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Abstract

Compensation for personal injury is to a large extent paid as annu-

ities in Denmark, Sweden and Finland. This means that the claimant

gets a monthly amount paid either until retirement age or until death.

The actual annuity reserve is calculated based on the original annual

compensation, mortality, assumptions about future indexing of the

annuity and finally discounted with a relevant market rate. Since

the annuities are discounted, the present reserve will never be suffi-

cient to cover the payments on a nominal level. This creates some

challenges when the annuities are part of an IBNR calculation. We

will examine four ways of dealing with the annuities when estimating

outstanding claims reserve, and the purpose of this project is to eval-

uate the pros and cons of each method. We will find that a simple

adjustment will be sufficient to significantly improve the accuracy of

the traditional method. In addition, three methods for calculating

the reserve, Chain-Ladder, Double Chain- Ladder and the Separation

Method, will be examined in this thesis with regards to how well they

can cope with changing inflation and increasing number of claims.
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1 Introduction
An insurance is a product where a policy holder pays an initial sum, a premium, to an
insurance company in return for economic protection against a future event. In case the
event occurs, the policy holder can receive money in a lump sum, a stream of payments or
a combination of both. A stream of fixed payments in fixed intervals is called an annuity.
The present value of an annuity is very important to know for insurance companies since
they have to be able to cover future payments. The reserve is the money set aside by
insurance companies to cover future obligations to the policy holders. In case the interest
rates and payments would never change, the present value of an annuity would be easy
to calculate by a geometric series.
The actual interest rate is not fixed for the duration of the policy and this causes prob-

lems with respect to estimating the size of the reserve. This problem will be exacerbated
for long lasting annuities. Four methods of coping with this problem will be explored in
this thesis.
This paper will focus on annuities based on workers compensation in Denmark. It is

an insurance with the purpose to compensate workers for loss of ability to earn money in
the future due to injuries. When an accident occurs it is not immediately obvious how
severe the accident is. The process to figure out how severely the injury will affect the
worker can take a long time. This causes further uncertainty. Workers who are eligible
will be compensated for many years. Therefore inflation and interest rates will severely
impact the value of theses claims.
The IBNR is a very significant part of the reserves. Thus, correctly estimating the

IBNR becomes a very important matter. Chain Ladder, Double Chain Ladder and the
Separation Method are three methods for calculating the IBNR, which will be examined in
this thesis with regards to how well they can cope with changing inflation and increasing
number of claims.

1.1 Case study of Annuity Data - Workers Compensation

As previously presented this paper focuses on annuities based on workers compensation
in Denmark. Workers in Denmark can be compensated for accidents at work. This can
be anything from broken glasses to severe injuries that will make a person unable to
work at full capacity. For the latter, he can get a monthly payment, an annuity, which
compensates for the loss of income. For policy holders in Denmark it is possible to choose
a lump sum instead of an annuity. It is also common that the initial disbursement is very
large. This is due to the long process to assess the injuries. When the claim finally is
detected, the recipient retroactively receives all payments since the accident occurred.
It would therefore be beneficial to work separately on annuities and lump sums when
estimating the IBNR.

1.2 Limitations of the Thesis

The main issue for this thesis is how annuities should be treated in reserving methods,
such as Chain Ladder, when they are subjected to changing interest rates. Four methods
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for dealing with problems regarding annuities in a changing interest rate environment are
explored. We are also interested in finding methods for adjusting the IBNR calculations.
Chain Ladder will be used to estimate the IBNR when exploring the methods used to

deal with the annuities.
The specific type of annuity under consideration is workers compensation. This thesis

will not consider the effects of mortality. The reason is that for the issued annuities, the
mortality before retirement is low enough to be ignored. In the simulations, it is assumed
that no kind of recovery exists. That is not the case in the real data, where the size of
the payments can both increase and decrease several years after the policy holders have
started receiving payments.
Payments for workers compensation are usually made on a monthly basis, but in order

to simplify the model, we will work on yearly basis. The monthly payments are the
same for the entire year, so it will not cause trouble. This thesis will not consider the
consequences of new legislation. If politicians would decide to introduce new guidelines,
this could significantly impact the amount of reserves needed to cover the costs. These
types of effects are however not within the context of this thesis.
One frequently used method to simulate interest rates is by time series analysis, see Aït-

Sahalia (1996). Since the purpose is to investigate how interest rates affect the IBNR,
deterministic interest rates will be used in the simulations instead. That will make it
easier to interpret the impact of various methods for IBNR calculations. Otherwise the
results would be affected by the additional variance of the simulated interest rates. It
will also be clearer how rising and falling interest rates affect the different methods. The
term structure of interest rates is mainly considered to be flat.
The effects of interest rates on the RBNS will also be explored. Furthermore, three

methods for estimating IBNR will be explored regarding their ability to correctly estimate
the IBNR under varying interest rates. The methods to be examined are Double Chain
Ladder, the Separation Method and Chain Ladder.
Initially, this study had intended to use bootstrapping of existing claims to simulate

data. However, there are several problems with this method. We had access to data for 15
years. Since the claims often last longer than 15 years, the tail events cannot be covered
properly. The claims are frequently adjusted, both increased and decreased, it will make
the results more uncertain. Since our purpose is to examine the effects of interest rates,
bootstrapping will not contribute to additional understanding. The data will instead be
used to control the assumptions made for the simulations in section 3.3.

1.2.1 About the Data

There is data available that contains the start date, the end date of the present payments
and the cumulative payments. Considerable efforts have been devoted to identify and
evaluate available data. Here are examples of complicating conditions.
Workers in Denmark who are granted workers compensation have the option to work

full time. This stops the payments from the insurance company. If the worker later
realizes that he is unable to work as much as he would like to, he still has the right to
workers compensation. This can have the effect that a claim where no payment has been
made for years still can become active several years later.
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The cumulative payments were used to calculate the size of the payment for each
annuity by subtracting the total amount paid for one year to the next. This number was
in some cases negative.
There is a specific case when negative payments can occur. One of the insurance

company’s costumers has a contract where the insurance company pays a small portion
of the cost of the claims. However, the insurance company has to make 100% of the
first payments to the recipient. Every three months the difference is regulated. Thus, if
an accident occurs and a payment is made in Q4, the majority of that payment would
then be refunded by the costumer in Q1. This causes negative payments. When negative
payments occurred, those annuities were removed from the data set. In 2014, the total
payments were negative in about 2% of the cases.
The calculation of the size of the payments is further complicated by the fact that in

Denmark it is possible to get the total annuity payment as a lump sum, rather than as
a monthly payment. This will cause the estimation of the annuities to be distorted, as
there are some very large payments made. The largest payment made in 2014 was over 30
times larger than the mean. The mean was almost twice the size of the median payment.
Another complication is that the claims are numbered by the accidents. Unfortunately

it is not split up into components for each accident. This means that the annuity payments
are combined with other payments into one sum. Therefore it is not possible to know
for sure if the payments are just annuities or if there are other payments as well. It is
frequently the case that there is one large payment at the start of the annuity.
As an example, table 1 shows the payments for one specific claim. During the first

year, 2002, it is quite obvious that a lump sum was paid. It also looks like an adjustment
in the claims was made in 2004, due to the lower amount paid in 2004 than 2003. Two
additional lump sums also seem to have been paid in 2006 and 2010.

Payments
Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Payment 100 1.75 1.64 1.67 4.81 1.76 1.82 1.88 5.54 1.99

Table 1: Example of how annuity payments can change over time on a yearly basis. The
numbers represent the total size of the payments in percent relative to the first
year. The first year both a lump sum and an annuity was present.

One of the main data points for this study is how long time it takes after an accident
occurs until it is introduced as an annuity. Due to lack of high quality data, the earliest
year it was possible to observe when the claim was introduced as an annuity and the size
of the claim was 2003. This means that the study has been limited to annuities that
occurred after 2002.
There are still active annuities that occurred earlier than 2002, but unfortunately they

could not be used. Identifying the date when the annuity started to be considered an
annuity has been a major complication.
After 2005 an annuity flag was introduced to indicate if payments are annuities or not.

Still, that does not mean that the payments were separated into annuities and lump sums,
just that the payment includes annuities and might include a lump sum.
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1.2.2 Separating Annuity Payments from Lump Sums

The annuity part of the payments are the main concern of this thesis. Both annuity
payments and lump sums were present in the same data. Since lump sums are less
sensitive to changes in interest rates than annuities, it was necessary to separate them.
Some assumptions, as reviewed below, had to be introduced. They were examined and
seemed reasonable given the data.
When examining the data on monthly basis, it became apparent that the payments were

not made every month. Sometimes the payments were delayed one, two or even three
months. In the months following periods when no payment was made, the payments
were often, but not always, increased to compensate for the lost payments. These types
of larger claims were still considered part of the annuity payment. After a claim was
determined, it was possible that the payments were reopened to reflect a readjustment
in the claims. These readjustments were usually in the form of lump sums. Note: After
getting in contact with the people responsible for the payments, it seems like the payments
are made on time, but the data does not reflect this.
Assumptions:

1) A single annuity payment was never larger than a few hundred thousand Danish
crowns per year. This was the largest payment recurring on a yearly basis.

2) Payments 400% larger than the median on a monthly basis are the result of a lump
sum in addition to the annuities.

3) When both an annuity and a lump sum is paid to a policy holder, the size of the
annuity part of the payment can be estimated by the median of all payments to that
policy holder.

4) Annuities have at least four recurring identical payments. This is because the payment
is supposed to be the same every month during a year.

5) If the payment is zero five or more months, subsequent payments are considered lump
sums, unless exactly the same payment reappear for at least two consecutive months.
The reason for considering payments that occur after five months of zero payments is
that there are many cases where there are long periods with no payment followed by a
lump sum. However, sometimes payments may restart after a long period without any
payments. To distinguish the cases when there are two subsequent lump sums from
the cases when the annuities have restarted, two identical payments are required.

Lump sums were replaced by the median payment for the annuity. This may seem inap-
propriate since the replacement was then implicitly depending on the when the duration
first started. However, when considering the impact this had on the yearly payments,
the difference were minuscule compared to what would have been the case if it had been
replaced by the correct annuity.
Since the data kept annuities and lump payments in the same file, the annuities were

marked with a specific flag in 2005 to differentiate them from other claims. A new
problem arouse when claims in the data set frequently had an annuity flag in spite of not
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having recurring payments. Of the unique claims with an annuity flag, more than 33%
had only one payment. In this thesis, payments are not considered as annuities if less
than four identical payments were made. Therefore those claims have been ignored. Of
the remaining claims, 45% had at least twelve identical payments.
In 2015 the present mean duration of the annuities is about 26.2 years from the start

of each annuity. The standard deviation of this is approximately 10.3. At the time of
collecting this data, the mean remaining duration for all annuities active in 2015 is 14.4
and the standard deviation is 10.2.

1.2.3 Estimating Inflation of the Annuities over Time

The size of the annuity payments increases every year as a consequence of inflation.
The inflation of the annuities can be estimated by selecting the annuities that have

been present for the entire duration of the data. Most of the annuities were not active
during the entire 13 years that we had access to. A simple method to estimate the claims
inflation is to consider the annuities that were active for the entire 13 years we had access
to. Only about 20% of the annuities were used to estimate the inflation. In order to get
comparable and equivalent data, we had to eliminate both annuities with shorter active
time than 13 years, and also annuities where the total payments were zero during one
year, but later went back to normal. The payments that met these criteria could then
be used to get an estimate of the inflation, by dividing the sum of the payments for each
year by the previous year.
The inflation was in the range of -0.2% and 4.3%. The result is shown in table 2.

The first year had to be excluded since it showed a 8.6% change, which was much higher
than the other years. The reason why the first year was an anomaly was probably that
the initial payment usually does not start at the beginning of a year. This will cause
the annuity part of the payment during the first year to be on average 50% lower than
otherwise. Therefore, annuities that first appear in 2002 will distort the increase from
2002 to 2003. Excluding the first year, the geometric mean of change of the payments
for the period 2004 to 2014 was 2.79%.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
8.57 -0.21 4.31 1.71 3.63 2.53 2.52 3.46 1.93 2.94 1.88 0.43

Table 2: The percentage increase of the annuities.
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2 Theory

2.1 Terminology

There are two types of outstanding claims to consider in order to get an accurate estimate
of the reserves.

RBNS stands for "Reported But Not Settled". This is claims that the insurance
company is aware of, but the full payment has not yet been carried out. Annuities
where the payment has started but the recipient has more payments to collect are RBNS.
IBNR stands for "Incurred But Not Reported". It can take years before accidents are
reported and the injuries assessed. Often the injuries are not considered so severe that
the injured person has a right to receive payments from the insurance company. If only
accidents known to be severe enough to entitle the policy holder to future payments
would be counted, the reserve would be much too low to cover all future cost. Therefore
it is necessary to estimate accidents that have happened, but are not yet reported. It
is often a long process to determine the severity of the accident. In the case of workers
compensation, the accidents are often reported, but it can take several years to determine
if they will require payments for an extended period. Most recorded accidents in the data
will not become annuities. Despite technically being reported, these claims will be in the
IBNR until the severity of the injury is known.

IBNyR (Incurred But Not yet Reported) stands for reserves that have occurred before
the end of the year, but have not been reported by the end of the year. IBNeR (Incurred
But Not enough Reported) refers to claims that have been reported by the end of the
year, but have not yet been settled. Payments are still expected in the future (Wüthrich
2008). IBNeR and RBNS are similar concepts and can be used interchangeably when
working with "paid" data (Norberg 1986).
Claims that are not yet paid will have reserves. The estimate of the amount a claim

will be settled for is called a case reserve. Case reserves are reduced by an appropriate
amount when a payment is made. By their nature, case reserves are part of the RBNS,
see Atkinson 1989 and irmi.com.

Undetected annuity is used to denote claims that will become annuities, but have not
yet been recorded as such. An undetected annuity can be recorded as an accident, but
before it is settled that it is in fact an annuity, it will be called an undetected annuity.
Annuities in the IBNR will be called undetected. Likewise, annuities that are confirmed
to be severe enough for the policy holder to require future payments will be called detected
annuities.
How long an annuity lasts will be called its duration. This should not be confused with

“duration” in interest theory, where duration is used as measure of the sensitivity of a
fixed income asset to changes in the interest rate. In this thesis, an annuity that lasts five
years is said to have duration of five years, regardless of how the interest rate changes.
The size of an annuity refers to the amount paid each year.
Workers Compensation is a type of annuity that compensates a worker for loss of

income due to an injury. When a worker gets injured, he will often be unable to work at
full capacity. This will cause a loss of income. This is the type of compensation that will
be considered in this thesis. Workers compensation will only last until the person retires.
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2.2 Interest Rate Curve

So far, we have assumed that the discount rate (interest rate) only depends on the present
time. Therefore the discounting rate is the same regardless of how far into the future
an annuity lasts. This is not true in practice. Generally, the market accepts a lower
interest rate if the time to maturity is short rather than if it is long. This is reasonable
considering the compounded interest effect e.i (1 + r)(1 + r) . . . (1 + r).
Finanstilsynet publicizes the discount curve used in Denmark for discounting insurance

liabilities. This discounting curve is updated every weekday. In addition to using an in-
terest rate with a flat curve, we will also consider using the actual discounting curve as the
interest rate. Unfortunately, the curve published by Finanstilsynet only dates back three
years, but at least ten years is needed for this study. An simple alternative to produce
reasonable interest rate curves is to extrapolate the curves from Finanstilsynet from a
specific date. These curves will not necessarily be the exact ones used by Finanstilsynet,
but they are sufficient for our purpose. This can be done by considering the following
equation:

(1 + sz)
z = (1 + sx)x(1 + rx,z)

z−x (1)

Where sz is the spot rate to time z, i.e. the interest rate from the present time until z,
and r is the forward rate, i.e. the interest rate from x to z, see Björk 2009. This gives:

rx,z =

(
(1 + sz)

z

(1 + sx)x

) 1
(z−x)

− 1 (2)

Future interest rates will be extrapolated from (2). In this study, the discount curve used
is from 2015-01-02, as that is the first available day of the present year. This curve goes
47 years into the future. The discount rate approaches a fixed interest rate for the latter
years. If it is necessary to find the discount rate for later dates, it is assumed that the
discount curve equals that of the last year.
The current interest rate is very low by historical standards. When we want to consider

scenarios with higher interest rates, the discount curve will be increased by a suitable
factor.
The framework in Solvency II uses an "Ultimate Forward Rate", UFR. Forward rates

with long time to maturity will approach the UFR, currently 4.2% (Finanstilsynet, 2015).
This indicates that it might not be entirely accurate to increase the entire discount curve
with a factor when higher interest rates should be considered, but it is good enough for
our purposes. Interest rate theory is a much deeper concept than described here, and the
interested reader can be referred to Cox, 1985.

2.3 Calculation of an Annuity under Fixed Interest Rate

In reality, the interest rate is never fixed. However, if the interest rate were fixed and the
interest rate curve were flat, i.e. the interest rate were the same all the time, it would be
easy to calculate the present value of an annuity. Insurance companies in Sweden today
often assume fixed interest rates to calculate the value of the annuities. Let ai be the
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payment, n the time for the final payment and si the spot interest rate. Since we want
to calculate the discounted payments, the present value (PV) is then calculated as in (3).

PV =
n∑
i

ai
(1 + si)i

(3)

If all ai and si were identical, it can be calculated by the geometric sum, since

PV = a(1 + s)−1 + a(1 + s)−2 + . . .+ a(1 + s)−n

PV (1 + s) = a+ a(1 + s)−1 + . . .+ a(1 + s)1−n

PV (1 + s)− PV = a− a(1 + s)−n

PV ((1 + s)− 1) = a(1− (1 + s)−n)

PV = a
1− (1 + s)−n

s
(4)

In practice the payment a is often increased over time to compensate for inflation. This
can be compensated for by simply adjusting the interest rate, s, used to discount the
annuity. This simplified method to calculate the present value of an annuity will not
be allowed under Solvency II regulations, where an interest rate curve has to be used
instead.

2.4 Estimating the IBNR

When accidents occur the policy holder will have a claim on the insurance company. How
large the total claim amount will be is not known at the time of the accident. This is
especially true for personal injury when the claim will be paid as an annuity over many
years. Since the insurance company needs to know how large the total claim amount
will be in order to properly set aside reserves to cover the future costs, there are many
methods for estimating the claim. Three methods will be explored in this thesis: Chain
Ladder, Double Chain Ladder and the Separation Method.

2.4.1 Chain Ladder Method (CLM)

Due to its simplicity, the Chain Ladder Method, (CLM), is arguably the most popular
method for estimating outstanding claims, both in theory and in practice, (Wüthrich,
2008). The idea of the method is that present claims will approximately develop like past
claims. This will be used to estimate the total reserve. "Exogeneous influences", such
as inflation, can cause the claims to develop in a manner they did not do before, and
therefore give misguided results (Taylor, 1977).
It can be assumed that the data is available on triangle form. Let the set Ω = {(i, j) :

i = 1, . . . ,m, j = 1, . . . ,m; i + j ≤ m − 1} be the observable data available at a time m
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from the first point in the triangle. Note that Ω can be interpreted as the upper part of
a triangle. The lower part of the triangle, m ≤ i+ j ≤ 2m is unknown at time m.
Let the cumulative paid amount be Ci,j, where i is the accident year and j is the

development year, i.e. how many years it has been since the accident occurred. Let
∆m = {Ci,j ∈ Ω}. The total payments in year i, paid j periods from i is then denoted
Ci,j.
The idea is that the cumulative claims will increase as much as they have done in the

past for a specific development year. Cumulative claims are assumed to be independent
for different accident years i. Let the last development period, also known as ultimo, be J
and furthermore let the last accident year be I. It is assumed that the claims for a specific
development year is expected to increase by a fixed amount for a specific period. Then we
can introduce development factors f1, ..., fJ−1 > 0, such that E[Ci,j|Ci,j−1] = fj−1Ci,j−1.
Estimates for fj can be found by:

f̂j =

∑I−k
k=1 Ck,j+1∑I−k
k=1 Ck,j

j = 1, . . . , I − 1

In case the last development period is 4, the known elements in the claims triangle will
look like table 3.

Development year, j
Year of origin, i 1 2 3 4

2001 C1,1 C1,2 C1,3 C1,4

2002 C2,1 C2,2 C2,3

2003 C3,1 C3,2

2004 C4,1

Table 3: The known elements of the claims triangle.

Note that along the diagonals from the upper right to the lower left, i and j adds to
the same value. This means all information that is known for a specific calendar year will
be found along that diagonal.
Then E[Ci,j|Ci,0, Ci,1, Ci,j−1] = E[Ci,j|Ci,j−1] = fj−1Ci,j−1. From this, we can conclude

that given Ci,j, the expected final amount Ĉi,J , is given by Ci,j f̂i,j f̂i,j+1...f̂i,J−1. To avoid
this cumbersome notation, introduce Fj = fjfj+1...fJ−1. Thus we can fill in the blanks
in table 3 and the result is shown in table 4.

Development year, j
Accident year, i 1 2 3 4

1 C1,1 C1,2 C1,3 C1,4

2 C2,1 C2,2 C2,3 C2,3F3

3 C3,1 C3,2 C3,2f2 C3,2F2

4 C4,1 C4,1f1 C4,1f1f2 C4,1F1

Table 4: The complete claims triangle according to the Chain Ladder method.
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The IBNR is the sum of the last column, C1,J . . . CI,J , minus the last known diagonal,
C1,J . . . CI,1.
Chain Ladder can be performed on payments or the case reserves, see (Mack 1993).

In method A), described in section 2.6.1, it is used on payments combined with case
reserves. This could be an issue, as the development factors are lower when using case
reserves than payments. However, we will assume that no assumptions are broken by
considering case reserves combined with payments.

2.4.2 Separation Method

The Chain Ladder Method works best when the inflation is constant (Taylor, 2000). A
changing inflation will cause the estimates to be influenced by historic, rather than the
present inflation. This could cause significant problems in times with high and fluctu-
ating inflation. As a response the Separation Method was developed in the 70s. It has
the advantage over the Chain Ladder Method that it considers the inflation separately.
Ideally the Separation Method would account for the problems with fluctuating inflation.
See Björkwall (2011) and Taylor (2000) for further information about the Separation
Method. The presentation below closely follows Björkwall (2011).

In the Separation Method, incremental claims are assumed to be the products of factors
that depend on the accident year, the development year and the calendar year. As before,
let Ci,j be the cumulative claims for accident year i and development year j.
Let Ni be the total number of claims for accident year i for all development years.
The parameter rj determines the proportion of the payments that will occur during
development year j.
λi+j is the calendar year effect. This could for example be inflation.
It is assumed that E(

Ci,j

Ni
) = rjλk and if the claims are fully paid at year t, then Σt

j=0rj = 1.
Since rj and λk are considered independent, it is possible to consider the inflation and
the development of the claims separately. The number of claims, Ni, has to be estimated
by other methods outside of the Separation Method, for example Chain Ladder, with
number of claims instead of the aggregated value of the claims. The estimates r̂j and λ̂k
can be by found by solving the three equations below:

si,j =
Ci,j

N̂i

sk,0 + sk−1,1 + . . .+ s0,k = (r̂0 + . . .+ r̂k)λ̂k for k = 0, . . . , t

s0,j + s1,j + . . .+ st−j,j = (λ̂j + . . .+ λ̂t)r̂j for j = 0, . . . , t

These equations have a unique solution that can be obtained recursively. The solutions
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are

λ̂k =

∑k
i=0 si,k−i

1−
∑t

j=k+1 r̂ j
for k = 0, . . . , t

r̂k =

∑t−j
i=0 si,j∑t
k=j λ̂k

for j = 0, . . . , t

where
∑t

j=k+1 r̂k is set to zero when k = t. Ĉi,j in the upper triangle can then be
computed by

Ĉi,j = N̂ir̂jλ̂k

Note that the historical triangle changes. To estimate the lower triangle, an estimate
of λ̂k is needed for t + 1 ≤ k ≤ 2t, i.e. we need to estimate the future inflation for
the time we are interested in. In this thesis, we will make assumptions about λ, but in
practice it can be more suitable to extrapolate from historical data. Claims inflation, i.e.
the inflation in the payments of the claims, is notoriously difficult to measure with any
degree of certainty (Brickman et al. 2005), since it does not necessarily follow regular
inflation.

2.4.3 Double Chain Ladder (DCL)

The description of DCL below follows Martinez Miranda (2012) closely. DCL is designed
to work with payments, rather than incurred claims. The standard CLM uses data on
an aggregate loss level. In DCL, we need two triangles, the aggregated payments and
the number of incurred claims. As the name implies, DCL applies CLM twice, both on
incurred counts and on the aggregated payments levels. By using the number of claims,
as well as the total loss for the claims, more information is used to estimate the out-
standing claims. That would ideally lead to better estimates. As in CLM, let the set
Ω = {(i, j) : i = 1, . . . ,m, j = 0, . . . ,m − 1; i + j ≤ m} be the observable data and
∆m = {Ci,j ∈ Ω} the total payments. Furthermore, let ℵm = {Ni,j ∈ Ω} be the set of
observable number of claims, where the total number of claims with insurance year i,
reported in year i+ j is denoted Ni,j.

The two triangles ℵm and ∆m are observed real data. The settlement delay is modeled
by a stochastic component by considering the micro-level unobserved variables, Npaid

i,j,l .
This is the number of future payments originating from the Ni,j reported claims, paid
after a period l, where l = 0, . . . ,m− 1.
Let Y (k)

i,j,l be the individual settled payments from Npaid
i,j,l (k = 1, . . . , Npaid

i,j,l , (i, j) ∈ Ω, l =
0, . . . ,m− 1).
The method assumes the following:

A1) Nij are random variables. Its mean can be represented by a E[Ni,j] = αiβj, where∑m−1
j=0 βj = 1 to ensure identifiability.
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A2) E[Npaid
i,j,l |ℵ] = Ni,jπ̃l is the mean of the RBNS delay variables, for (i, j) ∈ Ω, l =

0, . . . ,m− 1

A3) When conditioning on the number of payments, the mean of the individual pay-
ments size is given by E[Y

(k)
i,j,l|N

paid
i,j,l ] = µ̃lγi

In the special case with exactly one payment per claim, A2) can be replaced by A2’)
and we can add A4):

A2’) The number of paid claims follow a multinomial distribution, given Ni,j. Thus
(Npaid

i,j,0 , . . . , N
paid
i,j,d ) ∼ Multi(Ni,j; p0, . . . , pd), where d is the maximum delay. Let

p = (p0, . . . , pd) denote the delay probabilities. Thus
∑d

l=0 pl = 1 and 0 < pl < 1,∀l

A4) Assume that Y (k)
i,j,l are independent of the counts Ni,j

The paper by Martinez Miranda, et. al suggests that γ in A3) could be interpreted
as an inflation parameter. The mean therefore depends on the payment delay and the
accident year, but not the reporting delay. This means that inflation in this case is not
what is usually meant by inflation, which would affect the diagonals.
For the triangle ℵ, we can obtain the first moment equalities by aggregating over the

rows and columns.

m−i∑
k=0

E[Ni,k] = αi

m−i∑
k=0

βk for i = 1, . . . , m (5)

m−j∑
k=0

E[Nk,j] = βj

m−j∑
k=0

αk for j = 0, . . . , m - 1 (6)

By replacing the first moments of E[Ni,j] by their observed values Ni,j, we get the
unbiased estimators of the parameters. The resulting system of equations can then be
solved for αi and βj. Call the resulting estimates α̂i and β̂j. In the same manner, solve
the corresponding system of equations for the ∆ triangle and call the resulting estimates
ˆ̃αi and

ˆ̃βj. Using these parameters, estimates of πl can be computed for l = 0, . . . ,m− 1,
by the following system of equations:

ˆ̃βj =

j∑
l=0

β̃i−1πl for i = 0, . . . , m - 1 (7)

Let the solution of (7) be π̂l, l=0, . . . ,m - 1 . However, because of the requirements
0 ≤ pl ≤ 1 and

∑
l pl = 1, π have to be adjusted, since π̂ can be negative and also sum

to more than one. It is a bit odd that π can be negative or sum to more than one when
considering that π is supposed to be the likelihood that payments occur. Therefore, we
will adjust π. Martinez Miranda et. al suggest finding the maximum delay period, d, by
counting the number of successive π̂ ≥ 0 such that

∑d−1
l=0 π̂l < 1 ≤

∑d
l=0 π̂l. The adjusted
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estimates are denoted p̂l = π̂l : l = 0, . . . , d− 1 when π̂l ≥ 0 and 0 when π̂l < 0. Using
the unadjusted parameters would lead to the same estimates as the standard CLM. This
is not the case when using p̂.
The mean of the distribution of the individual payments can be obtained by

γ̂i =
ˆ̃α

α̂iµ
for i = 1, . . . ,m (8)

and

µ̂ =
ˆ̃α1

α̂1

(9)

Thus, γ can be interpreted as some kind of an inflation parameter. For identifiability,
γ1 = 1. The rest of the parameters can be found by using µ̂ in equation (8). Given all
these parameters, it is finally possible to estimate the reserve. For the RBNS part of the
reserve, it is possible to use either the estimated or the fitted values of the number of
claims. The equations below are the estimates using either the observed values, (10), or
the fitted values, (11)

Ĉ
RBNS(1)
i,j =

j∑
l=i−m+j

Ni,j−lπ̂lµ̂γ̂i (10)

Ĉ
RBNS(2)
i,j =

j∑
l=i−m+j

N̂i,j−lπ̂lµ̂γ̂i (11)

where N̂ij = α̂iβ̂j. The IBNR part of the reserve can not use the actual numbers and is
thus

ĈIBNR
i,j =

i−m+j−1∑
l=0

N̂i,j−lπ̂lµ̂γ̂i (12)

The total estimate of outstanding claims is ĈRBNS
i,j + ĈIBNR

i,j . When using the estimates
of the number of claims, equation (11), the result is identical to the CLM.
One advantage of the DCL is that it is possible to separate outstanding claims into

IBNR and RBNS. We will examine differences between DCL, CLM and the Separation
Method.

2.5 How the Discounting Effects are Dissolved in the RBNS

The RBNS should be discounted when it is part of the reserve. This discounting could
initially be large but as time passes, the discounting effect of future payments decreases.
One of the issues to be explored in this thesis is how the discounting effects of RBNS
are dissolved in a changing interest rate environment. Since the future payments are
discounted at first, the sum of the future payments will be larger than the reserve was
originally. This inflicts a “cost” to the reserve. How the cost is realized can be analyzed
analytically. In addition, assume that there are no uncertainties in the reserves other
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than the ones depending on the interest rates.

Let Ri,disc
t be the reserve for accident year i, calculated at time t, discounted. Likewise,

let Ri,undisc
t,j be the undiscounted reserve to be paid at time j periods from i, calculated

at time t. Let ra,j be the interest rate at time a, j periods in the future. Furthermore,
let the payment be u and the cost be c.

Ri,disc
1 = Ri,disc

0 − u+ ci1

Ri,disc
1 =

m∑
j=2

Ri,undisc
0,j

(1 + r1,j−1)j

ui0,1 = Ri,undisc
0,1

m∑
j=2

Ri,undisc
0,j

(1 + r1,j−1)j−1
=

m∑
j=1

Ri,undisc
0,j

(1 + r0,j)j
−Ri,undisc

0,1 + ci1

ci1 = (1− 1

1 + r0,1
)Ri,undisc

0,1 +
m∑
j=2

(
1

(1 + r1,j−1)j−1
− 1

(1 + r0,j)j
)Ri,undisc

0,j

cik = (1− 1

1 + r0,k
)Ri,undisc

0,k +
m∑

j=k+1

(
1

(1 + rk,j−k)j−k
− 1

(1 + rk−1,j−k+1)j−k+1
)Ri,undisc

0,j

2.6 Overview of the Methods of Treating Annuities in IBNR
Calculations

The main topic for this thesis is to find out which values should be inserted in the methods
for estimating the IBNR. We will explore four methods. Section 3.4 will have a more in
depth description of how the methods were implemented.

2.6.1 Method A) Ignoring the Problem and then Adjusting IBNR

One major difference between Method A and the other methods described below is that
in this case, the annuities are not added to the claims triangle as a single value. The idea
of this method is to use the incurred loss as the basis for estimating the reserves. The
incurred loss consists of two parts, the amount paid and the case reserves. As parts of the
annuity are paid, the incurred loss for a particular annuity changes as the case reserve
decreases and the amount paid increases.
Table 5 shows an example of how a single annuity would be inserted in a cumulative

matrix in theory. In this example PV (d, rt)× s denotes the present value of an annuity
with duration d, interest rate r at time t and s is the amount paid during one year. In
the next development period, a payment is made. The incurred loss at this time is then
calculated by first finding the present value of the remaining payments using the interest
rate at this new point in time and then adding the number of payments that have been
made. This is multiplied by s. The process is repeated until all payments have been
made.
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Development year, j
Year of origin, i 1 2 3

PV (d, r1)× s (PV (d− 1, r2) + 1)× s (PV (d− 2, r3) + 2)× s

Table 5: Example of how an annuity would be inserted in a cumulative triangle in method
A in theory. The annuity is detected in the first development year. The present
year is year 3. Note how different interest rates and durations are used and that
payments are made.

Chain-Ladder or some other method for estimating the reserves could then be used
to find the total reserve. However, that will project the total undiscounted payments.
Since the reserve should be discounted, this method will overestimate the total reserve.
Therefore, we need to remove the discounting effect of the RBNS. The discounting effect
is found by examining the total payments that will be done on all the known claims and
subtracting the sum of the last diagonal in the cumulative triangle.
The advantage of this method is that it is easy to find the appropriate values to insert

in the triangles if each claim is associated with an incurred loss amount for each year.

2.6.2 Method B) Pretend the Annuity is Bought

This is the standard method used in most insurance companies in Sweden today. Work
with claims triangles on an incremental basis. When the annuity is determined, the
present value of the annuity is calculated by the geometric sum and entered into the
triangle. Table 6 shows an example of how an annuity would be inserted in a cumulative
triangle in method B. The notation is the same as in the previous method. When the
annuity is detected, the present value is calculated and inserted in the triangle. This
value never changes, regardless of the interest rate or the payments made. Note that this
example only shows a single annuity.

Development year, j
Year of origin, i 1 2 3 4

PV (d, r1)× s PV (d, r1)× s PV (d, r1)× s PV (d, r1)× s

Table 6: Example of how a single annuity would be inserted in a cumulative triangle in
method B. The annuity is detected in the first development year. The present
year is year 4. Note that the interest rate used is the one present at the year
the annuity was detected and that there are no payments made. If a claim was
detected in year 4, that claim would be discounted with r4.

The IBNR is then calculated on basis of these valuations with some method for IBNR
calculations. If the discount rate were the same all the time, this would work well.
The problem is that the interest rate changes over time. Changing interest rates will
cause a different interest rate to be used in the geometric sum for different years. This
will cause the triangles to be affected by the interest rate active at the time of the
inception of previous interest rates. In case the interest rate previously was higher than
the current interest rate, this would cause the value inserted in the triangle to be lower
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than appropriate and vice versa. Likewise, if the payments are adjusted for inflation, that
would also affect the payments. It is possible to combine inflation and interest rate in the
geometric series to get a better estimate for the final payments. Because the historical
data is used to get an estimate of the payments to come, the best estimate of the present
reserve would be if the interest and inflation rate would have been the same in the past
as it is today. Since this is not the case, the data can be adjusted in order to get a
better estimate of the current reserves. One method for adjusting this will be explored
section 2.6.3. An advantage of using method B is that there is no need to keep track
of previous claims. When updating a triangle, only the latest diagonal will be changed.
This diagonal only depends on the current interest rate and indexing.

2.6.3 Correction of Method B

One of the objectives of this thesis is to see if there is a way to achieve a correction of
method B, based on only what is known today. It is assumed that the available data is
discounted as in method B. If complete knowledge of all the past duration for each annuity
would exist, correction could be achieved by adjusting each of the policies based on the
current interest rate and duration assumptions. This information can be hard to achieve.
What we are looking for is a simplified way of finding approximate corrections based on
only the current average duration and past interest rates. It should be possible to correct
the entire history in a simple manner. The simplest approach is to assume that the
average duration today is the same as the average duration in the past. By transforming
the triangle to an incurred triangle, the claims in each cell has been discounted by the
same interest rate. Given the interest rate today and the ones used historically, the
correction factor could then be calculated by formula (13). The correction is then:

PV(today’s average duration, past interest rate)
PV(today’s average duration, today’s interest rate)

(13)

The correction factor (13) could then be applied to all cells in the incurred claims tri-
angle. This triangle can then be transformed back to a cumulative triangle. This method
would work best if annuities detected in the later development years have approximately
the same durations as those in the earlier development years.

2.6.4 Method C) Work with Undiscounted Annuities

Work as in B), but instead of discounting the future cash flow, assume that the interest
rate is zero. Therefore, the undiscounted and uninflated value of the annuity should be
inserted in the triangle. This is just the duration multiplied by the amount paid each
year. In other words, the total payments are inserted in the matrix the first year and
is never changed. Table 7 shows an example of who an annuity would be inserted in a
cumulative triangle.
By using the nominal values, the historical triangle does not need to be adjusted when

the interest rate or claims inflation change. Since the claims are not discounted from the
start in this method, it does not distinguish between a claim that pays 1 every year for
30 years or 30 in the first year. This will be accounted for by finding a suitable correction
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Development year, j
Year of origin, i 1 2 3 4

d× s d× s d× s d× s

Table 7: Example of how an annuity would be inserted in a cumulative triangle in method
C. The annuity is detected in the first development year. The present year is
year 4. Note that interest rates are not present.

factor, similar to that in 2.6.3. In this case, the correction will be done by equation (14),
which calculates the proportion of the present value of all claims relative to the nominal
amount. This is a reasonable approximation when everything is relatively homogeneous.

∑
i PV (di, today’s interest rate)× si∑

i di × si
(14)

The correction factor, (14), will be multiplied by the IBNR after all the IBNR is
calculated in the usual manner. This leads to an estimate that is comparable to that of
the other methods.
The advantage of method C is that the reserving is independent of the interest rate.

It will therefore be easier to adjust the triangle according to the present interest rate in
order to get an accurate reserve.

2.6.5 Method D) Present Interest Rate

In order to get the ideal value of the reserve, we would have to adjust everything to the
present assumptions. For that purpose we need to keep all the values of the original claims
undiscounted and unindexed. When the reserve is calculated, the present interest rate
and indexing will be used to discount the annuities. Then keep working as in B. Table 8
shows an example of how an annuity would be inserted in a triangle in this method. It
should be noted that the interest rate used is the latest interest rate. That interest rate
is not known at the time the annuity was first detected. Therefore the claims triangle
has to be updated every year.

Development year, j
Year of origin, i 1 2 3 4

PV (d, r4)× s PV (d, r4)× s PV (d, r4)× s PV (d, r4)× s

Table 8: Example of how an annuity would be inserted in a cumulative triangle in method
D. The annuity is detected in the first development year. The present year is
year 4. Note that the interest rate used is the present interest rate.

The differences between method D and B, is that B does not update the values inserted
in the triangle. The interest rate and indexing that was present at the time the annuity
was recorded will always be used for that annuity, regardless of the current state. In
order to use method D, we need to keep the claims and indexing separate from the IBNR
calculations.

22



2.6.6 The True Values of the Annuities

When the data is simulated it is possible to know all future claims. This is obviously
not possible in the real world. However, having access to the complete data allows us
to compute the true value. In an ideal world, this is the value we would want to find in
our previous methods. It is only possible to calculate in simulations when all the future
claims are known. This method will be used as a reference to compare how well the other
methods preform. It is done by discounting all future payments with the present interest
rate.
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3 Method
This section will describe the details of how the study was implemented. The reader who
does not have an interest in knowing these details could skip this section and proceed to
the results.

3.1 Structuring the Data

In order to keep track of each annuity in the simulation, several parameters are needed.
We need the accident year, the reported date, the expected duration for the annuity and
the yearly payments. By initially assuming that the payments for each claim is one each
year, the results will not be affected by the variance of the payments. The result will
therefore be easier to interpret.
The data was structured in the following way: A matrix was constructed with accident

year on the rows and development year on the columns. The numbers in the first matrix
denoted the duration of the first annuity that was detected for a specific accident and
development year. In order to include all annuities, more matrices were constructed
until all annuities were represented in a system of matrices. Let the set of the matrices
durations be D.
Table 9 shows an example of the structure. In the first accident year there were three

accidents. One of them was detected in the first development year with duration 6, and
two in the third development year with duration 7 and 11 respectively. Only one accident
has been detected in accident year two. It had duration 10 and occurred in development
year two. Finally, in the third development year, two accidents have been detected, both
in development year 1. Their durations were 8 and 3.

Development year
Year of origin, i 1 2 3

1 6 0 7
2 0 10 0
3 8 0 0

Year of origin, i 1 2 3
1 0 0 11
2 0 0 0
3 3 0 0

Table 9: Example of the structure

This approach to structuring the data requires the number of matrices equal to the
highest number of accidents occurred for a specific accident year and development year.
This could be a problem if it required a very high number of matrices as it will require
more memory to simulate. Since the number of confirmed annuities each year is not huge
for the company, as of 2015 there were less than 1000 active policies, it would not be
beneficial to structure the data differently. For example, the number of the matrix could
indicate the duration of the specific annuity and the value inside the matrix the number
of annuities with that duration. The highest number of active policies for 2015 had their
accident date in 2012. This number was less than 60. The earliest incident date of a
policy active in 2015 was 1966.
In order to account for different sizes of the payments, new matrices were created in

the same manner as with the duration. Let the set of the new matrices be S. Each cell in
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S corresponded to a cell in D. The cells in S represented the size of the claims. The total
outstanding payments could then be obtained by multiplying the two sets of matrices.
When simulating the data, it is possible to get a complete set of matrices where the

last development year is known for every accident year. In reality, this is not possible.
Realistically, k years from the accident year, it is only possible to know what happened
at development year k + 1. For the last accident year only the first development year
would be known.

3.2 Generating Claims

For the simulations, we need to generate claims. This will be split in three parts:

1) Generating the number of claims for each accident year and development year.

2) Generating the duration for each claim.

3) Generating the size of the claims.

In step 1), we seek a two dimensional matrix, N , which has the number of claims for each
accident and development year. The dimensions in N are corresponding to the number
of years observed. Thus, if we have observed ten years, N will be a 10 × 10 matrix.
We will generate the number of claims for each accident year one at a time, where one

accident year denotes one row in the full matrix N . The number of claims is estimated
by a Poisson distribution, where the Poisson parameter, λN , was arbitrarily set to 20. λN
is the estimated number of claims that will occur for a specific accident year.
The number of claims for each development year was then generated from a Poisson

distribution where λN was multiplied by the proportion of accidents that will be detected
in that development year. This gives the number of claims each development year for
that particular accident year. If the expected number of claims changes, the λN is then
updated for the next accident year. Repeat this process until the number of claims is
found for all accident years. It is reasonable to assume that proportion of the expected
number of claims each development year is constant, since it will not be beneficial for the
understanding of the models to assume that this it changes.
It is now time to proceed to step 2). Given the number of claims, N , we seek a

three dimensional matrix, D, containing all durations. The first two dimensions in D
correspond to the dimensions in N . The third dimension corresponds to the number of
claims that have occurred during a specific accident and development year. Section 3.1
describes the structure in more detail. Ni,j claims are then simulated from a Poisson
distribution and stored in Di,j,1, . . . ,Di,j,Ni,j

for each i and j. The duration for each
claim is generated by a Poisson distribution with parameter λD, were λD is the expected
duration for the claims.
Finally, we are ready to proceed to step 3). From matrix D, we can generate the size

of the claims, S. S is a matrix with the same dimensions as D. Since the results are
easier to interpret if the size of the claims is 1, we will sometimes let S be 1 for every
entry. If the size of the claims should not be 1, the sizes of the claims are generated from
a gamma distribution. It does not matter if S indicates that an annuity exists when that
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is not the case, since it can be interpreted as a claim with duration of 0, which will not
be included in any calculations anyway.

3.3 Selection of Parameters and Assumptions

In order to compare the methods, data had to be simulated. The following parameters
were used to generate data.

1) The number of simulations was set to 10 000.

2) The size of the matrix was determined to be 10 × 10. This size was deemed large
enough to find effects due to inflation, but not so large that it affected the computa-
tional time.

3) The number of claims that occurred in each cell was simulated from a Poisson distri-
bution with parameter λN = 60.

4) The size of each claims was simulated from a gamma distribution with shape parameter
10 and rate parameter 1, i.e. it has the expected value 10.

5) Inflation affected all claims equally, i.e. the size of the claims was multiplied by the
cumulative inflation.

6) The proportions of claims that occurred during a specific development year was set
to 0.06 for the first year, 0.20 for the second, and 0.34, 0.30, 0.06, 0.04 for the third
to sixth year. This is very close to the actual ratios according to the data.

Assumptions about the correlations: Given this method to generate data, there are
several implicit assumptions about the correlations. Explicitly:

A1) There is no correlation between the number of claims for an accident year or a
calendar year.

A2) There is no correlation between the number of claims and the size of the claims.

A3) There is no correlation between the delay and the size of the claims, when the
inflation effect is discounted.

A4) The proportion of claims that occur during a specific development year relative to
the accident year remains constant.

These assumptions were made to isolate the interest rate effect. A1) was introduced
to study the interest rate effect in constant conditions. A2) is a reasonable assumption
if all claims are independent of each other. If a large company had a huge accident
which affected many workers, that might distort this assumption, but introducing such
dependencies would just add variance to the results, without aiding the interpretation.
A3) might seem like a "large" assumption, specifically that there is no correlation between
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the size of the claim and the development year. Is is easy to imagine that a severe accident
would be treated differently than a small one. This assumption is however verified in the
data for workers compensation used in this thesis, which gives a confidence interval of
(-0.12; 0.03) for the hypothesis that the correlation is 0. A few scenarios that explore
what would happen if A3) was not met is also included in order to make the results more
general and applicable to other kinds of insurance.
Note: Assumption A1 is not supported by the data. There is a significant correlation

between the number of claims and the calendar year. The number of claims is increasing
with time. Some scenarios will explore the methods deal with increasing number of
claims. In those cases, the number of claims will be assumed to change with a constant
rate for each year.
Note: This way of generating data assumes that there are new accidents detected in

periods 1 - 6 but nothing after that. There were a few claims reported after more than 6
years, but they were very infrequent.
Note: The inflation of the claims is assumed to affect the claims along the diagonals.

This inflation is the calendar year effect. Should there be a difference in the size of the
claims with different reported delay times, this is not included in this effect. No such
effect was detected in the data.
The upper triangle generated this way was then subjected to the three methods for

estimating the annuity reserve.

3.4 Detailed Description of the Implementation of the Methods

The following chapter is only recommended for the reader with a great interest in the
details of how the methods were implemented and not necessary to understand the re-
sults. The reader mainly interested in the results is recommended to proceed to section 4.

Each of the methods starts by receiving three parameters. Let the duration of the
claims be D and the size of the claims be S. S and D are matrices of the form described
in section 3.1. Furthermore, let R be a vector with the interest rate for the observed
time. R is deterministic. The values of R depend on the investigated scenario.

3.4.1 Detailed Description of How Method A Was Implemented

Method A is the most computer intense method in this comparison and the hardest to
implement. The idea is to perform reserving on the incurred triangle. It starts by receiving
the duration of the claims, D, the size of the claims, S, and the interest rates for the
observed time, R. The number of claims and the size of the claims were structured as
described in section 3.1 with three dimensions, a, d, and n, where a denoted the accident
year, d denoted the development year and n the n:th claim. The interest rate was a
vector with n values.
The incurred triangle consists of two parts, the paid amount and the present value of

the remaining payments. Let the incurred triangle be denoted X, the paid amount P
and the present value of the remaining payments RE. Then X = RE + P .
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In order to calculate the present value of the remaining case reserve, it is important
to find the remaining duration for all annuities after T years, where T is the number of
available accident years.
The claims remaining duration for each year any annuity was active could now be

calculated. This was done by adding a fourth dimension, t, to the matrix D, reflecting
the years passed from the first time the claim was introduced. Let the resulting matrix
be D′. The first index t = 1 denoted the remaining duration at the first time the claim
was reported, i.e. it is the same as D. For each subsequent t, each cell in matrix D′

was reduced by 1 for every year the duration had lasted, but not less than 0. Thus
for the final index in t, the duration was 10 less than it was in D for all claims, but
not less than 0. Having the remaining duration for all claims allowed the computation
of the present value of each claim with respect to the interest rate that was present at
that time. In case the future interest rate was unknown, today’s interest rate was used.
Multiplying each of these present values of the duration with their respective size would
then determine the present value of each claim. The resulting matrices were called RE ′′.
RE ′′ is then a four dimensional system of matrices. In order to get the reserve for each
of the years any annuity would be active, RE ′, the claims in the RE ′ matrices were
aggregated along the n dimension to form a three dimensional system of matrices. The P
matrices were calculated by first replicating the D matrices as many times as years when
there were active annuities. By subtracting the remaining duration, D′, for each of the
years, the total number of payments were then computed for each claim. By multiplying
this value with size of the claims, the total payments for each claim and each year could be
computed. The P ′ matrices were then computed by aggregating along the n dimension.
Having obtained P ′ and RE ′, the incurred matrices, X ′, were computed by P ′ + RE ′.
Note that X ′ is incremental. X ′ will have the dimensions a, d, and t, where a = 1, ...,m.
We seek the cumulative two dimensional matrix Y, upon which Chain Ladder can be

performed. Y ′ is found by:

Y ′a,j =

j∑
i=1

Xa,i,j−i+1 where a+ j ≤ m + 1 and 0 otherwise (15)

Y ′ is the cumulative matrix which includes the payments made and the present value of
the remaining annuities in the standard structure. We now need to make sure that there
always are accidents in the first development year. If there exists development years
without accidents, that column has to be removed from Y ′. The result is the sought
matrix Y . Finally we are ready to preform Chain Ladder on Y . The resulting IBNR is
called A.IBNR.undisc.
There has been concern if A.IBNR.undisc should be discounted further. To explore

what the result would be if that was the case, we transform the triangle generated by
the Chain Ladder method on Y to an incremental matrix and select the lower triangle
of this matrix. Each diagonal in this triangle could now be discounted by the present
interest rate. Adding each of the discounted cells gives the discounted result in A, called
A.IBNR.disc.
We could also calculate how large the discounting effect of the RBNS is. This is done

by multiplying the matrices S by D and removing the lower triangle. Select the last
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diagonal. The difference between this diagonal and the last diagonal in A.cum_known
is the discounting effect of the RBNS. Let this be called A.disc.effect.
Since the A.IBNR.undisc projects the total payments, rather than the total reserve,

A.IBNR.undisc does not account for the discounting effect of the reserve. A.IBNR is
obtained by removing the discounting effect, A.disc.effect, from A.IBNR.undisc.

3.4.2 Detailed Description of How Method B Was Implemented

Method B needs three sources of information, the duration of the claims, D, the size of the
claims, S, and the interest rates, R, for all previous times when annuities were detected.
D and S are three dimensional matrices and R is a vector. Due to the structure of the
matrices containing the duration of the claims and the size of the claims, the accident
year and the development year of each claim is known. The reason we need the interest
rate for all previous times when annuities were detected is that the previous annuities
will be discounted with the interest rate at their time of inception.
Start by discounting D, with the interest rate that was present at their time of in-

ception. This will yield a new matrix with the same dimensions as D and S. Multiply
the result with S and call it X ′. X ′ is still a three dimensional matrix. The reason S
is not discounted is that S is assumed to be the current value of the size of the claims.
Create an aggregated two dimensional matrix, X, by aggregating all claims occurring in
the same accident year and development year. X is an incurred matrix. Convert X to a
cumulative matrix, Y . Since S and D include all information, even undetected accidents,
Y will do so as well. Therefore we need to remove the lower part of Y and replace it with
zeroes. In case there are no detected accidents in the column for the first development
year the first column is removed. This should be repeated until there is at least one ac-
cident detected in the first development year. There has to be accidents detected in the
first development year for CLM to find a suitable development factor. Call the result Y ′.
In case any of the elements in latest known diagonal is zero in Y ′, this is replaced with
the mean for that development year. The reason for replacing with the mean is that it
gives fair estimates for the IBNR. If a small value would be used instead, say 0.1, ultimo
for that accident year would not be sufficiently large. The final cumulative reserve for
that accident year would then be much too small. Y ′ is now a matrix with zeroes on the
lower triangle and the cumulative damages on the upper triangle, i.e. it is possible to use
Chain Ladder to estimate the lower triangle. The resulting IBNR is sought value. Call
this B.IBNR.undisc There is however concern that this value is not discounted. In order
to do that, take the full triangle generated by CLM and convert it to an incremental
matrix, Z. Each of the diagonals in Z is then discounted with the present interest rate.
Adding up the lower triangle yields the value henceforth known as B.IBNR.disc.

3.4.3 Detailed Description of How Method C Was Implemented

Since method C does not discount the annuities, the size of the claims, S, and their
duration, D, could be multiplied immediately. The result was aggregated to create the X
matrix. The cumulative Y ′ matrix was then created. The lower triangle of the Y ′ matrix
was replaced with zeros to create Y . Chain Ladder estimation was then preformed on
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Y . The resulting IBNR was called C.IBNR.undisc. This result is not discounted on any
level, and does therefore overstate the reserve when interest rates are positive. In order
to take the discounting effects under consideration, the full triangle generated by CLM
was therefore converted to an incurred matrix, Z. The lower triangle of Z was discounted
with the current interest rate. Adding the discounted values of Z and multiplying by the
correction factor, equation (14), yielded the discounted IBNR, called C.IBNR.

3.4.4 Detailed Description of How Method D Was Implemented

Method D was implemented in exactly the same way as method B, with the exception
of the initial discounting step. Method D only uses the present interest rate to discount
matrix S, regardless of when the accidents were detected. The discounting is done in the
same manner as in method B, but this time only the present interest rate is used. The
remaining procedure does not differ from method B.

3.4.5 Adjusting method B to Present Assumptions

For companies who have stored data on theX matrix in method B, it would be interesting
if there were a simple way to get a result similar to the ideal solution, method D, by a
simple manipulation of the X matrix. The obvious method would be to just implement
method D. However, if the data is hard to access for any reason, it would be useful to have
a simple method of correcting the X matrix to get the desired result. We shall explore
how implementing the correction factor suggested in section 2.6.3 will affect the result.
In order to use formula (13) we would need the interest rate at the time of inception
for all annuities and the average duration for the annuities, both historical and present.
Use formula (13) for all interest rates and apply this to the corresponding cells in the X
matrix. Then proceed as in method B. The result is called B.adjusted.

3.4.6 Detailed Description of How the True Value Was Calculated

Since all data about future payments are known in the simulations, it is possible to
calculate the exact current value of the future annuities. Consider an annuity, A, with
duration d, that will be detected at t+ u. We will calculate the value of this annuity by
using the present interest rate, it, to discount the annuity by first calculating the present
value of the annuity using the geometric series sum. Adding all these present values gives
us the value true.undisc, which corresponds to B.IBNR. However, the present values at a
future time (t+u) should be discounted to the present time, t. Thus, we should discount
these annuities with (1 + it)

u. This gives us the True Value, which is the present value of
the future annuities.
When assuming that all future information is known, it would be possible to use the

interest rates that will be present in the future. Say the present interest rate is it where
i is interest rate and t is the time. To calculate the present value an annuity that will be
detected in the future, we will discount by the present interest rate, even if we know the
correct interest rate, it+u. Using it would yield a value a lot closer to the values calculated
by the other methods. If the interest rate present at the time the annuity is detected,
it+u, would be used instead, the result would not be as interesting, since the difference
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between the True Value and the other methods will almost always be a function of the
interest rate at it+u compared to it. By using the interest rate it we expect on average
that the other methods will underestimate the true value 50% of the time.

3.5 Simulation

In order to prepare the simulations, we need to determine the interest rate, r, and the
number of simulations. The number of simulations is set to 10 000.
The first step in every simulation is to generate data according to the method described

in section 3.2. These matrices were then subjected to the methods described in section
3.4. Each of the methods were subjected to the same data, which makes the comparisons
better than if data were generated separately for each method.
The data will be 10 × 10 matrices.
The correlation between the duration and the size of the claim is low, -0.057 with a

p-value of 0.35 according to the data. Thus we will assume that duration and size are
uncorrelated. In the simulation, we will not only assume that they are uncorrelated, but
also independent. Therefore it is possible to simulate the duration and size independent
separately and combine them later.
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4 Results from the Methods

4.1 Results from Methods A, B, C and D

The simulation results are presented in appendix A. The methods were tested by counting
the number of times the methods underestimate the IBNR relative to the True Value. If
the probability is 50% to underestimate the True Value and 10 000 simulations are made,
we can use an exact binomial test with a 95% confidence interval to find the number of
times the methods should underestimate the true IBNR. According to the exact binomial
test, a method with a 50% chance to underestimate the IBNR will underestimate the
IBNR between 4901 and 5099 times in 95% of the simulations. Note that this confidence
interval is not adjusted for the number of tests. A high number of tests should have a
wider confidence interval.
The figures below are separated into two parts. The left part shows the difference

between each method and the true value in a step graph. The right part shows a box
plot with the same values.

4.1.1 Results with Zero Interest Rates

The results from the simulations with zero interest rate is presented in table 11 and figure
1.
A, B, B’, C and D were all equal. The difference between the True Value and the group

with A, B, B’, C and D was very small.
The True Value uses future information, but the other methods only use information

available at the present time. The result of expected claims versus the actual claims will
be similar, but not identical. Table 11 in appendix A shows that the difference between
the actual and the estimated IBNR is less than 1% on average.
The fact that the results between the estimated and the True IBNR are similar indicates

that the methods are correctly implemented.
All the estimated IBNR were equal when the interest rate was zero, which implies that

differences between the methods in the simulations when the interest rates were not zero,
were caused by interest rates.
The estimated IBNR was smaller than the True Value 4987 times in 10 000 simulations

for all methods, well inside the 95% confidence interval. This indicates that all methods
are suitable when the interest rate is zero.
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Figure 1: Results with Zero interest rates. The left graph shows the distribution of the
difference between the reserves estimated by the methods and the true value.
When the interest rate is 0, all methods generate the same result. All lines
overlap. The right graph shows a box plot of the same values for each of the
methods.

4.1.2 Results with Fixed Positive Interest Rates

The results from the simulations with fixed positive interest rates are presented in table
12, 13 and 14 and figure 2, 3 and 4.
When the interest rate is fixed, method B, B’ and D are identical, since the present

interest rate is the same as the historical interest rate. The three methods mentioned
preform well under these circumstances. After 10 000 simulations, the mean of these
methods are less than 1% different from the mean of the True Method. C was very
close, but not identical, to the previously described methods. The four methods, B, B’,
C and D, slightly overestimate the IBNR in all the three cases when the interest rate
was positive, but the differences are not minuscule. In all cases it is slightly more likely
that the methods underestimated IBNR in a specific simulation. Both with 2% and 4%
interest rate, the number of simulations that underestimated the IBNR was well inside
the confidence interval, which had an upper limit of 50.99%. When the interest rate was
8% the B and D were slightly outside of the confidence interval, but remember that the
confidence interval was constructed for a single test and not adjusted for the high number
of tests performed here. Method C was on par with the B, B’ and D.
Method A overestimated the IBNR in most cases and performed worse than all other
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Figure 2: Results with 2% interest rates. The left graph shows the distribution of the
difference between the reserves estimated by the methods and the true value.
The weak dotted line represents method A. The other lines overlap. The right
graph shows a box plot of the same values for each of the methods.

methods.
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Figure 3: Results with 4% interest rates. The left graph shows the distribution of the
difference between the reserves estimated by the methods and the true value.
The weak dotted line represents method A. The other lines overlap. The right
graph shows a box plot of the same values for each of the methods.
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Figure 4: Results with 8% interest rates. The left graph shows the distribution of the
difference between the reserves estimated by the methods and the true value.
The weak dotted line represents method A. The other lines overlap. The right
graph shows a box plot of the same values for each of the methods.
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4.1.3 Results with Fixed Negative Interest Rates

The results from the simulations with fixed negative interest rates are presented in table
15 to 17 and figures 5 to 7.
As in the previous cases with a fixed, positive interest rate, the methods B, B’ and

D are identical when the interest rate is fixed and negative. The effects with negative
interest rates are mirroring the previous results with positive interest rates. B, B’ C and
D still produce good results with small errors. Method A does not change enough and
will underestimate the IBNR.

Figure 5: Results with -2% interest rates. The left graph shows the distribution of the
difference between the reserves estimated by the methods and the true value.
The solid line represents method A. The other lines overlap. The right graph
shows a box plot of the same values for each of the methods.
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Figure 6: Results with -4% interest rates. The left graph shows the distribution of the
difference between the reserves estimated by the methods and the true value.
The solid line represents method A. The other lines overlap. The right graph
shows a box plot of the same values for each of the methods.
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Figure 7: Results with -8% interest rates. The left graph shows the distribution of the
difference between the reserves estimated by the methods and the true value.
The solid line represents method A. The other lines overlap. The right graph
shows a box plot of the same values for each of the methods.
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4.1.4 Results with Increasing Interest Rates

The results from the simulations with increasing interest rates are presented in table 18
to 19 and figure 8 to figure 9.

Figure 8: Results with interest rates increasing from 0% to 9%. The left graph shows the
distribution of the difference between the reserves estimated by the methods
and the true value. The dotted line represents method A and the solid line
represents method B. The other lines overlap. The right graph shows a box
plot of the same values for each of the methods.
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Figure 9: Results with interest rates increasing from -4% to 5%. The left graph shows the
distribution of the difference between the reserves estimated by the methods
and the true value. The solid line represents method A and the dotted line
represents method B. The other lines overlap. The right graph shows a box
plot of the same values for each of the methods.

When the interest rates change over time, there will be differences between method B,
B’ and D. Therefore we first examine the results when the interest rate increases from
0% to 9% over ten years.
The performance of method A was terrible. A underestimated the reserve by 69% when

the interest rate went from 0% to 9%.
This time, method B also gave a poor estimate of the IBNR. The mean IBNR for B was

9% lower than the True Value. Method B had a mean 9% lower than the True Value and
underestimated the IBNR in 6886 cases. This result is clearly significant, and method
B will thus not be suitable when the interest rate increases significantly. On the other
hand, B’ had an estimate very similar to the True Value. However, B’ underestimated
the IBNR 5456 times. This is well outside the confidence interval. It is clear that the
distribution is scewed. Method D performed excellent, with a mean within 1% of the
True Method and a less scewed distribution then B’. C was on par with D.
When the interest rate changed from -4% to 5%, B’ once again had a good result on

average. However, this time 5411 estimates were below the True Value. When combining
this result with the previous result when 5189 estimates were below the IBNR, it is clear
that while the mean IBNR for B’ is close to the True Value on average, it is slightly more
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likely that it underestimates the IBNR than overestimates it.
Increasing interest rates affect the claims the following way: compared to the True

Value, method A and B underestimates IBNR. The B’, C and D are all very accurate.

4.1.5 Results with Decreasing Interest Rates

The results from the simulations with decreasing interest rates are presented in table 20
and figure 10.

Figure 10: Results with interest rates decreasing from 10% to 1%. The left graph shows
the distribution of the difference between the reserves estimated by the meth-
ods and the true value. The weak dotted line represents method A and the
bold dotted line represents method B. The other lines overlap. The right graph
shows a box plot of the same values for each of the methods.

When the interest decreased from 10% to 1%, A overestimated the inflation by 89%
on average. This is an awful result. C overestimated the IBNR with 7% on average. B
overestimated the IBNR by 13%, which is worse than C. The averages of both B.adjusted
and D were within 1% of the average of the True IBNR.

4.1.6 Results with "V-shaped" Interest Rates

The results from the simulations when the interest rate both increased and decreased are
presented in table 21 to 22 and figure 11 to 12.
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When the interest rates changed from 5%, down to 0% and up to 4%, the average of
A was 54% lower than the average of the True IBNR. The other methods overstated the
IBNR between 1% and 3% of the time.

Figure 11: Results with interest rates going from 5% to 0% and up to 4%. The left graph
shows the distribution of the difference between the reserves estimated by the
methods and the true value. The dotted line represents method A. The other
lines overlap. The right graph shows a box plot of the same values for each of
the methods.
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Figure 12: Results with interest rates going from 0% to 5% and down to 1%. The left
graph shows the distribution of the difference between the reserves estimated
by the methods and the true value. The dotted line represents method A. The
other lines overlap. The right graph shows a box plot of the same values for
each of the methods.

4.1.7 Results with Increasing Number of Claims

The results from the simulations with increasing number of claims are presented in table
23 to 25 and figure 13 to 14.
To investigate how an increasing number of claims would affect the methods, a few

scenarios were simulated where the number of expected claims increased by 10% YOY.
It turns out that all methods except A preformed as well as when the number of claims

were constant. Thus the number of claims will not affect the results of the methods,
except for A. This was expected, since a 10% increase YoY would correspond to 10%
larger development factors in the CLM.
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Figure 13: Results with 0% interest rates and number of claims increasing by 10% YoY.
The left graph shows the distribution of the difference between the reserves
estimated by the methods and the true value. All lines overlap. The right
graph shows a box plot of the same values for each of the methods.
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Figure 14: Results with 5% interest rates and number of claims increasing by 10% YoY.
The left graph shows the distribution of the difference between the reserves
estimated by the methods and the true value. The dotted solid represents
method A. The other lines overlap. The right graph shows a box plot of the
same values for each of the methods.
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4.1.8 Results using Interest Rate Curves

The results from the simulations when the interest rates was using the discounting rates
from Finanstilsynet are presented in table 26 and figure 15. These results show that in
addition to method A, method C had difficulties dealing with interest rate curves.

Figure 15: Results when the interest rates follows the curves extrapolated from Finanstil-
synet. The left graph shows the distribution of the difference between the re-
serves estimated by the methods and the true value. The solid line represents
method A. The bold dotted line represents method C. The other lines overlap.
The right graph shows a box plot of the same values for each of the methods.

4.1.9 Results with relaxed assumptions.

In the previous simulations we have used assumptions about the size of the claims that
might be considered too restricted. Therefore we will also analyze situations two situa-
tions when interest rates are increasing from 0% to 9%. In the first case claims inserted
in a later development year are significantly larger than early claims. These results are
presented in table 27 and figure 16. The interest rate in this case is increasing from 0%
to 9%.
We will also analyze what happens when annuities with longer duration have a larger

size. These results are presented in table 28 and figure 17.
It seems like the methods can deal with the cases when later development year have

a larger size, but have trouble with the case when later development years have a larger
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size. The latter case is particularly hard for method C. This is due to the correction
factor used in this method, which is not suited for this specific case. This can be seen in
the tables, but the differences are not large enough to be seen in the figures.

Figure 16: Results with interest rates increasing from 0% to 9% and claims size depending
on development year. The left graph shows the distribution of the difference
between the reserves estimated by the methods and the true value. The right
graph shows a box plot of the same values for each of the methods.
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Figure 17: Results with interest rates increasing from 0% to 9% and claims size depending
on claims duration. The left graph shows the distribution of the difference
between the reserves estimated by the methods and the true value. The dotted
line represents method A and the solid line represents method B. The other
lines overlap. The right graph shows a box plot of the same values for each of
the methods.

5 Discussion
Method A’s performance was mediocre when the interest rates were constant. However,
it totally fell apart when the interest rates increased or decreased. Increasing interest
rates caused a very low IBNR and decreasing interest rates caused a very high IBNR.
This method is clearly not suited to model the reserve.
Method C performed better than method A, and was on par with the other methods.

There could be concern with regards to how well the correction factor used in C was
suited, since it does not discount each claim directly, but instead discounts the total
IBNR. However, the results show that there is no problem with using the nominal values
and discounting total IBNR with the correction factor suggested in section 2.6.4. Without
the correction, method C gives inaccurate results. It heavily overestimates the IBNR
when the interest rates are positive and underestimates when interest rates are negative.
With the correction factor, method C delivers satisfactory results.
When the interest rate is fixed, the results from method B, B’ and D are identical.

The reason is that under fixed interest rates, there are no adjustments made in B’ and
D. As expected, they all performed well under fixed interest rates. When the interest
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rate changed, the performance of method B declined. Increasing interest rates causes B
to underestimate the IBNR and vice versa. Both B’ and D still did well. The difference
between B’ and D was very small, much smaller than the author had expected. This
indicates that the correction suggested in section 2.6.3 is well suited to adjust the data
to the current interest rate.
One thing to note about the number of times the methods underestimated the True

IBNR is that although method B and D were well inside the confidence interval in most
cases, they only underestimated the True IBNR once each in 15 simulations. This is
highly significant. These methods are more likely to overestimate than underestimate
the IBNR. Note that although it is more likely that the IBNR will be underestimated,
the probability is only slightly more than 50%.
Method D does not seem to be a significant improvement over B’. Therefore, if a

company would already have stored the data in the form used for B, the adjustment
suggested in section 2.6.3 would be enough to account for the difference in interest rate.

5.1 Recommendations

The results with using the case reserves as basis for the IBNR calculations, as in method
A, were not good. Unfortunately, we cannot recommend using this method. Despite the
allure of using the easily accessible case reserves, the results from this study shows that
this method is too unreliable.
Method B has the advantage for the actuary that he does not have to update the

triangles with regards to new interest rates. This method is suitable when the interest
rate is constant or changing very little. Its worst performance is when the interest rates are
strictly increasing or decreasing for the entire period. If the interest rates are fluctuating
back and forth, the changes are not that large compared to the other methods. If the
data already is as in B, and the actuary is concerned about the effects of the interest
rates, it is possible to make the relatively simple adjustment suggested in section 2.6.3.
This will cause the effects of the change of the interest rates to be minimized.
Method C has the obvious advantage that no discounting is done in the initial step.

Therefore, like in method B, there is no need to update the past claims in the triangles.
The differences between the past and the present interest rates can be found by simply
adjusting the IBNR directly. This should have some appeal since one does not have to
redo old calculations. However, the actuary would need access to the duration of all claims
in order to discount properly. This might cause problems if the actuary is working on an
aggregate level when doing the reserving and has trouble retrieving that data afterwards.
Method D has the advantage that the correct discounting is used all the time. The dis-

advantage is that the actuary has to keep track of all previous claims on an undiscounted
level and update the triangle every time the reserve should be calculated. The results
with this method are good, just as one would have predicted. There are no correction
factors needed in order to find the best estimate.
Table 10 summarizes the results.
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A B B.adj C D
Correction factor No No Yes Yes No

Good estimate, constant interest rates No Yes Yes Yes Yes
Good estimate, increasing interest rates No No Yes Yes Yes

Adjusting historical triangles Yes No Yes No Yes
Difficulty of implementation High Low Medium Medium Medium

Table 10: Comparison between the methods.

6 Comparison between the Separation Method, CLM
and DCL

This section will compare the Separation Method, CLM and DCL. The aim is to examine
if there are any significant differences in the estimates for the different methods. We
will examine several circumstances regarding the effects of inflation. Since the effects of
inflation is the main concern for this part, some simplifications will be used to isolate
the effects of inflation. For instance unlike the previous part, every claim is assumed to
have exactly one payment, and homogeneous cash flow, i.e. the same number of claims
is expected for every development year.

6.1 Generating Data for Comparison

In order to compare DCL, CLM and the Separation Method, data had to be simulated.
An incurred triangle was simulated in the following steps.

1) The size of the matrix was determined to be 10 x 10. This size was deemed large enough
to find effects due to inflation, but not so large that it affected the computational time.

2) The number of claims that occurred in each cell was simulated from a Poisson distri-
bution with parameter λ = 30.

3) The size of each claim was simulated from a gamma distribution with shape parameter
10 and rate parameter 1, i.e. it has the expected value 10.

4) The sum of the lower triangle was counted and the value stored as the True Value.
The lower triangle was then replaced by zeroes.

Assumptions about the correlations: Given this method to generate data, there are
several implicit assumptions about the correlations. Explicitly:

A1) There is no correlation between the number of claims for an accident year, a calendar
year and a development year.

A2) There is no correlation between the number of claims for any time period and the
size of the claims in that time period.
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A3) There is no correlation between the delay and the size of the claims, when the
inflation effect is discounted.

Note: If the inflation is set to 0, the expected value the lower triangle is easy to calcu-
late. There are 45 unknown cells. Since the cash flow is homogeneous, each cell has thirty
expected claims. Each claim is expected to be of size 10. Thus the expected IBNR is
E[Size of the claim] × E[Number of claims] × (Number of cells) = 10 × 30 × 45 = 13 500.

The upper triangle generated this way was subject to the three methods, DCL, CLM
and Separation Method, for estimating the reserve. The different values for each accident
year will not be considered, only the total outstanding payments are taken into account.
The reason for simplifying the process this way is that it is more meaningful to compare
data on this level when comparing the methods. Doing it for every accident year gives
much more data, but it is not clear how it would improve the comparisons. The process
of generating data was then repeated 10 000 times to give an accurate estimate of the
differences between the methods under different scenarios.

6.2 The True IBNR

Given the way the data is simulated it is possible to know the full matrix, not only
the upper triangle. For any meaningful comparison between different methods the lower
triangle has to be replaced with zeroes when estimating the reserve with different methods.
However, the lower triangle is the ideal estimate, i.e. the result generated by a perfect
method. Thus the True IBNR is just the sum the lower triangle. This differs from
the True Value used to compare the annuity methods since it is not discounted. It was
calculated as a reference to see how well the methods preformed. The relative value of
the True IBNR and the different methods could therefore be examined. A perfect result
would have a relative value of 1. It would never be possible to consistently get a relative
value of one, since the future claims are stochastic. However, the mean of the relative
value should be close to one.

6.3 Results from the Simulation

The results from the simulations are presented in in tables in Appendix B. To compare
the results we examine how different inflation rates affect the methods. The results for
all the scenarios tested show that the three methods have a very similar result for all the
tested scenarios. Appendix C presents graphs from the results of CLM, DCL and the
Separation Method when the simulated true value for each simulation has been subtracted
from each estimate.

6.3.1 Zero Inflation, Constant Number of Claims

To establish a baseline for the methods, we start by examining how the methods compare
without inflation present. As shown in Appendix B and C, the three methods have very
similar distributions, but the True Method stands out. As expected, the distributions all
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look like normal distributions. There is very little difference between the methods with
zero inflation. This indicates that they are all equally well suited for estimating IBNR
when inflation is not present.
Although the methods are very similar, it should be noted that the DCL seems to have

a closer fit than the other methods. However, the mean of DCL is the largest one. The
difference is 2% after 10 000 simulations. We would expect the mean of CLM to be very
close to the mean of the True Method, since CLM is unbiased. The Separation Method
had an even closer fit. This was somewhat surprising, since the Separation Method is not
unbiased.
Are the methods equally likely to over- or underestimate? Despite the fact that the

mean for the DCL is larger than for the other methods, it is not clear if the reason is that
there are a few large values that drive up the average or if it is biased. It is possible to use a
sign test to examine if the methods over- or underestimate equal number of times. Count
the number of times each method gives an estimate smaller than the True estimate. Out
of the 10 000 simulations, the CLM underestimated 4907 times, the Separation Method
4964 times and DCL 4592 times. An exact binomial test states that the p-values are
6.4%, 47.8% and 3.5 · 10−16 respectively. Thus it is clear that the DCL does overestimate
the IBNR most of the time.
We could also examine the relative accuracy of the methods. Take the estimate pro-

vided by a specific method and divide by the True Method. The 2.5% and 97.5% percentile
are then CLM (0.78, 1.28), DCL (0.81, 1.29), SM (0.79, 1.26). It could be noted that
the interval for DCL is slightly tighter than CLM, despite having a higher estimate on
average. SM had the tightest interval of the three methods.

It is noteworthy that the True IBNR has a significantly smaller variance than the other
methods. This is not surprising. The variance in the true value is only the result of vari-
ance in the process for generating claims. The other methods will be subjected to this
variance in addition to the errors in estimation process.

6.3.2 Constant High Inflation, Constant Number of Claims

If the inflation is high, but constant, there might be concerns that there could be a
difference between the methods. Here the inflation is 10% per year. As can be seen in
the figure in appendix C, again there is very little difference between the methods.

6.3.3 Other Results

Many other scenarios were tested where inflation, interest rate and the number of claims
changed in various ways. Some of those results are presented in Appendix B and C. As
it turns out, regardless of the changes, there were few differences between the methods.
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6.4 Comments about the Methods

One disadvantage with DCL is that it does not always work well for all data sets. If the
inflation of the claims is not large enough, two things will cause trouble.

1) The estimate for the delay parameter becomes hard to obtain. The delay function
should not have any negative numbers. However, it can happen when the inflation is
not large enough.

2) It fails to calculate the variance of the individual size of claims. The way the variance is
calculated in the article by Martinez - Miranda, et. al (2012), it can become negative.
This does not influence the estimated IBNR. However, if DCL would be used to for
bootstrapping purposes, a negative variance estimate would cause severe problems.

These problems are known and mentioned in the paper by Martinez - Miranda, et. al
(2012).
DCL’s ability to estimate the variance of the individual claims’ size will depend on the

number of claims each year and the size of the inflation. If the inflation would only affect
the claims on an accident year basis, it would not influence DCL’s ability to estimate the
variance.
In the paper by Martinez - Miranda, et al. (2012). DCL was designed to work on

payments, rather than on incurred claims. The decision for using payments rather than
incurred data was likely based on the same arguments as in Verrall, et al. (2010). The
reasons stated in that paper are that only using payments does not involve any human
judgment. The estimates and the actual payments often differ. There could be political
and business related considerations which might make the data unreliable. Some variance
is also avoided, since the estimates are often inaccurate. The final reason stated in that
paper is that cash flow modeling can be disrupted as claims estimates appear as paid at
the wrong point in time. This becomes troublesome when considering annuities. Using
the payments of the annuities rather than the incurred claims often causes the estimated
claims, X̂, to be negative. The estimate of the IBNR also becomes unrealistic. Therefore,
it is better to consider the incurred claims rather than the payments in the DCL when
modeling annuities.
We expect that CLM will generate a relatively good result on average, since CLM is

unbiased. What would be interesting to know, is how the results differed from the True
Value on average under certain constraints. The Separation Method is not unbiased. It
would be useful to be able to make generalizations about how the Separation Method
estimates the claims and in which direction based on the inflation. Is the result dependent
on the inflation or does it always over- or underestimate the IBNR? Would a negative
inflation make the result different? Generalizations based on simple, known factors like
these could be useful.
As it turns out, the choice of method had little effect on the results. The most noticeable

difference was in the extreme cases when the methods had a large discrepancy with the
true result. The Separation Method was less likely to overestimate the result heavily and
DCL was less likely to underestimate heavily. This result was surprising to the author. All
sources referred to in chapter 2.4.1 and 2.4.2 called for caution when using CLM under
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changing inflation and warned that the Separation Method might be unstable. These
results indicate that under the examined circumstances, it is rare that the choice of
method has a large impact. This might be due to the assumptions made when simulating
the methods. As a test, we also tried an extreme case using a log-normal distribution
with parameters mean ln(1) and variance ln(1.5). To further distort the data, the claims
in the first two development years were ten times larger than the following development
years. Finally the number of claims expected to be detected in each development year
followed the distribution used in the section 3.3. This result is shown in appendix B,
table 34 and appendix C figure 23. From the result, it is clear that under these extreme
circumstances, DCL was much worse than the other methods. The Separation Method
was better than CLM. Therefore, it seems reasonable to conclude that the similarities in
the previous results might be a consequence of the assumptions in section 6.1 being too
adjusted.
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8 Appendix A, results from the methods

A B B’ C D True
mean 13025.34 13025.34 13025.34 13025.34 13025.34 13000.75

nu.less.than.true 4987.00 4987.00 4987.00 4987.00 4987.00 0.00
mean.rel 1.00 1.00 1.00 1.00 1.00 1.00

Table 11: Results with 0% interest rate and constant expected number of claims.

A B B’ C D True
mean 11661.99 11118.91 11118.91 11118.60 11118.91 11094.26

nu.less.than.true 2761.00 5024.00 5024.00 5028.00 5024.00 0.00
mean.rel 1.05 1.00 1.00 1.00 1.00 1.00

Table 12: Results with 2% interest rate and constant expected number of claims.

A B B’ C D True
mean 10444.29 9563.73 9563.73 9564.41 9563.73 9551.98

nu.less.than.true 1539.00 5033.00 5033.00 5031.00 5033.00 0.00
mean.rel 1.09 1.00 1.00 1.00 1.00 1.00

Table 13: Results with 4% interest rate and constant expected number of claims.

A B B’ C D True
mean 8387.79 7239.14 7239.14 7239.65 7239.14 7233.74

nu.less.than.true 750.00 5119.00 5119.00 5078.00 5119.00 0.00
mean.rel 1.16 1.00 1.00 1.00 1.00 1.00

Table 14: Results with 8% interest rate and constant expected number of claims.

A B B’ C D True
mean 14554.54 15378.26 15378.26 15378.12 15378.26 15376.38

nu.less.than.true 7853.00 5067.00 5067.00 5062.00 5067.00 0.00
mean.rel 0.95 1.00 1.00 1.00 1.00 1.00

Table 15: Results with -2% interest rate and constant expected number of claims.
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A B B’ C D True
mean 16336.99 18382.86 18382.86 18381.50 18382.86 18369.40

nu.less.than.true 9586.00 5071.00 5071.00 5083.00 5071.00 0.00
mean.rel 0.89 1.00 1.00 1.00 1.00 1.00

Table 16: Results with -4% interest rate and constant expected number of claims.

A B B’ C D True
mean 20715.98 27090.22 27090.22 27085.06 27090.22 27082.55

nu.less.than.true 10000.00 5098.00 5098.00 5068.00 5098.00 0.00
mean.rel 0.77 1.00 1.00 1.00 1.00 1.00

Table 17: Results with -8% interest rate and constant expected number of claims.

A B B’ C D True
mean 188.79 554.33 615.23 619.46 618.88 616.80

nu.less.than.true 9720.00 6886.00 5456.00 5370.00 5375.00 0.00
mean.rel 0.31 0.91 1.01 1.01 1.01 1.00

Table 18: Results with interest rate increasing from 0% to 9% and constant expected
number of claims.

A B B’ C D True
mean 267.71 719.85 810.69 819.26 818.75 813.06

nu.less.than.true 9856.00 7054.00 5411.00 5265.00 5283.00 0.00
mean.rel 0.33 0.89 1.01 1.02 1.02 1.00

Table 19: Results with interest rate increasing from -4% to 5% and constant expected
number of claims.

A B B’ C D True
mean 2027.48 1254.07 1116.79 1111.03 1110.85 1104.88

nu.less.than.true 112.00 3730.00 5239.00 5326.00 5332.00 0.00
mean.rel 1.85 1.15 1.02 1.01 1.01 1.00

Table 20: Results with interest rate decreasing from 10% to 1% and constant expected
number of claims.

A B B’ C D TRUE
mean 398.41 893.25 879.37 879.04 878.31 874.09

no.less.than.true 10000.00 5091.00 5342.00 5362.00 5364.00 0.00
mean.rel 0.46 1.03 1.02 1.02 1.01 1.00

Table 21: Results with interest rate going from 5% to 0% and back up to 4%, constant
number of expected claims.
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A B B’ C D True
mean 128.71 101.88 110.21 110.60 110.81 107.33

mean.rel 1.20 0.95 1.03 1.03 1.03 1.00
nu.less.than.true 3974.00 5655.00 5119.00 5098.00 5094.00 0.0

Table 22: Results with interest rate going from 0% to 5% and back down to 1%, constant
number of expected claims.

A B B’ C D True
mean 2548.97 2548.97 2548.97 2548.97 2548.97 2512.76

nu.less.than.true 5104.00 5104.00 5104.00 5104.00 5104.00 0.00
mean.rel 1.02 1.02 1.02 1.02 1.02 1.00

Table 23: Results with 0% interest rate and the number of expected claims increasing by
10% YOY.

A B B’ C D True
mean 2170.56 1860.02 1860.02 1861.12 1860.02 1831.64

nu.less.than.true 2717.00 5000.00 5000.00 4988.00 5000.00 0.00
mean.rel 1.19 1.02 1.02 1.02 1.02 1.00

Table 24: Results with 5% interest rate and the number of expected claims increasing by
10% YoY.

A B B’ C D TRUE
mean 6926.32 8629.05 8629.05 6225.61 8629.05 8586.34

no.less.than.true 9671.00 5054.00 5054.00 9939.00 5054.00 0.00
mean.rel 0.81 1.01 1.01 0.73 1.01 1.00

Table 25: Results with -5% interest rate and the number of expected claims increasing
by 10% YOY.

A B B’ C D True
mean 88.43 115.37 115.37 163.74 115.37 110.66

mean.rel 0.88 1.15 1.15 1.64 1.15 1.00
no.less.than.true 7327.00 5005.00 5005.00 2784.00 5005.00 0.00

Table 26: Results with interest rate curves.

A B B’ C D True
mean 10544.31 8663.46 9685.48 9743.48 9745.57 9697.82

no.less.than.true 259.00 675.00 532.00 534.00 520.00 0.00
mean.rel 1.10 0.90 1.01 1.02 1.02 1.00

Table 27: Results with interest rate going from 0% to 9% and later claims having a larger
size.
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A B B’ C D True
mean 12.30 16.97 19.11 19.76 19.45 18.52

no.less.than.true 997.00 651.00 507.00 464.00 485.00 0.00
mean.rel 0.67 0.93 1.04 1.08 1.06 1.00

Table 28: Results with interest rate going from -5% to 4% and claims with a longer
duration having a larger size.
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9 Appendix B

CLM DCL SEP TRUE
mean 14951.65 15104.13 14906.14 14857.83

mean.rel 1.01 1.02 1.00 1.00
no.less.than.TRUE 4987.00 4641.00 5073.00 0.00

Table 29: Results with 10% interest rates and constant number of claims.

CLM DCL SEP TRUE
mean 13709.09 13856.59 13623.96 13620.64

mean.rel 1.01 1.02 1.00 1.00
no.less.than.TRUE 4950.00 4662.00 5114.00 0.00

Table 30: Inflation 0% for the first 5 years and 5% for the next 5 years.

CLM DCL SEP TRUE
mean 14296.24 14434.21 14233.26 14175.25

mean.rel 1.01 1.02 1.01 1.00
no.less.than.TRUE 4995.00 4701.00 5060.00 0.00

Table 31: Results with interest rates going from 0% to 9% and constant number of claims.
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CLM DCL SEP TRUE
mean 27922.85 28145.89 27859.92 27741.07

mean.rel 1.01 1.02 1.01 1.00
no.less.than.TRUE 5009.00 4681.00 4978.00 0.00

Table 32: Results with 10% interest rates and number of claims increasing by 10% YoY

CLM DCL SEP TRUE
mean 13595.87 13733.23 13534.37 13512.11

mean.rel 1.01 1.02 1.00 1.00
no.less.than.TRUE 4979 4715 5109 0

Table 33: Results with interest rates increasing from 0% to 9% claims with a later devel-
opment year having a larger size.

CLM DCL SEP TRUE
mean 22696.42 44831.01 19812.52 19575.60

mean.rel 1.32 2.61 1.15 1.00
no.less.than.TRUE 5353 750 5366 0

Table 34: Results under extreme circumstances.
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10 Appendix C

Figure 18: Results with 10% interest rates and constant number of claims.
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Figure 19: Inflation 0% for the first 5 years and 5% for the next 5 years.

Figure 20: Results with interest rates going from 0% to 9% and constant number of claims.
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Figure 21: Results with 10% interest rate and number of claims increasing by 10% YoY.
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Figure 22: Results with interest rates going from -5% to 4% and constant number of
claims. In this case, claims that were detected in the later development years
had a larger size.
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Figure 23: Results under extreme circumstances.
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