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Abstract

Back-projection is a statistical method for determining the un-

known exposure time in an outbreak data set containing onset time.

For an individual, the exposure time is the time period from being in-

fected to symptom occurrence, also called incubation time. Bayesian

back-projection is an approach for unknown exposure time estima-

tion. In this thesis, we applied this method to foodborne disease

outbreaks data. In our mathematical modelling, informative and

non-informative priors have been tested. Uniform and flat Gamma

distributions were implemented as non-informative priors. We also

tested parametric and non-parametric Empirical Bayesian approaches

on data originating from large gastrointestinal disease outbreak, which

occurred in Germany 2011. The data come from Robert Koch Insti-

tute, the federal public health institute in Germany. The disease incu-

bation period probability distribution was also given by estimates from

the Robert Koch Institute. Our data analysis in 686 adult HUS pa-

tients indicates that Bayesian approaches lead slightly different results

from the EM back-projection method for the point estimate. Under

Bayesian approaches, MCMC simulation enable us directly obtain a

credible interval.
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I would like to express my gratitude to my supervisor Michael Höhle for
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Chapter 1

Introduction

Back-projection is a method to estimate the exposure time of an infectious
source leading to a disease outbreak. It can be inferred either in real-time or
shortly after the end of the outbreak. The method has been used to estimate
the unobserved past incidence of infection with the human immunodeficiency
virus (HIV)(Becker, Niels. G. and Watson, Lyndsey. F., 1991).

HIV is the virus that causes acquired immunodeficiency syndrome (AIDS).
HIV destroys CD4 positive T cells, which are white blood cells crucial to
maintaining the function of the human immune system. Most people in-
fected with HIV can carry the virus for years before developing any symp-
toms. Usually, there are few or no symptoms at first, but the patient later
experiences fever, weight loss, gastrointestinal problems and muscle pains.
(”https://aidsinfo.nih.gov/education-materials/fact-sheets/19/45/hiv-aids
–the-basics”)

The data used in applying the back-projection method are the numbers of
symptomatic AIDS patients by time period such as month, week or day. The
only additional information required is the distribution of time from infection
to clinical diagnosis of AIDS. In the end of chapter 1, we give an example of
AIDS data (Becker, Niels. G. and Watson, Lyndsey. F., 1991).

Similarly, Hemolytic-uremic syndrome (HUS) occurs after ingestion of a
type of E. coli, for example E. coli O157:H7. E. coli produces the stx1 and/or
stx2 shiga toxins, which is easier received by children than adults. Diarrhea
is the initial symptom of bacteria colonization. HUS develops about 5-10
days after onset of diarrhea. It is followed by decreased urine output, blood
in the urine, kidney failure and destruction of red blood cells. The infection
is acquired by contaminated water or food (”https://en.wikipedia.org/wiki/
Hemolyticuremic/syndrome”). In May, 2011 an epidemic of bloody diarrhea
hit Germany. It was caused by Escherichia coli O104:H4 contaminated fenu-
greek seeds. There were more than 3,800 infected cases, with more than 800
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cases developing to HUS patients; including 36 fatal cases. Nearly 90% of
the HUS cases were in adults (Buchholz U et al. 2011)

The aim of this thesis is to apply the Bayesian back-projection method to
estimate the incidence of Escherichia coli O 104:H4 infection. We estimated
the exposed individuals in order to predict the future infected trend. By a
simulation study, the uncertainty of the estimate was quantified.

Compared to frequentist evaluates procedures, Bayesian approach re-
quires a prior distribution which is constituted by describing distributions
for the involved random variables. The Empirical Bayesian approaches al-
low the observed data to play some roles in determining the prior distribu-
tion. The penalized spline regression was also used for prior estimate in our
study. We performed statistical analysis in R environment ( ”https://www.r-
project.org”). Further more, Surveillance (Michael Höhle, 2007) and JAGS
(Plummer et al. 2006) packages were used for back-projection and Bayesian
calculations.

Our results indicate that the Bayesian back-projection is a reliable method
for infected incidence estimation. The MCMC simulation was implemented
to quantify the uncertainty of estimation.

1.1 Layout overview of the thesis

Chapter 2 introduces the method of back-projection, including its mathe-
matical theory and application. It also describes the likelihood function of
data, EM algorithm, smoothing step, and the EM algorithm’s convergence.
In Chapter 3, we focus on the difference of concepts between frequentist and
Bayesian approaches. We also illustrate point and confidence interval esti-
mates, and discuss the bias of point estimate with two approaches. Chapter
4 introduce the simulation technique. Bootstrap and MCMC simulation, and
Gibbs sampling applied to Bayesian approaches. Chapter 5 gives an exam-
ple for back-projection application. Using HUS outbreak data, we estimated
the incidence curve by frequantist and Bayesian back-projection approaches.
Various priors testing method is included in this section. Chapter 6 draws
conclusions, discusses the difference of results between Bayesian approaches
and frequentist methods as well. Finally, it also discusses the distinction be-
tween prior estimate using parametric, and semi-parametric methods, within
Bayesian approach.
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1.2 A back-projection application

The earliest Australian HIV-positive case was found on 9 October 1980 from
tests of stored blood samples. Two years later, the first Australian case of
AIDS was diagnosed (Becker, Niels. G. and Watson, Lyndsey. F., 1991).
Table 1 gives AIDS cases from January, 1982 to December 1989. It was
reported to the National Centre in HIV Epidemiology and Clinical Research
by the end of March 1990. EM back-projection method has been used to
estimate the HIV infected incidence which are unobserved data.

Table 1.1: Reported Australian AIDS incidence data from 1989 to1992 (
Becker, Niels. G. and Watson, Lyndsey. F., 1991)

Months
Year J F M A M J J A S O N D Total
1982 0 0 0 0 0 0 0 0 0 0 0 1 1
1983 0 0 0 1 0 0 0 1 1 0 1 2 6
1984 0 0 1 2 0 2 3 6 7 6 5 11 43
1985 11 11 6 9 19 8 9 4 11 10 9 11 118
1986 15 14 13 14 18 18 16 23 22 30 25 13 221
1987 30 25 31 17 46 34 24 27 37 29 44 26 370
1988 39 42 27 28 34 41 49 45 41 53 58 40 497
1989 53 47 32 25 39 42 38 48 48 50 422

sum 1678
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Chapter 2

The back-projection method

The Infectious disease progressing in an individual may have infection, onset
of symptoms and recovered stages. For example HIV infection may progress
three stages: 1) acute HIV infection 2) clinical latency and 3)AIDS. Acute
HIV infection stage is the body’s natural response to the HIV infection. It’s
within 2-4 weeks after HIV infection. Many people develop flu-like symp-
toms, including swollen glands, sore throat, rash, muscle and joint aches and
pains, and headache. After the acute stage of HIV infection, the disease
moves into a clinical latency stage meaning that a virus is living or develop
in a person without producing symptoms. When immune system is badly
damaged, opportunistic infections become vulnerable and AIDS is consid-
ered to have been progressed. (”https://www.aids.gov/hiv-aids-basics/just-
diagnosed-with-hiv-aids/hiv-in-your-body/stages-of-hiv/”). The methodol-
ogy essentially follows from the concept that for each infected person the
time of symptom onset is equal to the sum of exposure time and the incu-
bation (clinical latency) period, all infected persons eventually developing
to patients (Becker, Niels. G. and Watson, Lyndsey. F., 1991). A crucial
aspect in the back-projection method is the incubation period distribution.
Usually, parametric and non-parametric methods are utilized to estimate this
distribution (Joseph R. Egan and Lan M. Hall 2015). Here we will model the
distribution with non-parametric method and the simple temporal model.

2.1 Incubation period and likelihood function

The incubation period is defined as the time from pathogen exposure to onset
of symptoms in an individual. Many factors such as host susceptibility, strain
virulence and chance can contribute to diverse incubation periods. Therefore,
it is more appropriately characterized by a distribution rather than by a single
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point. As the disease’s aetiology is unknown, we assume that the time period
between exposure and onset of the symptom is independently and identically
distributed. Some distribution is used to model the incubation period for a
number of acute infectious diseases. The likelihood function is established by
the event’s incubation period distribution. Estimating the parameters of this
distribution is to determine the parameter value that maximize the likelihood
function L, shown below.

L(α; yn) =
n∏
i=1

f(yi;α). (2.1)

Where yn = (y1, y2, . . . , yn) represents a vector of incubation periods for each
person i, n is the total number of exposed persons who eventually succumbed
to the infection in the absence of intervention. These data are used to esti-
mate α, a vector of parameters of the probability density function (PDF) f .
The f is the incubation period probability distribution function, for example
gamma or log-normal distribution (Joseph R. Egan and Lan M. Hall 2015).

We formulate a model based on the fact that AIDS is the result of HIV
infection followed by an incubation period, which is the time from its infection
to clinical onset of AIDS.

A time point earlier than the introduction of the virus into the community
is chosen as the time origin. In general, we choose a month as the time unit
and formulate the likelihood in terms of discrete time, because incidence of
AIDS is monthly reported. Therefore the observation is discrete. Infections
are assumed to arise according to random processes.

Following the notation and approach from the article written by Becker
and Watson 1991, we can determinate the mean number of clinical AIDS
cases in month t. let nt denote the number of individuals infected during
month t. The number of AIDS cases diagnosed in month t is denoted by
Yt, t = 1, 2, ..., T , where t is the month beyond which no reliable AIDS inci-
dence data are available. Let fd be the probability that the duration of the
incubation period is d months, d=0,1,2...D, where D is the maximal incu-
bation time; Under the assumption that the distribution of the incubation
period is the same irrespective of when the individual is infected, we have

E[Yt | n1, n2, . . . , nt] =
t∑
i=1

nift−i. (2.2)

Then the mean number of clinical AIDS cases in month t will be

µt =
t∑
i=1

λift−i. (2.3)
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where µt = E[Yt] and λi = E[ni]. The probability mass function of the
incubation period distribution fd is assumed known in the method of back-
projection.

2.2 Back-projection method

Assume nt,d is the number of individuals exposed in interval t = 1,. . . ,T
having an incubation time d (i.e. onset symptom was observed at timepoint
t + d). nt is the number of individuals infected in interval t, i.e.

nt =
∞∑
d=0

nt,d. (2.4)

Furthermore,

nt ∼ Poisson(λt), (2.5)

nt,d ∼ Poisson(f(d)λt) (2.6)

where f(d), d=0, 1, 2, . . . , D is the PMF of the incubation time.
Assume

yt ∼ Poisson(µt), (2.7)

where yt is the number of patients diagnosed in month t and

µt =
t∑
i=1

E(ni,t−i) =
t∑
i=1

f(t−i)λi. (2.8)

we can estimate the λt under assumption that n1, n2, . . . , nt are indepen-
dent Poisson variates using the likelihood function

T∏
t=1

(
t∑
i=1

λift−i)
yt exp(−

t∑
i=1

λift−i). (2.9)

2.3 The EM algorithm

The EM algorithm is a technique for obtaining a maximum likelihood esti-
mate in the situation where only incomplete data are observed. When an ML
estimate would have been easy to compute, a larger complete data set had
been obtained by EM algorithm. Moreover, a completely unobserved data
set also can be obtained.
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In the AIDS case, the monthly number of new HIV-exposures are unob-
served data since the nt,d are independent of Poisson variates with mean λtfd,
we estimate λt by EM algorithm. The following formula combines both the
E step and the M step of the EM algorithm.

λnewt =
λoldt
FT−t

T−t∑
d=0

Yt+dfd∑t+d
i=1 λ

old
i ft+d−i

, (2.10)

where

FT−t =
T−t∑
d=0

fd. (2.11)

The incomplete data likelihood function is increased at each step when
we use the iterative equation. In the above formula, the maximum likelihood
estimate of λt is

∑T−t
d=0

Ntd

FT−t
if all the Ntd are observed. As only the Yt are

observed, we replace the Nt,d by
∑t

i=1 nift−i.

E[Ntd | Y1, Y2, . . . , Yt] = Yt+d
λoldt fd∑t+d

i=1 λ
old
i ft+d−i

(2.12)

2.4 Incorporating a smoothing step

As prior knowledge, the infection intensity should be a smooth curve because
haphazard jumps in the infection intensity are improbable. Therefore the
smoothing step is incorporated after each application of the equation above.
Let

Φnew
t =

λoldt
FT−t

T−t∑
d=0

Yt+dfd∑t+d
i=1 λ

old
i ft+d−i

(2.13)

and then let

λnewt =
k∑
i=0

WiΦ
new
t+i−k/2 (2.14)

where λt new is a weighted average of the new parameter value which the E
and M steps produce near t, when applied to old parameter values. The value
of k determines the ”window width” for the weighted average and should be
an even integer. Therefore, we choose a value k as a parameter as a smoothing
step.

Wi =

(
k
i

)
2k

(2.15)

i = 0, 1, . . . , k.
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2.5 Convergence

Each iteration of the EM algorithm is known to increase the likelihood. As
a result, the algorithm will converge. In practice, convergence of the EM
algorithm to a maximum likelihood estimate requires a great number of it-
erations in the present type of application. We choose a time T’<T and a
small positive ε and stop iteration when

T ′∑
t=1

| λnewt − λoldt |
λoldt

< ε (2.16)

(Becker, Niels. G. and Watson, Lyndsey. F., 1991).
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Chapter 3

Frequentist and Bayesian
approaches

3.1 Definitions

3.1.1 Frequentist method

In frequentist approach, the sampling model is given in the form of a proba-
bility distribution f(y| Θ). This distribution is called likelihood, represented
by likelihood function L(Θ; y). Giving particular data values y, it is very
possible to find the value for parameter Θ that maximizes the likelihood
function, i.e maximum likelihood estimate (Fisher, 1922 and Stigler, 2005).

3.1.2 Bayesian approach

As frequentist analysis, the Bayesian approach samples observed data y=
(y1, . . . , yn), given a vector of unknown parameters θ. In the Bayesian ap-
proach, we think of θ as a random quantity instead of supposing it to be a
fixed (though unknown ) parameter. This approach adopts the prior distri-
bution, a probability distribution for θ that summarizes any information we
have. Normally, the prior distribution is not related to the data y. The prior
may depend on additional parameters η, referred to as hyperparameters. We
assume here that the hyperparameters η are known. Inference concerning θ
is based on its posterior distribution, given by

p(θ | y) =
p(y, θ)

p(y)
=

p(y, θ)∫
p(y, θ)dθ

=
f(y | θ)π(θ)∫
f(y | θ)π(θ)dθ

(3.1)

where y represents data and π(θ) represents prior. (Carlin and Louis, 2008,
Bayesian methods for data analysis, Chapter 2)

12



3.1.3 The prior for Bayes and Empirical Bayes ap-
proaches

As formula 3.1 indicated, in Bayesian analysis, the parameter estimation
partially depends on the prior distribution. In Bayes approach, prior distri-
bution estimation is unrelated to the observed data. This is in contrast to
the Empirical Bayes (EB) approach, that uses the observed data to estimate
parameters of prior. In Bayes approach, the priors can be informative or
noninformative, either parametric or nonparametric method can be applied
to prior estimation in Emperica Bayes approach.

Noninformative prior in Bayes approach

When no reliable prior information exists, one can use noninformative prior.
The noninformative prior is often a flat curve, meaning that the parameter
does not vary that much from time to time. Using the noninformative prior,
the inference is relatively objective because it is completely based on data
information.

Parametric and semiparametric estimated priors in Empirical Bayes
approach

Empirical Bayes is another approach to treat the no reliable prior information
problem. The method is to estimate the prior distribution using the observed
data. The parametric, non-parametric and their combination semiprametric
estimated methods can be implemented in prior estimation.

The parametric estimation
As an example, consider the Gamma model,

λi | α, β
iid∼ Gamma(α, β), i = 1, . . . , k. (3.2)

Here Gamma (α, β) is the prior distribution of λi. One can estimate the
parmeter α, β using the observed data.

The Yi are independent and identically distributed Poisson (λi ) random
variables. We can estimate λi according to the data y = (y1, y2, y3......yk)
using back projection method. When λi is known, the α, β can be estimated
using the MLE based on gamma distribution

α

β
=

1

k

k∑
i=1

λi (3.3)
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α

β2
=

1

k

k∑
i=1

(λi − λ̄)2 (3.4)

The semiparametric estimation
The prior estimation can also be performed by Penalized Spline Regres-

sion, a semiparametric estimation. Semi parametric regression is a combina-
tion of parametric and nonparametric regression techniques. In nonparamet-
ric regression, there is a nonlinear relationship between outcome and covari-
ates. The semi parametric regression model is constituted of both parametric
and nonparametric components. The nonparametric part can adjust to cap-
ture the features of data; for example smoothing. When data distribution
can not be modelled directly with parametric regression, a semiparametric
regression is to better fit data. It also can be viewed as a mixed model
because the model consists on fixed and random parts.

Consider the regression model

log(λi) = m(xi) + εi (3.5)

where εi are i.i.d. N(0, σ2
εi

)

m(x, θ) = β0 + β1x+
K∑
k=1

uk | x− κk |3, (3.6)

where θ=(β0, β1, u1, . . . , uk)
T is the vector of regression coefficients and κ1 <

κ2 < . . . < κK are fix knots (Ciprian M. Crainiceanu, et al 2005).
The function (x-κk) is called a linear spline basis function. A set of such

functions is called a linear spline basis. Any linear combination of linear
spline basis function 1, x, (x-κ1)+, . . . , (x−κk)+ is a piecewise linear function
with knots at κ1, . . . , κk. The linear combination is called a spline.

Considering the vector B=(β0, β1)
T as fixed parameter and vector U as

a set of random parameter, the spline regression can also be viewed as a
particular case of mixed model.

We minimize
n∑
i=1

log(λi)−m(xi, θ)
2 +

1

λ
θTDθ (3.7)

where λ is the smoothing parameter that controls the amount of smoothing
and D is a known positive semi-definite penalty matrix that penalizes the
coefficient of | x − κk |3 (David Ruppert, et al, 2003). Therefore, Penalized
Spline Regression is a type of ridge regression. The ridge regression is used to
reduce the variability of estimated coefficients, i.e. penalizes the coefficient, in
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order to improve the overall prediction accuracy. We also name it ”shrinkage”
(Trevor Hastie, et al, 2008).

3.2 Point estimate

3.2.1 Frequentist Point estimate

In frequentist method, we use the sample information to estimate one or
more population parameters. It is natural to expect that a sample is at
all representative of the population. Since an estimate is calculated from
sample data alone, it is a statistics (T). Moreover, if the sample is obtained
by random sampling, an estimate is a random variable. Its value varies from
one sample to another according to its sampling distribution, which is derived
from the population distribution. Because of sampling variability, sample
information is not totally reliable, and parameter estimate based on sample
information are typically in error. The error in any particular estimate is
unknown, depending on the true parameter value (θ).

MSE(T ) = E(T − θ)2 = var(T )− (E(T )− θ)2 (3.8)

The bias in T as an estimate of θ is

bT (θ) = E(T )− θ (3.9)

The estimate is said to be unbiased when bT (θ )=0, or E(T)=θ (Lindgren B.
W. 1993).

3.2.2 Bayesian Point estimate

In the Bayesian approach to inference, we treat unknown parameters as ran-
dom variables. The current distribution of a parameter θ -whether a prior or
a posterior- can be used to indicate a value as an estimate of θ. In principle,
a value of θ somewhere near the middle of its distribution should be of a
good estimate. We assume that the value µ is the estimating of θ, so the
”error” in estimating θ to have the value µ to be µ - θ. The absolute error will
be a minimum, on average, if we choose µ to be the median of our current
distribution for θ. In parallel, the squared error will be a minimum, if we
choose µ to be the mean of that distribution. Therefore the value of θ can be
estimated by the posterior median or posterior mean (Lindgren B. W. 1993).
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3.3 Confidence interval estimate

3.3.1 Frequentist confidence interval

For the usual frequentist CI, if we are able to recompute C for a large number
of datasets collected in the same way, about (1-α) x 100% of them contain
the true value of θ. In other words, C is the random interval for fixed value of
θ with the probability (1-α), called the coverage probability of the interval.
It is the probability of a correct guess of where the unknown parameter is
(Pawitan, 2001). This is not a very satisfactory statement, since we may not
be able to repeat our experiment over a large number of times. Therefore
sometimes we construct the confidence interval using bootstrap simulation.
Usually, we are in physical possession of only one dataset; our computed C
will either contain θ or it won’t, so the actual coverage probability will be
either 1 or 0. ”Thus for the frequentist, the confidence lever (1-α) is only a
tag that indicates the quality of the procedure” (Carlin Bradley P.and Louis
Thomas A., 2008 ). For example, we have two same confidence intervals, for
90% and 95% confidence. The 95% confidence should be better than the 90%
one, because 95% of repetition will contain true value.

3.3.2 Bayesian credible interval

The Bayesian confidence interval is a credible set, i.e., ”The probability that
θ lies in C given the observed data y is at least (1-α)” (Carlin Bradley P.and
Louis Thomas A., 2008). More formally, a 100 x (1-α)% credible set for θ is
a subset C of Θ such that

1− α ≤ P (C | y) =

∫
c

p(θ | y)dθ (3.10)

where integration is replaced by summation for discrete components of θ.
Hence, the credible set provides an actual probability statement, based only
on the observed data and whatever prior opinion we have added.

Highest posterior density

We wish credible sets to have an exactly correct coverage. In order to obtain
a more precise estimate, a technique for minimize the credible sets named
Highest Posterior Density (HPD) is defined as the set

C = {θ ∈ Θ : p(θ | y) ≥ κ(α)} (3.11)
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where κ(α) is the largest constant satisfying

P (C | y) ≥ 1− α. (3.12)

For example, giving the κ(α)=0.1, we have a 87% HPD interval of (0.12,
3.59) for posterior distribution, if Gamma (2,1) is prior distribution (Carlin
and Louis, 2008).
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Chapter 4

Simulation technique

4.1 Bootstrap simulation

The explicit recognition of uncertainty is central to the statistical sciences.
The uncertainty of statistical inference from sample data representing popu-
lation may be gauged by analytical calculation based on an assumed proba-
bility model for the available data. However, in more complicated problems
the mathematical modelling can be difficult, and its results are potentially
misleading if inappropriate assumptions or simplifications have been made.
Bootstrapping is a computer-intensive method to enabling us obtain reliable
standard errors, confidence intervals, and other measures of uncertainty for
a wide range of problems. The method is performed by resampling from
original data to create replicate dataset. Direct resampling is named non-
parametric bootstrapping, while resampling via a fitted model is parametric
bootstrapping (A.C.Davison and D.V. Hinkley, 1997).

4.1.1 Nonparametric bootstrap

Let x1, x2, . . . , xn be a independent and identically random sample from a
unknown probability distribution F. One way to estimate SE(x̄) would be to
draw a large number of random samples of size n from F, calculate x̄ for each
sample, and then use the standard deviation of these x̄ values as the desired
estimate. The steps in the bootstrap algorithm are as follows:

1. Draw N random samples with replacement from x1, x2, . . . , xn. Denote
these bootstrap samples by x∗i1, x

∗
i2, . . . , x

∗
in, i=1,2

”
. . . ,N.

2. Calculate the sample mean of each bootstrap sample and the overall
sample mean:

x̄∗i =

∑n
j=1 x

∗
ij

n
(4.1)
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¯̄x∗ =

∑N
i=1 x̄

∗
i

N
(4.2)

3. Calculate

SE(x̄) =

√∑N
i=1(x̄i

∗ − ¯̄x∗)2

N − 1
(4.3)

(Ajit C.Tamhane and Dorothy D. Dunlop, 2000).

4.1.2 Parametric bootstrap

Let x1, x2, . . . , xn be an independent and identically random sample from a
known probability distribution F with parameter Ψ. We estimate the Ψ us-
ing the x1, x2, . . . , xn fitted distribution. Then generate the random variable
X∗ = x1, x2, . . . , xn according to the fitted distribution.The confidence in-
tervals or quantiles of X∗ can be obtained based on the calculation of the
expectation and variance. The steps in the bootstrap algorithm are as fol-
lows:

1. Assume the F is Poisson distribution, and we estimate the parameter
λ of Poisson distribution according to samples x1, x2, . . . , xn.

2. Generate the N random samples x∗i1, x
∗
i2, . . . , x

∗
in, i=1,2,. . . N using Pois-

son distribution with parameter λ.
3. Calculate

SE(x̄) =

√∑N
i=1(x̄i

∗ − ¯̄x∗)2

N − 1
(4.4)

(A.C.Davision and D.V. Hinkley, 1997, Bootsrtap methods and their appli-
cation)

4.2 MCMC simulation

For a continuous parameter space, Bayes’s formula for the posterior distribu-
tion is presented by formula 3.1. To use this equation we need to determine
the normalizing constant (the denominator). If there are k unknown pa-
rameters (θ1, . . . θk), then the denominator involves an integration over the
k-dimensional parameter space which becomes intractable for large values of
k. (Dobson, Annette J. and Barnett Adrian G. 2008)

Markov chain Monte Carlo (MCMC) is a numerical method for calcu-
lating complex integrals. This method is operated by sequentially sampling
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parameter values from a Markov chain whose stationary distribution is ex-
actly the desired joint posterior distribution of interest. (Carlin Bradley P.
and Louis Thomas A., 2008)

Gibbs sampling is one of the algorithms of Bayesian MCMC computation.
Given an arbitrary set of starting value θ02, . . . , θ

0
k, the algorithm proceeds as

follows:

For (t=1,. . . , T), repeat:

Step 1: Draw θt1 form p(θ1 | θt−12 , θt−13 , . . . , θ
(t−1)
k , Y )

Step 2: Draw θt2 form p(θ2 | θt−11 , θt−13 , . . . θ
(t−1)
k , Y )

. . .
Step k: Draw θtk form p(θk | θt1, θt2, . . . θtk−1, Y )

From above algorithms one can show that the k-parameter obtained at
iteration t, (θt1, θ

t
2, . . . ,θ

t
k ), converges in distribution to a draw from the true

joint posterior distribution p(θ1, θ2, . . . , θk | Y ). The time from t=0 to t=t0
is commonly known as the burn-in period, i.e. chain convergence period.
We usually apply multiple chains to assess convergence. By starting start
multiple chains at widely varying starting values, each china converges to the
same solution. This would increase our confidence in this solution.
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Chapter 5

An application: HUS outbreak

5.1 Data sources and assumption

5.1.1 HUS outbreak data

The largest ever documented outbreak of hemolytic uremic syndrome (HUS)
occurred in 2011. The disease spread from the outbreak area, Northern
Germany, to many other countries including Sweden via persons travelling
to or through the outbreak area. The causative agentA was a Shiga toxin
-producing Escherichis coli (STES) of the rare serotype O 104:H4. The in-
fection most likely spread by Fenugreek sprouts (Buchholz U. et al 2011).

At the Robert Koch Institute - the federal public health institute in
Germany - there were 3,793 registered outbreak cases until March 1, 2012.
Among them 827 cases (22%) of STEC gastroenteritis were diagnosed as
HUS patients. Comparing to the historical occurrences, the large propor-
tion(>88%) of adult patients was a unique feature to this outbreak. The
data used in our analysis are 686 adult HUS patients from the 827 cases.

The incubation period was assumed to be bounded above by a maximum
period of 17 days and its distribution was also estimated from symptomatic
individuals within the cohorts at the Robert Koch Institute, using Turnbull’s
method (Werber,D. et al. 2013, and epidemiology course lecture 4 slide 26,
Michael Höhle, 2014 ). Figure 1 displays the time series of daily onsets
of the 686 adult HUS patients with information about the onset time.The
probability density function of the incubation period distribution can be seen
in figure 2.
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Figure 1. The distribution of 686 adult onset hemolytic uremic syndrome
(HUS) patients over time.
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Figure 2. Probability distribution over incubation time estimated from
symptomatic individuals within cohorts at the Robert Koch Institute.
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5.1.2 Assumption

The purpose of the data analysis is to estimate the infected intensities λt,
t = 1, 2...T , given observed onset patient counts. Using the nonparametric
back-projecting method, STES coli O104:H4 outbreak data and the incu-
bation period distribution, we estimated the λt, i = 1, 2...T , as Scenario 2.
Alternatively, we also estimated the λt, i = 1, 2...T , using the average onset
intensity during the occurrence period to represent the infected intensities,
pretending that the observation is not available . It’s named Scenario 1.

Scenario 1

Assume apriori for infected intensity λt is constant (686/100) during the
occurrence period, time points 30 to 61, at the rest of time points, λt = 0.

Scenario 2

Assume apriori for infected intensity λt is the exposure curve of Escherichia
coli O104:H4 (HUS) outbreak data, i.e the infected intensity curve from EM
back-project method.

5.2 EM back-projection method application

We applied the EM back-projection method to estimate the infected intensity
λ using generated symptom onset patient counts. Therefore we need λt to
calculate µ in formula 2.8, and then generate symptom onset patient counts
according to Poisson distribution.

With λt from scenario 1 and 2, and a probability distribution function,
we obtained generated symptom onset patient counts. The probability dis-
tribution function (probability mass function) was generated by discretizing
a continuous random variable with positive support and cumulated distri-
bution function at the Robert Koch Institute, Germany. We assumed that
the probability mass function have finite support 1...123 days. By plugging
the generated yt in the function backprojNP, the estimated λt curves were
obtained. The smoothing parameters k = 2, k = 4 were used.

The reason that we will generate new onset data yt instead of observation
is that we wish to have a more general estimation of λt. This λt will be
used as a prior in the later Empirical Bayesian approach. Furthermore, we
also wish to have a accurate estimation of λt despite of its smaller sample
size . We used the unique sample λt per time point as a mean of Poisson
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regression, then generated the onset data randomly. By parametric bootstrap
simulation, 25th and 95th quantiles were obtained as well.

Software

R version 3.1.1 combined with RStudio was used for statistical analysis. The
packages ”survival” and ”surveillance” were used for the EM back-projection
method (https://cran.r-project.org/web/packages/surveillance/surveillance.
pdfand https://cran.r-project.org/web/packages/survival/index.html).

The result

By using the back-projection method, we found the estimated infected curve,
shown in the Figure 3. The curve showed that the main infection occurred
from the time point 37 to 57 and the highest peak reached up to 73 infected
individuals at time point 44. In parallel, the majority of the onset patient
incidence appeared from the time point 38 to 70 and, a maximal number of
59 patients was diagnosed at time point 50. These results show that main
distribution of onset is slightly delayed compared to the exposure. The Figure
4 displays the λt over the delayed time used in a simulation strategy scenario
1. The Figure 5 shows a similar curve generated used in scenario 2.

We first had λt from scenario 1, and then generated a series of onset
counts based on λt. Finally, we estimated a new λt using the EM back-
projection function. In addition, using the same strategy, we also tested for
different smoothing parameters ((k = 2, 4) for newly estimated λt. However
the residuals between original and newly estimated λt did not increase pro-
portionally with the increase of smoothing parameters. Therefore we chose
the curve with the smoothing parameter k = 4 (Figure 6) as a reference.
Then we generated the prior distribution for Empirical Bayesian approach,
assuming that the prior is a gamma distribution. The parameters of gamma
distribution were estimated according to the epidemic curve based on the
infection’s curve.

In parallel, we found similar results when we tested scenario 2. In Fig-
ure 7, the curve represents infected intensity used as the reference for prior
generation of the Empirical Bayesian approach. We selected the smoothed
curve with smoothing parameter k = 4. With 1000 times regeneration of
Poisson regression, we obtained the 25 and 95 quantiles. See displayed re-
sults in Figure 8. Nonparametric bootstrap was also applied for bias and
confidence interval estimation of the infected intensities’ mean. The tabel
5.1 displays the bias adjusted mean and confidence interval for time series
infected intensity.
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Figure 3. Backprojection using for adult HUS onset data, smoothing
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25



0 20 40 60 80 100 120

0
5

10
15

20

Time (Days since 2011−04−01)

 D
ai

ly
 e

xp
ec

te
d 

nu
m

be
r 

of
 n

ew
 in

fe
ct

ed
 in

di
vi

du
al

 c
ou

nt
s

Figure 4. λ(t) used in scenario 1.
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Figure 5. λ(t) used in scenario 2.
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Figure 6. Estimated λ(t) according to Scenario 1.
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Figure 7. Estimated λ(t) according to Scenario 2.
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Figure 8. Bootstrap quantiles of onset counts from scenario 1.

Table 5.1: Bias corrected mean and 95% confidence interval of infected indi-
vidual intensities from scenario 1 and 2.

Scenario 1 Scenario 2
mean 5.43 5.44

low 95% CI 5.28 5.22
high 95% CI 5.58 5.65

5.3 Bayesian back-projection method appli-

cation

In order to estimate the uncertainty of parameter λt, we applied 6 Bayes
approaches for statistical inference. The essential elements for the Bayes and
Empirical Bayesian approach are prior distributions. Using observed datasets
and models, the prior parameters could be estimated in Emperical Bayesian
approach.
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The prior distribution for Bayesian approach

Assume the prior of infected intensity λt is gamma or uniform distribution

λt
iid∼ Gamma(0.01, 0.01) (5.1)

λt
iid∼ Uniform(0, 5000) (5.2)

λt
iid∼ Uniform(0, 250) (5.3)

The prior distribution for Empirical Bayesian approach

From the back-projection method, we obtained estimated infected intensity
curve λt. Therefore, the expectation and variance of λt can be obtained.
Assume the prior is gamma distribution with parameters α, β, therefore we
could calculate the α, β according to the formulas (3.4) and (3.5) respectively
and then we generated the priors under assumption of gamma ditribution
with parameter α, β, i.e.

λt
iid∼ Gamma(α, β) (5.4)

Here we corrected the expectation of λt using bootstrap simulation.
Assume the prior of infected intensity λt is a penalized spline regression

model

lnλt = β0 + β1xi +
K∑
k=1

bkzik (5.5)

bk ∼ N(0, σ2
b ) (5.6)

εi ∼ N(0, σ2
ε ) (5.7)

β0, β1 ∼ N(0, 106) (5.8)

σ−2b , σ−2ε ∼ Gamma(10−6, 10−6) (5.9)

where zik is the (i, k)th entry of the design matrix

Z = ZKΩ
−1/2
K (5.10)
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The data and method

As description in 5.1.1, the HUS outbreak data, i.e. the time series HUS
onset count data were applied. Using Jags model we performed Bayesian
approach with 3 chains. With Gibbs sampling, MCMC was completed by
coda.sample. Based on the test for convergence, we chose 3000 iterations as
burn in. We then displayed the median, 2.5% and 97.5 quantiles according
to the outcome of MCMC simulation.

Software

The package ” rjags” in R environment was implemented for Bayesian ap-
proach. The coda package also provides convergence diagnostics to check if
the output is valid for analysis. ( Plummer et al. 2006).

The result

Based on the observed HUS data and the Poisson model, we performed
Bayesian and Empirical Bayesian analyses using different priors. We used
Gamma (0.01, 0.01), Uniform (0, 5000) and Uniform (0, 250) as prior distri-
butions and displayed the estimated results for lambda and N. Figure 9 is a
posterior distribution for lambda with Gamma (0.01, 001) as a prior. Figure
10 and 11 are posterior distributions for lambda with Uniform (0, 5000) and
Uniform (0, 250) as priors, respectively. Meanwhile, a penalized spline regres-
sion was used as another approach for prior selection, where 20 knots were
used for smoothing. The results are shown in Figure 12. For the Empirical
Bayesian method, the priors were estimated by the back-projection method.
The posterior distributions of λt from scenario 1 and scenario 2 are displayed
in Figure 13 and Figure 14, respectively. In all Figures, the estimated λts are
presented with medium of HPD. The 2.5 and 97.5 quantiles of HPD are also
indicated. We have also obtained similar results for Nt, the infected count.
The result figures are not showed in this thesis but available upon request.
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Figure 9. The posterior distribution of λ, with Ga (0,01 0,01) distributed
prior.
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Figure 10. The posterior distribution of λ, with unif (0, 5000) distributed
prior.
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Figure 11. The posterior distribution of λ, with unif (0, 250) distributed
prior.
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Figure 12. The posterior distribution of λ, with penalized spline regression
estimated prior.
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Figure 13. The posterior distribution of λ, with Ga (α1 β1) distributed
prior.
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Figure 14. The posterior distribution of λ, with Ga (α2 β2) distributed
prior.
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5.4 The result comparison between EM and

Bayesian back projection methods

Mean and standard error of the prior and estimated result of posterior by the
Bayesian and EB methods for λt and Nt are shown in Table 5.2, 5.3 and 5.4.
In general, posterior mean of λt is comparable in Table 5.3, though different
priors were applied. Variation of the prior distribution may be responsible
for a minor shift of the posterior mean. The parameter’s difference in the
identical prior distribution led to the lowest impacts on the posterior mean.

The prior by spline regression gives the posterior mean (about 6.85, de-
pended on simulation) that is the nearest to the result (6.86) estimated by
the frequentist approach which is calculated by maximal likelihood estimate
(MLE). The two Empirical Bayesian methods also led to similar results. The
scenario 2 produced the result more approximate to the MLE than the sce-
nario 1, since its prior was highly relevant to the real data. The Uniform
distribution led to slightly higher estimations with 8.6. Using the Bayesian
approaches, the the unknown variable Nt, i.e. the numbers of individual in-
fected in the time interval T were estimated as well. The results are showed
on table 5.4.

The mean square error (MSE) of Bayesian approaches and EM in com-
parison with the original HUS patient data from scenario 1 and scenario 2
are shown in Table 5.5. The EM method gives the lowest MSE. Among
Empirical Bayesian aproaches, penalized spline regression showed the best
modelling result. The uniform distribution shows a lower MSE than gamma
distribution. In general, the scenario 1 resulting less MSE than scenario 2
suggest that the flat prior has some advantage.

Table 5.2: Mean and SE of priors.

lambda prior mean lambda prior SE
B Gamma(0.01 0.01) 1.00 100.00

B Uniform(0 5000) 2500.00 2080000.00
B Uniform(0 250) 125.00 5200.00

B Spline 6.86 0.00
EBS1 Gamma(alpha1 beta1) 5.41 9.38
EBS2 Gamma(alpha2 beta2) 5.38 13.61
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Table 5.3: Posterior mean and SE of infected intensities.

lambda posterior mean lambda posterior SE
B Gamma(0.01 0.01) 6.75 28.29

B Uniform(0 5000) 8.62 20.76
B Uniform(0 250) 8.62 19.94

B Spline 6.85 16.60
EBS1 Gamma(alpha1 beta1) 6.65 19.80
EBS2 Gamma(alpha2 beta2) 6.76 23.11

Freqentist 6.86 13.91

Table 5.4: Posteria mean and SE of infected individual counts.

N posterior mean N posterior SE
B Gamma(0.01 0.01) 6.80 29.96

B Uniform(0 5000) 7.62 20.03
B Uniform(0 250) 7.62 19.94

B Spline 6.86 16.49
EBS1 Gamma(alpha1 beta1) 6.73 21.97
EBS2 Gamma(alpha2 beta2) 6.79 23.87

Table 5.5: Mean squear error of EM and Bayesian with 6 different priors.

MSE
EM Back-projection Scenario 1 8895.84
EM Back-projection Scenario 2 19356.49

Empirical Bayesian Back-projection Scenario 1 46231.63
Empirical Bayesian Back-projection Scenario 2 61020.59

Bayesian Spline prior 24683.41
Bayesian Gamma(0.01 0.01) prior 84666.40

Bayesian Uniform(0 5000) prior 44590.26
Bayesian Uniform(0 250) prior 42843.34
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Chapter 6

Discussion and conclusions

The present thesis gave an example for solving unobserved data problem
with both Bayesian and traditional frequentist methods. We are interested
in inferring the time point of disease exposure/transmission using individ-
ual’s symptom onset data. The results clearly show that the Bayesian back-
projecting method is a reliable method for point estimation of infected inci-
dence. Our conclusion is based on the identity of the results from Bayesian
and standard frequentist methods.

We also found an almost equal posterior mean by testing different param-
eters of the Uniform distribution. It indicates that the noninformative prior
is especially robust when the distribution has been determined. In addition,
the gamma distribution also leads to a similar posterior mean compared to
the frequentist method.

The penalized spline regression for prior estimation leading to the lowest
MSE implies that the semi-parametric regression applied to prior estimation
has some advantages. The minimal MSE may be due to its close relevance
to the data. This method can be considered as a nonparametric Empirical
Bayesian approach. In our analyses, the optimal number of knots for smooth-
ing used in penalized spline regression remains to be determined, which could
be studied by using cross-validation in the future.

In addition, we performed the EM back-projection method for lambda
estimation, and then generated data. The bootstrap simulation has been
introduced for re-sampling in order to determine a confidence interval. Both
parametric and nonparametric bootstrapping were tested. By parametric
bootstrapping of λ, we generated the onset individual data 1000 times with
replacement, then estimated λ and, a confidence interval of estimation ex-
pected. However, the step-by-step bootstrap simulation process is compli-
cated for the time series data. As a consequence, we did not reach the λ
estimation step, and terminated the process after generating the onset indi-
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vidual data . In contrast, the Bayesian back-projection approach has some
advantage because its MCMC simulation simplifies the complex integration.
We obtained the posterior confidence interval in one step.

To summarize, this thesis establishes the Bayesian back-projection ap-
proach for unobserved data estimation by applying HUS outbreak time series
data. By comparing the EM and Bayesian back projection methods, as well
as the different priors of the Bayesian approach, we obtained some experi-
ence on the prior selection when no prior information could be obtained. It
can be summarized on three aspects. Firstly, the flat distribution of prior
gives the better modeling effect, indicated by comparing uniform to gamma
distribution. It is also determinated by comparison of scenario 1 and 2 in
Empirical Bayesian approach. As a prior, scenario 1, giving a relative flatter
curve than scenario 2, leads to a better modeling result. Secondly, the simu-
lation technique applying to prior generation leads to similar posterior means
in scenario 1 and 2. It indicates that the simulation technique generalized
the data relevant prior, giving a stable result. Thirdly, comparing the re-
sult using the Bayesian Spline priora and noninformative prior, the Bayesian
Spline priora shows the less MSE than noninformative prior wihich indicates
a better result. However, the noninformative prior gives a more objective
modeling because the prior information is unrelated to the analyzed data.
The advantage and limitation of informative and noninformative prior are
topics to discuss in the future.
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Chapter 8

Appendix

8.1 R code for EM back projection

require("surveillance")

require("xts")

require("xtable")

rm(list=ls(all=TRUE))

load("~/project of master degree/O104Outbreak.RData")

ls()

incu.pmf

ts.hus

plot(ts.hus,xlab="Time Day since 2011-04-01 ",type="h")

##timepoint 40-80 fig1

plot(incu.pmf,xlab="incubation Time (Day)", type="h")

##incubation time ditribution fig2

##back-projection with ts.hus real data

sts <- new("sts",epoch=1:length(ts.hus),observed=matrix(ts.hus,ncol=1))

bp.control <- list(k=2,eps=1e-4,iter.max=1000,verbose=TRUE,eq3a.method="C")

sts.bp.k0 <- backprojNP(sts, incu.pmf=incu.pmf, control=bp.control)

plot(sts.bp.k0,xlab="Time (Day since 2011-04-01)",

xaxis.labelFormat=NULL,legend.opts=NULL)##fig3

upperbound(sts.bp.k0)

plot(upperbound(sts.bp.k0),xaxis.labelFormat=NULL,legend.opts=NULL,

type="h")timepoint 30-60

##Create a curve (as modelling result) of lambda(t)

##scenario 1

##all of the patients infected during the time interval t0 to t0+L+1

t0<-30

L<-30

T <-length(ts.hus)
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average<-sum(observed(sts))/(L+1)

lambda1<-c((rep(0,(t0-1))),(rep(average,(L+1))),(rep(0,(T-t0-L))))

plot(lambda1,type="l",xlab="Time (Day since 2011-04-01)",

xaxis.labelFormat=NULL, ylab="No. infected", main="lambda1 for scenario 1")#Fig 5

#scenario 2

## Directly use the result of exposure curve from real data

lambda2<-upperbound(sts.bp.k0)

plot(lambda2,type="l",xlab="Time (Day since 2011-04-01)",xaxis.labelFormat

3=NULL, ylab="No. infected", main="lambda2 for scenario 2")#Fig 6

#create a new incu.pmf for newy function

T <-length(ts.hus)

d.max <- T-1

d.grid <- seq(0,d.max,by=1)

Len<-length(incu.pmf)

incu.pmfnew<-c(incu.pmf,(rep(0,(T-Len))))

barplot(height=incu.pmfnew,names.arg=d.grid,width=1,space=0,

xlab="Delay D (in days)",ylab="Probability")#figure4

I<-length(incu.pmfnew)

#newy function

newy<-function(lambda){

flambda<-matrix(0,nrow=length(ts.hus),ncol=length(ts.hus))

for(i in 1:length(ts.hus)){

for(j in 1:length(ts.hus)){

if (i >= j) {

flambda[i,j]<-incu.pmfnew[i-j+1]*lambda[j]

}

}

}

mut<-rowSums(flambda)

set.seed(1234)

y<-vector("list",length(ts.hus))

for (i in 1:length(ts.hus)){

y[[i]]<-rpois(1,mut[i])

}

y<-as.numeric(y)

return(y)

}

#calculate newy with lambda 1

newy(lambda1)

stssimulationS1 <- new("sts",epoch=1:length(newy(lambda1)),

observed=matrix(newy(lambda1),ncol=1))

bp.control <- list(k=4,eps=1e-4,iter.max=1000,verbose=TRUE,eq3a.

method="C")

sts.bp.k0.simS1 <- backprojNP(stssimulationS1, incu.pmf=incu.pmf,

control=bp.control)

plot(sts.bp.k0.simS1,xlab="Time (Day since 2011-04-01)",
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xaxis.labelFormat=NULL,legend.opts=NULL)

lines(lambda1,xaxis.labelFormat=NULL,legend.opts=NULL,col="red")

legend(x="topright",c("onset","infected","lambda1"),lty=c(1,2,1),

lwd=c(1,1,1),col = c(1,4,2))

infectedS1<-upperbound(sts.bp.k0.simS1)#[27:67]>1

plot(infectedS1,xlab="Time (Day since 2011-04-01)",

xaxis.labelFormat=NULL,legend.opts=NULL,type="l")

lines(lambda1,xaxis.labelFormat=NULL,legend.opts=NULL,col="red")

legend(x="topright",c("infected","lambda1"),lty=c(1,1),

lwd=c(1.5,1.5),col = #c(1,2))

residuals1<-sum(lambda1-infectedS1)##residuals1=20 for k=0,k=2,k=4

MSE.EM.lambda1<-sum((lambda1-infectedS1)^2)

## estimate lambda acording to Scenario 1

estimatedlambdaS1<-infectedS1 ##[27:67]

plot(estimatedlambdaS1,type="l",xlab="Time (Day since 2011-04-01)",

ylab="No.infected")#Fig 10

##prior parameters for Scenario 1

aS1<-mean(estimatedlambdaS1)#alpha/beta

bS1<-var(estimatedlambdaS1)

alphaS1<-aS1^2/bS1

betaS1<-aS1/bS1

# calculate newy with lambda 2

newy(lambda2)

stssimulationS2 <- new("sts",epoch=1:length(newy(lambda2)),

observed=matrix(newy(lambda2),ncol=1))

bp.control <- list(k=4,eps=1e-4,iter.max=1000,verbose=TRUE,

eq3a.method="C")

sts.bp.k0.simS2 <- backprojNP(stssimulationS2, incu.pmf=incu.pmf,

control=bp.control)

plot(sts.bp.k0.simS2,xlab="Time (Day since 2011-04-01)",

main="Backprojection using for generated onset with lambda 2, k=4",

xaxis.labelFormat=NULL,legend

.opts=NULL)

lines(lambda2,xaxis.labelFormat=NULL,legend.opts=NULL,col="red")

legend(x="topright",c("onset","infected","lambda2"),lty=c(1,2,1),

lwd=c(1,1,1),col = c(1,4,2))

infectedS2<-upperbound(sts.bp.k0.simS2)##[35:71]>1

plot(infectedS2,xlab="Time (Day since 2011-04-01)",

xaxis.labelFormat=NULL,legend.opts=NULL,type="l")

lines(lambda2,xaxis.labelFormat=NULL,legend.opts=NULL,col="red")

legend(x="topright",c("infected","lambda2"),lty=c(1,1),

lwd=c(1.5,1.5),col = c(1,2))

residuals2<-sum(lambda2-infectedS2)##residuals2=19 for k=0,k=2,k=4,

MSE.EM.lambda2<-sum((lambda2-infectedS2)^2)

## estimate lambda according to Scenario 2

estimatedlambdaS2<-infectedS2 ##[35:71]

plot(estimatedlambdaS2,type="l",xlab="Time (Day since 2011-04-01)",
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ylab="No.infected")#Fig 14

##prior parameters for Scenario 2

aS2<-mean(estimatedlambdaS2)#alpha/beta

bS2<-var(estimatedlambdaS2)

alphaS2<-aS2^2/bS2

betaS2<-aS2/bS2 sqrt(bS2)

8.2 R code for bootstrap

8.2.1 Parametric bootstrap

##newy function without seed

newy.f<-function(lambda){

flambda<-matrix(0,nrow=length(ts.hus),ncol=length(ts.hus))

for(i in 1:length(ts.hus)){for(j in 1:length(ts.hus))

{if (i >= j) {

flambda[i,j]<-incu.pmfnew[i-j+1]*lambda[j]

}

}

}

mut<-rowSums(flambda)

y<-vector("list",length(ts.hus))

for (i in 1:length(ts.hus)){

y[[i]]<-rpois(1,mut[i])

}

y<-as.numeric(y)

return(y)

}

#begin bootstrap resampling

d<-replicate(1000,newy.f(lambda1))

i<-sample(1000,replace=T)

qt<-vector("list",length(ts.hus))

for(i in 1:length(ts.hus)){

qt[[i]]<-quantile(d[i,],c(0.975,0.5,0.025))

}

ul<-unlist(qt)

ul97.5<-vector("list",length(ts.hus))

for(i in 1:length(ts.hus)){

ul97.5[[i]]<-ul[3*i-2]
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}

ul50<-vector("list",length(ts.hus))

for(i in 1:length(ts.hus)){

ul50[[i]]<-ul[3*i-1]

}

ul25<-vector("list",length(ts.hus))

for(i in 1:length(ts.hus)){

ul25[[i]]<-ul[3*i]}

##plot for quantiles

plot(unlist(ul97.5),type="l",col="blue",

xlab="Time (Day since 2011-04-01)",ylab="No. onset",

main="Bootstrap quantiles of onset counts")

lines(unlist(ul50),typ="l")

lines(unlist(ul25),typ="l",col="red")

legend(x="topright",c("97.5 quantile","median","2.5 quantile"),

lty=c(1,1,1),lwd=c(1,1,1),col = c(4,1,2))

8.2.2 Nonparametric bootstrap

library(boot)

i<-sample(123,replace=T)

#function

infected.fun<-function(data,i){

d<-data[i,]c(mean(d))}

##begin bootstrap

infectedS1.boot<-boot(data=infectedS1, statistic=infected.fun, R=1000)

AS1<-apply(infectedS1.boot$t, 2, sd)

MeanS1<-mean(apply(infectedS1.boot$t, 1, mean))

CIHS1<-MeanS1+1.96*AS1/sqrt(T)

CILS1<-MeanS1-1.96*AS1/sqrt(T)

8.3 R code for Bayesian approach

install.packages("rjags")

library("rjags")

#Bayesian method
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n.chains<-3

init <- lapply(1:n.chains,function(i) {

list(.RNG.name="base::Mersenne-Twister",.RNG.seed=i*10)

})

Yt<-as.vector(ts.hus)

m <- jags.model('C:/Users/Bei/Documents/project of master degree/

R code/model13.bug',

data = list(y=Yt,n=length(Yt),d.pmf=incu.pmfnew), n.chains = n.chains,

n.adapt=1000)

list.samplers(m)

m$state()

samplesGa <- coda.samples(m, c('lambda'),n.iter=4000)

plot(samplesGa,density=FALSE)

gelman.plot(samplesGa,ylim=c(1,2))

Based on the above plot we decide to remove the first 3000 as burn-

in.

summary(window(samplesGa,start=3001))

SGa<-as.matrix(samplesGa)

median1Ga<-apply(SGa,2,median)[1:100]#cut after 100

quantile1Ga<-apply(SGa,2,quantile,0.025)[1:100]#cut after 100

quantileGa<-apply(SGa,2,quantile,0.975)[1:100]#cut after 100

plot(quantileGa,typ="s",col="blue",xlab="Time (Day since 2011-04-

01)",

main="Posterior lambda for gamma (0,01 0,01) as prior")#fig.13

lines(median1Ga,typ="s")

lines(quantile1Ga,typ="s",col="red")

legend(x="topright",c("97.5 quantile","median","2.5 quantile"),

lty=c(1,1,1),lwd=c(1,1,1),col = c(4,1,2))

mean1Ga<-apply(SGa,2,mean)[1:100]

averageGa<-mean(mean1Ga)

stGa<-sqrt(var(mean1Ga))

MSE.Ga.lambda1<-sum((mean1Ga-lambda1[1:100])^2)

MSE.Ga.lambda2<-sum((mean1Ga-lambda2[1:100])^2)

#model

##gamma(0.01,0.01) as prior

model{

for(i in 1:n){

lambda[i] ~ dgamma(0.01,0.01)#Prior for lambda
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N[i] ~ dpois(lambda[i])}

for(i in 1:n){

for(j in 1:i){d.pmf.f.N[i,j]<-d.pmf[i-j+1]*N[j]

}

}

for(i in 1:n){

cum.d.pmf.N[i]<-sum(d.pmf.f.N[i,1:i])

mu[i]<-cum.d.pmf.N[i]

y[i] ~ dpois(mu[i])}

}

#Model uniform (0,5000) as prior

model{

for(i in 1:n){

lambda[i] ~ dunif(0,5000)#Prior for lambda

N[i] ~ dpois(lambda[i])}

for(i in 1:n){

for(j in 1:i){

d.pmf.f.N[i,j]<-d.pmf[i-j+1]*N[j]

}

}

for(i in 1:n){

cum.d.pmf.N[i]<-sum(d.pmf.f.N[i,1:i])

mu[i]<-cum.d.pmf.N[i]

y[i] ~ dpois(mu[i])

}

}

#Model for Empirical Bayesian

model{for(i in 1:n){

lambda[i] ~ dgamma(alpha,beta) #Prior for lambda

N[i] ~ dpois(lambda[i])}

for(i in 1:n){

for(j in 1:i){

d.pmf.f.N[i,j]<-d.pmf[i-j+1]*N[j]

}

}

for(i in 1:n){

cum.d.pmf.N[i]<-sum(d.pmf.f.N[i,1:i])

mu[i]<-cum.d.pmf.N[i]

y[i] ~ dpois(mu[i])

}
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}

#Model for penalized spline regression as prior

model{

for(i in 1:n){

y[i] ~ dpois(mu[i])

mu[i]<-cum.d.pmf.N[i]

cum.d.pmf.N[i]<-sum(d.pmf.f.N[i,1:i])

}

for(i in 1:n){

for(j in 1:i){

d.pmf.f.N[i,j]<-d.pmf[i-j+1]*N[j]

}

}

for(i in 1:n){

N[i] ~ dpois(lambda[i])

##penalized spline regression

log(lambda[i])<-mfe[i]+mre10[i]+mre20[i]

mfe[i]<-X[i,1]+betaS*X[i,2]

mre10[i]<-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+b[5]*Z[i,5]

+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+b[9]*Z[i,9]+b[10]*Z[i,10]

mre20[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]+b[15]*

Z[i#,15]

+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+b[19]*Z[i,19]+b[20]*

Z[i,20]

}

betaS ~ dnorm(0,1.0E-6)

for (k in 1:20) {

b[k]~dnorm(0,taub)

}

taub ~ dgamma(1.0E-6,1.0E-6)

}

##data

Yt<-as.vector(ts.hus)

n<-length(Yt)

## Smoothing

num.knots<-20

covariate<-seq(1,n,by=1)
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X<-cbind(rep(1,n),covariate)

knots<-quantile(unique(covariate),seq(0,1,length=(num.knots+2))[-

c(1,(num

.knots+2))])

Z_K<-(abs(outer(covariate,knots,"-")))^3

OMEGA_all<-(abs(outer(knots,knots,"-")))^3

svd.OMEGA_all<-svd(OMEGA_all)

## Bayesian jags model

mP <- jags.model('C:/Users/Bei/Documents/project of master degree/

R code/model17.bug',

data = list(y=Yt,n=n,X=X,Z=Z,d.pmf=incu.pmfnew), n.chains = n.chains,

n.adapt=1000)

list.samplers(mP)

mP$state()

samplesmPlambda <- coda.samples(mP, c('lambda'),n.iter=5000)##n.iter=50000

plot(samplesmPlambda,density=FALSE)

gelman.plot(samplesmPlambda,ylim=c(1,2))

Based on the above plot we decided to remove the first 3000 as burn-

in.

summary(window(samplesmPlambda,start=3000))

SmPlambda<-as.matrix(samplesmPlambda)

median1mPlambda<-apply(SmPlambda,2,median)[1:100]#cut after 100

quantile1mPlambda<-apply(SmPlambda,2,quantile,0.025)[1:100]#cut af-

ter 100

quantilemPlambda<-apply(SmPlambda,2,quantile,0.975)[1:100]#cut af-

ter 100

plot(quantilemPlambda,typ="s",col="blue",

xlab="Time (Day since 2011-04-01)",

main="Posterior lambda for prior with penalized spline regression" )

lines(median1mPlambda,typ="s")

lines(quantile1mPlambda,typ="s",col="red")

legend(x="topright",c("97.5 quantile","median","2.5 quantile"),

lty=c(1,1,1),lwd=c(1,1,1),col = c(4,1,2))

mean1mPlambda<-apply(SmPlambda,2,mean)[1:100]

averagemPlambda<-mean(mean1mPlambda)

stmPlambda<-sqrt(var(mean1mPlambda))

MSE.mP.lambda1<-sum((mean1mPlambda-lambda1[1:100])^2)

MSE.mP.lambda2<-sum((mean1mPlambda-lambda2[1:100])^2)
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