

(i,t)∈W µit

(
1− δ̂

(k)
it

)
 . (3.2.11)

This procedure is repeated until convergence, for each window W ∈ W . Cançado et
al. (2014) used the initial value δ̂(0)it = 0.5 if the corresponding count was 0 and δ̂

(0)
it =

0 otherwise, and used the absolute convergence criterion |δ̂(k+1)
it − δ̂

(k)
it | < 0.01.
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In difference to the method in Cançado et al. (2014), the estimates δ̂
(k)
it for the

location-time pairs (i, t) outside the space-time window W do not need to be calcu-
lated, as they are irrelevant for inference about qW . In reference to the hypotheses
defined above, it is clear that these estimates will be the same outside of W . How-
ever, the estimates do need to be calculated under the null hypothesis (when qW = 1)
inside of W ; for each (i, t) ∈ W we set

δ†it =
pit

pit + (1− pit) exp (−µit)
1{yit = 0}. (3.2.12)

3.2.4 The EB-ZIP Scan Statistic

The above EM estimation above is repeated for each potential cluster W , arriving
at final estimates q∗W and δ∗it = δ∗it,W on convergence of the algorithm, along with the
estimates δ†it = δ†it,W . Then, as in Cançado et al. (2014), we use the full likelihood
of Equation (3.2.6) to form the ratio of likelihoods

λW =
L(q∗W |{yit}, {δ∗it})
L(1|{yit}, δ†it)

(3.2.13)

=

∏
(i,t)∈W p

δ∗it
it

[
(1− pit)e

−q∗Wµit
(q∗Wµit)

yit

yit!

]1−δ∗it

∏
(i,t)∈W p

δ†it
it

[
(1− pit)e−µit

µ
yit
it

yit!

]1−δ†it
. (3.2.14)

The expectation-based ZIP scan statistic (EB-ZIP) is then given by

λ∗ = max
W

λW , (3.2.15)

and the most likely (space-time) cluster W ∗ for a disease outbreak is given by the
W that corresponds to this maximum.

3.3 Software

The R programming language and software environment was used to implement
the methods described in this thesis, as well as carry out the simulations de-
scribed in Chapter 5 and Chapter 4. The methods are available as the R package
scanstatistics, accessible from the GitHub repo https://github.com/BenjaK/
scanstatistics. It can be installed using the R command

1 devtools::install_github("benjak/scanstatistics")

This R package supplements existing packages for the monitoring of count time series
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and outbreak detection, such as the surveillance package (Höhle et al., 2015),
whose capabilities are described in Höhle (2007) and Salmon et al. (2015). The
books R Packages and Advanced R by Wickham (2014, 2015) were immensely helpful
in the design of this package. Also of immense use was the package data.table
(Dowle et al., 2014).
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4 Simulation Study

The expectation-based ZIP scan statistic is the main contribution of this thesis,
and interest therefore lies in measuring its performance on the type of data and
outbreaks it was designed for—spatial time series of zero-inflated Poisson counts with
hot-spot outbreaks. If it does not perform well on that type of data in a controlled
setting, it reasonably stands little chance of detecting outbreaks on data from the real
world. We thus begin by comparing the proposed expectation-based zero-inflated
Poisson scan statistic against the expectation-based Poisson scan statistic (Neill et
al., 2005) and the hot-spot efficient score scan statistic (Tango et al., 2011), on
counts randomly generated from a zero-inflated Poisson distribution. For brevity,
we refer to these scan statistics simply as ZIP, PO, and NB, names corresponding
to the distributions on which they are based. Each of these three scan statistics was
designed for hot-spot outbreaks (see Section 2.2.3), so this is the type of outbreak
that will be simulated. Because Tango, Takahashi & Kohriyama’s scan statistic for
‘emerging outbreaks’ (as described in Section 3.1.2) was not designed for this type
of outbreak, it seems less relevant and is thus excluded from the comparison. It will
be used in the next chapter, however. We begin by describing the design of this
simulation study and how the comparison between the different scan statistics will
be made.
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4.1 Design

For our simulation study we consider a square 14 × 14 grid of points, each point
representing a single spatial region, and its coordinates the centroid of the region.
This grid—our study area—is depicted in Figure 4.1. Because only the centroids
are important for distance calculations in the simulations we run, the boundaries of
the regions are of less importance, and are not drawn in the figure.

A B
C DLow

High

Low High
µ

p

Study Area

Figure 4.1 Grid of points, representing the study area. The study area is divided into
four subareas, corresponding to different ranges of the parameter values
for the ZIP distributions from which the simulated data is generated.

As can be seen, the study area is divided into four subareas denoted A, B, C, and
D. For each region i, a baseline set corresponding to 15 weeks of non-outbreak data
is generated from a zero-inflated Poisson distribution with parameters pi and µi. To
put focus on the actual scan statistics rather than the parameter estimation meth-
ods, we suppose that distribution parameters are constant over time and only differ
between regions. The parameter µi of the counts in subareas A and C are given low
values, generated uniformly at random from the range [0.5, 3.5]. In subareas B and
D, the µi’s are comparatively high, similarly generated in the range [15, 30]. Like-
wise, the excess zero probabilities pi are low in subareas C and D (pi ∈ [0.05, 0.15]),
and high in subareas A and B (pi ∈ [0.5, 0.65]). As was done in the simulation
study conducted by Tango et al. (2011) the parameter values and baseline counts
generated from their use are drawn once, as computation times would be prohibitive
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if the simulation results were averaged over multiple sets of baseline parameter val-
ues and counts. The choice of ranges for these parameters is motivated by values
seen when fitting a zero-inflated Poisson distribution to district-level disease data
(Salmonellosis Enteritidis) from Germany, obtained from the Robert Koch Institute
(Robert Koch Institute: SurvStat@RKI 2.0, 2015). The idea behind the choice of
high or low parameter values is to compare the PO, NB, and ZIP scan statistics on
outbreaks in different settings.

In Figure 4.2, relative frequency histograms are shown for the baseline counts in each
of the subareas A, B, C, and D. The counts in each area are considered jointly over
all 144 regions and 15 time points, since the parameter values of the distributions
that generated the counts are similar in a given area.
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Figure 4.2 Relative frequency histograms of the baseline (non-outbreak) dataset,
one histogram for all the counts in each of the subareas A, B, C, and D.

On the baseline data set, for each region, the expected value parameter µi for the
Poisson and negative binomial are estimated using the region-specific sample mean
ȳi. The parameter ϕi of the negative binomial distribution is estimated using the
moment estimator

ϕ̂i =

{
ȳ2i

s2i−ȳi
, if s2i > ȳi

∞, otherwise,
(4.1.1)

as was used by Tango et al. (2011, p. 108). s2i is here the sample variance for the
counts in region i. Because the method of moments may yield a negative estimate for
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the excess zero probability pi when used with the ZIP distribution, the parameters of
the ZIP distribution are estimated using the EM algorithm instead. The derivation
of the EM algorithm for the ZIP distribution is given in Appendix A.

Outbreaks will be generated in a subset of regions in each of the subareas A, B, C,
and D, and these outbreaks will vary in severity q—the factor by which the Poisson
parameter is increased in an outbreak—and duration T . To exemplify, suppose an
outbreak is to be simulated in subarea A. We first choose an outbreak zone ZA,
consisting of a number of regions in A. We also choose a duration of the outbreak,
say T = 3 weeks, and an outbreak severity, say q = 2. For each region i ∈ ZA, we
then generate 3 counts from a ZIP(pi, 2 · µi) distribution, and for all regions not in
ZA, 3 counts are generated from a ZIP(pi, µi) distribution. The parameters pi and
µi are the same as for the baseline data set. Then, using the parameters estimated
on the baseline data set for each distribution (Poisson, negative binomial, ZIP), we
calculate the corresponding scan statistics and their most likely cluster. The value of
each of these scan statistics is then compared to 999 Monte Carlo replicates, as de-
scribed Section 2.2.5. The replicates are generated using the estimated parameters.
The calculated p-value is compared to the significance level 0.02, corresponding to
approximately one false alarm every year (and the same value chosen by Tango et
al., 2011). For a p-value lower than the significance level, the spatial component of
the detected most likely cluster (MLC) Z∗ can then be compared to the true cluster
ZA, as described next. In Figure 4.3, four examples of simulated outbreaks—one
in each of the subareas A, B, C, and D—are shown. The counts in the first 15
weeks, highlighted in green, shows the time series of baseline counts for each region
plotted in the same graph. In the last 3 weeks, highlighted in red, counts in five
regions (5 nearest neighbors) of each subarea are generated from ZIP distributions
for which the Poisson parameters are 2 times what they were in the baseline period.
In the remaining regions, the counts are generated from distributions with the same
parameters as in the baseline period.

In our simulations, the true outbreak zones Zj, j = A,B,C,D, will always be the
corner regions and their 4 nearest neighbors. Three different outbreak severities
q ∈ {1.5, 2, 2.5} are considered, as well as two outbreak durations T ∈ {1, 3} weeks,
if we work with time units of one week. For outbreaks with duration 3, the analysis
is done in the third week. For each combination of true outbreak zone Zj, severity
q, and duration T , 1000 outbreaks are simulated, and the PO, NB, and ZIP scan
statistics calculated along with their respective MLCs (spatial component only).
The set Z of all potential spatial outbreak zones Z is taken as the set of all k
nearest neighbors of each point (region) on the grid, for 0 ≤ k ≤ 9. Thus, the
zones Z considered consist of between 1–10 regions. Before calculating (Euclidean)
distances between points on the grid, a small noise is added in order to prevent
ties.

In evaluating the results of the simulation study, we focus mainly on the spatial
detection accuracy of the scan statistics, not their ability to detect the true duration
of outbreaks. Rather, we look at how inclusion of the temporal dimension in the
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Figure 4.3 Overlapping time series for all 196 regions in the study area. The first
15 weeks show counts during the baseline period; the last 3 weeks show
outbreaks generated in 5 regions of each subarea A, B, C, and D.

calculation of the scan statistics can aid in detecting the true outbreak regions.
If a simulated outbreak is detected by one of the scan statistics—meaning that
the p-value for the statistic is lower than our chosen significance level—we wish to
compare the detected most likely (spatial) cluster Z∗ to the true spatial outbreak
cluster Ztrue. Neill (2009b, p. 506) proposes two primary measures that can be used
for this purpose: the spatial precision and the spatial recall. These measures take
values in the range [0, 1], with values closer to 1 being better. The spatial precision
(also known as positive predicted value) is the proportion of regions detected by our
method that are true outbreak regions, and is calculated as

Spatial precision =
|Z∗ ∩ Ztrue|

|Z∗|
(4.1.2)

The spatial precision gives us a measure of how relevant the outbreak zone (MLC)
we found is, in terms of its size and how many true outbreak regions are in it.
A large and significant MLC containing all true outbreak regions but also many
other non-outbreak regions will have a low precision, while a significant MLC with
only one region—which happens to be a true outbreak region—will have a perfect
precision of 1.

The spatial recall (or sensitivity) is similarly the proportion of true outbreak regions
that are detected by our method, and is calculated as

Spatial recall = |Z∗ ∩ Ztrue|
|Ztrue|

(4.1.3)
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A high spatial recall may not necessarily be good: if the detected cluster Z∗ consists
of all regions in the study area the recall will be 1, but for an outbreak affecting
only a few regions the cluster Z∗ won’t actually tell us anything about where the
true outbreak cluster might be.

To see that the precision and recall measures can differ substantially, consider an
outbreak that affects 15 regions, of which our scan statistic detects 3, plus one
region that is not actually affected. In this case, the spatial precision is 3/4 = 0.75
while the spatial recall is only 3/15 = 0.2. As an aggregate measure of a scan
statistic’s spatial detection accuracy, Neill (2009b, p. 506) uses the F-score, which is
the harmonic mean of the precision and recall:

F = 2 · Precision · Recall
Precision + Recall (4.1.4)

= 2 · |Z∗ ∩ Ztrue|
|Z∗|+ |Ztrue|

(4.1.5)

These three measures will be calculated for the significant clusters found by each scan
statistic, for each combination of outbreak severity, duration, and affected zone.

We also compare the false positive ratios of the PO, NB, and ZIP scan statistics
by generating three ZIP-distributed counts for each region using the true baseline
parameters pi and µi, 1000 times over. On each such simulation of a non-outbreak
period of 3 weeks, each scan statistic is calculated and a p-value calculated using
the Monte Carlo replicates mentioned earlier. If this p-value is lower than the
significance level 0.02, the null hypothesis of no outbreak is (falsely) rejected. Since
the scan statistics were calculated on data generated from parameters believed to
hold under the null hypothesis of no outbreak, we would hope that the proportion
of rejected null hypotheses would match our significance level. The false positive
ratio is given by this proportion.

4.2 Results

The false positive ratios calculated for the 1000 simulated null hypothesis data sets
are 100%, 7.5%, and 10.4% for the PO, NB, and ZIP scan statistics, respectively.
The expectation-based Poisson scan statistic clearly performs worst, raising a false
alarm 100% of the time. This is due to the fact that the Poisson scan statistic uses
the sample means calculated for each region in the baseline data as parameters. Due
to the presence of excess zeros, these sample means are likely to be low in comparison
to the Poisson parameter in the ZIP distribution which generated the baseline data
and the simulated null hypothesis data sets on which the false positive ratio was
calculated. When the Monte Carlo p-value is calculated for the Poisson scan statistic,
it is based on scan statistics calculated on data that has been generated using the
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low sample means as parameters. These scan statistics will be small in comparison
to the ‘observed’ scan statistics, as these are calculated on data generated from ZIP
distributions whose Poisson parameters are comparatively high. On the other hand,
the NB and ZIP scan statistics raise false alarms at much lower rates, but still above
the significance level 0.02. For the ZIP scan statistic at least, the false positive ratio
should improve with better parameter estimates.

For the simulated outbreaks, we begin by showing the spatial precision, recall, and
F-score for the detected outbreaks, i.e. those whose corresponding scan statistic had
a p-value below 0.02. In Figure 4.4, we show the spatial precision of the three scan
statistics for the different outbreak scenarios with severity q = 1.5, which again is
the factor by which the Poisson mean µi of the ZIP-distribution is multiplied by for
a region i affected by the outbreak.
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Figure 4.4 Boxplot of the spatial precision for the three scan statistics calculated
for the 1000 simulated outbreaks, for the scenarios in which the outbreak
severity q is set at 1.5.

Figure 4.4 shows that the ZIP scan statistic generally performs much better than
the PO and NB scan statistics, having a high proportion of true outbreak regions
among all regions detected. The exception is outbreaks in area A, in which the ZIP
parameter µi is low and the parameter pi is high. Here, the NB scan statistic has an
almost perfect precision, meaning that all outbreak regions detected are also true
outbreak regions. Also of interest is that the ZIP scan statistic seems to have a
higher precision for outbreaks in regions B and D, in which the ZIP parameter µi

is high. Lastly, the precision for the ZIP scan statistic generally seems higher for
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outbreaks of duration 3 than those of duration 1, indicating that the method gains
accuracy when considering longer outbreak durations.

Figure 4.5 similarly shows the spatial recall of the three methods. Here, the ZIP
scan statistic performs best on all of the areas A, B, C, and D, and again seems
to do better in areas B and D, finding a higher proportion of true outbreak regions
than it does for outbreaks in areas A or C. The recall for the ZIP statistic is also
better for outbreaks of duration 3 compared to those of duration 1, similar to the
spatial precision.
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Figure 4.5 Boxplot of the spatial recall for the three scan statistics calculated for
the 1000 simulated outbreaks, for the scenarios in which the outbreak
severity q is set at 1.5.

Figure 4.5 also shows that all three methods struggle to detect true outbreaks that
occur in area C, which was also evident from the precision in Figure 4.4. In area C,
both the excess zero probability and the Poisson mean parameter of the ZIP distri-
bution are low, and increasing the mean by a factor of 1.5 is apparently insufficient
to cause detectable outbreaks.
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To summarize the two previous figures, Figure 4.6 shows boxplots of the F-score,
which again is the harmonic mean of the spatial precision and spatial recall.
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Figure 4.6 Boxplot of the F-score for the three scan statistics calculated for the 1000
simulated outbreaks, for the scenarios in which the outbreak severity q is
set at 1.5.

Though Figure 4.6 holds no surprises, it affirms the statement that the spatial
detection accuracy of the proposed ZIP scan statistic is superior to the PO and NB
scan statistics, when data behaves according to the outbreak model for which the
ZIP scan statistic was designed. This indicates that the ZIP scan statistic may be
of some value in the real world, when data is though to resemble that generated by
a zero-inflated Poisson process.

Boxplots corresponding to those above but for simulated outbreaks with severities
q ∈ {2, 2.5} can be found in Appendix B. Though the ZIP scan statistic still performs
best in these scenarios, the performance of the PO and NB scan statistic is improved
for higher values of the outbreak severity. This is reasonable, as any scan statistic
ought to detect an outbreak of sufficiently large magnitude.
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It is also interesting to see what number of detected outbreaks that the plots above
are based on. In Table 4.1, the number of detected outbreaks per 1000 simulations
are given for each scan statistic and outbreak scenario.

Table 4.1 Number of significant clusters detected by each scan statistic, in 1000
simulated outbreaks at the specified area (A, B, C, or D) and with outbreak duration
T ∈ {1, 3} and severity q ∈ {1.5, 2, 2.5} as specified by the leftmost column.

PO NB ZIP

Severity A B C D A B C D A B C D

Duration = 1

1.5 1000 1000 1000 1000 101 36 32 35 41 295 22 796
2 1000 1000 1000 1000 185 44 26 45 145 842 90 999
2.5 1000 1000 1000 1000 285 34 47 600 271 922 249 1000
Duration = 3

1.5 1000 1000 1000 1000 170 71 66 65 248 914 164 1000
2 1000 1000 1000 1000 322 71 80 759 565 996 570 1000
2.5 1000 1000 1000 1000 510 196 255 993 828 1000 916 1000

In reference to the earlier plots of spatial precision and recall, Table 4.1 shows that
even though the PO scan statistic always detects an outbreak in our simulations—
which by itself could be viewed as a good thing—the outbreak zones detected corre-
spond very little to the true outbreak zones. Thus, yet again, the PO scan statistic
gives false alarms most of the time, for the same reasons given in the beginning of
this section. On the other hand, the NB scan statistic performed better in terms
of spatial accuracy, but the number of detected outbreaks is far from a full 1000,
particularly at lower outbreak severities. In comparison, the ZIP scan statistic de-
tects more (and more relevant) outbreaks, but the performance is again worse for
simulated outbreaks in areas A and C compared to those in areas B and D. The
performance improves at higher levels of the outbreak severity, however.

The conclusion of the simulation study in this chapter is that the proposed expectation-
based ZIP scan statistic may hold some promise, outperforming comparable methods
in terms of outbreak detection ability on data and outbreaks simulated according to
the models that the method was designed for. A second conclusion is that inclusion
of the time dimension when detecting outbreaks is valuable, as it seems to increase
both detection rate (seen by the number of significant outbreaks detected per 1000
simulated outbreaks) and spatial detection accuracy.
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5 Case Study: Cryptosporidiosis
Outbreak in Germany

The previous chapter proved by simulation that the proposed expectation-based
ZIP scan statistic is capable of accurately detecting outbreaks on the type of out-
break data it was designed for. It was moreover shown that its performance was in
most cases superior to two other expectation-based scan statistics: the Poisson scan
statistic proposed by Neill et al. (2005) and the negative binomial score scan statistic
proposed by Tango et al. (2011) In this chapter, we return to the outbreak of cryp-
tosporidiosis in the city of Halle, Germany, that was discussed in the introduction
(Chapter 1). This data, obtained from the SurvStat database that is maintained
by the Robert Koch Institute (RKI) in Germany (Robert Koch Institute: SurvS-
tat@RKI 2.0, 2015) and which was plotted in Figure 1.2, is shown again in Figure
5.1.
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Figure 5.1 Time series of reported cryptosporidiosis cases for all 402 districts of
Germany; each line is a time series for a single district, but most overlap
at zero at all time points. The clear outlying line shows the reported
cases for the city of Halle (Saale).

Though this outbreak data is not ideal for the outbreak detection problem consid-
ered in this thesis—it affects just a single region, rather than multiple neighboring
regions—it can still tell us something about the relative merits of the scan statistics
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examined here. Given the high frequency of zero counts in the data, it is particu-
larly interesting to see how the proposed expectation-based ZIP scan statistic will
perform. In this chapter, we also consider the ‘emerging outbreak’ scan statistic of
Tango et al. (2011) that was covered in Section 3.1.2, but not included in the simula-
tion study of the previous chapter. According to Gertler et al. (2015), the outbreak
in Halle was detected by the local health department in that city, and at federal
level by the Robert Koch Institute in Berlin in week 32. In two weeks prior, the
case counts of cryptosporidiosis was zero in the city of Halle. We therefore run our
analysis in weeks 32–34: the analysis run in week 32 considers a maximum outbreak
duration of 1, in week 33 a maximum duration of 2, and in week 34 a maximum
duration of 3. The per-district counts for the first 31 weeks of the year are used to
estimate the parameters of the Poisson, negative binomial, and zero-inflated Poisson
distributions corresponding to our four scan statistics. In this baseline period, case
counts of cryptosporidiosis are zero in all 31 weeks for all but 34 of the districts
of Germany, and counts are never higher than 2 in any one week. It thus seems
justified to fit parsimonious models in which temporal covariates are not included.
In reference to section 2.2.4, we fit three generalized linear mixed models with the
following structures for the conditional expected values:

PO : log(µit) = λ+ ai (5.0.1)

NB :

{
log(µit) = γ + bi

ϕit = ϕ (constant)
(5.0.2)

ZIP :

{
log(µit) = ζ + ci

logit(pit) = ρ+ di,
(5.0.3)

where logit(p) = log(p/(1− p)) for p ∈ (0, 1), and ai ∼ N(0, σ2
a), bi ∼ N(0, σ2

b ), ci ∼
N(0, σ2

c ) and di ∼ N(0, σ2
d) are the random district-specific intercepts conditioned

on. The models were fitted using the R package lme4 (Bates et al., 2015a,b), though
a custom routine had to be written to fit the ZIP model as shown above. This
routine alternates between fitting a logistic mixed effects model for the zero and non-
zero counts, and a weighted Poisson GLMM for the Poisson parameter of the ZIP
distribution. The program is supplied in Appendix C. In Table 5.1, the parameter
estimates for the above models are shown.

Table 5.1 Parameter estimates for the fitted mixed models.
PO NB ZIP

Parameter λ σa γ ϕ σb ζ ρ σc σd

Estimate −10.06 5.5 −10.02 0.05 1.5 −10.13 10.03 5.6 5.4

Fitted values for the parameter µit for each model are very close to zero for all
districts, a large majority of values of the order 10−4 or lower due to the many
regions with all zeros during the baseline period. The excess zero probabilities pit
are close to 1, though this should not be interpreted as a massive underreporting
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of cases or similar, since the number of reported cases are expected to be very low
as well. The estimate of the negative binomial parameter ϕ is approximately 0.05,
which is natural if recalling that the variance of the negative binomial distribution
is µi + µ2

i /ϕ. Because the mean parameter µit is so small, the estimate of ϕ has to
be small as well in order to make the variance account for all non-zero values in the
data. For the spatial zones over which we scan, we take the k nearest neighbors of
each district in Germany, for 0 ≤ k ≤ 9. That is, the maximum cluster size is 10.
Because we noticed a tendency of the ZIP scan statistic to overestimate the size of
the true outbreak cluster, we also considered maximum cluster sizes of 5, 2, and 1,
for comparison. Pairwise distances were calculated between the geographic centroids
of each district using the great circle distance (WGS84 ellipsoid), as implemented
in the R package sp (Bivand et al., 2013; Pebesma & Bivand, 2005). To determine
significance of the highest-scoring clusters found in our analysis, we will for each
scan statistic calculate a p-value using Equation (2.2.13), based on 999 Monte Carlo
replicates of the statistic.

The results of the analysis are shown in Table 5.2 on the next page. In this table,
we again refer to the Poisson scan statistic as PO and the zero-inflated Poisson
scan statistic as ZIP. The negative binomial score scan statistic based on a hot-spot
outbreak model, as given in Section 3.1.1, is referred to as NB-HS. The ‘emerging
outbreak’ negative binomial score scan statistic of Section 3.1.2 is referred to as NB-
EM. The first result from running the analysis for the three scan statistics is that the
negative binomial score scan statistic fails to detect the true outbreak district. This
is true for all maximum cluster sizes considered, and all weeks of analysis. This may
be explained by referring to Equation (3.1.9) and the equations prior: the parameter
µi is relatively large in the true outbreak district (city of Halle), since it was one of
the few districts which had seen non-zero counts in the baseline period. This makes
the overdispersion parameter wi = 1 + µi/ϕ large as well, which decreases the size
of the numerator in Equation (3.1.9) relative to what would be its size with a lower
value of wi. On the contrary, there are other districts with much lower means, which
decreases the size of the numerator in Equation (3.1.9), thus blowing up the value
of the scan statistic. These are the districts detected by the negative binomial score
scan statistic, even though the maximum of the counts in them are only equal to
1.
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Table 5.2 Results from analysis of cryptosporidiosis outbreak in Halle.
Method Analysis week Maximum cluster size p-value Halle detected MLC size
PO 32 10 0.001 TRUE 3
PO 32 5 0.001 TRUE 3
PO 32 2 0.001 TRUE 1
PO 32 1 0.001 TRUE 1
PO 33 10 0.001 TRUE 10
PO 33 5 0.001 TRUE 3
PO 33 2 0.001 TRUE 1
PO 33 1 0.001 TRUE 1
PO 34 10 0.001 TRUE 10
PO 34 5 0.001 TRUE 3
PO 34 2 0.001 TRUE 1
PO 34 1 0.001 TRUE 1
NB-HS 32 10 0.001 FALSE 1
NB-HS 32 5 0.001 FALSE 1
NB-HS 32 2 0.001 FALSE 1
NB-HS 32 1 0.001 FALSE 1
NB-HS 33 10 0.001 FALSE 1
NB-HS 33 5 0.001 FALSE 1
NB-HS 33 2 0.001 FALSE 1
NB-HS 33 1 0.001 FALSE 1
NB-HS 34 10 0.001 FALSE 1
NB-HS 34 5 0.001 FALSE 1
NB-HS 34 2 0.001 FALSE 1
NB-HS 34 1 0.001 FALSE 1
NB-EM 32 10 0.001 FALSE 1
NB-EM 32 5 0.001 FALSE 1
NB-EM 32 2 0.001 FALSE 1
NB-EM 32 1 0.001 FALSE 1
NB-EM 33 10 0.001 FALSE 1
NB-EM 33 5 0.001 FALSE 1
NB-EM 33 2 0.001 FALSE 1
NB-EM 33 1 0.001 FALSE 1
NB-EM 34 10 0.001 FALSE 1
NB-EM 34 5 0.001 FALSE 1
NB-EM 34 2 0.001 FALSE 1
NB-EM 34 1 0.001 FALSE 1
ZIP 32 10 0.001 TRUE 10
ZIP 32 5 0.001 TRUE 5
ZIP 32 2 0.002 FALSE 2
ZIP 32 1 0.002 FALSE 1
ZIP 33 10 0.001 FALSE 10
ZIP 33 5 0.001 FALSE 5
ZIP 33 2 0.001 TRUE 2
ZIP 33 1 0.001 TRUE 1
ZIP 34 10 0.001 TRUE 10
ZIP 34 5 0.001 TRUE 5
ZIP 34 2 0.001 TRUE 2
ZIP 34 1 0.001 TRUE 1
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Focusing first on the analyses run in week 32, the second result seen in Table 5.2 is
that both the Poisson and ZIP expectation-based scan statistics manage to detect
the true outbreak district Halle, though the ZIP statistic reports as the most likely
cluster (MLC) Halle and its 9 nearest neighbors. Even though the counts in all but
one of the true outbreak district’s nearest neighbors have case counts of 0 in week
32, they can still contribute to the value of the scan statistic through the quantity
δ∗it, as defined in Section 3.2.4. In reference to the spatial precision measure used in
Chapter 4, this is obviously a drawback of the proposed ZIP-scan statistic. One may
reason however, that if underreporting is prevalent, regions with zero counts near a
region with a relatively high number of counts should still be monitored, if there is
reason to believe that the disease could or already has spread to nearby areas. In
comparison, the expectation-based Poisson scan statistic only reports as the MLC
the true outbreak region and its two closest neighbors, which is better but still not
a perfect result.

Because of these results, we reran the analysis for potential clusters Z of maximal
size 5, 2, and 1. In these analyses, the Poisson scan statistic continues to do well, but
for the expectation-based ZIP scan statistic, the true outbreak district is no longer
in the most likely cluster when the maximal cluster size is two or one when the
analysis is run in week 32. However, Halle still registers as a secondary significant
cluster, as the p-value calculated for the statistic of it is still below 0.02, which
was the significance level used in the previous chapter. If the analysis for the ZIP
scan statistic is run in week 34 instead, the method manages to detect Halle as an
outbreak region for all maximum cluster sizes. For the analysis run in week 33, this
is only true when the maximum cluster size is either 1 or 2. One may also note
that the ZIP statistic always reports a cluster of maximum possible size. On the
other hand, the two negative binomial score scan statistics always seem to report an
MLC of maximum size 1. In weeks 33 and 34, the Poisson scan statistic also shows
a tendency to report a large cluster size.

In conclusion, this chapter has applied the expectation based Poisson, negative
binomial score, and ZIP scan statistics on real-world data from an outbreak of
cryptosporidiosis. The results indicate that Poisson and zero-inflated Poisson scan
statistics have some potential to detect outbreaks in this type of data, which is
characterized by an abundance of zero counts and few weekly case counts above
two. However, both methods tend to overestimate the true cluster size, the ZIP scan
statistic more so than the Poisson. The two negative binomial score scan statistics
fail completely in detecting the true outbreak region. It would be interesting to
do the same comparison on a different set of real outbreak data, perhaps with
higher average weekly counts in non-outbreak conditions, and with an outbreak that
affected more than one region. Such knowledge about actual outbreak locations is
scarce however, and the above comparison will have to do for this thesis. We now
conclude this thesis by discussing what has been learned in this chapter and the
previous ones.
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6 Summary and Discussion

The main purpose of this thesis has been to present a novel method for detect-
ing disease outbreak clusters in a spatiotemporal setting, using past observations
gathered from a multitude of geographical regions to inform the analysis of current
data. This novel method is a scan statistic based on the zero-inflated Poisson (ZIP)
distribution, which draws inspiration from a similar scan statistic proposed in an
article by Cançado et al. (2014). The ZIP distribution is appropriate for outbreak
detection in situations when some local health centers lack the facilities to diagnose
a given disease or when reported counts are biased downwards; the latter could be
due to e.g. underreporting or the lack of access to medical care for uninsured indi-
viduals. After establishing the general scan statistics methodology in Chapter 2, the
derivation of the proposed ZIP scan statistic was presented in Chapter 3, along with
another recent scan statistic formulated by Tango et al. (2011). Tango, Takahashi &
Kohriyama’s scan statistic, based on a negative binomial distribution, was intended
to supplement the the Poisson scan statistic presented in Chapter 2 as a method
that could better handle overdispersed data. These two methods were then used for
comparison with the proposed ZIP scan statistic, first on simulated data in Chapter
4, then in a case study on real-world outbreak data in the case study of Chapter
5.

The simulation study in Chapter 4 illustrated that the proposed ZIP scan statistic
holds some promise on well-behaved data, in the sense that its spatial detection
accuracy was higher than those of the Poisson and negative binomial scan statistics
when outbreaks were simulated in time series of counts drawn from a zero-inflated
Poisson distribution. The performance advantage was particularly evident when
the Poisson parameter of the ZIP distribution was high, but less clear when the
magnitude of the outbreak was higher, as illustrated by the plots in Appendix B.
The simulations also showed that inclusion of the time dimension in the analysis
improved the detection accuracy, though the goal is of course to detect outbreaks
as soon as possible. If an outbreak can be detected in week one rather waiting for
data to accumulate until week three, that is better.

Finally, the case study in Chapter 5 showed that proposed ZIP scan statistic had a
deficiency in that it detected a much larger outbreak cluster than what really was the
case, due to the inclusion of regions with counts of zero in the detected cluster. This
apparent flaw is inherent in the mathematical construction of the statistic, but could
perhaps be remedied in an ad hoc manner by focusing attention on those regions
in the detected cluster that have positive counts, until a more rigorous procedure
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has been devised. Another drawback of the proposed scan statistic that cannot
be completely circumvented is computation time. In one experiment performed,
the run time of the ZIP scan statistic was nearly 50 times greater than that of
the simple Poisson scan statistic. This is due to the sometimes many iterations of
the EM algorithm that are required, which increase with the number of potential
outbreak zones considered. The computation times could possibly be decreased by
choosing less strict convergence criteria. However, the algorithms implemented for
the analyses in this paper were written exclusively in R, and significant speedups
may be achievable by implementing them in a lower-level programming language
such as C++.

As it stands, the proposed expectation-based ZIP scan statistic could prove a useful
tool for outbreak detection for problems and data for which it is believed suitable.
Specifically, it may be of use in countries where reporting standards or medical
facilities are not fully equipped to diagnose certain diseases, leading to underreport-
ing or lack of reports for some regions. More generally, it could be included in the
host of methods—scan statistics and others—that are employed in routine disease
surveillance by public health authorities in most countries. Possible future exten-
sions of this scan statistic could be an outbreak model that also affects the excess
zero probability of the ZIP distribution—there exists a few ideas on this point, but
they are likely to require an even larger computational effort. It could also be of
interest to find other fields of application for the ZIP scan statistic, where perhaps
excess zero counts have a natural explanation and are empirically evident.
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A EM Algorithm for ZIP Parameters

Consider a sample of n observations y1, . . . , yn and known corresponding excess zero
indicators d1, . . . , dn. I.e. di = 1 if observation yi = 0 is an excess zero, and di = 0
if yi is a value generated from the Poisson component of the zero-inflated Poisson
distribution. From Equation (3.2.6), we can see that the log-likelihood function for
the parameters p and µ of the ZIP distribution with this data is given by

ℓ(p, µ|{yi}, {di}) =
n∑

i=1

[
di log(p) + (1− di) log

(
(1− p)e−µµ

yi

yi!

)]
.

Taking partial derivatives w.r.t. p and setting the result equal to zero, we get

∂

∂p
ℓ(p, µ|{yi}, {di}) =

n∑
i=1

[
di
p
− 1− di

1− p

]
= 0 ⇔ p̂ =

1

n

n∑
i=1

di.

Similarly for µ, we get

∂

∂µ
ℓ(p, µ|{yi}, {di}) =

n∑
i=1

[
(1− di)yi

µ
− (1− di)

]
= 0 ⇔ µ̂ =

∑n
i=1(1− di)yi∑n
i=1(1− di)

.

Now for the EM algorithm, let each di be replaced by its unknown, random coun-
terpart δi, and let p̂(k) and µ̂(k) be the parameter estimates in the kth iteration of
the algorithm. Define

Q(p, µ|p̂(k), µ̂(k)) := E
[
ℓ(p, µ|{yi}, {δi})

∣∣{yi}; p̂(k), µ̂(k)
]

(expectation is w.r.t. all δi)

=
n∑

i=1

E
[
δi
∣∣{yi}; p̂(k), µ̂(k)

]
log(p)

+
n∑

i=1

(1− E
[
δi
∣∣{yi}; p̂(k), µ̂(k)

]
) log

(
(1− p)e−µµ

yi

yi!

)
.

53



As in Section 3.2.3, we can see that

E
[
δi
∣∣{yi}; p̂(k), µ̂(k)

]
= P(δi = 1|Yi = yi; p̂

(k), µ̂(k))

=
p̂(k)

p̂(k) + (1− p̂(k)) exp (−µ̂(k))
1{yi = 0}

=: δ̂
(k)
i ,

where 1{·} is the indicator function. Differentiating Q w.r.t. p and µ, and solving
for these parameters, then leads to the same estimators as those we derived for the
full likelihood, except that the values di are replaced by their estimates δ̂

(k)
i . The

EM algorithm thus becomes

E-step at iteration k: set

δ̂
(k)
i =

p̂(k)

p̂(k) + (1− p̂(k)) exp (−µ̂(k))
1{yi = 0}. (A.0.1)

M-step at iteration k + 1: set

p̂(k+1) =
1

n

n∑
i=1

δ̂
(k)
i (A.0.2)

µ̂(k+1) =

∑n
i=1(1− δ̂

(k)
i )yi∑n

i=1(1− δ̂
(k)
i )

. (A.0.3)

With sensible initial values, these steps are repeated until a chosen convergence
criterion has been met.
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B Simulation Plots

This appendix contains plots of spatial precision, recall, and F-scores for simulated
outbreaks with severities q ∈ {2, 2.5}, that were not included in Chapter 4.
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Figure B.1 Boxplot of the spatial recall calculated for the 1000 simulated outbreaks,
for the scenarios in which the outbreak severity q is set at 2.
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Figure B.2 Boxplot of the spatial recall calculated for the 1000 simulated outbreaks,
for the scenarios in which the outbreak severity q is set at 2.
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Figure B.3 Boxplot of the spatial recall calculated for the 1000 simulated outbreaks,
for the scenarios in which the outbreak severity q is set at 2.
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Figure B.4 Boxplot of the spatial recall calculated for the 1000 simulated outbreaks,
for the scenarios in which the outbreak severity q is set at 2.5.
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Figure B.5 Boxplot of the spatial recall calculated for the 1000 simulated outbreaks,
for the scenarios in which the outbreak severity q is set at 2.5.
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Figure B.6 Boxplot of the spatial recall calculated for the 1000 simulated outbreaks,
for the scenarios in which the outbreak severity q is set at 2.5.
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C An R Function to Fit a ZIP Mixed
Model

In this chapter an R function for the fitting of a zero-inflated Poisson mixed model, as
given in Chapter 5. It is important to note that this is only a tiny portion of the code
that has been written for this thesis: the code for the R package scanstatistics
that has been created for this thesis is available at https://github.com/BenjaK/
scanstatistics. Further, over 1000 lines of code exist (and is available upon
request) to produce the results in chapters 4 and 5.

The following function fits the ZIP mixed model:
1 #' Fit a simple mixed model for a ZIP distribution.

2 #'

3 #' Fit a simple mixed model for a zero−inflated Poisson distribution , for which

4 #' the log of the conditional expected value of the Poisson component is given

5 #' by \eqn{\mu_{it} = \gamma + a_i} and the logit of the excess zero probability

6 #' is given by \eqn{p_{it} = \rho + b_i}, where \eqn{i} is a group−level index.

7 #' The function was inspired by code for similar purposes found at:

8 #' https://groups.nceas.ucsb.edu/non−linear−modeling/projects/owls/R/

9 #' @param dt A \code{data.table} with columns \code{count} and \code{location},

10 #' and a third column such as \code{time}.

11 #' @param maxitr An integers for the maximum number of iterations to perform.

12 #' @param tol Scalar; absolute convergence criterion.

13 #' @inheritParams lme4:: glmer

14 #' @return A list with components

15 #' \describe{

16 #' \item{poisson }{An object of class \code{glmerMod }; the fitted Poisson GLMM}

17 #' \item{binary }{An object of class \code{glmerMod }; the fitted logistic GLMM}

18 #' }

19 fit_zip_glmm <− function(dt , maxitr = 20, tol = 1e−6, nAGQ = 1L, verbose = 0L) {

20 # Get indices of zeros in data

21 zero_idx <− dt[, .I[count == 0]]

22 zero_ps <− numeric(dt[, .N])

23 zero_ps[zero_idx] <− 1 / (1 + exp(−1)) # Initial value for excess zero probs

24

25 # Separate data.table for binary data

26 bin_data <− copy(dt)

27 bin_data[count > 0, count := 1L]

28

29 delta <− 1

30 itr <− 1

31 while (delta > tol & itr < maxitr) {

32 old_zero_ps <− zero_ps

33
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34 # Fit logistic GLMM for binary data

35 bin_mod <− glmer(count ~ 1 + (1 | location),

36 data = bin_data , family = binomial , nAGQ = nAGQ)

37 bin_fit <− fitted(bin_mod)

38

39 # Poisson GLMM for count data , with weights given by 1 minus current

40 # excess zero probability estimate

41 count_mod <− glmer(count ~ 1 + (1 | location),

42 family = poisson(link = "log"), data = dt ,

43 weights = 1 − zero_ps)

44 count_fit <− fitted(count_mod)

45

46 # Update excess zero probability estimates

47 pz <− bin_fit[zero_idx]

48 zero_ps[zero_idx] <− pz / (pz + (1 − pz) * exp(−count_fit[zero_idx]))

49

50 delta <− max(abs(zero_ps − old_zero_ps))

51 itr <− itr + 1

52 if (verbose > 0) print(paste0("Iteration = ", itr − 1, ", delta = ", delta))

53 }

54 list(poisson = count_mod , binary = bin_mod)

55 }

R code
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