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Abstract

The loyalty of an insurance customer is usually defined from how
long a customer decides to stay and renew the insurance company’s
services or products. There are several ways to develop such a model.
By building a model for loyalty, we can explore the properties of the
customers and how they act and react to different situations depend-
ing on their age, type of object insured, how long they have been
insured and so on. Most companies use retention programs to make
the customer invest in more products, but also to stay longer than they
usually should have by making the customer commit to more products
and services. To make this an attracting offer for the customer, it is
sometimes combined with a discount. But what matters most for loy-
alty; the discount or the commitment (representing convenience, lock
in effects, satisfaction, etc)? To do this we studied car insurance at
Länsförsäkringar, a federation of 23 different regional companies shar-
ing a common brand and regulating their own retention programs and
discount levels. The aim of the paper is to build a full model describing
the loyalty of non-life insurance customers, using all eligible and rele-
vant factors, and then to separate the loyalty added from commitment
into what is price related and what is not. Conditioning a discount on
a commitment can be an effective way to increase the loyalty of a cus-
tomer. If the expected time in years a customer without commitment
will stay in Länsförsäkringar is two years, then the partially commit-
ted with a discount of 5% is expected to stay three years and the fully
committed with 19% six years. A customer without commitment needs
a discount of 23% to be as loyal as a fully committed customer with
15%.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
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1 Introduction 

1.1 Objective 

The aim of this paper is to explore customer loyalty from a retention program in an insurance 

company. By investigating the contribution from price and commitment into other products or 

services, we will try to find out how much they influence the loyalty separately and together. 

To do this, we need to build a model for the loyalty. Every step will be thoroughly motivated 

and explained. Finally, we will try to explain how the results can be interpreted in terms of 

other loyalty measures that are easy to understand and relate to. The product that we are 

modeling is car insurance.  

1.2 What is loyalty? 

Whether you are a restaurant owner, a producer of goods or a financial institute, you need to 

have a strategy to make your profitable customer return to buy your goods or keep using 

your services. We usually call a customer that returns often as a loyal customer. But loyalty 

has many meanings and needs to be defined to really understand the scope and purpose of 

this paper.  

Let us start with how we do not define loyalty. A customer’s feelings towards a certain brand 

or product or how often a customer recommends the product to friends, sometimes called 

ambassadorship, are really hard to measure and would require a survey on its own. Surveys 

as such are time consuming, difficult to get enough data points and with the risk of getting 

biased. No surveys have been conducted and we are not to define loyalty in that way. A 

customer that broadens or deepens the commitment in products or services from the same 

brand is also excluded as a definition of loyalty. As we are studying car insurance, a 

deepening of the commitment would mean to buy more cover for the car, or to insure multiple 

cars. That is more an indication of wealth or worry, than actual loyalty. Broadening the 

commitment into more different products within the same brand might be considered as loyal 

behavior, but will not be studied. The focus will be car insurance and loyal behavior will be 

measured for car insurance. Having a broad product flora, or commitment as we will call it 

from now on, will indirectly be considered though, since it has an effect on the loyalty of a car 

insurance customer.  

A loyal customer stays with the same company for a long time, compared to a disloyal 

customer that only stays for a short period of time, perhaps looking for the cheapest offer 

among all competitors. To stay for a long period of time as a customer of car insurance, the 

customer needs to renew the contract yearly, since car insurance contracts for the private 

line lasts only a year. The more times a contract are renewed, the longer a customer will stay 

and the more loyal is the customer. Hence, loyalty refers to the duration of a customer in a 

given product. 

1.3 Why is loyalty important?  

Insurance companies operate in a more competitive environment now than they used to do 

in the past. Customers easily switch from one company to another, much thank to 

aggregating sites on the internet, where customers can compare prices between different 

companies. With the whole range of competitor’s prices compared for the customer, brand 

becomes likely less important and price more important. It changes the behavior of 

customers and how and where they choose to make their business. With higher pressure on 

prices comes lower marginal and profitability. And here is where loyalty comes in. Keeping 
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an existing customer requires usually less effort and money than acquire a new one. There is 

tons of literature on the subject, most claiming that it costs between four to ten times more to 

acquire a new customer than to retain one. Retention is more effective and has higher ROI, 

Return of Investment, than acquisition. It is therefore important to know your customers and 

how loyal they are to gain an advantage in the market. The information of customer loyalty 

applies to both which customers to retain and which to acquire, by pricing or targeting. 

Understanding customer behaviors can be extremely valuable and much can be gained by 

focusing on customers in segments or with certain properties, which tends to be loyal. So, 

loyalty is an important factor for the business and loyal customer is something a company 

wants in order to keep up with competitors and tough market conditions.  

As an exception and clarification, loyal customer will not necessarily lead to higher 

profitability. For example, if the pricing is incorrect and unprofitable, a loyal customer will 

actually mean bad business for the company.  

1.4 Retention programs 

Länsförsäkringar is a federation that consists of 23 different regional companies, sharing the 

same brand. They share some of the functions, such as IT, national marketing and 

development teams. To meet the competitive market and to make customers more loyal, 

Länsförsäkringar developed a retention program. Retention programs are an effort on the 

behalf of a company to try to retain valuable customers and making them more loyal. 

Retention programs can be designed in many ways, but the most common one in the 

insurance industry is to discount certain products if the customer commits in one or several 

other products or services that the company has to offer. We say that the discount is given 

conditioned on the service or product. The conditioning terms for a discount differ between 

the companies, as well as the discount levels. The more committed the customer is the 

higher discount level he or she usually gets. From the company’s perspective the aim is to 

increase the loyalty of customers, grow on certain products or services, diversify the risk and 

increase profitability. From the customer point of view it is also a good deal, since the 

customer has the option to get discounts and reduce the costs for insurance cover while 

enjoying the convenience of fewer financial providers. It is believed to be a win-win situation. 

1.5 How? 

Many factors influence customer decisions, so it is difficult to predict the actions regarding 

loyalty of a customer and the reasons behind. A way to learn what drives and makes a loyal 

customer is to build a model for the behavior. The model will try to find behavioral patterns 

regarding loyalty depending on the customer’s properties, status, services, commitment and 

so on. We will especially study how a customer acts in a car insurance product, while being 

committed to other products and services, as in a retention program, and to see how different 

commitments influence their loyalty. The three commitment levels that will be studied are  

 No commitment 

 Partial commitment – Product and service A 

 Full commitment – Product and service B 

Full commitment means that a customer has more products and/or services than partial 

commitment. Whether the model measures the effect of lock-in, convenience, customer 

satisfaction or something else is for this objective irrelevant. The focus will be on measurable 

effects, not explaining reasons.  
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One can see loyalty as something that can be bought. If you give the customer something in 

return for being a good customer, the customer is also more likely to renew. The most 

common way this is done is by giving customers discounts, as in Länsförsäkringar’s retention 

program. A higher discount leads to a more loyal customer; at least, that is what is to be 

expected. This paper especially aims to explore what is loyalty depending on commitment 

into other products and services and what is loyalty due to a discount.  To do this we need to 

model the actions and reactions regarding loyalty of customers in car insurance.  

1.6 Procedure 

We will build the model from scratch, adding possible and eligible properties of customer and 

car, to see if they can explain the behavior of the customer with a car insurance contract. The 

properties that will try to explain the behavior is called explanatory variables. 

In the first model, including only commitment as an explanatory variable, the commitment 

level will capture both price and non-price effects. This is to get a starting point for how much 

commitment will seem to matter and influence the choices of the customer. It is important to 

remember that this model will measure both the effect of commitment and price matters. We 

will after this learn and follow how the value of this variable changes as we build our loyalty 

model to include more explanatory variables, such as the discount level. This model will be 

called the Commitment Model. 

Secondly, we will add all relevant and significant control variables into the model, on top of 

the first model with only the commitment variable. We do this in order to check if some of the 

effect that was captured in the Commitment Model actually was caused by something else. 

For example, suppose that all non-committed customers only were young persons, we would 

in the first model actually measure the effect of persons with commitment versus no 

commitment and young versus old persons. By adding the control variable age, we would 

measure the influence of the two explanatory variables separately. This model will be 

referred to as the Non-price Model. 

To be able to separate the price and non-price arguments in the commitment level variable, 

there has to be a relevant and realistic way to model the effect price has on the outcome. All 

price issues might matter, so we will therefore discuss the price variables one by one and 

motivate the inclusion, except for the discount variable which will get a section of its own. 

This is referred to as the Price Model.  

Finally we will build the complete model with discount and the eventual interaction between 

the explanatory variables. The full model will be called the Complete Model and will be 

compared to the previous model to see how much of the loyalty depends on discount and 

how much is commitment and to what extent they affect the measured loyalty. With the 

Complete Model the challenge will be to find a good way to measure the strength of the 

commitment such that we can compare it to the discount level in an intuitive way. 
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3 Loyalty model 

3.1 Background 

Loyalty models have been widely used for decades now, mainly within market strategies, 

where it is used to calculate the loyalty or duration of a customer. The purpose of building a 

loyalty model is to learn more about customers and their behavior; what drivers affect loyalty, 

who cancels their contracts frequently, at what rate and so on. Knowing different customer’s 

behavior regarding loyalty can be used for several things; building retention programs, 

setting discount levels, scoring, targeting, pricing optimization, predicting, etc.  

3.2 Model type 

Measuring how long a customer is a customer as a time span, or duration, can be quite 

tricky. If you have the data from long time ago, it can now be out of date. If you are to use 

new data you have no way to know how people act after they have been customer a while. A 

common way to quantify and measure loyalty is to model the retention rate and then 

calculate the duration based on that rate. Retention rate is the ratio between the retained 

customers and the number at risk. Another way would be to call it renewal probability, since 

insurance contracts are renewed yearly and it is with a probability that the customer decides 

to renew or not. The renewal probability 𝜋 will therefore be the measure of loyalty. A higher 

probability means a more loyal customer. And by modeling the renewal probability we avoid 

the problem of outdated or limited data. 

Renewal probability should not be confused with renewal theory, which has a different 

approach, with time and amount as two variables. Since renewals always occurs once a 

year, there are no arguments to make a more complicated model than necessary, such as 

suggested by D. R. Cox (1962), even though including amount into the model is appealing, 

although out of scope here. 

The statistical model we will use consists of a sequence of independent random variables 𝑌1, 

𝑌2,…where 𝑌𝑖 has a binomial distribution with parameter 𝜋𝑖 and 𝑛𝑖, such as 

𝑌𝑖~𝐵𝑖𝑛(𝑛𝑖, 𝜋𝑖)     (1) 

We will use the notation 𝑖 for discussing both cells and customer level. In the case of 𝑌𝑖 

meaning renewal or cancellation on customer level, as is the case with continuous 

explanatory variables in the model, 𝑛𝑖 will be equal to one. When analyzing a single 

categorical explanatory variable, 𝑌𝑖 will refer to the grouped data in a specific cell 𝑖, where 𝑛𝑖 

is larger than one. It will be apparent what is intended in each section. For the understanding 

of the mathematical theory and assumptions regarding categorical variables it is helpful to 

sometimes group the data.  

We want to model the probability 𝜋 for a customer with a car insurance contract. A renewal 

model is simulating a binary outcome; either the contract is renewed or cancelled 

𝑦𝑖 = {
1, 𝑖𝑓 𝑖′𝑡ℎ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ℎ𝑎𝑠 𝑟𝑒𝑛𝑒𝑤𝑒𝑑

0, 𝑖𝑓 𝑖′𝑡ℎ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ℎ𝑎𝑠 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑
    (2) 

Cancellation is the complement to renewal. The variable 𝑦𝑖 is in this case a realization of the 

Bernoulli distributed random variable, since 𝑛𝑖 = 1. It can take the values one and zero with 

the probability 𝜋𝑖 and 1-𝜋𝑖 respectively. It can be written in the form 
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𝑃𝑟{𝑌𝑖 = 𝑦𝑖} = 𝜋𝑖
𝑦𝑖(1 − 𝜋𝑖)

1−𝑦𝑖    (3) 

With expected value and variance 

𝐸(𝑌𝑖) = 𝜇𝑖 = 𝜋𝑖     (4) 

𝑉𝑎𝑟(𝑌𝑖) = 𝜎𝑖
2 = 𝜋𝑖(1 − 𝜋𝑖)     (5) 

Suppose we now divide the observations into groups, or cells, depending on driver age, car 

model, geographical zone, commitment and so on. The cell 𝑖 has 𝑛𝑖 observations. Let us 

assume that all individuals in a cell are homogenous, that is, has the same mean and 

variance. In short, customers with the same properties behave equally. We also assume 

independence between the cells. How a certain type of customer behaves does not affect 

another type of customer. If we are to use data from several different years we also need to 

assume time homogeneity, which is realistic since we only are using data from the last three 

years. Something that happened, or did not happen, last year, does not affect this year.  

The probability function can be written as 

𝑃𝑟{𝑌𝑖 = 𝑦𝑖} = (𝑛𝑖
𝑦𝑖
)𝜋𝑖

𝑦𝑖(1 − 𝜋𝑖)
𝑛𝑖−𝑦𝑖    (6) 

𝑦𝑖 can be interpreted as the number of renewals from a total of 𝑛𝑖 customers in cell 𝑖. 

We want to estimate the renewal probability for every cell, 𝜋𝑖 using regression analysis of the 

observations we have. Each probability 𝜋𝑖 will be based on the explanatory variables 𝑥𝑖 and 

the vector of regression coefficients 𝛽. The simplest model would be a linear function of the 

explanatory variables 

𝜋𝑖 = 𝑥𝑖
′𝛽,  where 𝑥𝑖

′ = (𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑝𝑖) and 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)  (7) 

A problem with this model is that there is no guarantee that the probabilities will stay between 

zero and one, which is of course a necessity if we are to work with probabilities. What are our 

options? Which model suits our purposes best? The two simplest, yet powerful and most 

commonly used models are the logit and the probit regression models. They differ in the 

assumptions of the errors. While the probit assumes normal distributed errors, the logit 

assumes logistically distributed errors. What does that mean? It means that the link functions 

of the two models differ. Using the above formula with the probit approach and the 

regression model will look like 

𝜙−1(𝜋𝑖) = 𝑥𝒊
′𝛽     (8) 

𝜙−1 is the inverse of the Cumulative Distribution Function (CDF) of the standard normal 

distribution and called the link function in this case. If we are to use the logit model, the link 

function and the model will look like this: 

𝑙𝑜𝑔 (
𝜋𝑖

1−𝜋𝑖
) = 𝑥𝒊

′𝛽     (9) 

Which one is to prefer? The general opinion is that there hardly exists any difference 

between the results of the two.  In the Hahn & Soyer paper “Probit and Logit Models: 

Differences in the Multivariate Realm” an interesting summary and new empiric evaluation is 

discussed. They find that model fit is improved by selecting logit for multivariate link function 
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models. Even though it is arguing for a logit approach for our case, there is no rule when to 

use either one of them. If your variables are directly mapped to zero and one, as in a 

Bernoulli trial, then your outcome is binomial and logit would be preferable, since it also is the 

canonical link of the binomial distribution. Canonical link means that the link function is on a 

certain form which leads to some advantages and desirable properties regarding especially 

sufficiency and the derivation of the Maximum Likelihood Estimator. More on canonical links, 

see Agresti, 2003, p. 148-149. The logistic regression also has the advantage of being easily 

interpreted and almost always included in data and analyzing packages. If, on the other 

hand, we were to model something that we dichotomized into zero and one, for example 

high/low blood pressure and if we believed blood pressure to be normally distributed 

between people, then probit might be a better choice. As renewal is clearly a Bernoulli trial; 

either a customer renews or cancels, we will continue build the model using the logit 

approach.  

But how did we get to the link function in equation (9)? Any mapping on the interval zero to 

one would actually do. We will construct the link function, η and go through the mapping, 

from zero and one to the entire real line, as we will encounter useful information that we will 

need in later sections. 

We can move the boundary from zero and one by transforming the probability in two steps. 

We start with the upper boundary, by transforming the probability into odds  

𝑂𝑑𝑑𝑠𝑖 =
𝜋𝑖

1−𝜋𝑖
      (10) 

Odds are often used in the betting industry, but it also exists in mathematical and statistical 

tests and literature. They should not be confused.  Odds, in the Swedish betting sense, are 

called European odds and are defined as a return from a betted amount. For example, a 

European Odds of 1.5 means that from a betted amount of 100kr, you get 150kr back if you 

win. You are plus 50 kr. It corresponds to a probability of 2/3 for a win.  

The odds used in statistics can be interpreted as the probability of win divided by the 

probability to not win. For the probability example above, the European Odds of 1.5 

corresponds to a statistical odds of 2, which in many ways make more sense. It is twice as 

likely to win as not to win.  

With this transformation, odds can take all positive values. Secondly, we take the logarithm 

of the odds to calculate the log-odds, or logit 

𝜂𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑙𝑜𝑔 (
𝜋𝑖

1−𝜋𝑖
)     (11) 

This moves the lower boundary and η𝑖 can take values ranging from minus to plus infinity, 

which is what we were trying to achieve. As the probability 𝜋𝑖 is approaching zero, η𝑖 reaches 

minus infinity and when 𝜋𝑖 is approaching one, η𝑖 reaches plus infinity. The inverse 

transformation is 

𝜋𝑖 =
𝑒𝜂𝑖

1+𝑒𝜂𝑖
      (12) 

So, probabilities between zero and one maps one to one to the entire real line of numbers. 
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Instead of using the simplest model in equation (7), we take the logit to be a linear function of 

the explanatory variables. 

𝜂𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑥𝒊
′𝛽     (13) 

We have now a generalized linear model with a binomial response and a link logit with 

explanatory variables 𝑥𝑖 and the vector of regression coefficients 𝛽. 

See Rodriguez, G. (2007), p. 6-9 on how to solve the numerical equations for the maximum 

likelihood estimation of the 𝛽’s as it is not within the scope of this paper. We will instead use 

available software packages for this. Since different tools have different strengths, the model 

will be implemented in base SAS and Towers Watson’s Emblem. Using two tools has the 

advantage of categorical graphical analysis and the whole range of statistical tests with 

continuous variables. 

3.3 Perfect renewal 

The aim of building the renewal model is to be able to predict and learn how customers 

behave in a renewal situation. To do this we observe how the probability of renewal varies 

with certain explanatory variables. The most common way to model renewals is to use a 

logistic regression, as we discussed in section 3.2. For the logistic regression we needed to 

assume time independence, cell independence and cell homogeneity. Another assumption 

we need to make is that all customers are expected to act and behave similarly regarding 

price and commitment no matter where they live, which regional company they are member 

of, how old they are, which car they drive and so on. In short, people are equally price 

sensitive and act equally when committed into more products or services concerning their 

insurance contracts. Commitment is not in every regional company connected to a certain 

discount level. Some companies give no discount at all for partial or full commitment, while 

others have the whole range of discount levels. The assumption covers also that customers 

act similarly when exposed to a discount and that the discount levels are known to the 

customer. 

If the assumption would not hold, we would either need to test commitment and price for 

interaction with all other variables or build 23 separate models. Not only would that be time 

consuming, but really difficult to find reliable estimates for the variables, due to lack of data. It 

would be hard to draw any conclusions at all.  

Thankfully, the assumption is intuitively realistic as long as we can exclude observations 

where we might expect a different behavior. To help this assumption pass we will construct a 

“perfect” renewal. 

In this particular case, where the main focus is to study price and commitment, we do not 

have to care so much about the predictability of the entire portfolio of customers. We can 

therefore severely simplify the model to only be valid for certain customers, certain contracts 

and certain events. If we were to predict a complete portfolio and the loyalty of customers, 

we would have to take all possible events into account in the model. 

Let us start with the definition of contracts and renewals. An insurance contract is an 

agreement between a customer and an insurance company, regulating insurance cover for 

an object, in this case a car. Loosely speaking, a renewal is a customer having an insurance 

contract of a car that is continued after the contract’s end date, initiating a new yearly 
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contract between the insurer and the insured. The renewal happens passively without any 

action from the customer as long as premiums are paid. If a customer wishes to discontinue 

the contract, the action has to be made by the customer.  

A perfect renewal occurs when the contract is renewed the day after the end date of the 

previous period with no changes to terms or conditions in the product. This means that all 

observation with changes to the contract or renewing at another date will be discarded. The 

latter usually happens when the contract has changed in any way. Example of this type of 

observations that will be excluded is whenever someone changes cover, address change 

initiating a new contract, insuring a new car and so on. 

A perfect cancellation is the complement to a perfect renewal. A perfect cancellation occurs 

when the cancellation date is exactly the same date as the end of the contract period. 

Therefore we can exclude all cancellations due to sold or crashed car, address change and 

so on. A cancellation at the end of the period can be triggered by premium raises, bad 

experience or general dissatisfaction, or similarly. 

The number of cars a customer has insured is a strong explanatory variable for a high 

renewal probability. To model multiple cars require a different definition of what a renewal is. 

For example, how to deal with a customer that at the start of the period has two cars insured 

and at the end only one? A similar case is for the cars not currently in traffic. To avoid these 

types of situations and to keep modeling a perfect renewal, we will exclude customers with 

multiple car insurance contracts and cars not currently in traffic. Vehicles need also be under 

normal external market conditions, which make some models inappropriate to analyze, such 

as sports or veteran cars. Completely new vehicles are subject to guarantees from the 

manufacturer for the casco part. These guarantees are usually active in two to three years. In 

order to avoid the renewal transfer from guaranteed casco to casco that the customer pays 

themselves, these cars are excluded. On the other end there is a certain bump that occurs at 

the vehicle age of 25. To avoid modeling this bump, vehicles older than 24 will be excluded 

from the subset. More special cases that will be discarded are contracts with odd discounts, 

unusually high premiums or price adjustments. They are few and for the sake of 

homogeneousness, they will also be discarded from the analysis. 

Even though income, tradition and cultural behavior might differ slightly between 

geographical regions in Sweden, it is considered to be immaterial for the basis of a loyalty 

model. People are the same, but market strength in different regions might not be the same. 

Market strength is although more connected to history and strategy of a specific company 

rather than the people living there, and that effect will be captured in the company variable 

that we will study more in later sections.  

Young people are in a completely different economic situation, so they will therefore be 

excluded from the study. At the age of 26 most people owning a car are also on payroll, 

which make them eligible for study. Young people also tend to be more mobile, which might 

separate their behavior from the rest of the population regarding commitment. Another 

completely different situation occurs when people become pensioners, or senior citizens. 

They are no longer on payroll, have ample of time to optimize their financial situation. We 

can also see that there is a bump at the year of 65, where people in Sweden normally retire 

from work. That will be the upper limit. So, for the assumption to hold, young and old people 

need to be excluded from the analysis.  
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Another thing that has proven to alter the elasticity is whenever a customer has had a claim 

recently. A customer with a claim tends to accept an increase in the premium more often 

than a customer who had had no claim recently. To keep the price sensitivity homogenous, 

observations with a claim last year will be removed. Customer that is changing their 

commitment status is also removed, just to make sure we do not deal with price changes that 

are expected beforehand.  

After filtering all above, we are left with approximately one million observations from a total of 

3 million. The observations come from the years 2011 to 2014. There is a small variation 

between the years. It is not assumed to have anything to do with the change in behavior of 

customers or change in market conditions, but rather an unexplained variation. 

 

Figure 1: Filters to create the perfect renewal 

 

Data will be structured as one observation per row in the way the table in figure 2 shows, 

although with a lot more columns than just commitment. It has a lot of advantages by doing 

so. We can compare goodness of fit between different models, we do not need to regroup 

data each time we test new variables and continuous variables do not need to be rounded up 

or truncated, and so on. 

Subset

Argument Filter

Owner age 26-64

Vehicle age 4-24

Nr. of contracts per customer 1

In trafic yes

Temporary discounts No

Claim last year No

Made changes to contract;mileage, cover, etc No

Switched car No

Made changes in commitment factor No

Price change due to individual adjustment No
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Figure 2: Structure of the data set 

 

3.4 Expectations 

What we expect to find by first building a partial model and then build, brick by brick, price 

elements into the loyalty model is that the coefficient for the commitment factor will change 

for each element, to finally drop when discount level enters the model. If the commitment 

factor remains stable even in the full model, the conclusion will be that price does not matter 

for a customer with commitment. On the other end of the scale, if the commitment factor 

reduces to zero, or at least if a hypothesis test for the coefficient is not significant anymore, 

we will conclude that price is everything and commitment has nothing to do with loyalty and 

there will be no point in having retention programs. Since we expect to have collinearity 

between the two variables of interest, we will have to explore how to deal with such issues as 

well. 

3.5 Odds Ratio 

In a multiplicative model such as this the odds ratios plays an important role when 

understanding a logistic regression model. For every variable, one of the levels is chosen to 

be the reference, usually the most stable level where we have much data. We can abandon 

that standard and choose the most logical as a base, for example for the commitment 

variable (as we have seen before the non-commitment is a more natural way to relate to the 

other levels of commitment).  

A simple model with only one explanatory variable will look like this 

𝜂 = 𝑙𝑜𝑔 (
𝜋𝑖

1−𝜋𝑖
) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖    (14) 

𝛽0 is called the intercept and equals 𝜂 for the reference cell, in this case the no commitment 

level. A categorical variable with 𝑘 levels is represented in the computation with 𝑘 − 1 binary 

explanatory variables being either zero or one, as this is an ANOVA type model. In this case 

𝑘 = 3. 𝜂 for the partial commitment is 𝛽0 + 𝛽1 and full commitment is 𝛽0 + 𝛽2. 𝛽1 represents 

the change in the logit scale when going from no commitment to partial commitment. This 

Observation Renewed Commitment Commitment

i

1 1 0 0

2 0 1 0

3 1 0 1

4 0 0 0

5 1 1 0

6 0 0 1

7 1 1 0

. . . .

. . . .

. . . .

. . . .

. . . .

n 1 1 0

𝑥1𝑖 𝑥2𝑖𝑦𝑖
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can be quite difficult to interpret on the logit scale. If we on the other hand exponentiate it we 

get the odds. 

𝜋𝑖

1−𝜋𝑖
= 𝑒𝛽0+𝛽1      (15) 

Odds are the probability of an event divided by the probability of the event not happening. 

The odds for renewal in the reference cell (for no commitment) are 𝑒𝛽0 and the odds for the 

other two levels are 𝑒𝛽0+𝛽1𝑥1𝑖+𝛽2𝑥2𝑖, where either 𝑥1𝑖 or 𝑥2𝑖 is zero. The effect in odds of 

having no commitment changes with the ratio of 𝑒𝛽1 for partial commitment and 𝑒𝛽2 for full 

commitment. The ratio is not the total odds but how the odds are changing with a chosen 

factor or variable. For example, the odds ratio 𝑂𝑅2 for the partial commitment equals 

𝑂𝑅2 =
𝑂𝑑𝑑𝑠2

𝑂𝑑𝑑𝑠1
=

𝜋2
1−𝜋2
𝜋1

1−𝜋1

=
𝑒𝛽0+𝛽1

𝑒𝛽0
=

𝑒𝛽0+𝛽1

𝑒𝛽0
= 𝑒𝛽1   (16) 

And how is this to be interpreted and why is it better than comparing 𝛽’s? 

If there is no difference in the outcome of different commitments, then the odds ratios will be 

one for every level since 𝛽1 = 𝛽2 = 0. An odds ratio of two for the partial commitment would 

mean that the odds are two times more for partial commitment than for no commitment. Also 

the full commitment relates to the reference cell, such that an odds ratio of two means the 

same thing as for the partial commitment and there is no difference in renewal between 

partial commitment and full commitment. If no commitment had a probability of renewal of 2/3 

(odds of 2.0), then the partial and full commitment will have a probability of 0.8, from the 

definition of odds  

𝑂𝑑𝑑𝑠𝑖 =
𝜋𝑖

1−𝜋𝑖
      (17) 

If you are used to working with loglinks and multiplicative models for Poisson or Gamma 

distributed variables, working with odds ratios is a natural thing to do, since the relativities 

are used in the same way as the odds ratios. Even if you are not used to working with neither 

loglinks or odds, one can more easily transform the odds to probabilities than 𝛽𝑖𝑘. 

3.6 Duration 

If the renewal probability is assumed constant, then the distribution of the customer’s life 

span, or customer duration, X, is geometrically distributed with mean 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐸(𝑋) = ∑ 𝑖𝜋𝑖−1(1 − 𝜋)∞
𝑖=0 =

1

1−𝜋
 , 0 < π < 1   (18) 

This is only true if the 𝜋 is constant and 𝑖 → ∞, which is of course never the case for an 

insurance contract. As time goes by, the probability of renewal will change. Even if 𝜋 might 

stay relatively constant, people cannot live forever, so the duration will only serve as an 

approximation. The smaller 𝜋, the better approximation, since problem arises with long 

duration, cause it is there life expectancy and other changes to the probability really impacts. 

Before that a perfect renewal is quite close to the general renewal for a newly acquired car. 

Claims are quite rare, changing cars happens every five to ten years, we have only included 

customers in the study with enough life expectancy and so on. 
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The duration is only used for a pedagogical purpose, since it is easier to see the effect of 

different renewal probabilities related to a time-span rather than a probability.  

3.7 Building the model 

When building a regression model we want it to be parsimonious. Parsimonious means that 

the model accomplishes the desired level of explanation with as few variables as possible. 

We also want the model to predict well. There is no complete method to achieve these goals. 

One can not only rely on a single measure. Every decision that includes another explanatory 

variable should be made with care and caution. Sometimes none of the measures are 

applicable as they test for different things. Variables might score low on goodness of fit tests 

but are at the same time important for future predictions. Because even though 

dependencies are weak, in terms of statistical measures, it does not mean that it is not 

important. When only a few explanatory variables are of special interest it is critical to study 

and learn as much as possible about their correlation and eventual interaction. An example 

of this is how price sensitive customers are. We might have scarce data to learn from, yet we 

need to know, or at least see a tendency of how customers react to price changes in order to 

predict well. In these cases it can be valuable to be able to look at the data using some kind 

of graphical tool. We will use all the measures and tools at our disposal to build the best 

possible model for renewal. 

Since the objective of this paper is to separate a certain effect from a variable by adding 

another, we know we can expect a certain degree of collinearity. We will test for the severity 

of the collinearity and discuss the possible problems that will arise due to this. 

3.7.1 Predictive power 

The first important thing one need to consider regarding predictive power is how reliable the 

variables are. The model might fit well to a set of observations, but when it comes to 

predicting the future, reliability is very important. When including an explanatory variable in a 

model, you will see to which degree it affects the outcome by looking at the 𝛽 or preferably 

the odds ratio. But you also need to know how reliable this estimate is, i.e. the null 

hypothesis for the variable. The null hypothesis can be formulated as: the explanatory 

variable that is studied has no effect on the renewal probability. It can be done by looking at 

the confidence intervals or making a hypothesis test for the estimator. It will be conducted at 

a significance level of 𝛼 = 0.05. A Wald test is a standard hypothesis test, very easy to 

compute and always included in software packages, that compares each explanatory 

variable and will be made and considered for all variables as the model grow to include more 

variables. Since we might be dealing with collinearity and interactions it is important to test all 

of the variables every time we add a new factor and not only when it is added. For a 

coefficient to qualify as an explanatory variable we want a rejection of the Wald test at a 

significance level of 𝛼 = 0.05 at all times. 

The accuracy of models can be assessed in several ways. The two most common are by 

calibration and by discrimination. Calibration relates to how well predicted probabilities match 

to observed, while discrimination concerns how well a model can separate those who have 

higher and lower probability of the event of interest. The measure that is most used for 

calibration is the coefficient of determination, 𝑅2. For the logistic regression, we cannot 

interpret 𝑅2 in the way we do ordinary least squares, since there is no minimizing the 

variance, but an iterative way to reach the maximum likelihood. They are therefore called 

pseudo-𝑅2, because they remind us of 𝑅2 and range from zero to one. There are several 
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variants of pseudo-𝑅2, such as McFadden’s, Efron’s, Cox-Snell’s and so on.  For a more 

complete view on different 𝑅2-measures for logistic regression models, see Hosmer, 

Hosmer, Le Cessie & Lemeshow (1997). As it is really difficult to interpret, understand and 

find satisfactory levels for the different 𝑅2-measures it will not be used for model choice. 

Another approach is the Hosmer-Lemeshow test. Expected values for each observation are 

calculated in the data set and ordered from highest to lowest and grouped into ten groups in 

approximately equal size. For each group the observed and expected numbers of counts are 

registered. Pearson chi-square is then applied to compare expected and observed. This 

solution has been criticized for being random in its outcome depending on what number of 

groups one chooses and will therefore not be a test to depend upon, see Allison in the 

Statistical Horizon blog (2013). 

Since none of the calibration measures reaches a satisfactory level of reliability or 

explainability we will rely upon discrimination measures instead. For discrimination, the area 

under the Receiver Operating Curve, also called concordance statistic or C-statistic, is most 

commonly used. It measures how well the model discriminates and differentiates the 

predictions. It is often used when the ordering of the predictions is more important than the 

probabilistic accuracy. The C-statistic is a strong test for the predictive power for binary 

outcomes regarding differentiation and discrimination. It reminds us of the Kolmogorov-

Smirnov test (KS test), as they are both ordered. KS tests the maximum vertical distance 

between two distributions and answers the question (in our case): are the data from a logistic 

distribution? Since we are confident in the strict binary outcome of the independent variable, 

we will not use KS test.  

The C-statistic is closely related to the Receiver Operating Characteristic curve (ROC). It is 

actually the area under the curve. Then, what is the the ROC-curve? The easiest way to 

describe it is with a graphical approach. 
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Figure 3: Area under the curve and the C-statistic 

What we need to do to compute the ROC-curve, is to estimate the renewal probability for 

every observation we have in our data set with the current model. After this we sort the 

observations in ascending order of the estimated renewal probability and divide it into small 

levels or segments. For every level of estimated renewal probability, we count the true 

positives and the false positives. The accumulated true positives, also called the sensitivity, 

measures the accumulated proportion of the correctly identified. For example, if 50% of the 

total cancellations occurred for 10% of the highest estimated cancellation rates, then 0.5 is 

the sensitivity. The accumulated false positives are the accumulated proportion of the 

incorrectly identified. For example, if 5% of the total renewals occurred in the 10% of the 

highest cancellation rates, then the false positives is 5%. This is often referred to as 1-

specificity, since the specificity is the complement, namely the true negatives. Going through 

all levels and accumulate, we get the x and y-axis of the ROC-curve. We can now construct 

the graph in figure 3. Interpreting the graph above, the larger area under the curve the better 

the model discriminates. The C-statistic is the area under this curve, sometimes also called 

AUC. It is a measure between 0.5 and 1 (without ever reaching 1). Models are typically 

considered reasonable when the C-statistic is higher than 0.7 and strong when C exceeds 

0.8 (Hosmer & Lemeshow, (2000), p. 162). 

Suppose all of the observation had the same estimated probability, then the curve would be 

spread along the diagonal, i.e. the zeros would be equally spread over the whole x-axis. In 

the graph it is called the Null model. On the other hand if the model could predict exactly in 

the correct order, then we would approach y=1 as fast as we can count the zeros. For 

example, if one tenth of the observation has cancelled, then y=1 for all x>0, see the red line 
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in the graph below. The C-statistic will play an important role in building a renewal probability 

model. 

 

Figure 4: Area under the curve and the perfect model 

3.7.2 Parsimony 

Parsimony means that the model needs to be well balanced between complexity and 

goodness of fit. Adding another variable will always result in an equal or better fit, but the 

question is if the change in model fit is statistically significant? To answer that question we 

will perform a hypothesis test of the goodness of fit between two models. Since we are 

building the model by adding one variable at a time, it is reasonable to perform some kind of 

verification with every added variable that the model has improved. And by improved, we 

mean in a parsimonious sense. 

There are a few goodness of fit-tests that can be done to compare models, but all have 

disadvantages and no perfect solutions exist. The most popular assessment techniques for 

comparing models regarding goodness of fit between models are the Wald test, likelihood 

ratio test and the Akaike validation.  

The Wald test is an approximation of the likelihood ratio test and lacks the precision when 

comparing complex models with many variables. But for testing every variable standalone it 

serves its purpose. 

The likelihood ratio test is a standard test and commonly used for comparing models. A 

model fit almost always improves when the model gets more complex (more variables) and 

the test is answering the question: Is the model fit significantly better? The test is based on 

the deviance statistic. The deviance is defined as 
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D(𝐲, �̂�) = 2[ℓ(𝒚) − ℓ(�̂�)] = 2∑ {𝑦𝑖𝑙𝑜𝑔 (
𝑦𝑖

�̂�𝑖
) + (𝑛𝑖 − 𝑦𝑖)𝑙𝑜𝑔 (

𝑛𝑖−𝑦𝑖

𝑛𝑖−�̂�𝑖
)}

𝑛

𝑘=0
 (19) 

 𝑦𝑖 is the observed and 𝜇𝑖 is the fitted value for the i’th observation. If we calculate the 

deviance statistics for two models, we can make a likelihood ratio test to compare if the fit is 

significantly better or not. The difference in the deviance for the two models follows a 𝜒2-

distribution with k degrees of freedom, where k is the difference in degree of freedom for the 

two models. It is a powerful test and applicable even for continuous variables and ungrouped 

data, as the deviances are subtracted. The likelihood ratio statistic is 

∆𝐺2 = D(𝐲, �̂�)𝑠 − D(𝐲, �̂�)𝑟     (20) 

s represent the smaller model with less parameters than r. This is under the null hypothesis 

that the smaller model is correct. 

Akaike has of course some attractive properties with the number of parameters in the model 

acting as a penalizing term, balancing the goodness of fit between simple model and 

overfitting. With continuous variables and binary data, as in our case, the penalization 

becomes rather meaningless since the deviance becomes so large compared to the number 

of parameters in the model, which makes the penalization too small to really affect the 

deviance. The pure deviance and the likelihood ratio test will therefore be used to compare 

models. 

3.7.3 Collinearity 

Even though commitment is a central definition and the discount level a local decision, there 

is a correlation between the two variables. This is because we know that many of the 

companies condition their discounts on some of the commitment, such that it is likely that 

whenever a person is committed, they also have a discount. Whenever this is the case, it 

might lead to unstable estimates of the variables. In fact, we expect this to happen, although, 

we do not know to what extent.  

In the GLM computation, the order of the explanatory variables does not matter, and 

therefore there will be no parameter being computed “first” or “last”. The variables will be 

computed at the same time and both variables will be affected by the collinearity. If there are 

collinearity issues, we are likely to see an increase in the Wald’s p-value of one of the added 

variables, meaning larger confidence limits.  

A solution to most collinearity issues is to get more data. There is of course exceptions to 

this; for example if a variable is a linear function of another variable. We know that this is not 

the case, since some of the companies do not have any discounts conditioned on 

commitment. The collinearity problem arises as the Wald’s p-values rise high, the variables 

vary more and uncertainties increase.  To be sure we are within boundaries between the 

commitment level and discount level, we will check the Variance Inflation Factor (VIF).  

𝑉𝐼𝐹 =
1

1−𝑟2
        (21) 

where 𝑟2 is called the coefficient of determination. For this case, we can actually use the 

standard definition of 𝑟2 as this coefficient comes from a linear regression on that variable 

alone using all the other variables. For example, a VIF of 1.5 means that the variance is 50% 

larger than it would be without the correlation.  
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At what quantities does the VIF pose a problem? Most expert on the subject call it a 

collinerarity problem when VIF>10. Allison (2012) believes it becomes a problem as VIF 

reaches 2.5.  

4 Non-price Model 
The partial model is supposed to include all arguments that are relevant and significant apart 

from price arguments that can describe the renewal probability 𝜋𝑖. We will start building the 

model with one of the two main variables, the commitment variable. We do this to get a feel 

for the data and how well this variable predict and fit to the data. After that we will include 

control variables. Control variables are variables included in the model that are known to 

affect the dependent variable, but are not of importance to the main goal. They are needed 

so that we do not capture irrelevant effects that originate from factors such as age, car model 

or something else that may affect the renewal probability. 

4.1 Commitment model 

For a model with only the commitment argument as a variable for the renewal probability, the 

model will look like 

𝜂𝑖 = 𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖    (22) 

The coefficients 𝛽1 and 𝛽2 explains the effects of the commitments. It is modeled as two 

variables taking the values zero and one. 𝜋1 is the probability of renewal for a car insurance 

contract where the subject has no commitment in Länsförsäkringar apart from the car 

insurance, 𝜋2 the probability for a contract where the customer has partial commitment, and 

𝜋3 when the customer has full commitment. 

We will choose no commitment as the reference cell. That way it is easier to see the effect of 

each commitment level has on the outcome. 𝛽0 is the intercept in this model, and the 

probability for a person in the reference cell is therefore 

𝜋1 =
𝑒𝜂1

1+𝑒𝜂1
=

𝑒𝛽0

1+𝑒𝛽0
     (23) 

Before we look at coefficients, odds ratio and renewal probabilities for the model with only 

the commitment variable, we will study some of the output statistics from the regression 

model, as we have described in section 3.7. We compare the commitment model 𝑀𝑐 with the 

null model. The null model is a model with no explanatory variables and only an intercept, 𝛽0 

from equation 22.  

 

Figure 5: Statistics to compare models 

The C-statistic, also called the Area Under the Curve, is a measure of how well the model 

can discriminate the contracts using the predicted renewal probabilities. It is ranging from 0.5 

Statistics

C-statistic 0.5 0.629

Deviance 419 547 406 185

LRT 13 362

Degrees of freedom 2

Prob < <0.0001

       

𝐷(𝑦, 𝜇 )

𝜒2

   

∆𝐺2
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(no discrimination) to 1.0 (maximum discrimination). The deviance,𝐷(𝑦, 𝜇 ) is a quality-of-fit 

statistic for models, for which the Likelihood Ratio Test (LRT) is based upon. The LRT is 

comparing two models and testing whether the improvement of the more complex model is 

significant or not. The difference between the deviances of the two models follows a chi-

squared distribution with k degrees of freedom and the null hypothesis will be rejected if p-

values are less than 0.01. These statistics will be shown for every new model we build. All of 

the measures and tests in figure 5 are thoroughly explained under section 3.7. 

We can clearly see that the commitment variable is an argument that has a lot of predictive 

power with a C-statistic of 0.629, which is far better than any random model, including the 

null model, which has 0.5. And this was achieved by adding only one parameter. The 

likelihood ratio test (LRT) is rejected, which means that the improvement of fit is significant in 

the new model compare to the null model, according to the likelihood ratio test, so we can be 

confident that commitment plays a big part in a customer’s choice to renew or not. These 

statistics will be displayed for every model. Wald’s null hypothesis on the other hand, will be 

tested for every explanatory variable and model, but will not be displayed in a table. A 

rejected null hypothesis will be a requirement for all variables in any model.  

If deviance continues to drop enough such that the likelihood ratio test is passed and the C-

statistic keep increasing enough we will go on including factors. We will of course not include 

and test nonsense factors. There have to be relevance to all variables included. Also, we 

should be prude in adding more factors to a model. “Things should not be multiplied 

unnecessarily”, is the approximate meaning of Occam’s razor, quoted from Ohlsson & 

Johansson (2010), p. 62. It should be interpreted as, if possible, keep the model simple and 

parsimonious. 

Next we will look at the variable itself and not the model. 

 

Figure 6: Renewal probability for commitment levels 
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The first interesting thing to notice is that when we delete all “imperfect” observations, we are 

left with a quite high probability of renewal. It is of no importance, since we are trying to figure 

out the difference in behavior between customers and to do that we needed to get rid of 

disturbing exception. Most of the cancellations occur for young people and when a current 

customer switch car, as we have discussed under section 3.3. 

 

Figure 7: Estimates of the null and commitment model 

We will be focusing on the odds ratios and not the probability or the coefficient from now on 

as we explained in 3.5, since it is much easier to interpret. We see that the odds ratio more 

than doubles as we go from partial commitment to full commitment. It is a substantial change 

going from no commitment to a commitment, but before we go further we need to see the 

confidence levels for the commitment variable. 

 

Figure 8: Confidence limits of the commitment levels 

The confidence intervals are really small and that indicates a good fit. We will not disclose 

the Wald test but only the confidence limits, if it is not of special importance, but we will make 

sure that we are at a significance level of 0.05 at all times, if not stated otherwise. Remember 

that, at this point, the commitment variable will capture some, or all, of the effect from the 

lower price that customers with commitment often have. And maybe it also captures some 

other effect that we do not know of yet. 

4.2 Non-price control variables 

For the non-price model we want more variables in order to capture effects that come from 

other than price factors. These variables are called control variables. They are not of any 

interest apart from removing their effect from the equation. A typical example would be age. 

Even though we have excluded the really young and really old, there is still a difference 

between ages as renewal concerns. We do not want the commitment or discount level to 

pick up that effect. The model will then look like equation 24 which is a development from 

equation 9. 

𝜂𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+ 𝛽𝑚𝑥𝑚𝑖    (24) 

Where 𝛽𝑚𝑥𝑚𝑖 are the variables for each cell i. This is the non-price model, where no price 

components are included. The first index indicates the order of variables and the second 

index the cell number. 

Explanatory 

variable

Cell

i

Intercept 2.10 3.26 0.89 0.87

Commitment 1 0,00 1.00 0.87

2 0.62 1.86 0.93

3 1.41 4.10 0.96

ProbabilityCoefficient Odds ratio

𝑀0 𝑀𝑐𝑀𝑛   𝑀𝑐 𝑀0 𝑀𝑐

𝜋𝑖𝑂𝑅𝑖𝛽𝑖

                     Odds Ratio Estimates

                                                            Point           95% Wald

                   Variable                           Estimate      Confidence Limits

                   Commitment       2 vs 1       1.859            1.822      1.896

                   Commitment       3 vs 1       4.096            3.885       4.319
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Engagement Years is the time, in years, that the customer has had a car insured in 

Länsförsäkringar. Drivers Age, Vehicle Age and Engagement Years are modeled as 

continuous variables. All these variables will be referred to as control variables and have one 

degree of freedom each. We will not display or discuss the control variables individual 

influence or their linearity as our focus is on commitment and discount.  

Below is the non-price model, 𝑀𝑛𝑝, written in a more readily way.  

𝑀𝑛𝑝 = 𝐵𝑎𝑠𝑒 +  𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 + 𝐷𝑟𝑖𝑣𝑒𝑟𝑠  𝑔𝑒 + 𝑉𝑒ℎ𝑖𝑐𝑙𝑒  𝑔𝑒 + 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑎𝑛𝑡 𝑌𝑒𝑎𝑟𝑠 (25) 

Below are the output statistics comparing 𝑀𝑛𝑝 to 𝑀𝑐. 

 

Figure 9: Statistics comparing commitment and non-price model 

We can see in the figure 9 that we have increased the predictability somewhat and have at 

the same time passed the likelihood ratio test that is testing whether 𝑀𝑛𝑝 has significantly 

better fit than 𝑀𝑐. 

 

Figure 10: Confidence limits of the commitment levels 

The odds ratios for the commitment levels stands firm even with the introduction of the 

control variables. It is a good sign indicating stable coefficient. We can no longer compare 

probabilities as the probabilities depend upon several other factors that now are included. 

That is why, from now on, we will only talk of odds ratios.  

One can be tempted to conclude that commitment explains all the loyalty and start building 

retention programs based on this information. But that can be a dire mistake. There is a 

discount that comes with the commitment in most cases. Meaning, we are actually buying 

their loyalty. The question remains, how much loyalty are we buying and to what cost? To 

explain this, we need to include all relevant and explaining factors regarding price matters. 

Even though we are only interested in the discount level, we need to include the control 

variables for price. Also, there are more issues to account for when it comes to price. That is 

why inclusion of price components into a regression model is worth a section of its own. 

  

Statistics

C-statistic 0.629 0.671

Deviance 406 185 400 797

LRT 5 388

Degrees of freedom 3

Prob < <0.0001

     

𝐷(𝑦, 𝜇 )

𝜒2

   

∆𝐺2

∆𝐷𝐹

                     Odds Ratio Estimates

                                                            Point           95% Wald

                   Variable                           Estimate      Confidence Limits

                   Commitment       2 vs 1       1.905            1.832       2.001

                   Commitment       3 vs 1       4.031            3.804       4.401
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5 Complete model 
There are many different aspects of how a price may affect the renewal probability. In fact, 

there is no limit of how complicated pricing in insurance can be and the real difficulty lies in 

how well one can simplify to make it manageable. In this paper we will divide price matters 

into four categories: Local strategy, market competition, price change and discounts.  

Since we merely are interested in how the pure discount affects the renewal probability, we 

see the other price variables as control variables. We want to remove any possible 

disturbance from them so that we can observe the pure effect from the discount. The control 

variables in this section require a bit more explanation than in the previous section, since 

price is so much more complicated and versatile. 

5.1 Price control variables 

5.1.1 Company variable 

Länsförsäkringar consists of 23 different companies placed in different regions of Sweden, 

which acts independently of each other regarding most strategies and price issues. They 

partially share brand, yet there are still large differences between the levels of loyalty. This 

variable is supposed to capture the regional strength of brand and price strategy as well as 

their market competition. Therefore a variable for company is essential to being able to 

model the loyalty realistically for each region. The variable will be called Company variable 

and is modeled as a categorical variable. 

5.1.2 Premium level 

When people choose insurance company for their car, price is a really strong factor for which 

insurance giver the customer chooses. When it comes to renewal of contracts, the 

relationship to price is not as strong and factors like commitment becomes more important. 

Since we also have reduced the data set to include as homogeneous observations as 

possible, a fair assumption is that Länsförsäkringar is equally competitive in all of the chosen 

segments, such as customer age, brands, car model and so on. Competitors are likely to 

have the same information, or at least equivalent, regarding claims cost, and pricing is done 

in the same manner with a multiplicative tariff as a base. The only segments that truly can be 

observed with different renewal probabilities are between price levels. A higher premium 

leads to a lower renewal probability. This can be due to market competition, but is more likely 

to have to do with the incentive a customer paying high premiums have to find cheaper 

alternatives compared to a customer paying less. Either way, this variable will capture both 

effects and will serve its purpose as a control variable. The premium level will be modeled as 

a continuous linear variable. 

5.1.3 Price change 

When a customer is exposed to a price change, it triggers a reaction from the customer. It 

can increase or decrease the probability of renewal, depending on the price change. This is 

usually referred to as price elasticity or price sensitivity. As above, customers are more 

sensitive to price when acquiring a contract than renewing and it will become too hard to 

model patterns on individual level, so we will assume that all customers are equally price 

sensitive. For more on price elasticity, see Varian, Hal R. (2006), p. 266-287.  

To get the best estimate of the price change, one would prefer to randomly test the 

sensitivity. Since all 23 companies of Länsförsäkringar regulate their own premiums, as well 
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as their discount levels, the premium changes can be assumed independent between 

companies and individuals. This makes the elasticity easier to observe and fairly good, 

especially compared to a case with one company making all the price adjustments for 

everyone every year. The price change will be modeled as a change in monetary amount, 

rather than a change in a percentage. Since premiums can vary from 2 000kr up to 25 000kr, 

a percentage change will prove to be more complex to model. And also people tend to relate 

and react more equally to for example 1000kr than 10 percent, regardless of income or social 

status. The price change will be modeled as a linear continuous variable. It is not a fact that a 

linear variable would fit well to observations of how customers react to price changes of an 

insurance contract. It has to be studied and tested before one can assess which way is the 

most appropriate. As can be seen in figure 11, a polynomial of degree one fits well enough 

and there is no need to investigate it further. 

 

Figure 11: Price change between contract periods 

The model with the control variables for price looks like: 

𝑀𝑝 = 𝐵𝑎𝑠𝑒 +  𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 + 𝐷𝑟𝑖𝑣𝑒𝑟𝑠  𝑔𝑒 + 𝑉𝑒ℎ𝑖𝑐𝑙𝑒  𝑔𝑒 + 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑎𝑛𝑡 𝑌𝑒𝑎𝑟𝑠 +  𝑜𝑚𝑝𝑎𝑛𝑦 +

𝑃𝑟𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 + 𝑃𝑟𝑖𝑐𝑒  ℎ𝑎𝑛𝑔𝑒    (26) 

Adding the control variables for price gives the following output statistics, all of which has 

significant Wald’s test.  

 

Figure 12: Statistics comparing non-price and price model 
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We have now reached a satisfactory C-statistic greater than 0.7 and the improvement of fit is 

significantly better as the likelihood ratio test is passed. We have a model that has potential 

of separating well and predicting good. Every model with an added variable has successfully 

passed the LRT and not only the comparison between 𝑀𝑝 and 𝑀𝑝𝑐 as in the table above. 

 

Figure 13: Confidence limits of the commitment levels 

It seems that the control variables for price have captured some of the effect that the 

commitment factor formerly had since the point estimate has dropped significantly from 1.905 

and 4.031 respectively for the partial and the full commitment. It happened as the variable of 

price change entered the model, so there was probably premium decreases occurring for 

committed customers in some companies, making the commitment higher before the price 

change was added. It is a good example of how important control variables can be when 

assessing effects from variables. If we were to use this model to predict future renewals, 

adding price change to the model would be even more important. 

5.2 Complete model 

5.2.1 Adding discount level 

Discounts will be modeled separately from the price. A natural way is to see the discount as 

a ratio, or percentage, paid premium divided by full premium. That is also how it is displayed 

and marketed to the customer, the so-called communicated discount. Often the customer 

reacts more positively to a discount percentage than a competitive price, since the customer 

usually does not have a full view of what is a competitive price and what is not. The discount 

level will be modeled as a first degree polynomial which the graph below helps to motivate. 

The fitted average is with the variable included in the model. The linear trend is clear, but 

since different companies within Länsförsäkringar have different discount levels, the slope 

will become jumpy. The company variable tries to explain this but falters where the data is 

scarce, for example where the discount level is 13% and 17%. These discount percentages 

are very rare among the companies in the Länsförsäkringar group. 

                     Odds Ratio Estimates

                                                            Point           95% Wald

                   Variable                           Estimate      Confidence Limits

                   Commitment       2 vs 1       1.787            1.722       1.857

                   Commitment       3 vs 1       3.744            3.443       4.062
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Figure 14: Discount and renewal probability 

The output statistics from the model with the discount level, 𝑀𝑝𝑑 is shown in table below. 

 

Figure 15: Statistics comparing price model and price discount model 

We notice that we are reaching convergence for the C-statistic. As we have seen in earlier 

sections this is not surprising. If we run a regression with only the discount level as variable 

we would have a C-statistic of 0.631, which is a strong C-statistic for only one variable. When 

the model already has many explanatory variables, the C-statistic is not so useful anymore. 

The improved fit is significant and we can note that discounts have a positive effect on the 

renewal.  

 

Figure 16: Confidence limits of the discount variable 

The discount variable is continuous which means that the coefficient 𝛽 of the discount 

variable should be multiplied by the actual discount, between zero and one, and then taken 

the exponential in order to see the effect as an odds ratio. It becomes quite hard to interpret 
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C-statistic 0.729 0.735
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                     Odds Ratio Estimates

                                                            Point           95% Wald

                   Variable                           Estimate      Confidence Limits

                   Discount           Continuous       529.8            466.1       608.9
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the meaning of such odds ratios, which is why we only show it for the confidence limits. As 

can be seen, it is a strong explanatory variable with lots of predictive power.  

 

Figure 17: Confidence limits of the commitment levels 

Now we have a real change in the odds ratio of the commitment factor. The odds ratio has 

dropped from 1.787 to 1.583 for partial commitment and from 3.744 to 2.210 for full 

commitment. Confidence limits indicate only a small increase in variance. We were expecting 

collinearity between the two variables and that really proved to be true. The odds ratio for a 

fully committed customer almost halved when discounts entered the model!  

In cases of severe collinearity, the variances of the coefficients become really large. We 

cannot see any signs of that when looking at the confidence limits above. To be absolutely 

certain that the model will not suffer from collinearity issues we calculate the Variance 

Inflation Factor. Correlation between commitment and discount is approximately 0.5 and the 

VIF is below 1.38 which indicates that this should not pose a problem in the model, see 

section 3.8.3.  

5.2.2 Adding interaction 

We now turn to see if we have specified the model concerning commitment and discount 

level correctly in terms of polynomial order and interactions. We test the second and third 

polynomial for the case of a quadratic or cubic linearity for the discount Level. It contributes 

nothing to the Deviance nor for the C-statistic so it will not be implemented. Higher degrees 

will contribute even less, so the investigation ends here regarding higher order polynomials. 

We also test for interaction between Discount Level and Commitment. For the model with the 

interaction term we have a significant improvement of fit which motivates to explore the 

interaction further. 

 

Figure 18: Statistics comparing price discount and complete model 

Even though as far as deviance and C-statistic concerns, the contribution is small. The 

likelihood ratio test is significant and encourages us to include it. P-value is also really low 

and within confidence limits. In cases like these it is valuable to be able to look at the data.  

                     Odds Ratio Estimates

                                                            Point           95% Wald

                   Variable                           Estimate      Confidence Limits

                   Commitment       2 vs 1       1.583            1.543       1.624

                   Commitment       3 vs 1       2.210            2.055       2.374

   

Statistics

C-statistic 0.735 0.735

Deviance 381 032 380 907

LRT 125

Degrees of freedom 2

Prob < <0.0001
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Figure 19: Observed odds ratio and discount level related to no commitment level 

Figure 19 of the odds ratios and the discount levels requires some reflection. We can clearly 

see that customers with high commitment and low discounts are more likely to renew than 

their counterpart, a customer with no commitment and low discount. But we can also see that 

commitment matters less for high discounts than for low. The commitment curves seem to 

converge as the discounts get higher, see figure 19 to the left. It makes sense. As a discount 

becomes really high, satisfaction or dissatisfaction matters less, as long as the customer is 

happy with the low price. The cost of cancelling the contract is too big and once a customer 

has moved all of its products to a chosen insurance giver, a slightly smaller or larger discount 

don’t matter as much as when you are not as committed.  

For the understanding of customer behavior this interaction means a lot, which strengthens 

the means to include it. Since the aim of the paper is to separate loyalty from commitment 

and discount, this is an important information and should be included as an explanatory 

variable.  

We now have a full model for the “perfect” renewal, 𝑀𝑝𝑐. 

𝑀𝑝𝑐 = 𝐵𝑎𝑠𝑒 +  𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 + 𝐷𝑟𝑖𝑣𝑒𝑟𝑠  𝑔𝑒 + 𝑉𝑒ℎ𝑖𝑐𝑙𝑒  𝑔𝑒 + 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑎𝑛𝑡 𝑌𝑒𝑎𝑟𝑠 +

 𝑜𝑚𝑝𝑎𝑛𝑦 + 𝑃𝑟𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙 + 𝑃𝑟𝑖𝑐𝑒  ℎ𝑎𝑛𝑔𝑒 + 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 +  𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 ∗ 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 (27) 

The typical and average discount for the partial commitment is somewhere around 5%, 

corresponding an odds ratio of 2.0 from figure 20. It is approximately the same odds ratio as 

in the commitment model 𝑀𝑐 and works as an acknowledgement that we have understood 

the relationship between the two variables correctly.  
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Figure 20: Odds ratios of commitment and discount 

5.2.3 Stressing the model 

We would like to test the stability of the model by calculating the ROC-curve (the C-statistic) 

once again. In section 3.7.1 we displayed the ROC-curve for the dataset that we also used 

for building the model (sometimes called the training dataset). We will now test the model 

with another dataset. We will use the same coefficients from the model 𝑀𝑝𝑐, but on the next 

year’s data, 2015. We do this to estimate the renewal probability of each observation in the 

new dataset. We order the observations by ascending predicted renewal probability and 

calculate how many cancellations of the total we captured in every percentile and plot it in 

figure 21. 

 

Figure 21: C-statistic when stressing the model with a new data set. 

Compared to figure 3 we can hardly distinguish any difference between the ROC-curves. 

This is a good sign! It means that this model has some stability and is able predict quite well 

the order of the renewals and cancellations. The C-statistic has dropped from 0.735 to 0.698, 
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but the number is still a strong discriminative accuracy. A small drop was of course to be 

expected, since you can never beat a dataset of which the model was built. 

This test will not catch a change in the level of estimates, meaning that the predicted renewal 

probability can be far from actual, yet this test will show good numbers as long as the 

predicted renewal probability are in the correct order. Depending on what you are doing with 

the model, this usually is not a problem. If the aim is to make exact predictions of the future, 

another measure to complement the C-statistic might come in handy. If we are to assess 

relationship between the variables or select the most loyal customer, this test is fully 

satisfactory. 

If we would have tried to build the model, 𝑀𝑝𝑐 using data from a single company, the 

uncertainties would become larger, as can be seen in figure 22. We call this model 𝑀𝑝𝑐∗. The 

VIF increases from 1.38 to 1.60 which is still not troublesome. But what is problematic is that 

there would not be enough significance evidence of including the discount level and the 

confidence intervals would become really wide. We would probably have coefficients 

changing between years because of the uncertainties in the estimates of the coefficients. It is 

therefore recommended that in order to assess the relationship between variables, more 

data than from a single company is desirable. 

 

Figure 22: Confidence limits of commitment for a single company 

  

                     Odds Ratio Estimates

                                                            Point           95% Wald

                   Variable                           Estimate      Confidence Limits

                   Commitment       2 vs 1       1.780            1.559       2.032

                   Commitment       3 vs 1       3.762            2.351       6.019

   ∗
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6 Conclusion 

6.1 Approach 

We wanted to investigate how much of the loyalty in a retention program that is price related 

and what depends on other factors. To do this we studied the retention program in 

Länsförsäkringar. A typical retention program gives discounts conditioned on commitment 

into other products or services and so does Länsförsäkringar. For example, if a customer 

acquires a certain service in Länsförsäkringar, the premium for the car insurance contract will 

be discounted by a specified percentage. But how much of the increased loyalty is due to a 

competitive price and how much is convenience, satisfaction, lock-in effects and so on?   

Länsförsäkringar consists of 23 sovereign companies sharing the same brand. Every 

company sets their own discount level and on what products and services the discounts are 

conditioned on. There are similarities of how they choose what to condition on, but also 

differencies. That makes it easier to see how different discount levels affect the loyalty. The 

commitments that will be studied are centrally determined and not necessarily connected to a 

discount, although many are. The three commitment levels that will be studied are  

1. No commitment 

2. Partial commitment – Product and service A 

3. Full commitment – Product and service B 

To be able to achieve the goal of separating discount and commitment we defined loyalty as 

renewal probability and built a binary regression model. See section 3 for definition and 

decisions regarding model type. The model is supposed to capture how different properties 

of customers and contracts, called variables, may affect the choice to renew. To build a 

regression model we used a mathematical technique called GLM. 

To investigate the relationship between the two parameters of interest, we needed to build a 

full model for the loyalty, starting from scratch. For every added variable we used three 

measures to validate the model; the Wald’s test for the null hypothesis of every explanatory 

variable, the C-statistic for the predictability and the likelihood ratio test for comparing current 

model with the previous and smaller model. In section 3.7 there is more theory and the 

motives behind the selected measures. 

We started with a model 𝑀𝑐, which  included only the commitment variable and then 

extended it to a model 𝑀𝑛𝑝 with more so called control variables. Thereafter we added price 

control variables to the model 𝑀𝑝 and finally we included the discount levels and an 

interaction between the two variables of interest 𝑀𝑝𝑐. The model reached a C-statistic 0.735 

which is above the desired limit as discussed in section 3.7.1. 

To see how a variable affects the loyalty, we looked at the odds ratio of the variables and its 

supplemented confidence limits. In a stable model with a lot of data and no collinearity, 

parameter estimates are expected to vary less. As we expected collinearity, we needed to 

check for large changes in the odds ratios. We are specifically interested in how the odds 

ratio of the commitment variable changes as we add variables to the model, to learn as much 

as possible about the commitment variable before discounts enter the model. Finally we 

needed to verify if there was any interaction between the two variables.  
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6.2 Results 

In the table below we can see how the odds ratio of commitment changed as we built our 

model to include all eligible and tested explanatory variables. 

 

Figure 23: Odds ratios of the different models 

The dramatic change in odds ratio for the commitment variable occurs when the discount 

level enters the model, as was expected. The effect that we saw in the models without 

discount as an explanatory variable was picked up by the commitment variable. It means that 

the variables are collinear. 

In most cases collinearity does not pose any problem as long as confidence limits are 

satisfactory. For this case it was, but to be sure we computed the Variance Inflation Factor, 

VIF. As VIF for the variables were within comfortable boundaries, see section 3.7.3. we 

concluded not to worry further and keep an eye on the confidence limits. 

After testing successfully that the model with the interaction term is better than the one 

without, we composed figure 24 to see the relationship better. 

 

Figure 24: Odds ratios of commitments and discounts 

What the interaction term does is tilting the discount curve to become steeper for the no 

commitment level and flatter for the full commitment level. In the next section we will describe 

what this means. 

6.3 Interpretation 

The commitment and the discount variable have a lot of explanatory power. The small 

confidence limits strengthen this result. What it means is that they both have an effect on a 

customer’s loyalty. A car insurance customer with discount is more loyal than one without. 

Whether customers have compared premiums with other competitive companies or they just 

trust that a premium with a discount is competitive is irrelevant. Discounts matter. We have 

also shown that having the car and product and service A in Länsförsäkringar makes a 

customer more loyal than one without. If the customer also uses Länsförsäkringar’s product 

and service B, the customer is even more loyal. Possible explanations to the behavior can be 

that a larger part of the fully committed customers are satisfied customers that have good 

experiences with the company, compared to the no committed customers, and that they 
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therefore wishes to stay longer. Another can be the convenience a customer experience 

when having many financial services in one place. Yet another is called lock-in effects, 

meaning that if the customer wants to change, for example some services to a competitor, 

the customer loses discounts on other products making it much more expensive to do so. 

Regardless, it is a fact that being committed to product and service A or B makes a customer 

more loyal.   

We could see a large drop in odds ratio for the fully committed customer as the discounts 

entered the model. It turned out that the high loyalty related to full commitment, was really 

due to large discounts. It is not that the fully committed customers are especially discount 

driven or sensitive to prices, it is merely that large discounts have a large effect, with or 

without commitment. And large discounts are more common for fully committed customers.  

As said in the section 6.2, a certain convenience effect can be seen for higher commitment 

levels. It can be interpreted as for every percentage spent on discounts, on the odds ratio 

scale, the effect is higher on the no committed customers than on the fully committed.  

 

Figure 25: Odds ratios for commitment and discounts 

We can see in figure 25 that discounts become less important the higher commitment. The 

curve for the fully committed customer at high discounts is not as steep as for the other 

commitment Levels. This means that if we want to work with discounts effectively, on the 

odds ratio scale, it is better used on customer with no commitment than on fully committed 

customers, especially for high discount levels. Then of course there is the problem of 

attracting new customer to the program, which shall be discussed in 6.6. 

If we look at the odds ratio for commitment and discount level graphically, as in figure 25, we 

can take another approach: A customer that has a product and service A with 
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customer with no commitment stay as long as a fully committed customer with a discount of 

15%, we need to discount the contract 23%.  

6.4 Simplification 

Sometimes it can be hard to understand odds ratios, so we always have the possibility to 

convert it to a probability or even an approximated duration. Since the model consists of 

several explanatory variables, most customers will have different predicted renewal 

probabilities in the model because of their age, how long they have been a customer and so 

on. We have to decide at what probability level we would like to look at. Suppose we choose 

a customer with no commitment and no discount and suppose that he or she will have a 

renewal probability of 0.5. Every second year, this customer will cancel the insurance 

contract. Let us make an example using a six faced die. In our case it will mean that a roll of 

1-3 will result in a cancellation and 4-6 a renewal of the contract.  

To help understand the odds ratios for the commitment variable an easy comparison can be 

made. If a roll of 4-6 would result in a renewal for a car insurance customer without 

commitment and discounts, then 3-6 would be a renewal for the same customer with partial 

commitment in Länsförsäkring and 5% off the car insurance premium in discounts 

(corresponds to an odds ratio of 2.0). For the fully committed customer with 19% in discount, 

2-6 would mean a renewal (corresponds to an odds ratio of 5.0).  

Some prefer relating loyalty to duration. We can convert the probabilities to expected 

durations, which can be a bit more intuitive to handle, especially if we are trying to 

comprehend what a difference in renewal probabilities will mean in real life. The renewal 

probability of 0.5 in the example above corresponds to a duration of 2 years. More details on 

how to compute durations in 3.6. The fourth dot on the die, meaning the partial commitment 

with 5% in discount, will increase the duration to 3 years. Full commitment with a discount of 

19% increases the duration to 6 years.  

 

Figure 26: Duration for Commitment and Discounts 
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From the example above, we can roughly conclude that for a car insurance customer in 

Länsförsäkringar with full commitment and 19% in discount, we get almost two years extra 

for the commitment and another two years for the discount, on top of the basic two years. For 

the partial committed we get half a year from the commitment and another half from the 

discount.  

6.5 Exceptions 

We saw in the first model that we built 𝑀𝑐, that the three levels of commitment in renewal 

probability for a perfect renewal were 0.87, 0.93 and 0.96. It corresponds to the odds ratios 

of 1.0, 1.9 and 4.1, where discounts and other control variables are hidden within those 

numbers. It is severely larger than the probabilities in the six-faced die example above. The 

difference between the three level does not seem so high. If we instead approximate it to 

duration for the three commitment levels it would become 8, 14 and 25 years. On this scale 

the differences are huge. These durations are of course theoretical approximations, since 

there is no consideration taken to life expectancy, changes in life situations, claims occurring, 

changing of cars, etc, as we discussed in section 3.6. That is why the simplification with the 

six faced die is quite a realistic example. It shows us that we can increase the expected 

number of years a customer will stay using retention programs, it is just a matter of how 

much the company is willing to pay in discounts or converting customers to commitments. 

Since we do not have data of discounts larger than 25%, it would be unwise to extend the 

curve, even if we could. There might be something that alters the relationship as we move 

towards higher discounts than 25%. 

It is important to know that this is the case of pure renewals. In many cases there are special 

circumstances that affect a customer’s decision. See section 3.3 for more details on the 

assumptions regarding perfect renewal.  

6.6 Applications 

We have up to this point not mentioned growth, as it is not the scope of this paper. In theory, 

the most profitable thing to do would be to make a customer commit without giving discounts. 

The customer would have an increased duration at no cost. Maybe it should be possible to 

take away discounts from the currently committed customer without losing them all to 

competitors, but it will probably be impossible to get new customer and the portfolio of 

committed customers will decline.  

A retention program that conditions discounts on other products or services serves two 

purposes; to increase the loyalty on the discounted products and to grow on the products. 

Let us start with first one.  

We can see a retention program as a way to enhance the loyalty effect. Like a boost for the 

discount. Instead of just randomly give away discounts, hoping customer to stay longer, the 

insurer makes a deal with the customer; if the customer invests, or commits to more products 

or services, they get a discount. It is an agreement between the customer and the insurance 

giver. This will make the effect larger than without the agreement. The knowledge of how and 

which effect that can be expected from customers can be used to set desired discount levels 

to reach certain loyalty levels or vice versa. 

While an increased commitment only has positive effects on the profitability for the given 

product, giving away discounts has both positive and negative effects. Here one would want 
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to know the cost for making discounts and for converting a customer to become committed to 

compare them with one another to find the most effective way to gain loyalty. Creating 

discounts is administratively relatively cheap compare to converting a customer. On the other 

hand, once a customer is converted to a commitment it is cheaper compare to what a 

discount costs. But making customers more loyal is no problem if there is no constraint on 

how much money we can spend. If we start by looking at the actual discounted product 

isolated, we need a way to measure loyalty of a customer in a monetary value to be able to 

compare it to the cost for the discounts. A typical approach is to measure profitability after 

financial principles, as a life-time value (LTV) or embedded value (EV), in order to get the 

effect from renewal probability into the profitability measure. Both are based on financial 

theory and how to measure future cash flows as a net present value. For each year, from 

now until the profits are estimated to be either too insecure or immaterial, the expected profit 

from a certain customer or contract is calculated and then discounted with a specified 

discount rate. Both approaches are basically calculating the same thing, but have separate 

application scopes. While LTV are founded in marketing for scoring of customers, EV was 

developed for the balance sheet in life insurance. More on mathematical approaches and its 

application in Berger & Nasr (1998) and Dwyer (1989). For details on the continuously 

developing Embedded Value, see CFO Forum (2009). 

We can with a net present value approach go further and recommend a discount level for 

each of the different commitment levels based on the profitability instead of the loyalty, which 

is much more attractive way. We can also find the most optimized way to keep a customer by 

comparing giving discounts and converting customers to become committed with the cost to 

do it. 

Up to now we have only seen what we can do for the actual customers and contracts and 

how they renew. If we could build another model for acquiring and attracting new customer, 

depending on commitments and discounts we can see the full picture. We could then base 

all decisions on loyalty and profitability.  
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