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Abstract

The dynamic Erdős-Rényi graph is a natural extension of an Erdős-
Rényi graph, in which one starts with n vertices and 0 edges and—
independently for each vertex pair—add and remove edges according
to a birth-death process. We shall study the critical version of such
a model where the birth and death rates are chosen in such a way
that the stationary distribution of the dynamic graph equals that of
a critical Erdős-Rényi graph.

In studying such a model we present two main results, the first be-
ing on how long it takes for the dynamic graph to reach stationarity
if it starts with 0 edges. We give an explicit expression for this time,
as well as proving that this is the fastest time to reach stationarity.

The second result is regarding how the size of the largest com-
ponent evolves through time. Mainly we give a lower bound for the
probability P (C(t) > ǫ · n) where C(t) is the size of the largest com-
ponent in the interval [0, t], and ǫ ∈ (0, 1)
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1 Introduction

The Erdős-Rényi graph is a well-studied model for random graphs, were one
start with n vertices and then either add edges independently between vertex
pairs with some probability; or letting the graph have k edges and then choosing
uniformly from all possible edge configurations.

In this thesis we study a natural extension of such a model — the dynamic
Erdős-Rényi graph. Starting with n vertices and 0 edges we—independently for
each vertex pair—add and remove edges according to a birth-death process. We
choose the birth and death rates of these processes in such a way that the sta-
tionary distribution of the dynamic graph equals that of a critical Erdős-Rényi
graph.

The first main result is on how long it takes for the dynamic graph to reach
stationarity if it starts with 0 edges. We give an explicit expression for this
time, as well as proving that this is the fastest time to reach stationarity. It
turns out that this time is distributed as the maximum of a

(
n
2

)
number of

independent Exp(β · (1 + 1
n−1 ))-distributed random variables, where β > 0 is

the rate at which we remove an edge, if an edge is present between a vertex pair.

Often of interest when studying random graphs is the size of its largest compo-
nent, since this tend to have interesting practical implications. Mainly we shall
study how long it takes for the largest component to reach size ε · n for fixed
ε ∈ (0, 1).
The main result will be a lower bound for P (C(t) > ε · n) where C(t) is the
size of the largest component in the interval [0, t]. In doing so we shall use the
intimate relation between the size of the largest component of an Erdős-Rényi
graph and the number of edges present.
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2 The Model

In order to define the dynamic Erdős-Rényi graph we must first define its two
most basic building block, the two standard versions of the Erdős-Rényi graph.

2.1 The Erdős-Rényi Graph

We begin by stating the mathematical definition if a graph.

Definition 2.1. A graph is an ordered pair G = (V,E) where V is a vertex set,
e.g. {1, 2, ..., n}, and E ⊂ V × V is the set of edges between the vertices.

Definition 2.2. Let (Ω,F , P ) be a probability space. Let (S,S) be a measurable
space, where S is some set of possible graphs on some vertex set V , and S is
some σ-algebra on S.
A random graph is a random element G : (Ω,F)→ (S,S)

We now have the basic framework to define what is meant by a Erdős-Rényi
graph.

Definition 2.3. Let V = {1, 2, . . . , n} be a labeled vertex set.

1. G(n,M) is called an Erdős-Rényi random graph with n vertices and M
edges if it is a random graph taking values in S, the set of all graphs with n
vertices and M edges, with equal probability. I.e. each graph configuration
in this model has the same probability, p = 1

(NM)
where N =

(
n
2

)
2. G(n, p) is called an Erdős-Rényi random graph with n vertices and edge

probability p if it is a random graph taking values in S, the set of all
possible graphs with n vertices, where the edges between vertices are chosen
independently and with probability p.

We call the graph critical if M = n
2 or p = 1

n .

Remark. Both these models will come in handy; the term Erdős-Rényi graph
is used interchangeably to describe both models, where we use context to make
clear which model is referred to.

Furthermore, the reason that the graph is called critical is because the expected
number of edges of a randomly selected vertex has is equal to 1, and this acts
as a threshold point for the size of the largest component. Namely if D is the
number of edges a randomly selected vertex has, then if E(D) < 1 the fraction of
vertices in the largest component converges in probability to 0, and if E(D) > 1
the fraction of vertices in the largest component converges in probability to a
positive number.
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2.2 The Dynamic Erdős-Rényi Graph

A Dynamic Erdős-Rényi graph is an Erdős-Rényi graph which evolves dynam-
ically through time, where edges are added and removed according to some
specified birth-death process. We will study a specific flavor of this process
— the critical version, i.e. we choose the birth-death processes in such a way
that the stationary distribution of the dynamic graph equals that of a critical
Erdős-Rényi graph.
We begin this section with an informal definition of the process.

Definition 2.4. Let G = {G(t); t ∈ [0,∞)} be a family of random graphs, i.e.
G(t) is a random graph for every t ∈ [0,∞). Let β > 0 and α > 0. G is called
a Dynamic Erdős-Rényi graph if,

1. The number of vertices is fixed at n

2. Independently for each vertex pair if no edge is present an edge is added
after an Exp( β

n−1)-distributed time.

3. Independently for each vertex pair if a edge is present that edge is removed
after an Exp(α)-distributed time.

The dynamic Erdős-Rényi graph is called critical if β = α.

Remark. In this report, we start with 0 edges present.

Definition 2.4 will be the working definition but in order to make this more
rigorous we also give the formal definition.

Definition 2.5. Let V = {1, 2, . . . , n} be a labeled vertex set. Let Eij =
{Eij(t)}, i < j ∈ V be independent birth-death (see Definition 3.2) processes on

{0, 1}, starting in 0, with birth parameter λ = β
n−1 and death parameter µ = α.

Furthermore let G = {G(t), t ∈ [0,∞)} be a family of graphs where G(t) =
(V, f(E(t))) where E(t) = (E1,2(t), . . . , En−1,n(t)) and f is a function {0, 1}n →
V × V with f(x1,2, . . . , xn−1,n) = {(i, j) ∈ V × V ; xij = 1}
Finally, if β = α we call G a critical dynamic Erdős-Rényi graph.
Since f is a 1-to-1 function we may also take G(t) = (E1,2(t), . . . , En−1,n(t))

Remark. The fact that we can take G(t) = (E1,2(t), . . . , En−1,n(t)) will be a
very useful one and is well noted.
Throughout the report we will call Eij(t) the edge processes.
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3 Markov Interlude

There is a close connection between the dynamic Erdős-Rényi graph and Markov
processes—namely, it is an ergodic Markov process. This fact shall prove very
useful, and will be exploited throughout the report.
This section is very technical, and may be skipped if one is willing to accept
that the dynamic graph and its underlying edge processes are ergodic Markov
chains, and that the stationary distribution of the dynamic graph is that of a
critical Erdős-Rényi graph.

We begin by recalling the definition of a Markov process.

Definition 3.1. Let X = {X(t), t ≥ 0} be a stochastic process, where
X(t) : (Ω,F) → (S,S) is a random variable for each t ≥ 0 with respect to the
measure P, and S is a countable set with corresponding σ-algebra S.
Secondly—for technical reasons—we assume that X(·, ω) is right-continuous, in
t, for all ω ∈ Ω. We say that X is a Markov process if ∀i, j, ik, . . . , i0 ∈ S and
∀t > s > tk > . . . t0 ≥ 0 we have

P (X(t) = j|X(s) = i,X(tk) = ik, . . . X(t0) = i0) = P (X(t) = j|X(s) = i)

whenever these probabilities exists. Furthermore, if we also have

P (X(t) = j|X(s) = i) = P (X(t− s) = j|X(0) = i)

the process is called homogeneous.

The process is called ergodic if,

1. The process is irreducible, i.e. starting in state i the probability to even-
tually reach state j is larger than 0 for all i, j ∈ S.

2. The process is positive recurrent, i.e. starting in state i the expected time
to return to i is finite.

Remark. All standard Markov processes are homogeneous, and it will be as-
sumed throughout that whenever we are talking about Markov processes we are
talking about homogeneous Markov processes.

As previously stated the processes describing if an edge is present between vertex
pairs—the edge processes—are birth-death processes. We therefore recall the
definition of a birth-death process.
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Definition 3.2. Let X be a Markov process taking values in S = {0, 1, . . . , n}
or N. Let {λk, k ∈ S} and {µk, k ∈ S} be sequences of positive real numbers
called the birth and death rates. We say that X is a birth-death process if,

1. Each time X enters state k it stays there for an Exp(λk + µk)-distributed
amount of time.

2. The holding times are independent random variables.

3. When leaving state 0 < k < n the process enters state k+1 with probability
pk,k+1 = λk

λk+µk
and state k-1 with probability pk,k−1 = 1 − pk,k+1 inde-

pendently of how long it has been in state k.

4. When leaving state 0 the process enters state 1 with probability 1, and
when leaving state n it enters state n-1 with probability 1.

In going forward we shall need to know that the underlying edge processes, the
dynamic graph, and the process describing the number of edges present all are
ergodic Markov chains. This is mainly for existence and uniqueness results. For
instance, we will need to calculate the expected value for the hitting time for k
edges being present—so we need to know this expectation exists, and ergodicity
ensures this.

In order to prove ergodicity we shall first need two auxiliary Lemmas. The first
Lemma is well-known, but we shall still state and prove it.

Lemma 3.3. Let Y be a positive random variable, with P (Y <∞) = 1. Then,

E(Y ) =

∞∫
0

P (Y > t) dt (3.1)

In the sense that if either side exist so does the other, and if either side does
not exist i.e. is equal to ∞ so is the other.

Proof. Assume E(Y ) <∞.

E(Y ) =

∫
Y dP =

∫
y dFY

1.)
=

∞∫
0

∞∫
0

1{y > t} dt dFY

2.)
=

∞∫
0

∞∫
0

1{y > t} dFY dt =

∞∫
0

P (Y > t) dt.

1.) is valid since Y is positive and P (Y < ∞) = 1, and 2.) holds true since
1{y > t} is positive and we can then interchange integrals by Fubini’s theorem,
see [1, Ch. 2.15].
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Assume E(Y ) =∞.
Define Xn = 1{Y ≤ n} · Y . Since P (Y <∞) = 1 we have that,

lim
n→∞

Xn = Y, a.s.

Also {Xn} is an increasing sequence. So by the Lebesgue monotone convergence
theorem, see [1, Ch. 2.10],

lim
n→∞

E(Xn) = E( lim
n→∞

Xn) = E(Y ).

We further have that Xn ≤ n so by previous result,

E(Xn) =

∞∫
0

P (Xn > t) dt =

n∫
0

P (Y > t) dt.

We can then conclude that,

lim
n→∞

E(Xn) = lim
n→∞

n∫
0

P (Y > t) =

∞∫
0

P (Y > t) =∞.

Hence, the two sides of (3.1) is always equal.

Lemma 3.4. Let X be an irreducible Markov process on a finite state space S.
Let t0 < t1 < · · · < tk be real numbers where ti − ti−1 = ∆ > 0, and let B be a
measurable set of S. Then for fixed k,

P (X(tk) ∈ B,X(tk−1) ∈ B, . . . ,X(0) ∈ B) ≤ max
m∈B

P (X(∆) ∈ B|X(0) = m)k

(3.2)
if the conditional probability exists.

Proof. We prove the assertion with induction.
For k = 1,

P (X(t1) ∈ B,X(t0) ∈ B) =
∑
m∈B

P (X(t1) ∈ B,X(t0) = m)

=
∑
m∈B

P (X(t1) ∈ B|X(t0) = m) · P (X(t0) = m)

≤ max
m∈B

P (X(t1) ∈ B|X(t0) = m) · P (X(t0) ∈ B)

≤ max
m∈B

P (X(t1) ∈ B|X(t0) = m) = max
m∈B

P (X(∆) ∈ B|X(0) = m).

In order to prove it for arbitrary k we shall need an easy consequence of the
Markov property, which we state without proof. Namely, ∀i, j, Bik , . . . , Bi0 ∈ S
and ∀t > s > tk > . . . t0 ≥ 0 we have

P (X(t) = j|X(s) = i,X(tk) ∈ Bik , . . . X(t0) = Bi0) = P (X(t) = j|X(s) = i).
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Now assume (3.2) holds for arbitrary k.

P (X(tk+1) ∈ B,X(tk) ∈ B, . . . ,X(t0) ∈ B) =
∑
m∈B

P (X(tk+1) ∈ B,X(tk) = m, . . . ,X(t0) ∈ B)

=
∑
m∈B

P (X(tk+1) ∈ B|X(tk) = m) · P (X(tk) = m,X(tk−1) ∈ B, . . . ,X(t0) ∈ B)

≤ max
m∈B

P (X(∆) ∈ B|X(0) = m)
∑
m∈B

P (X(tk) = m,X(tk−1) ∈ B, . . . ,X(t0) ∈ B)

= max
m∈B

P (X(∆) ∈ B|X(0) = m)P (X(tk) ∈ B,X(tk−1) ∈ B, . . . ,X(t0) ∈ B)

≤ max
m∈B

P (X(∆) ∈ B|X(0) = m)k+1.

Hence, it holds for all k ∈ N.

The following Lemma shows that irreducible Markov chains on finite state spaces
are ergodic. Since the dynamic graph lives on a finite state space, in order to
prove ergodicity we need only prove that the graph is Markov and irreducible
and then apply the Lemma. But first we recall the definition of a stopping time.

Definition 3.5. Let (Ω,F , {Ft},P) be a filtered probability space. Let T : Ω→
R+∪{∞} be an extended random variable. Then T is said to be a stopping time
relative to the filtration {Ft} if,

{T ≤ t} ∈ Ft, ∀t > 0.

Furthermore if {Ft} is the natural filtration for some process X, T is said to be
a stopping time for X.

Lemma 3.6. Let X be an irreducible Markov process on a finite state space S.
Let τi(j) = inf{t > 0; X(t) = j, X(0) = i}, i 6= j, be the time it takes to go
from state i to state j if the process starts in state i. Then τi(j) is a stopping
time for X starting in state i and,

E(τi(j)) <∞ and E(τi(i)) <∞

where τi(i) is the cycle time of i, i.e. the time it takes to go from state i back
to i.
Therefore, all irreducible Markov processes on a finite state spaces are ergodic.

Proof. Assume X starts in i.

{τi(j) ≤ t} = {
⋃
s≤t

{X(s) = j}} = At

where s runs over all real numbers less than or equal to t. Since by Definition 3.1
X(·, ω) for all ω ∈ Ω is right-continuous, and since the rationals are dense in R
we must have that,

At = {
⋃
s≤t

{X(s) = j}} = {
⋃
r≤t

{X(r) = j}} = Qt

7



where r runs over all the rational numbers less than or equal to t.
Now {X(r) = j} ∈ Ft for r ≤ t and since σ-algebras are closed under countable
unions this means that Qt ∈ Ft and that τi(j) is a stopping time for X—if
X starts in state i—which also of course implies that τi(j) is measurable with
regard to the probability space where X(0) = i.
Let t0 < t1 < · · · < tk be real numbers where ti − ti−1 = ∆ > 0, and let B be a
measurable set. Then by Lemma 3.4,

P (X(tk) ∈ B,X(tk−1) ∈ B, . . . ,X(0) ∈ B) ≤ max
m∈B

P (X(∆) ∈ B|X(0) = m)k

(3.3)
if the conditional probability exists.
Assume t ≥ 1 and let ti = i for i = 0, 1, . . . , k = btc so that {ti} is a partition
of [0, btc] ⊂ [0, t]. Let B = {j}c. In order to bound P (τi(j) > t) the following
inequality is useful, which is true by (3.3)

P (τi(j) > t) = P (Act) = P (
⋂
s≤t

{X(s) 6= j}) ≤ P (

k⋂
n=0

{X(tn) 6= j})

≤ max
m 6=j

P (X(1) ∈ B|X(0) = m)k = max
m 6=j

P (X(1) ∈ B|X(0) = m)btc.

Since X is irreducible and the state space is finite we must have that
maxm6=j P (X(1) ∈ B|X(0) = m) < 1.
We also note that the inequality must hold for t < 1 since then btc = 0, hence
it holds for all t. We have,

P (τi(j) =∞) ≤ lim
t→∞

P (τi(j) > t) = 0.

We conclude that P (τi(j) <∞) = 1 and we can therefore apply Lemma 3.3.

E(τi(j)) =

∞∫
0

P (τi(j) > t) dt ≤
∞∫

0

max
m 6=j

P (X(1) ∈ B|X(0) = m)btc dt =

∞∑
k=0

max
m 6=j

P (X(1) ∈ B|X(0) = m)k <∞.

Hence, E(τi(j)) exists.

In order to show that the expected cycle time of state i exists we note that

τi(i) = Ti +
∑
j 6=i

1{i→ j} · τj(i) ≤ Ti +
∑
j 6=i

τj(i)

where Ti is the holding time in state i, and 1{i → j} is the indicator variable
that the process moves from i to j. We see that τi(i) is measurable, as it is
the sum of measurable random variables. The upper bound also implies that
E(τi(i)) < ∞ since the expectations on the right-hand side exists. This is by
the Lebesgue dominated convergence theorem, see [3, Ch. 2].
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As the dynamic graph is built up by the edge process we shall need some basic
results on them. The following Lemma implies that the stationary distribution
of the critical dynamical Erdős-Rényi graph equals that of a critical Erdős-Rényi
graph.

Lemma 3.7. The edge processes {Eij(t), t ≥ 0} are ergodic Markov processes
on {0, 1}, with probability transition functions equal to,

p01(t) =
1

n
· (1− e−β·(1+ 1

n+1 )·t)

p11(t) =
1

n
(1 + (n− 1)e−(1+ 1

n−1 )βt)

and stationary distribution equal to,

π(1) =
1

n

π(0) = 1− 1

n

Proof. By definition Eij(t) is a birth-death process on {0, 1}, with birth rate

λ = β
n−1 and death rate µ = β. Its is both Markov and irreducible, hence

by Lemma 3.6 it is ergodic. Using the Kolmogorov forward equations one can
derive, see [2, Ch. 6], that

p01(t) =
1

n
(1− e−(1+ 1

n−1 )βt)

p11(t) =
1

n
(1 + (n− 1)e−(1+ 1

n−1 )βt).

Since both these terms converges towards 1
n we know that π is a limiting dis-

tribution for Eij(t). For Markov processes limiting distributions are stationary
distributions, and for ergodic processes the stationary distribution is unique.

Lemma 3.8. The critical dynamic Erdős-Rényi graph G = {G(t), t ≥ 0} is an
ergodic Markov process, with stationary distribution equal to that of a critical
Erdős-Rényi graph.

Proof. By definition we have that G(t) = (E12(t), . . . , En−1,n(t)), which lives
on a finite state space. By Lemma 3.6 G is ergodic if we can prove that G is
irreducible and has the Markov property.
To show that G = (E12, . . . , En−1,n) has the Markov property we must show
that,

P (G(t) = i|G(s) = j,G(tk) = ik, . . . , G(t0) = i0) = P (G(t− s) = i|G(0) = j)

for all t > s > tk > · · · > 0 and all i, j, ik, . . . , i0 ∈ {0, 1}(
n
2) whenever these con-

ditional probabilities exists. This is just a simple—long but tedious—exercise
in convolution formulas and an independence argument.
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Let i = (i12, . . . , in−1,n) and j = (j12, . . . , jn−1,n) represent states in {0, 1}(
n
2).

We know the distribution of P (G(t) = i|G(0) = j) as it is completely deter-
mined by the edge probability at t for the underlying edge processes and the
independence between them.

For instance, P (G(t) = (1, . . . , 1)|G(0) = (0, . . . , 0)) = p01(t)(
n
2). We can de-

duce that P (G(t) = i|G(0) = j) > 0 since p01(t), p11(t), p10(t), p00(t) > 0. We
conclude that G is irreducible, and therefore also ergodic.

Furthermore, since the probability that there is an edge present between a vertex
pair converges to 1

n we can also conclude that the dynamic graph’s stationary
distribution is that of a critical Erdős-Rényi graph.

Lemma 3.9. Let e = {e(t), t ≥ 0} be the number of edges present in the critical
dynamic Erdős-Rényi graph at time t. Then e = {e(t), t ≥ 0} is an ergodic
birth-death process, on {0, 1, . . . , N =

(
n
2

)
}, starting in state 0 with birth-rates

λk = (N−k)β
n−1 and death-rates µk = k · β.

Proof. We’ll give an informal proof of this, since a formal proof would require
invoking the strong Markov property of the underlying processes.
When e(t) enters state k, the underlying processes forgets how long they have
been in their current state—this is by the strong Markov property since the time
which e(t) enters k is random. When in state k the time until the next death
is the minimum of k independent Exp(β)-variables, i.e. an Exp(k · β) time —
since the minimum of independent exponential variables is again exponential
with new parameter equal to the sum of the parameters; similarly the time
until the next birth is an Exp( N−k

(n−1)β )-time. Since there times are independent

it follows that e(t) is a birth-death process.

In closing this section we conclude that, Eij(t) the edge process, G(t) the dy-
namic graph, and e(t) the number of edges at time t are all ergodic Markov
processes. Furthermore, we have seen that the stationary distribution of the
dynamic graph is that of a critical Erdős-Rényi graph.
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4 The Fastest Time To Stationarity

We have seen that the critical dynamic Erdős-Rényi graph converges in distri-
bution to a critical Erdős-Rényi graph. Natural questions that arise are,

• Does there exist a random time T for which the process is stationary?

• If yes, does it stay in stationarity upon entering it?

• Is there, in some sense, a fastest such time?

In this section we will prove that all of the above questions are answered in the
positive, and we call such a time the fastest time to stationary.
We shall do so by simply constructing T and then proving that it must be the
fastest time to stationarity for a certain class of random variables — randomized
stopping times.

In constructing T we shall find the fastest times Tij to stationary for the under-
lying edge processes, and taking T to be the maximum of those. The rationale
being that once an edge process enters stationarity it stays there, therefore wait-
ing until all the edge processes have entered stationarity should ensure that the
dynamic graph is in stationarity.

In order to make everything rigorous we shall need the concept of a strong sta-
tionary times as well as the separation measure. Roughly speaking, a strong
stationary time T for a stochastic process X is a stopping time for X with
some extra external randomness such that X(T ) has the stationary distri-
bution and is independent of T , see Definition 4.2. The separation s(t) =

supy∈S

(
1− P (X(t)=y)

π(y)

)
, see Definition 4.1, for a stochastic process is a function

in time which measures the ”distance” between the distribution at time t and
its stationary distribution.

Strong stationary times are well-understood for ergodic Markov processes on
countable state spaces, and for the interested reader see [6]. The major result of
[6] is that for ergodic Markov processes on countable state spaces the following
holds,

1. If T is a strong stationary time, then for all 0 ≤ t <∞

s(t) ≤ P (T > t)

2. If the state space of the process is finite, there exist a strong stationary
time T such that 1. holds with equality. We shall call such a time the
time to stationary, or the fastest time to stationary.

11



The proof of this is very technical, mainly because it was made to hold for a
large class of processes. Nevertheless, we shall draw upon the results and prove
them for our specific situation. Namely, we will give an explicit time T when
the critical dynamic Erdős-Rényi graph reaches stationarity and then prove that
this time is the smallest time it takes to get there.

4.1 Separation and Strong Stationary Times

One way to measure how close a process is to its stationary distribution at
time t is via the separation. There is other more intuitive measures to do this
with—e.g. the variation distance—but it turns out that the separation bounds
the distribution of the time to stationary very nicely.

Definition 4.1. Let X be a stochastic process taking values in S, with a station-
ary distribution π and some arbitrary initial distribution π′ Then the separation
is defined as,

s(t) = sup
y∈S

(
1− Pπ′(X(t) = y)

π(y)

)
where Pπ′(X(t) = y) is the probability that X(t) = y if X(0) = x is chosen
according to the distribution π′.

For convenience we shall also use the notation,

a(t) = inf
y∈S

Pπ′(X(t) = y)

π(y)
= 1− s(t)

The separation reflects how close a process is to its stationary distribution at
time t, as small values of separation means that the distributions are close.

In order to define a strong stationary time we recall the concept of a stopping
time, see Definition 3.5 A stopping time T for the process X is a random vari-
able such that if we know X up to time t we know whether T ≤ t or not, i.e. if
we should stop or not. Intuitively, it does not seem that a stopping time can be
a strong stationary time. Think of how a stopping time for X works in practice.
We observe X for some time and at some point we know whether to stop or not.
This clearly does not work with stationarity—since we cannot observe when X
enters stationarity.

Turns out that intuition is correct, in order to define a strong stationary time one
needs to start with a stopping time and then inject some external randomness.
This leads of to the definition of a randomized stopping time.

12



Definition 4.2. Let (Ω,F , {Ft}, P ) be a filtered probability space. Let F∞ be
the smallest σ-algebra containing Ft for all t.
Furthermore, let G ⊂ F be a sub-σ-algebra of F independent of F∞. We say
that T : Ω → [0,∞] is a randomized stopping time relative to {Ft} if for each
t ≥ 0,

{T ≤ t} ∈ σ(Ft,G)

where σ(Ft,G) is the smallest σ-algebra containing both Ft and G.
If Ft = σ({Xs, 0 ≤ s ≤ t}) is the natural filtration of some process X we say
that T is a randomized stopping time relative to X

Remark. We see that a randomized stopping time relative to Ft is just a normal
stopping time relative to {σ(Ft,G)}. Also this concept encompasses that of a
normal stopping time for a process, since we may just take G, the external
randomness, to be the trivial σ-algebra.

As the definition is rather technical an example may help to illuminate the con-
cept. Suppose X is a stochastic process and that T is a stopping time for X.
Now if Y is a random variable independent of X, then min(T, Y ) would be a
randomized stopping time for X.

With the concept of a randomized stopping time in hand we are ready to define
what is meant by a strong stationary time.

Definition 4.3. Let X be a stochastic process on (Ω,F , {Ft}, P ) where Ft =
σ({Xs, 0 ≤ s ≤ t}) is the natural filtration of X. Assume X takes values in
some state space S and has a unique stationary distribution π. Furthermore let
T be a randomized stopping time relative to X. Then, T is said to be a strong
stationary time if, X(T ) has the stationary distribution and is independent of
T conditionally given that {T <∞}, i.e. if,

P (T ≤ t,X(T ) = y) = P (T ≤ t) · P (X(T ) = y) = P (T ≤ t) · π(y)

for all 0 ≤ t <∞ and y ∈ S

We shall state some nice implications of this definition, which is by [6, Prop.
2.4]

Proposition 4.4. Let X be an ergodic Markov chain with right-continuous
paths on some finite or countable state space S. Then the following are equiva-
lent for a randomized stopping time relative to X.

1. T is a strong stationary time

2. P (T ≤ t,X(t) = y) = P (T ≤ t) · π(y), 0 ≤ t <∞

3. P (T ≤ t,X(u) = y) = P (T ≤ t) · π(y), 0 ≤ t < u <∞

13



Proof. See [6, Prop. 2.4]

Remark. We see that strong stationary times couples very nicely with ergodic
Markov chains on countable state spaces, since by 3. when they reach stationar-
ity, they stay there. Suffice to say that this hinges on the strong Markov property
of such chains.
Definition 4.3 also implies that P (X(T + s) = y) = π(y) conditionally on
{T <∞}.

4.2 The Fastest Time To Stationarity

Our goal is to construct a strong stationary time for the dynamic Erdős-Rényi
graph, and as this process is built up by the underlying edges processes it makes
sense to study the strong stationary times for these.

Lemma 4.5. Let E(t) = Eij(t) be the process describing if an edge is present

between vertex i and j. Let T0 ∼ Exp( β
n−1) be the holding time in state 0 and

let T1 ∼ Exp(β) be distributed as the holding time in state 1, independent of T0.
Then, T = min(T0, T1) ∼ Exp(β · (1 + 1

n−1 )) is a strong stationary time for Eij
starting with 0 edges. Furthermore, T is the fastest time to stationarity.

Proof. By Lemma 3.7 the edge process E, is an ergodic Markov chain with
stationary distribution,

π(0) = 1− 1

n

π(1) =
1

n

Secondly we see that T = min(T0, T1) is a randomized stopping time relative to
the natural filtration of E and with external randomness G = σ(T1). Were we
have assumed that the underlying probability space is rich enough to support
an exponential random variable, independent of T0. In practice this is always
the case, since we can just simulate such a variable.

To clarify we start the process and simultaneously simulate T1 ∼ Exp(β) inde-
pendently of the process. As the stopping time we take the smallest value of
T0 ∼ Exp( β

n−1 ), the time until the first edge occurs, and T1 an independently
simulated random variable.

In order to prove that T is also a strong stationary time for E we need to show
that

P (T ≤ t, E(T ) = 1) = P (T ≤ t) · 1

n

P (T ≤ t, E(T ) = 0) = P (T ≤ t) · (1− 1

n
).

14



We’ll prove it for the first case, since calculations are completely analogous for
the second case.

Hence we must show that,

P (T ≤ t, E(T ) = 1) = P (T ≤ t) · 1

n
. (4.1)

For this purpose we note that E(T ) = 1 ⇐⇒ T0 < T1 since then an edge has
just been added and we have stopped. Using this we get,

P (T ≤ t, E(T ) = 1) = P (T ≤ t, T0 < T1) = P (T ≤ t|T0 < T1) · P (T0 < T1).

With basic probability calculus we get,

P (T0 < T1) =
β/(n− 1)

β/(n− 1) + β
=

1

n
= π(1)

P (T ≤ t|T0 < T1) = P (min(T0, T1) ≤ t|T0 < T1) = P (T ≤ t).

We can conclude that P (T ≤ t, E(T ) = 1) = P (T ≤ t) · 1
n and that T is a strong

time to stationary for the edge process E.

We recall that if Y1 ∼ Exp(α) and Y2 ∼ Exp(β) are independent then
Z = min(Y1, Y2) ∼ Exp(α+ β)
Therefore T is distributed as,

P (T > t) = e−β(1+ 1
n−1 )t

Next we must show that if T ′ is any other strong stationary time for E we have
that,

P (T > t) ≤ P (T ′ > t)

i.e. that T is the stochastically fastest time to stationary. We begin by calcu-
lating the separation for the process E starting with 0 edges. Let p01(t) be the
transition probability of starting in state 0 and begin in state 1 at time t. We
have seen that, see Lemma 3.7

p01(t) =
1

n
(1− e−β(1+ 1

n−1 )t)

p00(t) = 1− p01(t) =
1

n
e−β(1+ 1

n−1 )t +
n− 1

n
.

Since p01(t)
π(1) < p00(t)

π(0) the separation s(t) is as follows,

s(t) = sup
y∈{0,1}

(1− P0(E(t) = y)

π(y)
) = 1− p01(t)

π(1)

= e−β(1+ 1
n−1 )t = P (T > t).
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Now let T ′ be any strong stationary time for E. By Proposition 4.4 T ′ satisfies,

P (T ′ ≤ t) =
P (T ′ ≤ t, E(t) = 1)

π(1)
≤ P (E(t) = 1)

π(1)

⇐⇒ P (T ′ > t) ≥ 1− P (E(t) = 1)

π(1)
= s(t) = P (T > t).

We have proven that T is the fastest randomized stopping time to stationarity.

Remark. We just proved that T = min(T0, T1) is the fastest time to stationar-
ity, however we gave no insight on how we arrived at this time — something we
will do now.

Let E01 be an edge process starting in 0 and let E10 be an independent prob-
abilistic copy of that process, but starting in 1. Then T = min(T0, T1) is the
first time the processes meet, where Ti, i = 0, 1 is the first holding times for the
processes. The idea now being that when the processes meet, their initial states
does not matter anymore and both processes are in stationarity.

We have seen that an ergodic Markov process stay in stationarity after entering
it, see 4.4. It therefore seem very reasonable that if we have two independent
ergodic Markov processes they will both be in stationarity if we wait until both
have entered it. The following Lemma shows that this is indeed the case.

Lemma 4.6. Let X and Y be two independent ergodic Markov processes each
taking values in finite state spaces Sx and Sy, with stationary distributions πX
and πY . Let TX be the time to stationary for X and TY for Y . Then T =
max(TX , TY ) is the time to stationary for the process (X,Y )

Proof. We start be stating that by [6, Th. 1.1] TX and TY exists (also see The-
orem stated in beginning of section).

It is straight forward to modify the proof of Lemma 2.4 to show that the process
(X,Y ) is an ergodic Markov chain, which we will not but instead just state that
(X,Y ) is an ergodic Markov chain.

The stationary distribution of (X,Y ) exists and is given by,

lim
t→∞

P (X(t) = x, Y (t) = x) = πX(x) · πY (y)

for all (x, y) ∈ Sx × Sy.

First we must argue that T = max(TX , TY ) is a randomized stopping time for
the process (X,Y ). If we agree we can circumvent a formal proof of this, which
would involve defining a new probability space etc. then it becomes fairly easy.
If we know FXt and FYt , the natural filtrations, as well as the external sources
of randomness for TX and TY , then we know the value of T = max(TX , TY ).
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We conclude that T is indeed a randomized stopping time for (X,Y ).

Secondly we must prove that T is a strong stationary time for (X,Y ) which
by Proposition 4.4—since (X,Y ) is an ergodic Markov process on a finite state
space—is equivalent to showing that,

P (T ≤ t,X(t) = x, Y (t) = y) = P (T ≤ t)πX(x) · πY (y)

for all 0 ≤ t <∞, x ∈ Sx, y ∈ Sy.
We recall the equality {max(Z1, . . . , Zn) ≤ t} = {Z1 ≤ t, . . . Zn ≤ t}.

P (T ≤ t,X(t) = x, Y (t) = y) = P (TX ≤ t, TY ≤ t,X(t) = x, Y (t) = y)

1.)
= P (TX ≤ t,X(t) = x) · P (TY ≤ t, Y (t) = y)

2.)
= P (TX ≤ t) · πX(x) · P (TY ≤ t) · πY (y)

= P (TX ≤ t, Ty ≤ t) · πX(x) · πY (y) = P (T ≤ t) · πX(x) · πY (y).

1.) (X,TX) and (Y, TY ) are independent random variables.
2.) We have that TX is a stationary time for X and this is a implication of
Proposition 4.4, same holds for TY and Y . We can conclude that T is also a
strong stationary time for (X,Y ).

Left to show is that P (T > t) = s(t) where s(t) is the separation measure of
(X,Y ). First we recall the following relation,

s(t) = sup
(x,y)

(1−P (X(t) = x) · P (Y (t) = y)

πX(x) · πY (y)
) = 1−a(t) = 1− inf

(x,y)

P (X(t) = x) · P (Y (t) = y)

πX(x) · πY (y)
.

We can conclude that P (T ≤ t) = a(t) ⇐⇒ P (T > t) = s(t).

P (T ≤ t) = P (TX ≤ t) · P (TY ≤ t)
1.)
= aX(t) · aY (t)

= inf
x

P (X(t) = x)

πX(x)
· inf
y

P (Y (t) = y)

πY (y)
= inf

(x,y)

P (X(t) = x) · P (Y (t) = y)

πX(x) · πY (y)
= a(t).

1.) We have that TX and TY are the fastest times to stationary for X and Y ,
and therefore P (TX ≤ t) = aX(t) and P (TY ≤ t) = aY (t)

We can conclude that P (T > t) = s(t), and we recall that this means that T is
the fastest time to stationary. Since if T ′ is any other strong time to stationary
we have,

P (T ′ ≤ t) =
P (T ′ ≤ t,X(t) = x, Y (t) = y)

πX(x)πY (y)
≤ P (X(t) = x) · P (Y (t) = y)

πX(x)πY (y)

since this holds for all states (x, y) we can conclude that P (T ′ ≤ t) ≤ a(t) =
P (T ≤ t), and we see that T is faster.
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We are now ready to present to major result of this section, the fastest time to
stationary for the critical dynamic Erdős-Rényi graph.

Proposition 4.7. Let G = {G(t), t ≥ 0} = {(E12(t), . . . , En−1,n(t)), t ≥
0} be the critical dynamic Erdős-Rényi graph, where Eij(t) are the processes
representing if an edge is present or not between vertex i and j. Let Tij ∼
Exp(β · (1 + 1

n−1 )) be the fastest time to stationary for Eij. Then,

T = max
i,j
{Tij}

is the fastest time to stationary for G. Furthermore, its distribution is given by,

P (T < t) = (1− e−β(1+ 1
n−1 )t)(

n
2)

Proof. By Lemma 4.5, Tij = min(T0, T1) ∼ Exp(β ·(1+ 1
n−1 )) is the fastest time

to stationary for Eij . Now apply Lemma 4.6 with an induction argument to
conclude that T = maxi,j{Tij} is the fastest time to stationary for the critical
dynamic Erdős-Rényi graph.
Furthermore,

P (T < t) = P (max(T12, . . . , Tn−1,n) < t)

= P (Tij < t)(
n
2) = (1− e−β(1+ 1

n−1 )t)(
n
2)

4.3 Asymptotics

The expression for the fastest time to stationary in Proposition 4.7 is exact
but not very intuitive. The following corollary deals with asymptotics of its
distribution function—namely we provide two breaking points, depending on n,
such that if t > f̄(n) then P (T < t(n))→ 1 and if t < f(n) then P (T < t(n))→
0 as n→∞. We shall also see that these breaking points are relatively close to
each other.

Proposition 4.8. Let T be the fastest time to stationary for the critical dynamic
Erdős-Rényi graph. Then for any γ > 0 the following asymptotics holds,

P (T < t(n))→ 1 as n→∞ if t(n) >
(2 + γ) · log(n)

β

P (T < t(n))→ 0 as n→∞ if t(n) <
(2− γ) · log(n)

β
.

Proof. Recall the Taylor expansion of log(1− x) valid for |x| < 1,

log(1− x) = −
∞∑
m=1

xm

m
.

18



Let A(n) = 1 + 1
n−1 , and g(t) = (1− e−βAt)n

2

2

Take f̄(n) = − log(n−(2+γ))
β = (2+γ)·log(n)

β as a candidate for the upper bound.

g(f̄(n)) = (1− e−βAf̄(n))
n·(n−1)

2 = (1− n−A·(2+γ))
n·(n−1)

2

= exp{n · (n− 1)

2
· log(1− n−A·(2+γ))} 1.)

= exp{−n · (n− 1)

2
·
∞∑
m=1

(n−A·(2+γ))m

m
}

2.)
= exp{− n · (n− 1)

2 · n2A+Aγ
} · exp{−O(n2−2A(2+γ))} → 1 as n→∞.

1.) This is the Taylor expansion of log(1− n−A·(2+γ))
2.) We have that

∞∑
m=1

(n−A(2+γ))m

m
= n−A(2+γ) +

∞∑
m=2

(n−A(2+γ))m

m
= n−A(2+γ) +O(n−2A(2+γ))

multiplying everything with n·(n−1)
2 and we get that this equals

n · (n− 1)

2 · n2A+Aγ
+O(

n · (n− 1)

2
·n−2A(2+γ)) =

n · (n− 1)

2 · n2A+Aγ
+O(n2−2A(2+γ))→ 0 as n→∞.

We can conclude that,

P (T < t(n))→ 1 as n→∞ if t(n) >
(2 + γ) · log(n)

β
.

Now, analogous calculations shows that,

P (T < t(n))→ 0 as n→∞ if t(n) <
(2− γ) · log(n)

β
.

Remark. As the upper bound (2+γ)·log(n)
β is relatively small we see that the

dynamic graph enters stationarity very quickly, see Figure 1 and 2.
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Figure 1: P (T < t) for n = 1000 and β = 1
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Figure 2: The speed of convergence for P (T < (2+γ)·log(n)
β ), γ = 2

4.4 Conclusion and Discussion

In closing this section we can conclude that the time it takes for the dynamic
critical Erdős-Rényi graph to reach stationarity is given by a randomized stop-
ping time distributed as the maximum of a N =

(
n
2

)
number of independent

Exp(β · (1 + 1
n−1 ))-variables. Furthermore, this is also the stochastically fastest

time it takes to reach stationarity, for a very reasonable class of random vari-
ables — the strong stationary times for the dynamic graph. We also conclude
that the time to reach stationarity is relatively small.

The usefulness of this result is purely theoretical, as in practice we cannot give
a time for which the process is in stationarity.
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But in analyzing the long term behavior of the graph the result can indeed be
useful. As we have seen the time until the graph reaches stationarity is rela-
tively small—of order O(log(n))— and once it reaches stationarity it stays there.
Hence for large n and a large time t we can conclude that in the period [0, t]
it spends most of that time in stationarity, and the time is takes to reach sta-
tionarity should be negligible compared to t. So in studying certain properties
of the critical dynamic graph one may be able to reduce the problem to study
properties of the graph when stationary — something that should be easier and
more tractable.

Also we mention that the method used in constructing the fastest time to sta-
tionarity does not hinge on the critical setting of the random graph, one could
easily extend the results to hold for any values of β and α — the tuning param-
eters of the dynamic graph.
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5 The Size of The Largest Component Over Time

Often of interest when studying random graphs is the size of its largest compo-
nent, since this tend to have interesting practical implications. In this section we
will give an asymptotic lower bound for the probability the the critical Erdős-
Rényi graph’s largest component in the interval [0, t] has exceeded size ε · n for
any given ε ∈ (0, 1). In doing so we shall use the intimate relation between the
size of the largest component of an Erdős-Rényi graph and the number of edges
present. We begin with some notation.

5.1 Notation and Definitions

Let G = {G(t), t ≥ 0} be a critical dynamic Erdős-Rényi graph, and let
e = {e(t), t ≥ 0} be the processes that represents the number of edges present
at time t. Furthermore let c = {c(t), t ≥ 0} be the processes that represents
the size of the largest component at time t, and let C(t) = max

0≤s≤t
c(s) be the

size of the largest component in the interval [0, t]. Let C1(n,m) denote the size
of the largest component in a Erdős-Rényi graph with n vertices and m edges,
and C1(n, p) is the size of the largest component in a Erdős-Rényi graph with n
vertices and edge probability p. Finally let Tk be the time it takes for the size
of largest component in the dynamic graph to reach size k, and let tk be the
time it takes for the graph to reach k edges.

To summarize,

- G(t) is the critical dynamic Erdős-Rényi graph

- e(t) is the number of edges at time t

- c(t) is the size of the largest component at time t

- C1(n,m) is the size of the largest component in a Erdős-Rényi graph with n
vertices and m edges

- C1(n, p) is the size of the largest component in a Erdős-Rényi graph with n
vertices and edge probability p.

- tk is the time it takes for the graph to reach k edges

- C(t) is the size of the largest component in the interval [0, t], i.e.
C(t) = max

0≤s≤t
c(s)

- Tk is the time it takes for the largest component to reach size k

and we will give a lower bound for the probability P (C(t) > ε ·n) = P (Tε·n < t).
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We know—since the dynamic graph is ergodic and therefore all states will be
reached—that the size of largest component will eventually exceed ε · n. The
question is how it does this. There is basically two ways in which this can
occur. Either it happens when the graph is in stationarity with some very un-
likely configuration of edges, or it happens after the dynamic graph have reach
some specified number of edges for which the size of the largest component
at that time is very likely to exceed ε · n.

In solving the problem we shall opt for the second approach, i.e. in finding a
lower bound we shall wait until the dynamic graph have reached some number
of edges k for which the size of largest component at that time C1(n, k) is very
likely to exceed ε · n. The stationary approach is discussed in the Discussion
section, and suffice to say it was investigated but the technical difficulties proved
insurmountable.

5.2 A Simple Inequality

The following inequality is rather trivial, but will prove useful.

Lemma 5.1. Let ε ∈ (0, 1). Then,

P (C(t) > ε · n) > P (C1(n, k) > ε · n) · P (tk ≤ t)

> P (C1(n, k) > ε · n) · (1− E(tk)

t
).

Proof. We have that,

P (C(t) > ε · n) = P (C(t) > ε · n|tk ≤ t) · P (tk ≤ t) + P (C(t) > ε · n|tk > t) · P (tk > t)

> P (C(t) > ε · n|tk ≤ t) · P (tk ≤ t)
1.)
> P (C1(n, k) > ε · n) · P (tk ≤ t)

= P (C1(n, k) > ε · n) · (1− P (tk > t))
2.)
> P (C1(n, k) > ε · n) · (1− E(tk)

t
).

1.) We are asking for the probability that C(t) > n · ε given that we know that
the graph has reached k edges in [0, t], hence this probability must be larger
than P (C1(n, k) > ε · n).
2.) This is just the Markov inequality.

Remark. We see that this lower bound is only good for t > E(tk), since it’s
actually negative for smaller t.

Now if we can choose the number of edges k in such away that P (C1(n, k) >

ε · n) → 1 as n → ∞ we see that P (C(t) > ε · n) = (1 − δ) · (1 − E(tk)
t ), for

δ ∈ (0, 1) and large enough n. In order to do so we need a classical result from
Erdős-Rényi. The proof is very technical and is left as a reference.
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Theorem 5.2. Let {G(n,M(n))} be a sequence of Erdős-Rényi graphs with
n vertices and M(n) edges. Let C(n,M(n)) be the size largest component of

G(n,M(n)). Furthermore assume that limn→∞
M(n)
n = c > 1

2 .

Then, we have for any ε > 0,

lim
n→∞

P (|C(n,M(n))

n
−A(c)| > ε) = 0

where A(c) = 1 − x(c)
2c and x(c) =

∑∞
k=1

kk−1

k! (2ce−2c)k is the unique solution

satisfying 0 < x(c) < 1 the equation x(c)e−x(c) = 2ce−2c.

Proof. See [5]

So if the number of edges grows as c · n we have that

C(n,M(n))

n

p−→ A(c).

So c determines the size of C(n,M(n))
n as n grows. This is very useful, but we are

in a different situation. Namely, we are asking if there for a given size A ∈ (0, 1)

exist a c such that if lim
n→∞

M(n)
n = c we have that

C(n,M(n))

n

p−→ A.

This is indeed the case as the following Corollary shows, as well as giving the
exact relation between the proportional size of the largest component A(c) and
c.

Corollary 5.3. Let {G(n,M(n))} be a sequence of Erdős-Rényi graphs with n
vertices and M(n) edges. Let C(n,M(n)) be the size of the largest component
of G(n,M(n)).
Then, for every 0 < ε < 1 there exist a c > 1

2 such that A(c) = ε, and if
M(n) = bc · nc,

C(n,M(n))

n

p−→ A(c) = ε.

Where bxc denotes the largest integer smaller than or equal to x.
Furthermore,

c =
− log(1− ε)

2 · ε
.

Proof. Pick 0 < ε < 1. In order to apply Theorem 5.2 we must find a c > 1
2

such that A(c) = ε. Hence c must satisfy

1− x

2c
= ε ⇐⇒ 2c =

x

1− ε
(5.1)

where 0 < x < 1 and x satisfies,

xe−x = 2ce−2c. (5.2)
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By Theorem 5.2 if c > 1
2 equation (5.2) has a unique solution.

Now (5.1) in (5.2) gives us,

x · e−x =
x

1− ε
· e

x
1−ε ⇐⇒ x =

−(1− ε) · log(1− ε)
ε

.

Using this x in (5.1) gives the following c,

c =
− log(1− ε)

2ε
.

The Taylor approximation of − log(1− ε) is for ε ∈ (0, 1),

− log(1− ε) =
∞∑
n=1

εn

n
= ε+

∞∑
n=2

εn

n
.

Using this we see that c > 1
2 .

So for c = − log(1−ε)
2ε we have that A(c) = 1− x

2c = ε.

Since lim
n→∞

M(n)
n = lim

n→∞
bc·nc
n = c we have by Theorem 5.2,

C(n, bc · nc)
n

p−→ ε

From Corollary 5.3 we can deduce how large the numbers of edges k has to be
in order for lim

n→∞
P (C1(n, k(n)) > ε · n) = 1. If c is such that A(c) = ε, the

following Proposition shows that in order for lim
n→∞

P (C1(n, k(n)) > ε · n) = 1

we must choose the number of edges as k(n) = bc′ ·nc where c′ is slightly larger
than c.

Proposition 5.4. Let 0 < ε < 1 and 0 < η < 1−ε. Let c′ : A(c′) = ε+η where
A(c′) is as in Theorem 5.2, the size of the largest component in an Erdős-Rényi
graph with n vertices and bc′ · nc edges.

Then,

c′ =
− log(1− ε− η)

2 · (ε+ η)

and
lim
n→∞

P (C1(n, bc′ · nc) > ε · n) = 1.

Proof. The first part of the Proposition was proven in Theorem 5.3. Let M(n) =
bc′ · nc. By the same theorem we have that, for given δ > 0

lim
n→∞

P (|C(n,M(n))

n
−A(c′)| < δ) = lim

n→∞
P (A(c′)−δ < C(n,M(n))

n
< A(c′)+δ) = 1
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which implies that,

P (
C(n,M(n))

n
> A(c′)− δ) ≥ P (A(c′)− δ < C(n,M(n))

n
< A(c′) + δ).

This holds for all δ > 0 and therefore it holds for δ = η and since A(c′) = ε+ η
we can conclude that,

lim
n→∞

P (
C(n, bc′ · nc)

n
> ε) = 1.

This of course implies that for any δ ∈ (0, 1) and for large enough n we have
that,

P (C1(n, bc′ · nc) > ε · n) > 1− δ

where ε ∈ (0, 1) and c′ = − log(1−ε−η)
2·(ε+η) . In our search for a lower bound for

P (C(t) > ε ·n) we can conclude that we have one part out of two of the inequal-
ity needed, see Lemma 5.1, to give such a bound.

The next section will be dedicated to finding the second part needed, i.e. bounds
for the expected hitting time of bc′ · nc edges.

5.3 Hitting Times For The Number of Edges

We begin this section by giving an exact expression for E(τi(i + 1)) — the
expected time it takes for the dynamic graph to go from i to i+1 edges. This is
an important part in finding bounds for E(τ0(i)) — the expected time it takes

for the dynamic graph to go from 0 to i edges as E(τ0(i)) =
∑i−1
j=0E(τj(j + 1))

Proposition 5.1. Let e = {e(t), t ≥ 0} represent the number of edges at
time t in the critical dynamic Erdős-Rényi graph, i,e. a birth-death process on

{0, 1, . . . , N =
(
n
2

)
} with birth rates λk = (N−k)·β

n−1 and death rates µk = k · β for
β > 0. Let Ti be the holding time in state k, i.e Tk ∼ Exp(λk + µk). Define

τi(j) = inf{t > 0; e(t) = j, e(0) = i}

as the time it takes to go from i edges to j edges.
Then,

E(τi(i+ 1)) =
(n− 1) · (N − i− 1)!i!

β ·N !
·

i∑
k=0

(
N

i− k

)
(n− 1)k (5.3)

Proof. Recall that by Lemma 3.9 {e(t), t ≥ 0} is an ergodic Markov chain on a
finite state space, this ensures that the process has the strong Markov property,
see [4, Th. 1.9]. For our purposes we say that a Markov process X has the
strong Markov property if for any a.s. finite stopping time τ for X we have
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that Xτ = {X(t + τ), t ≥ 0} is a probabilistic copy of X starting in X(τ), as
well as being independent of X up to time τ .

Let τYi (j) = inf{t > 0; Y (t) = j, Y (0) = i} for some to-be-defined-later stochas-
tic process. We begin by deriving a recursive formula for E(τi(i + 1)). By
Lemma 3.6 τi(i + 1) is an a.s. finite stopping time for X starting in i, with
E(τi(i + 1)) < ∞. Now, we derive a recursive formula for E(τi(i + 1)) by con-
ditioning on the first jump. Let p(i, i + 1) is the probability that the process
moves from i edges to i + 1 edges, and let i → (i − 1) indicate such an event.
Then,

E(τi(i+ 1)) = E(Ti) + p(i, i− 1) · E(τi(i+ 1)|i→ (i− 1))

1.)
= E(Ti) + p(i, i− 1) · E(τYi−1(i+ 1))

2.)
= E(Ti) + p(i, i− 1) · E(τi−1(i+ 1))

3.)
= E(Ti) + p(i, i− 1) · (E(τi−1(i)) + E(τi(i+ 1))).

1.) Let Y (t) = X(t+τi(i−1)), then we have by the strong Markov property that
Y is Markov and independent of {X(t), t < τi(i − 1)} given that Y (0) = i − 1
which it is with probability 1. This implies that Y is independent of the first
jump.
2.) This is an implication of the strong Markov property, since Y is a proba-
bilistic copy of X their expectations match.
3.) We can write

τi−1(i+ 1) = τi−1(i) + τXii (i+ 1), Xi(t) = X(t+ τi−1(i)).

We can again apply the strong Markov property and arrive at

E(τi−1(i+ 1)) = E(τi−1(i) + τi(i+ 1)).

Solving the above equation for E(τi(i + 1))—which we can since its finite by
Lemma 3.6—we arrive at,

E(τi(i+ 1)) =
E(Ti) + p(i, i− 1) · E(τi−1(i))

p(i, i+ 1)
(5.4)

To prove (5.3) we use (5.4) together with induction. The following holds for,
{e(t), t ≥ 0}, our birth-death process,

E(Ti) =
1

λi + µi
=

n− 1

β · (N + i · (n− 2)

p(i, i− 1) = 1− p(i, i+ 1) =
µi

λi + µi
=

i · (n− 1)

N + i · (n− 2)

E(Ti)

p(i, i+ 1)
=

1/(λi + µi)

λi/(λi + µi)
=

n− 1

(N − i) · β
p(i, i− 1)

p(i, i+ 1)
=
µi
λi

=
i · (n− 1)

N − i
.
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Inserting this in (5.4) we get,

E(τi(i+ 1)) =
n− 1

(N − i)β
+

(n− 1) · i
N − i

· E(τi−1(i))

We will prove (5.3) with induction. For i = 0 we have,

E(τ0(0 + 1)) =
(n− 1) · (N − 0− 1)!0!

β ·N !
·

0∑
k=0

(
N

i− k

)
(n− 1)k

=
n− 1

β ·N
= E(T0)

which coincides with (5.4).
Assume the (5.3) holds for arbitrary i+ 1 < N .

E(τi+1(i+ 2)) =
E(Ti+1) + p(i+ 1, i)E(τi(i+ 1))

p(i+ 1, i+ 2)

=
n− 1

(N − i− 1)β
+

(n− 1) · (i+ 1)

N − i− 1
· ( (n− 1)(N − i− 1)!i!

βN !

i∑
k=0

(
N

i− k

)
(n− 1)k)

which after standard but tedious algebra equals,

(n− 1)(N − i− 2)!(i+ 1)!

βN !

i+1∑
k=0

(
N

i+ 1− k

)
(n− 1)k

which proves equation (5.3).

The formula in Theorem 5.1 exact, but unfortunately not very intuitive. The
following Corollary gives bounds on the expected time it takes for the graph to
go from i to i+ 1 edges.

Corollary 5.2. Let e = {e(t), t ≥ 0} represent the number of edges at time
t in the critical dynamic Erdős-Rényi graph, i,e. a birth-death process on

{0, 1, . . . , N =
(
n
2

)
} with birth rates λk = (N−k)·β

n−1 and death rates µk = k · β for
β > 0.
Define

τi(j) = inf{t > 0; e(t) = j, e(0) = i}
Then for i < N

2 ,

n− 1

β ·N
·
ρi+1
l − 1

ρl − 1
≤ E(τi(i+ 1)) ≤ n− 1

β · (N − i)
· ρ

i+1
u − 1

ρu − 1

where,

ρl =
i · (n− 1)

N

ρu =
i · (n− 1)

N − i
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Proof. By Proposition 5.1 we have that,

E(τi(i+ 1)) =
(n− 1) · (N − i− 1)!i!

β ·N !
·

i∑
k=0

(
N

i− k

)
(n− 1)k

=
n− 1

β

i∑
k=0

(
(N − i− 1)!

(n− i+ k)!

)
·
(

i!

(i− k)!

)
· (n− 1)k.

We note that,

i!

(i− k)!
=

i∏
j=i−k+1

j =

k−1∏
j=0

(i− k + 1 + j)

(N − i− 1)!

(N − i+ k)!
=

k∏
j=0

1

N − i+ j
=

1

N − i+ k

k−1∏
j=0

1

N − i+ j

i!

(i− k)!
· (N − i− 1)!

(N − i+ k)!
=

1

N − i+ k

k−1∏
j=0

i− k + 1 + j

N − i+ j
=

1

N − i+ k

k−1∏
j=0

f(j)

where f(x) = i−k+1+x
N−i+x , x ∈ [0, k − 1], 1 ≤ k ≤ i. We adopt the standard that

empty products equals 1. We have that f ′(x) = N+k−(2i+1)
(N−i+x)2 ≥ 0 since i < N

2 .

We can conclude that f(x) is an increasing function and that

f(j) ≥ f(0) =
i− k + 1

N − i
1.)

≥ i

N

f(j) ≤ f(k − 1) =
i

N − i+ k − 1

2.)

≤ i

N − i
.

1.) Let g(k) = f(0) = i−k+1
N−i and recall that k ≤ i. Then,

g(k)− i

N
=
i− k + 1

N − i
− i

N
=
N(i− k + 1)− i(N − i)

N(N − i)

=
−kN +N + i2

N(N − i)
≥ i2 − iN +N

N(N − i)

=
(i− N

2 )2 + 3N
4

N(N − i)
≥ 0 =⇒ g(k) ≥ i

N

2.) holds true since k ≥ 1.
We also note that,

1

N
≤ 1

N − i+ k
≤ 1

N − i
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Combine all of the above and we arrive at,

E(τXi (i+ 1)) =
(n− 1) · (N − i− 1)!i!

β ·N !
·

i∑
k=0

(
N

i− k

)
(n− 1)k

=
n− 1

β

i∑
k=0

(N − i− 1)!i!

(n− i+ k)!(i− k)!
(n− 1)k

=
n− 1

β

i∑
k=0

(n− 1)k

N − i+ k

k−1∏
j=0

f(j)

≤ n− 1

β

i∑
k=0

(n− 1)k

N − i+ k
· f(k − 1)k

≤ n− 1

β

i∑
k=0

(n− 1)k

N − i

(
i

N − i

)k

=
n− 1

β · (N − i)

i∑
k=0

(
i · (n− 1)

N − i

)k
=

n− 1

β · (N − i)
· (ρ

i+1
u − 1

ρu − 1
)

where ρu = i·(n−1)
N−i . The last step is just the closed form of a geometric series.

Similarly one gets,

E(τi(i+ 1)) ≥ n− 1

β ·N
· (
ρi+1
l − 1

ρl − 1
)

where ρl = i·(n−1)
N

Remark. We see that if n
2 < i < N

2 both the dominating terms in the bounds,
i(n−1)
N and i(n−1)

N−i are larger than 1. Hence for these values of i the expected
time of just moving up one step is exponentially large.

We have managed to find bounds for the expected time to move from i to i+ 1
edges, where i < N

2 . This is an important step, but of interest is to bound the
expected time it takes to go from 0 to i edges. The following Corollary gives
such bounds, and we shall see that this time is indeed very large. Before stating
it we recall that f(n) = O(g(n)) if ∃k, n0 : n > n0 =⇒ |f(n)| < k · |g(n)|

Corollary 5.3. Let e = {e(t), t ≥ 0} represent the number of edges at time
t in the critical dynamic Erdős-Rényi graph, i,e. a birth-death process on

{0, 1, . . . , N =
(
n
2

)
} with birth rates λk = (N−k)·β

n−1 and death rates µk = k · β for
β > 0.

Define
τi(j) = inf{t > 0; e(t) = j, e(0) = i}.
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Then for i < N
2

n− 1

β ·N
· ρ

i
l − 1

ρl − 1
≤ E(τ0(i)) ≤ · i · (n− 1)

β · (N − i+ 1)
· ρ

i
u − 1

ρu − 1
(5.5)

where,

ρl =
(i− 1) · (n− 1)

N

ρu =
(i− 1) · (n− 1)

N − i+ 1
.

Furthermore, if i = bc · nc then,

E(τ0(i)) = O((2c)cn)

Proof. We have seen before that by the strong Markov property we can write,

E(τ0(i)) =

i−1∑
k=0

E(τk(k + 1)).

First we note that E(τ0(i)) ≥ E(τi−1(i)).

To see that E(τk(k + 1)) ≤ E(τi−1(i)) for k ≤ i − 1, without filling in all the
details, one simply has to realize that when k edges are present the birth-rate

λk = (N−k)·β
n−1 is larger than λi = (N−i)·β

n−1 , as well as the death-rate being smaller.

Hence E(τ0(i)) =
∑i−1
k=0E(τk(k + 1)) ≤ i · E(τi−1(i)). Then (5.5) follows from

Corollary 5.2.

To prove that E(τ0(i)) = O((2c)cn)—i = bc · nc—we first note that,

i(n− 1)

β(N − i+ 1)
· 1

ρu − 1
≤ i(n− 1)

β(N − i+ 1)
· 1

ρu
=

i

β(i− 1)
→ 1

β
as n→∞.

Thus we can conclude that E(τ0(i)) = O(ρiu − 1) = O(ρiu)
Left to show is that ρiu = O((2c)i)
We have that,

ρiu =

(
(i− 1) · (n− 1)

(N − i+ 1)

)i
≤
(
i · (n− 1)

N − i

)i
=

(
2bc · nc · (n− 1)

n · (n− 1)− 2bc · nc

)i
≤
(

2c · n · (n− 1)

n · (n− 1)− 2c · n

)i
=

(
2c

1− 2c
n−1

)i
= (2c)i

(
1

1− 2c
n−1

)i
1.)
= O((2c)cn).

1.) We have that
(

1
1− 2·c

n−1

)i
→ e2c2
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5.4 A Lower Bound

We are finally ready to combine the results of this section to provide a lower
bound for P (C(t) > ε · n), one of the major results of this thesis.

Proposition 5.4. Let ε, δ ∈ (0, 1) and η ∈ (0, 1− ε). Then for large enough n
we have that,

P (C(t) > ε · n) > (1− δ) · (1−
k·(n−1)

β·(N−k+1) ·
ρku−1
ρu−1

t
) = (1− δ) · (1− O((2c′)c

′n)

t
)

where,

c′ =
− log(1− ε− η)

2 · (ε+ η)

k = bc′ · nc = b− log(1− ε− η)

2 · (ε+ η)
· nc

ρu =
(k − 1) · (n− 1)

N − k + 1
.

The asymptotics is valid when n grows.

Proof. By Proposition 5.1 we have that,

P (C(t) > ε · n) > P (C1(n, k) > ε · n) · (1− E(tk)

t
)

and we have seen , by Proposition 5.4, that for c′ : A(c′) = ε + η ⇐⇒ c′ =
− log(1−ε−η)

2·(ε+η) we have,

lim
n→∞

P (C(n, bc′ · nc) > ε · n) = 1.

Which of course implies that for any given δ > 0 we have,

∃n0 : n > n0 =⇒ P (C(n, bc′ · nc) > ε · n) > (1− δ).

Let ti be the time it takes for the dynamic graph to go from 0 to i edges, then
by Corollary 5.3 we have that for i < N

2 ,

E(ti) <
i · (n− 1)

β · (N − i+ 1)
· ρ

i
u − 1

ρu − 1
⇐⇒ 1− E(ti)

t
> 1−

i·(n−1)
β·(N−i+1) ·

ρiu−1
ρu−1

t

for i < N
2 . Using this with k = bc′ ·nc = b− log(1−ε−η)

2·(ε+η) ·nc the assertion is proven

true, since for large enough n we have that bc′ · nc < N
2 = n(n−1)

4

The asymptotics follows from Corollary 5.3
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5.5 Conclusion and Discussion

In closing this section, and this report, we conclude that the time it takes for
the size of the largest component in a critical dynamic Erdős-Rényi graph is
bounded from below in a manner described explicit in Proposition 5.4.

There is obvious ways in which this bound can be improved. For instance the
bound is only good for t > E(tbc′·nc) which is a consequence of us using the
Markov inequality.

In studying the inequality in Lemma 5.1,

P (C(t) > ε · n) = P (C(t) > ε · n|tk ≤ t) · P (tk ≤ t) + P (C(t) > ε · n|tk > t) · P (tk > t)

> P (C(t) > ε · n|tk ≤ t) · P (tk ≤ t) > P (C1(n, k) > ε · n) · P (tk ≤ t)

= P (C1(n, k) > ε · n) · (1− P (tk > t)) > P (C1(n, k) > ε · n) · (1− E(tk)

t
)

one could spend time in finding a lower bound for P (tk < t) directly, instead of

bounding it by P (tk < t) > 1 − E(tk)
t — the way we opted to do this. This is

indeed theoretically possible, since it is possible to describe the exact distribu-
tion of P (tk ≤ t), see [7, Th. 1.1]. However, this may be practically intractable
since it turns out that tk is distributed as a sum of independent exponential
random variables with the positive eigenvalues of −Qn as parameters, where
Qn is the generator matrix of e(t) up to state n — I say practically intractable
since eigenvalues are notoriously difficult to compute. However careful study of
these eigenvalues might reveal that there is approximations that can be done in
order to improve on the bound given in this thesis.

Another quite glaring drawback of the lower bound is that we only proved it for
large enough n, i.e. we did not provide a n0 : n > n0 =⇒ (bound is valid for
such n). This is however possible, but requires a lot more work — and might

also be of little use since is it known that speed for which C(n,c·n)
n

p→ A(c) is fast.

In deriving bounds for the time it takes for the dynamic graph to go from 0
to i edges—E(τ0(i)), i < N

2 —we sacrificed tightness for tractability, and shall
therefore give an additional heuristic argument that outlines another approach
in approximating τ0(i), that might lead to better bounds.
As stated earlier—many times—the process representing the number of edges
present in the dynamic graph e(t) is ergodic. Its stationary distribution {π(k), k =
0, 1, . . . , N} is given by,

π(k) =

(
N

k

)(
1

n

)k (
1− 1

n

)N−k
.

Since e(t) is ergodic these probabilities represent the long term proportion of
times spent in these states. The process is also a regenerative process, meaning
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that there exists random times—cycles—for which the process probabilistically
restarts itself. Starting with i edges the return time τi(i) is such a time. We
shall argue that there is a approximate relation between the cycle time τi(i) and
τ0(i), if i > n

2 . Again, we reiterate that this will be an heuristic argument.
Using the key renewal theorem one can derive a exact expression for τi(i) since,

π(i) = long run proportion of time in state i

=
E(proportion of time in state i in an i-i cycle)

E(length of i-i cycle)

which then is equivalent to, letting Ti be the holding time in state i,

π(i) =

(
N

i

)(
1

n

)i(
1− 1

n

)N−i
=

E(Ti)

E(τi(i))
.

Using that E(Ti) = n−2
β·(N+i·(n−2)) we can solve for E(τi(i)) and arrive at,

E(τi(i)) =
n− 2

β · (N + i · (n− 2)) · π(i)
.

We have seen that the dynamic graph enters stationarity relatively fast—of
order log(n) —and then stays there, and the same then holds true for the edge
processes e(t), i.e. the majority of time is spent in stationarity.
When the process leaves state i > n

2 it therefore—with high probability —
quickly returns to a typical configuration of edges, which would be around n

2 .
So intuitively the cycle time τi(i) is dominated by the time τn/2(i). Hence, we
think the following approximation is reasonable,

E(τn/2(i)) ≈ E(τi(i)).

Again, we use the argument that the edge process enters stationarity quickly,
and therefore reaches ≈ n

2 edges quickly — so the hitting time τ0(i) should be
dominated by τn/2(i). We are lead to the following approximation,

E(τ0(i)) ≈ E(τn/2(i)) ≈ E(τi(i)) =⇒ E(τ0(i)) ≈ n− 2

β · (N + i · (n− 2)) · π(i)
.

In order to simplify things a bit this we note that,(
1

n

)i(
1− 1

n

)N−i
=

(
1− 1

n

)N
(n− 1)

−i ∼ e−n2 (n− 1)
−i

and therefore suggest the following approximation for E(τ0(i)),

E(τ0(i)) ≈ (n− 2) · (n− 1)i · en2
β · (N + i(n− 2)) ·

(
N
i

) ≈ (n− 1)i · en2
β · (n2 + i) ·

(
N
i

) .
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