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Abstract

In epidemiological studies it is important to adjust for potential con-
founders when assessing the relationship between an explanatory variable
and the outcome, in order to not obtain false, or miss true, statistically
significant association between these two factors. Matching is a way to ad-
just for confounding having as a main advantage that it is not needed for
the relationship between the outcome and the confounders to be specified,
that way mis-specifications of the model can be avoided. In this Thesis,
we consider continuous or ordinal outcomes and match away confounding
using the Rank Ordered (RO) logit model by stratifying the cohort based
on the confounders and ranking the outcomes within each stratum. When
the underlying model is linear in parameters and the error terms have an
Extreme Value Type I distribution the resulting likelihood is equivalent
to the likelihood for the stratified Cox proportional hazards model. Con-
sequently, the RO-logit model can be used for matching away possibly
complex relationships between confounders and exposure/outcome by fit-
ting stratified Cox-regressions. One challenge with the RO-logit model is
ties. Similar to Cox-regression in survival analysis, the estimator assumes
no ties in the outcome, but since the estimator has the same form as a
stratified Cox-regression it is reasonable to assume that methodology for
handling ties in survival analysis can be adopted in the RO-logit model. In
this thesis we will investigate this by evaluating four methods for handling
ties in Cox-regression, namely the Efron, Breslow, Discrete and Adding
methods, by simulating scenarios with different degree of ties and differ-
ent exposure and error distributions. We conclude that all four methods
perform equivalently well, with the Adding method having a small ad-
vantage over the others. However, for some methods we found some bias.
Moreover, we applied the RO-logit model on a data set from Maria Ung-
dom health clinic. The data set contains information about clients of the
clinic, their family history, a selection of single nucleotide polymorphisms
(SNP) and alcohol or drug abuse score of the individuals. The aim of the
analysis was to identify significant relationships between some SNPs and
alcohol or drug abuse score of the individuals participating in this study
when the family history is adjusted for by matching on it. Significant
associations between some of the SNPs and the alcohol and drug abuse
score were detected. Nevertheless, some methods of handling ties in the
model were biased and they are advised to be applied with caution.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-

mail: aggmara@gmail.com. Supervisor: Tom Britton.



Acknowledgements

I would like to express my deepest gratitude to my supervisor Nathalie Støer at the

Department of Medical Epidemiology and Biostatistics at Karolinska Institute, for her

guidance and support in my research. I really appreciate the possibility to work with this

project. I would also like to express my gratitude to my supervisor Tom Britton at the

Department of Mathematical Statistics at Stockholm University, for the advice, feedback

and support during the writing of this thesis. Furthermore, I would like to thank the

professor Marie Reilly at the Department of Medical Epidemiology and Biostatistics

(MEB) at Karolinska Institute, for introducing me to the opportunity to work with

Nathalie Støer and this project and all the help she provided in our weekly progress

meetings.

Moreover, I would like to dedicate this thesis to my family for all the support and

tolerance in my education. Your love, guidance and understanding throughout my life

was priceless.

Finally, I would like to thank all of my friends in Stockholm and in Greece for being at

my side, for your help and for loving me back.

Angeliki Maraki

Athens, August 15, 2016

ii



Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

Abbreviations ix

1 Introduction 1

2 Cox Proportional Hazards Model 3

2.1 Introduction to the Cox Proportional Hazards Model . . . . . . . . . . . . 3

2.2 The Partial Likelihood Function for the Proportional Hazards Model with
No Tied Event Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The Methods for Handling Tied Event Times . . . . . . . . . . . . . . . . 6

2.3.1 The Discrete Method . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 The Breslow Method . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 The Efron Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.4 The Adding Method . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Rank-Ordered Logit Model 11

3.1 Introduction to the Rank-Ordered Logit Model . . . . . . . . . . . . . . . 11

3.2 Extreme Value Type I Distribution . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Derivation of the Rank-Ordered Logit Model . . . . . . . . . . . . . . . . 13

3.4 Usage of the Rank-Ordered Logit Model in an Epidemiological Setting . . 23

4 R Programming and Simulations 25

4.1 Introduction to the Simulation Study and R Programming . . . . . . . . 25

4.2 Simulations using R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.3 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.4 Scenario 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.5 Results of Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



Contents iv

4.3 The R Packages Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Package ’foreign’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Package ’SpatialExtremes’ . . . . . . . . . . . . . . . . . . . . . . 34

4.3.3 Package ’stats’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.4 Package ’survival’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.5 Package ’xlsx’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Real Data Analysis 35

5.1 Description of the data set . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Results of real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Discussion and Conclusion 43

A The R Packages 47

A.1 The R Packages and The Functions Used In Simulations and Real Data
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1 Package ’foreign’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1.2 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1.2 Package ’SpatialExtremes’ . . . . . . . . . . . . . . . . . . . . . . 48

A.1.2.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1.2.2 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1.3 Package ’stats’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1.3.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1.3.2 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1.4 Package ’survival’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1.4.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1.4.2 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.1.5 Package ’xlsx’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1.5.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.1.5.2 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B Tables 55

B.1 Results of The Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.2 Results of The Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . 59

B.2.1 Alcohol abuse score . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.2.2 Drug abuse score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 77



List of Figures

3.1 Extreme Value Type I probability density function, using different variate
relationships V: (a, b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Extreme Value Type I distribution function, using different variate rela-
tionships V: (a, b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Kernel density function for alcohol abuse score (AUDIT). . . . . . . . . . 37

5.2 Kernel density function for drug abuse score (DUDIT). . . . . . . . . . . . 37

v



List of Tables

4.1 Scenario I of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest were normally distributed and the
error terms extreme value type I distributed. The true parameter, β1,
was assumed to take values 0 and 0.15 and three different degrees of
ties (proportion of ties) were considered and handled by three different
approximations (methods). The results are the average coefficient (Avg
Coeff), the average variance (Avg Var), the empirical variance (Emp Var),
the coverage (Cov), the type I error (Type I Error) and the power (Pow). 30

4.2 Scenario II of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest had a Binomial distribution and the
error terms extreme value type I distributed. The true parameter, β1,
was assumed to take values 0 and 0.15 and three different degrees of
ties (proportion of ties) were considered and handled by three different
approximations (methods). The results are the average coefficient (Avg
Coeff), the average variance (Avg Var), the empirical variance (Emp Var),
the coverage (Cov), the type I error (Type I Error) and the power (Pow). 32

5.1 Response scores for AUDIT and interpretation. . . . . . . . . . . . . . . . . 36

5.2 The significant results of applying the RO-logit model and the Kruskal-
Wallis test on the real data, with exposure the particular SNP and out-
come the alcohol abuse score. The methods for handling ties used are the
Efron, Breslow, Discrete and Adding. . . . . . . . . . . . . . . . . . . . . . 39

5.3 The significant results of applying the RO-logit model and the Kruskal-
Wallis test on the real data, with exposure the particular SNP and out-
come the drug abuse score. The methods for handling ties used are the
Efron, Breslow, Discrete and Adding. . . . . . . . . . . . . . . . . . . . . . 41

B.1 Scenario III of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest and the error terms were normally
distributed. The true parameter, β1, was consider to take values 0 and
0.15 and three different degrees of ties (proportion of ties) were considered
and handled by three different approximations (methods). The results are
the average coefficient (Avg Coeff), the average variance (Avg Var), the
empirical variance (Emp Var), the coverage (Cov), and the power (Pow). . 56

vi



List of Tables vii

B.2 Scenario IV of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest had a Binomial distribution and the
error terms normally distributed. The true parameter, β1, was consider
to take values 0 and 0.15 and three different degrees of ties (proportion
of ties) were considered and handled by three different approximations
(methods). The results are the average coefficient (Avg Coeff), the aver-
age variance (Avg Var), the empirical variance (Emp Var), the coverage
(Cov), and the power (Pow). . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.3 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Efron method (Part 1). . . . . . . . . . . . . . . 59

B.4 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Efron method (Part 2). . . . . . . . . . . . . . . 60

B.5 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Breslow method (Part 1). . . . . . . . . . . . . . 61

B.6 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Breslow method (Part 2). . . . . . . . . . . . . . 62

B.7 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Discrete method (Part 1). . . . . . . . . . . . . . 63

B.8 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Discrete method (Part 2). . . . . . . . . . . . . . 64

B.9 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Adding method (Part 1). . . . . . . . . . . . . . 65

B.10 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for
handling ties used is the Adding method (Part 2). . . . . . . . . . . . . . 66

B.11 The results of applying the Kruskla-Wallis test on the real data, with
exposure the particular SNP and outcome the alcohol abuse score. . . . . 67

B.12 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Efron method (Part 1). . . . . . . . . . . . . . . 68

B.13 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Efron method (Part 2). . . . . . . . . . . . . . . 69

B.14 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Breslow method (Part 1). . . . . . . . . . . . . . 70

B.15 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Breslow method (Part 2). . . . . . . . . . . . . . 71

B.16 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Discrete method (Part 1). . . . . . . . . . . . . . 72



List of Tables viii

B.17 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Discrete method (Part 2). . . . . . . . . . . . . . 73

B.18 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Adding method (Part 1). . . . . . . . . . . . . . 74

B.19 The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the drug abuse score. The method for
handling ties used is the Adding method (Part 2). . . . . . . . . . . . . . 75

B.20 The results of applying the Kruskla-Wallis test on the real data, with
exposure the particular SNP and outcome the drug abuse score. . . . . . . 76



Abbreviations

EVT1 Extreme Value Type I

RO-logit model Rank Ordered logit model

SNP SingleNucleotide Polymorphism

ix



To Sotiris and Gesthimani.

x



Chapter 1

Introduction

An essential part of an epidemiological study is to adjust for potential confounding

when assessing the relationship between exposure and outcome. When the outcome

is continuous, the confounders are traditionally adjusted for, by including them in a

regression model. Matching is another way to adjust for confounders and one of its

main advantages is that the relationship between the outcome and the confounders does

not need to be specified and is thus robust to model misspecification. A method which

can be used to match away confounding with continuous outcomes is the Rank Ordered

(RO) logit model. This method was originally developed and applied in the econometrics

literature, but transferred to epidemiological settings (Støer N. et. al., 2016 & Andersson

M., 2015).

The idea is to stratify the cohort based on the confounders and then rank the outcomes

within each stratum. The population is stratified into different stratums with respect

to the confounders that we must adjust for. For each stratum all shared confounders

are matched away, since all individuals within the stratum have similar or identical

confounding profile. The underlying model is linear in the parameters and by assuming

an extreme value type I distribution for the error term the resulting likelihood is on the

same form as the likelihood for a stratified Cox-regression. Thus the RO-logit model

opens up for the possibility of ”matching away” possibly complex relationships between

confounders and exposure/outcome by fitting stratified Cox-regressions.

One potential challenge with the RO-logit model is ties. For truly continuous data this

is not a problem, but in practice even for continuous data some ties can be expected due

to for instance rounding. Additionally, we also believe that the RO-logit model can be

useful for ordinal data that somehow captures an underlying (unmeasured) continuous

outcome, for instance different types of scores. Such data may however create a large

1



Chapter 1 Introduction 2

portion of ties, and learning how to deal with these ties will be an important step towards

making the RO-logit model more applicable in epidemiology.

In this thesis we focused on handling ties when the outcome is ordinal. Handling ties in

the RO-logit model was briefly mentioned by Allison and Christakis (1994), and as far

as we know, this has never been fully investigated, neither numerically or theoretically.

The aim of this project is therefore to thoroughly evaluate available tools for handling

ties applied in Cox-regression in the RO-logit model.

By simulating scenarios with different exposure and error distributions and different

fraction of ties we were able to evaluate the methods of handling ties.

We applied the model on a data set from Maria Ungdom (Maria Ungdom website

http://mariaungdom.se), a health clinic in Stockholm, which contained information

about clients of the clinic, their family history, a selection of single nucleotide polymor-

phisms (SNP) (described in detail in Section 5.1), and alcohol or drug abuse score of

the individuals. The objective is to investigate whether it is a significant relationship

between some single nucleotide polymorphisms (SNP), and alcohol or drug abuse score

of the individuals participating in this study when the family history is adjusted for, by

matching on it.

In Chapter 2, one can find the theory behind the Cox proportional hazards model

along with the different methods of handling ties in the model and the Rank-Ordered

logit model is presented in Chapter 3 . In Chapter 4 we simulated scenarios with

different degree of ties and different exposure and outcome distributions. This Chapter

also includes the results of the simulations and a description of the R packages used

throughout this project. The data analysis is to be found in Chapter 5, where we apply

the tools of handling ties on the data set from Maria Ungdom and look at the associations

between a selection of SNPs and alcohol and drug abuse scores.



Chapter 2

Cox Proportional Hazards Model

2.1 Introduction to the Cox Proportional Hazards Model

In survival analysis, the data involve time to the occurrence of a certain event, such

as time of death or time from diagnosis to remission, which is described by a random

variable T . As described by Collette (Collett 2003, Chapter 1), when T is a continuous

random variable, the cumulative distribution function (c.d.f) is F (t) = P (T ≤ t) and

gives the probability that the event has occurred prior to time t , t > 0. The probability

to experience the event of interest beyond a certain time t is given by the so called

Survival function, S(t), given by

S(t) = P (T > t) = 1− F (t). (2.1)

The hazard function, denoted by λ(t)1, is defined as the probability that an individual

has the event at time t, conditional on he or she not having the event before t (Collett

2003, Chapter 1). The hazard function (λ(t)) equals the limit, as ∆t approaches zero, of

a probability statement about survival, divided by ∆t, where ∆t denotes a small interval

of time (Collett 2003, Chapter 1), i.e.

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)
∆t

. (2.2)

For the Survival function, S(t), for continuous time, the probability density function

(p.d.f.) is

1Some books use h(t), instead of λ(t), as notation for the hazard function

3



Chapter 2 Cox Proportional Hazards Model 4

f(t) = −dS(t)

dt
, (2.3)

and the hazard rate then can be written as

λ(t) =
f(t)

S(t)
(Fisher et al. 1993, Chapter 16). (2.4)

Cox (1972) defined the proportional hazards model for a set of explanatory variables x,

x = (x1, x2, . . . , xp)
′, as

λ(t ; x) = λ0(t) exp{xTβ}, (2.5)

where, the function λ0(t) is called the baseline hazard function and is the hazard function

for an individual for whom the values of all the explanatory variables (that make the

vector x) are zero (Collett 2003, Chapter 1).

Moreover, the general proportional hazards model can be expressed in the form

log(λ(t ; x)) = log(λ0(t)) + β1x1 + β2x2 + · · ·+ βpxp, (2.6)

and re-expressed in the form

log

(
λ(t ; x)

λ0(t)

)
= β1x1 + β2x2 + · · ·+ βpxp, (2.7)

where the λ(t ; x)
λ0(t) = ψ, is defined as the hazard ratio or relative hazard, it is always

non-negative and does not depend on time (Collett 2003, Chapter 3).

Hence, from Equation (2.7) one can see that the general proportional hazards model

can be regarded as a linear model for the logarithm of the hazard ratio (Collett 2003,

Chapter 3).

It is typical for survival data that not all individuals experience the event of interest by

the end of the follow-up. The observation for an individual who has not experienced

the event by the end of the study is said to be a censored observation (Collett 2003,

Chapter 1). However, censoring is not relevant in our situation which will become evident

in Chapter 3.
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2.2 The Partial Likelihood Function for the Proportional

Hazards Model with No Tied Event Times

In this section we will derive the partial likelihood function for the proportional hazard

model following the derivation made by Collett (Collett 2003, Chapter 3). Suppose we

have r ordered from smallest to largest and distinct event times, i.e. t(1) < · · · < t(r) and

hence the order statistic is O(t)= [t(1), . . . , t(r)] (Kalbfleisch et. al. 1980, Chapter 4).

We let this set of r, distinct and ordered event times t(1), t(2), . . . , t(r), be the observed

event times with no ties. Moreover, the vector of explanatory variables for the individual

j who has the event at some time t(j) is x(j). We consider the probability that the j’th

individual has the event at some time t(j) (given that he had not experienced the event

before time t(j)), conditional on t(j) being one of the event times, that is

P (individual j has the event at t(j) | one event at t(j)). (2.8)

Knowing that the probability of an event A conditional on an event B is given by

P (A | B) =
P (A ∩ B)

P (B)
,

Equation (2.8) can be written as

P (individual j has the event at t(j))

P (one event at t(j))
. (2.9)

The numerator of the expression above is the hazard function, as given in Equation (2.5),

i.e. the probability of the event to occur for the j’th individual at time t(j) and can be

written as λ(t(j) ; x(j)). Let R(t(j)) denote the set of individuals at risk at time t(j).

Then the denominator of Equation (2.9) equals the sum of the values of λ(t(j) ; x(l))

over those individuals (whom we index by l) in the risk set at time t(j) (i.e. over all the

individuals in R(t(j))). Therefore, Equation (2.9) becomes

λ(t(j) ; x(j))∑
l∈R(t(j))

λ(t(j) ; x(l))
.

Now, on using Equation (2.5), the baseline hazard (λ0(t(j))) in the numerator and the

denominator cancels out leaving us with

exp{xT(j)β}∑
l∈R(t(j))

exp{xT(l)β}
. (2.10)
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Finally, the partial likelihood function is the product of these conditional probabilities

over all r event times, i.e.

L(β) =

r∏
j=1

exp{xT(j)β}∑
l∈R(t(j))

exp{xT(l)β}
. (2.11)

As also stated in Collett (Collett 2003, Chapter 3), the likelihood function derived above

considers probabilities for the individuals that have the event but does not directly

consider probabilities for the censored individuals. That is the reason it is referred to as

the partial likelihood function.

2.3 The Methods for Handling Tied Event Times

The proportional hazards model is based on several assumptions one of which concerns

tied events, i.e. events with exactly the same survival time (Borucka 2014).

In this section we will present four methods for handling tied events in the Cox pro-

portional hazards model, namely the Discrete, the Breslow the Efron and the Adding

methods. Those four methods are approximations to the appropriate likelihood function

in the presence of tied observations and provide computational advantages over the cal-

culation of the exact likelihood especially when the proportion of ties is relatively large

(Collett 2003, Chapter 3).

2.3.1 The Discrete Method

Cox (1972) proposed an approximation assuming that the time scale is discrete and

hence the tied event times occurred at exactly the same time (Collett 2003, Chapter

3). In this section we will derive the Discrete approximation for the partial likelihood

function for the proportional hazard model. We will follow the derivation for the partial

likelihood function when there are no tied event times made by Collett (Collett 2003,

Chapter 3) taking ties into consideration.

Suppose we have r ordered from smallest to largest and distinct event times, i.e. t(1) <

· · · < t(r). We consider the probability that dj individuals have the event of interest

at some time t(j) (given that they had not experienced the event before time t(j)),

conditional on t(j) being one of the event times, where dj number of events occur, that

is
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P (individuals j1, j2 , . . . , jdj have the event at t(j))| dj events at t(j)), (2.12)

(Collett 2003, Chapter 3). Knowing that the probability of an event A conditional on

an event B is given by

P (A | B) =
P (A ∩ B)

P (B)
,

Equation (2.12) can be written as

P (individuals j1, j2 , . . . , jdj have the event at t(j) out of R(t(j))∑
l∈R(t(j) ; dj) P (individuals l1, l2 , . . . , ldj have the event at t(j) out of R(t(j))

, (2.13)

where, as also stated in section 2.2, R(t(j)) denotes the set of individuals at risk at time

t(j). Furthermore, R(t(j) ; dj) is a set of dj possible individuals from R(t(j)) and the

summation in the denominator denotes the sum over all possible sets of dj individuals

from R(t(j)) without replacement (Collett 2003, Chapter 3).

In our calculations, xjm denotes the vector of explanatory variables for the m’th indi-

vidual who has the event at t(j) and xln denotes the vector of explanatory variables for

the n’th individual in the l’th set from R(t(j) ; dj), (Collett 2003, Chapter 3). Thus,

Equation (2.13) becomes

λ(t(j) ; xj1) · λ(t(j) ; xj2) · . . . · λ(t(j) ; xjdj )∑
l∈R(t(j) ; dj) λ(t(j) ; xl1) · λ(t(j) ; xl2) · . . . · λ(t(j) ; xldj )

.

Now, using Equation (2.5), the baseline hazard (λ0(t(j))) in the numerator and the

denominator cancels out leaving us with

exp{xTj1 β} · exp{xTj2 β} · . . . · exp{xTjdj β}∑
l∈R(t(j) ; dj) exp{xTl1 β} · exp{xTl2 β} · . . . · exp{xTldj β}

,

which can also be written as

exp{
∑dj

m=1 x
T
jm
β}∑

l∈R(t(j) ; dj) exp{
∑dj

n=1 x
T
ln
β}

. (2.14)

Let sj , sj =
∑dj

m=1 xjm , be the vector of sums of each of the p covariates for all the dj

individuals that have the event at the j’th event time, t(j), j = 1, . . . , r (Collett 2003,
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Chapter 3). In addition, let sl, sl =
∑dj

n=1 xln , be the vector of sums of each of the

p covariates for all the dj individuals in the l’th set drawn out of R(t(j) ; dj) (Collett

2003, Chapter 3). Equation (2.14) is then equivalent to

exp{sjβ}∑
l∈R(t(j) ; dj) exp{slβ}

. (2.15)

Then, the Discrete approximation of the partial likelihood is the product of these con-

ditional probabilities over all r event times, i.e.

L(β) =
r∏
j=1

exp{sjβ}∑
l∈R(t(j) ; dj) exp{slβ}

, (2.16)

as also stated in Collett (Collett 2003, Chapter 3). The Discrete approximation can be

used for a large proportion of tied events, and is preferable (Kalbfleisch et. al. 1980,

Chapter 4).

2.3.2 The Breslow Method

Breslow (1974) suggested an approximation to the likelihood function when tied obser-

vations are present.

Suppose as above, that we have r ordered from smallest to largest and distinct event

times, i.e. t(1) < · · · < t(r). As stated in Collett (Collett 2003, Chapter 3), let sj be the

vector of sums of each of the p covariates for all the individuals that have the event at

the j’th event time, t(j), j = 1, . . . , r. Moreover, suppose dj individuals have the event of

interest at t(j) and then xhjk is the value of the h’th explanatory variable, h = 1, . . . , p,

for the k’th of the dj individuals who have the event at time t(j) (Collett 2003, Chapter

3). Then we have that the h’th element of sj is

shj =

dj∑
k=1

xhjk,

where the dj events at time t(j) are considered to occur sequentially and to be distinct

(Collett 2003, Chapter 3). Furthermore, as also stated in section 2.2, R(t(j)) denotes

the set of individuals at risk at time t(j).

The approximation to the likelihood that Breslow suggested is
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L(β) =

r∏
j=1

exp{sjβ}
[
∑

l∈R(t(j))
exp{xlβ}]dj

, (2.17)

which, apart from a constant proportionality, is the same as the one Peto (1972) proposed

(Collett 2003, Chapter 3). This approximation is quite easy to compute and is a fair

approximation of the likelihood function, i.e. gives reasonably good estimates, when

the number of tied events is not too large (Collett 2003, Chapter 3). However, the

Breslow method can demonstrate a severe bias for a large proportion of tied event times

(Kalbfleisch et. al. 1980, Chapter 4).

2.3.3 The Efron Method

Efron (1977) suggested

L(β) =
r∏
j=1

exp{sjβ}∏dj
k=1[

∑
l∈R(t(j))

exp{slβ} − (k − 1)d−1
k

∑
l∈D(t(j))

exp{xlβ}]
(2.18)

as an approximation to the likelihood function for the proportional hazards model in

presence of tied event times, where D(t(j)) denotes the set of those individuals who have

the event at time t(j) (Collett 2003, Chapter 3). This approximation is closer to the

proper likelihood function than the Breslow approximation, but it is more challenging

to compute. However, both Breslow and Efron methods often produce similar results.

(Collett 2003, Chapter 3).

2.3.4 The Adding Method

Another method we used for handling tied event times was, as we will refer to it in this

thesis, the Adding method. In practice this method deals with ties by adding a small,

random number sampled from a Uniform distribution only to the values of the event

times that are duplicated. Hence, there are no longer any ties and we can use the partial

likelihood for a stratified Cox proportional hazards regression model with distinct and

ordered event times t(1), t(2), . . . , t(r), as described in section 2.2, i.e.

L(β) =
r∏
j=1

exp{xT(j)β}∑
l∈R(t(j))

exp{xT(l)β}
. (2.19)

In Equation (2.19), as also described in section 2.2, x(j) denotes the vector of explanatory

variables for the individual j who has the event at some time t(j) and R(t(j)) denotes
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the set of individuals at risk at time t(j). Since time is continuous, the event times are

not truly tied and the Adding method is particularly reasonable when the ties are due

to rounding. Moreover, it is quite simple and fast in computations.



Chapter 3

The Rank-Ordered Logit Model

3.1 Introduction to the Rank-Ordered Logit Model

Matching is a way to adjust for confounders and is common practice in epidemiology.

The idea is to stratify the population into different clusters, where the individuals within

a cluster have similar or identical confounding profile (i.e. they are similar with respect

to the confounders that we want to adjust for). A benefit of matching compared to

regular adjustment is that the confounders are matched away, thus the relationship

between the outcome and the confounders does not need to be specified. Although

matching is mainly used in case-control studies, it can be also applied in cohort designs

through the matched cohort designs (Sjölander et al., 2013), where exposed subjects are

matched to unexposed subjects on confounders (Greenland et al., 1990). An alternative

to the matched cohort design, is for continuous outcomes, is the Rank Ordered (RO)

logit model (Beggs et al., 1981).

The Rank-Ordered (RO) logit model, was originally developed and applied in econo-

metrics (Beggs et al., 1981), for instance in marketing research. The data are generated

by asking individuals to rank a set of items or services (Allison et. al, 1994) and an

unobserved continuous utility or preference function governing these ranks is assumed.

In an epidemiological setting each choice will represent a person and each person in the

econometric setting can be seen as a matched set in an epidemiological setting, since all

variables describing the person are the same for all choices that the individual makes.

The estimation is based on the ranks and not the observed outcomes since these are

unobserved in the econometric setting. The idea is to stratify the cohort based on the

confounders and then rank the outcome within each stratum. The underlying model is

linear in the parameters and by assuming an extreme value type I distribution for the

11
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error term, the likelihood of the ranks is on the same form as the likelihood for a stratified

Cox-regression. Thus the RO-logit model opens up for the possibility of matching away

possibly complex relationships between confounders and exposure/outcome by fitting

stratified Cox-regressions.

Similar to Cox-regression in survival analysis, the estimator assumes no ties in the

outcome, but since the estimator has the same form as a stratified Cox-regression it

is reasonable to assume that methodology for handling ties in survival analysis can be

adopted in the RO-logit model.

3.2 Extreme Value Type I Distribution

Extreme Value Type I distribution (EVT1), also referred to as the Gumbel distribution,

is a specific example of the generalised extreme value distribution (Gorgoso et al., 2014)

and is the most common of the three extreme value distributions (Forbes et al., 2010,

Chapter 19). In probability theory and statistics, the Extreme Value Type I distribution

(Gumbel, 1954) is used to model the maximum or the minimum values for a sample of

independent and identically distributed continuous random variables (Gorgoso et al.,

2014). The distribution function is defined as

FX(x) = exp

{
− exp

{
−x− a

b

}}
, (3.1)

where a, a ∈ R, is the location parameter and b, b > 0, is the scale parameter (Forbes

et al., 2010, Chapter 19). The probability density function is defined as

fX(x) =
1

b
exp

{
−x− a

b

}
exp

{
− exp

{
−x− a

b

}}
, (3.2)

with the mean equal to a− bΓ′(1), where Γ′(1) = −0.57722 is the first derivative of the

gamma function Γ(n) with respect to n at n = 1 and the variance equal to

b2π2

6
≈ 1.645 · b2 (3.3)

(Forbes et al., 2010, Chapter 19). In our study we will only use the special case when

the location parameter is zero and the scale parameter is one (a = 0 & b = 1), known

as the standard extreme value type I distribution (as a = 0 & b = 1 is called the

standard Gumbel extreme value variate) (Forbes et al., 2010, Chapter 19). Throughout
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this thesis, every reference to the Extreme value type I distribution or EVT1 will imply

this special case.

Hence, for the standard extreme value type I distribution we can rewrite the distribution

function as

FX(x) = exp {− exp {−x}}, (3.4)

as well as the probability density function as

fX(x) = exp {−x} exp {− exp {−x}}. (3.5)

Hence, the mean of the standard extreme value type I distribution is a − bΓ′(1) =

−Γ′(1) = 0.57722 and the variance is equal to

b2π2

6
=
π2

6
. (3.6)

For illustration purposes only, using different variate relationships (Variate V : a, b)

we create figures 3.1 and 3.2 of the Extreme Value Type I distribution function and

density function.

Figure 3.1: Extreme Value Type I
probability density function, using dif-
ferent variate relationships V: (a, b).

Figure 3.2: Extreme Value Type I
distribution function, using different

variate relationships V: (a, b).

3.3 Derivation of the Rank-Ordered Logit Model

Logit based models are often used in marketing and economics research to model the

choices of individuals, and each individual is asked to rank a collection of elements
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(Beggs et. al., 1981). Let Yij be the rank given to element j by the i’th individual.

For J elements, Yij can take values form 1 to J , i.e. j = 1, 2, . . . , J (Allison et. al,

1994). We assume that i has utility Uij for element j (Allison et. al, 1994), and that

individual i gives a higher rank to element j than to element k (i.e. the utility of item j

is greater than the utility of item k), when Uij > Uik (Allison et. al, 1994). Moreover,

Uij is the sum of a deterministic component Vij and a stochastic component εij , that is

Uij = Vij + εij , where εij is assumed to be independent and standard extreme value type

I distributed, namely εij
iid∼ EVT1 (Beggs et. al., 1981). Without loss of generality if we

assume the ordering Ui1 > Ui2 > · · · > UiJ one can think of Vi1 as a numerical quantity

that shows to which degree individual i prefers element 1 over all elements and Vi2 the

numerical quantity to which extend individual i prefers element 2 over all remaining

elements (2, 3, . . . , J) and so on (Allison et. al, 1994).

For our calculations, without loss of generality we can drop the person index, i, and

have

Uj = Vj + εj (3.7)

(Beggs et. al., 1981). We will prove that if we assume a linear relationship between Vj

and the regression coefficients, namely Vj = zTβ = β1zj1 + β2zj2 + · · · + βpzjp, and an

extreme value type 1 distribution for the error term, the the resulting likelihood of the

ranks is on the same form as the likelihood for a stratified Cox-regression.

As given by Beggs (Beggs et. al., 1981), the induced distribution for the Uj can be

written as

H(Uj) = exp {− exp {−(Uj − Vj)}} (3.8)

and we can also calculate

dH(Uj) = exp {− exp {−(Uj − Vj)}} exp {−(Uj − Vj)}. (3.9)

In this section we will derive the rank-ordered logit model following the derivation made

by Beggs et. al. (Beggs et. al., 1981).

We can now compute the probability that an individual gives a higher rank to element

j than to element k, i.e. Uj > Uk by
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P (Uj > Uk , j 6= k) =

∫ ∞
−∞

∫ Uj

−∞
dH(Uk) dH(Uj)

=

∫ ∞
−∞

∫ Uj

−∞
e−e

−(Uj−Vj)

e−(Uj−Vj) e−e
−(Uk−Vk)

e−(Uk−Vk) dUk dUj

=

∫ ∞
−∞

e−e
−(Uj−Vj)

e−(Uj−Vj)
[
e−e

−(Uk−Vk)
]Uj

−∞
dUj

=

∫ ∞
−∞

e−e
−(Uj−Vj)

e−(Uj−Vj) e−e
−(Uj−Vk)

dUj

=

∫ ∞
−∞

exp {−e−(Uj−Vj) − e−(Uj−Vk)} e−(Uj−Vj) dUj

= eVj
∫ ∞
−∞

exp {−e−Uj (eVj + eVk)} e−Uj dUj

=


Substitutions : x = exp {−Uj}

dx = − exp {−Uj} dUj

(−∞ to∞) becomes (∞ to 0)


= −eVj

∫ 0

∞
exp {−x (eVj + eVk)} dx

= − eVj

eVj + eVk

[
− exp {−x (eVj + eVk)}

]0

∞

=
eVj

eVj + eVk
. (3.10)

The probability that the utility of choice j is greater than the utility of choice k for all

k 6= j, k ∈ (1 , J) can be calculated as

P (Uj > Uk , ∀k 6= j) =

∫ ∞
−∞

∫ Uj

−∞

∏
k 6=j

dH(Uk) dH(Uj)

=

∫ ∞
−∞

∫ Uj

−∞

∏
k 6=j

e−e
−(Uj−Vj)

e−(Uj−Vj) e−e
−(Uk−Vk)

e−(Uk−Vk) dUk dUj

=

∫ ∞
−∞

∏
k 6=j

e−e
−(Uj−Vj)

e−(Uj−Vj)
[
e−e

−(Uk−Vk)
]Uj

−∞
dUj

=

∫ ∞
−∞

e−e
−(Uj−Vj)

e−(Uj−Vj) e
−

∑
k 6=j

e−(Uj−Vk)

dUj
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=

∫ ∞
−∞

e−e
−(Uj−Vj)

e−(Uj−Vj) e
−e−Uj (

∑
k 6=j

eVk )

dUj

=

∫ ∞
−∞

exp {−e−(Uj−Vj) − e−Uj

∑
k 6=j

eVk

} e−(Uj−Vj) dUj

=

∫ ∞
−∞

exp {−e−Uj

eVj +
∑
k 6=j

eVk

} e−(Uj−Vj) dUj

= eVj
∫ ∞
−∞

exp {−e−Uj

(
J∑
k=1

eVk

)
} e−Uj dUj

=


Substitutions : x = exp {−Uj}

dx = − exp {−Uj} dUj

(−∞ to∞) becomes (∞ to 0)


= −eVj

∫ 0

∞
exp {−x

(
J∑
k=1

eVk

)
} dx

= − eVj(∑J
k=1 e

Vk

)[− exp {−x

(
J∑
k=1

eVk

)
}
]0

∞

=
eVj(∑J
k=1 e

Vk

) . (3.11)

We want to calculate the probability that Uj is less or equal than t given that the utility

of choice j is larger than the utility of choice k, Uj > Uk, for j 6= k,

P (Uj ≤ t | Uj > Uk , j 6= k) =
P (Uj ≤ t

⋂
Uj > Uk , j 6= k)

P (Uj > Uk , j 6= k)
. (3.12)

The probability in the numerator of Equation (3.12) is equal to

P (Uj ≤ t
⋂

Uj > Uk , j 6= k) =

=

∫ t

−∞

∫ Uj

−∞
dH(Uk) dH(Uj)

=

∫ t

−∞

∫ Uj

−∞
e−e

−(Uj−Vj)

e−(Uj−Vj) e−e
−(Uk−Vk)

e−(Uk−Vk) dUk dUj

=

∫ t

−∞
e−e

−(Uj−Vj)

e−(Uj−Vj)
[
e−e

−(Uk−Vk)
]Uj

−∞
dUj
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=

∫ t

−∞
e−e

−(Uj−Vj)

e−(Uj−Vj) e−e
−(Uj−Vk)

dUj

=

∫ t

−∞
exp {−e−(Uj−Vj) − e−(Uj−Vk)} e−(Uj−Vj) dUj

= eVj
∫ t

−∞
exp {−e−Uj (eVj + eVk)} e−Uj dUj

=


Substitutions : t = exp {−Uj}

dt = − exp {−Uj} dUj

(−∞ to t) becomes (∞ to e−Uj )


= −eVj

∫ e−Uj

−∞
exp {−t (eVj + eVk)} dt

= − eVj

eVj + eVk

[
− exp {−t (eVj + eVk)}

]e−Uj

∞

=
eVj

eVj + eVk
exp {−e−Uj (eVj + eVk)}

=
eVj

eVj + eVk
exp {−e−Uj elog(eVj +eVk )}

=
eVj

eVj + eVk
exp {− exp {−(Uj − log(eVj + eVk)}} (3.13)

By inserting the probabilities in Equations (3.10) and (3.13) into Equation (3.12), we

obtain

P (Uj ≤ t | Uj > Uk , j 6= k) =
P (Uj ≤ t

⋂
Uj > Uk , j 6= k)

P (Uj > Uk , j 6= k)

=

eVj

eVj +eVk
exp {− exp {−(Uj − log(eVj + eVk)}}

eVj

(eVj +eVk )

= exp {− exp {−(Uj − log(eVj + eVk)}}. (3.14)

Consequently, we want to calculate the same conditional distribution of Uj , given that

Uj is preferred over all Uk, for all k 6= j, i.e.

P (Uj ≤ t | Uj > Uk , ∀j 6= k) =
P (Uj ≤ t

⋂
Uj > Uk , ∀j 6= k)

P (Uj > Uk , ∀j 6= k)
. (3.15)

From Equation (3.11) we have that the denominator equals eVj

(
∑J

k=1 e
Vk)

, thus we only

need to compute the numerator, i.e.
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P (Uj ≤ t
⋂

Uj > Uk , ∀j 6= k) =

∫ t

−∞

∫ Uj

−∞

∏
k 6=j

dH(Uk) dH(Uj)

=

∫ t

−∞

∫ Uj

−∞

∏
k 6=j

e−e
−(Uj−Vj)

e−(Uj−Vj) e−e
−(Uk−Vk)

e−(Uk−Vk) dUk dUj

=

∫ t

−∞

∏
k 6=j

e−e
−(Uj−Vj)

e−(Uj−Vj)
[
e−e

−(Uk−Vk)
]Uj

−∞
dUj

=

∫ t

−∞
e−e

−(Uj−Vj)

e−(Uj−Vj) e
−

∑
k 6=j

e−(Uj−Vk)

dUj

=

∫ t

−∞
e−e

−(Uj−Vj)

e−(Uj−Vj) e
−e−Uj (

∑
k 6=j

eVk )

dUj

=

∫ t

−∞
exp {−e−(Uj−Vj) − e−Uj

∑
k 6=j

eVk

} e−(Uj−Vj) dUj

=

∫ t

−∞
exp {−e−Uj

eVj +
∑
k 6=j

eVk

} e−(Uj−Vj) dUj

= eVj
∫ t

−∞
exp {−e−Uj

(
J∑
k=1

eVk

)
} e−Uj dUj

=


Substitutions : t = exp {−Uj}

dt = − exp {−Uj} dUj

(−∞ to t) becomes (∞ to e−Uj )


= −eVj

∫ exp {−Uj}

∞
exp {−t

(
J∑
k=1

eVk

)
} dt

− eVj(∑J
k=1 e

Vk

)[− exp {−t

(
J∑
k=1

eVk

)
}
]e−Uj

∞

− eVj(∑J
k=1 e

Vk

)(− exp {−e−Uj

(
J∑
k=1

eVk

)
}
)

eVj(∑J
k=1 e

Vk

)( exp {−e−(Uj−log(
∑J

k=1 e
Vk ))}

)
. (3.16)

Hence, we have calculated the conditional distribution of Uj , given that Uj is preferred

over all Uk, for all k 6= j, by inserting the probabilities of Equations (3.11) and (3.16)

into Equation (3.15), i.e.

P (Uj ≤ t | Uj > Uk , ∀j 6= k) = exp {−e−(Uj−log(
∑J

k=1 e
Vk ))}, (3.17)
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and we see that it is the distribution function of an extreme value type I distribution

with location parameter a = log(
∑J

k=1 e
Vk) and scale parameter b = 1. Furthermore,

for a set of J elements, we will compute the conditional probability of U1, the element

with the highest rankling, being less than t, given that the ranking of the remaining

alternatives is also known, i.e.,

P (U1 ≤ t | U1 > U2 > · · · > UJ) =
P (U1 ≤ t

⋂
U1 > U2 > · · · > UJ)

P (U1 > U2 > · · · > UJ)

=
P (t ≥ U1 > U2 > · · · > UJ)

P (U1 > U2 > · · · > UJ)
(3.18)

The probability in the numerator of Equation (3.18) is equal to

P (t ≥ U1 > U2 > · · · > UJ) =

=

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−1

−∞
dH(UJ) dH(UJ−1) . . . dH(U1)

=

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−1

−∞

J∏
k=1

e−e
−(Uk−Vk)

e−(Uk−Vk) dUJ dUJ−1 . . . dU1

=

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−1

−∞

J−1∏
k=1

e−e
−(Uk−Vk)

e−(Uk−Vk)︸ ︷︷ ︸
S

e−e
−(UJ−VJ )

e−(UJ−VJ ) dUJ dUJ−1 . . . dU1

=

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−2

−∞

J−1∏
k=1

S
[
e−e

−(UJ−VJ )
]UJ−1

−∞
dUJ−1 dUJ−2 . . . dU1

=

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−2

−∞

J−1∏
k=1

S e−e
−(UJ−1−VJ )

dUJ−1 dUJ−2 . . . dU1

=

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−2

−∞

J−2∏
k=1

S e−e
−(UJ−1−VJ−1)

e−(UJ−1−VJ−1)·

· e−e
−(UJ−1−VJ )

dUJ−1 dUJ−2 . . . dU1

=

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−2

−∞

J−2∏
k=1

S exp {−e−UJ−1(eVJ + eVJ−1)}·

· e−e
−(UJ−1−VJ−1)

dUJ−1 dUJ−2 . . . dU1

(3.19)
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= eVJ−1

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−2

−∞

J−2∏
k=1

S exp {−e−UJ−1(eVJ + eVJ−1)}e−UJ−1 dUJ−1 dUJ−2 . . . dU1

=


Substitutions : x = exp {−UJ−1}

dx = − exp {−UJ−1} dUJ−1

(−∞ to UJ−2) becomes (e−UJ−2 to∞)


= −eVJ−1

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−3

−∞

∫ ∞
e−UJ−2

J−2∏
k=1

S exp {−x(eVJ + eVJ−1)} dx dUJ−2 . . . dU1

= − eVJ−1

eVJ + eVJ−1

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−3

−∞

J−2∏
k=1

S
[
− exp {−x(eVJ + eVJ−1)}

]∞
e−UJ−2 dUJ−2 . . . dU1

= − eVJ−1

eVJ + eVJ−1

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−3

−∞

J−2∏
k=1

S exp {−e−UJ−2(eVJ + eVJ−1)} dUJ−2 . . . dU1

= − eVJ−1

eVJ + eVJ−1

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−3

−∞

J−3∏
k=1

S e−e
−(UJ−2−VJ−2)

e−(UJ−2−VJ−2)·

· exp {−e−UJ−2(eVJ + eVJ−1)} dUJ−2 . . . dU1

= − eVJ−1

eVJ + eVJ−1

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−3

−∞

J−3∏
k=1

S exp {−e−UJ−2(eVJ + eVJ−1 + eVJ−2)}·

· e−(UJ−2−VJ−2) dUJ−2 . . . dU1

(3.20)

P (t ≥ U1 > U2 > · · · > UJ) =

= − eVJ−1

eVJ + eVJ−1
· eVJ−2

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−3

−∞

J−3∏
k=1

S exp {−e−UJ−2(eVJ + eVJ−1 + eVJ−2)}·

· e−UJ−2 dUJ−2 . . . dU1

=


Substitutions : x = exp {−UJ−2}

dx = − exp {−UJ−2} dUJ−2

(−∞ to UJ−3) becomes (e−UJ−3 to∞)


=

eVJ−1

eVJ + eVJ−1
· eVJ−2

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−3

−∞

J−3∏
k=1

S ·

· exp {−x(eVJ + eVJ−1 + eVJ−2)} dx dUJ−3 . . . dU1

= · · · =
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=
eVJ−1

eVJ + eVJ−1

eVJ−2

eVJ + eVJ−1 + eVJ−2

∫ t

−∞

∫ U1

−∞
. . .

∫ UJ−4

−∞

J−3∏
k=1

S ·

· exp {−e−UJ−3(eVJ + eVJ−1 + eVJ−2)} dUJ−3 . . . dU1

= · · · =

=
J−1∏
k=2

(
eVk∑J
n=k e

Vn

)∫ t

−∞
exp {−e−U1(

J∑
f=1

eVf )} e−(U1−V1) dU1

= · · · =

=

J−1∏
k=2

(
eVk∑J
n=k e

Vn

)
eV1∑J
f=1 e

Vf
exp {−e−U1(

J∑
f=1

eVf )}

=
J−1∏
k=1

(
eVk∑J
n=k e

Vn

)
exp {− exp {−(U1 − log(

J∑
f=1

eVf ))}}

=
J∏
k=1

(
eVk∑J
n=k e

Vn

)
exp {− exp {−(U1 − log(

J∑
f=1

eVf ))}}. (3.21)

Furthermore we can calculate the probability in the denominator of Equation (3.18) as

P (U1 > U2 > · · · > UJ) =

=

∫ ∞
−∞

∫ U1

−∞
. . .

∫ UJ−1

− inf∞ y
dH(UJ) dH(UJ−1) . . . dH(U1)

=

∫ ∞
−∞

∫ U1

−∞
. . .

∫ UJ−1

−∞

J∏
k=1

e−e
−(Uk−Vk)

e−(Uk−Vk) dUJ dUJ−1 . . . dU1

=

∫ ∞
−∞

∫ U1

−∞
. . .

∫ UJ−1

−∞

J−1∏
k=1

e−e
−(Uk−Vk)

e−(Uk−Vk)︸ ︷︷ ︸
S

e−e
−(UJ−VJ )

e−(UJ−VJ ) dUJ dUJ−1 . . . dU1

=

∫ ∞
−∞

∫ U1

−∞
. . .

∫ UJ−2

−∞

J−1∏
k=1

S
[
e−e

−(UJ−VJ )
]UJ−1

−∞
dUJ−1 dUJ−2 . . . dU1

=

∫ ∞
−∞

∫ U1

−∞
. . .

∫ UJ−2

−∞

J−1∏
k=1

S e−e
−(UJ−1−VJ )

dUJ−1 dUJ−2 . . . dU1

Eq.(3.21)
= · · · =
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=

J−1∏
k=2

(
eVk∑J
n=k e

Vn

)
· eV1

∫ ∞
−∞

exp {−e−U1(
J∑
f=1

eVf )} e−U1 dU1

=


Substitutions : x = exp {−U1}

dx = − exp {−U1} dU1

(−∞ to∞) becomes (∞ to 0)


= −

J−1∏
k=2

(
eVk∑J
n=k e

Vn

)
· eV1

∫ ∞
−∞

exp {−x

 J∑
f=1

eVf

} dx
= −

J−1∏
k=2

(
eVk∑J
n=k e

Vn

)
eV1(∑J
f=1 e

Vf
)[− exp {−x

 J∑
f=1

eVf

}]0

∞

=
J−1∏
k=1

(
eVk∑J
n=k e

Vn

)

=

J∏
k=1

(
eVk∑J
n=k e

Vn

)
. (3.22)

Hence, by inserting the probabilities of Equation (3.21) and (3.22) into Equation (3.18)

we obtain

P (U1 ≤ t | U1 > U2 > · · · > UJ) = exp {− exp {−(U1 − log(
J∑
f=1

eVf ))}}, (3.23)

which, together with Equation (3.17), indicates that the conditional distribution of U1

given the ordering U1 > U2 > · · · > UJ is independent of the ranking. Thus, by assuming

a linear in parameter form for Vij ,

Vij = zTijβ = β1zj1 + β2zj2 + · · ·+ βpzjp, (3.24)

and if the ranking of an individual’s J choices is Ri = (r1, r2, . . . , rJ), the probability

of the individual’s observed ranking is P (Ri). With the use of Equation (3.22) we can

calculate this probability as

P (Ri) = P (Ur1 > Ur2 > · · · > UrJ )

=
J∏
j=1

(
e
zTrjβ∑J

m=j e
zTrmβ

)
, (3.25)
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and we can conclude that the probability of the individual’s observed ranking equals

the likelihood of the Cox proportional hazards model, which was derived in Chapter 2

(Equation (2.11).

The likelihood for an independent sample of N individuals can be calculated as L(β) =∏N
i=1 P (Ri), thus the log likelihood equals

l(β) =

N∑
i=1

log(P (Ri))

=

N∑
i=1

J∑
j=1

zTirjβ − log

 J∑
m=j

ez
T
irm

β

 . (3.26)

A unique maximum of the likelihood function exists, since the log likelihood is globally

concave in β (Beggs et. al., 1981).

3.4 Usage of the Rank-Ordered Logit Model in an Epi-

demiological Setting

In an epidemiological setting we apply the rank-ordered logit model to data where the

outcome is continuous and we stratify the cohort based on the confounders, hence the

individuals within each stratum have equal or similar confounding profile. When the

assumptions of the RO-logit model are fulfilled, the regression coefficient β can be in-

terpreted as the per unit change of the outcome when the exposure is increased by one

unit in the same way as a standard linear regression. However, when the assumptions

are not fulfilled the coefficient can still be interpreted as the log odds ratio, i.e. the log

odds of having a higher ranking when the exposure is increased by one unit. This can

be seen by Equation 3.10, where we computed the probability that an individual gives

a higher rank to element j than to element k, i.e. Uj > Uk. This probability was of the

form P (Uj > Uk , j 6= k) = eVj

eVj +eVk
, which imply that the model can be considered as

a conditional logistic regression.

In order to use the RO-logit model the data is stratified based on confounders. For

categorical variables one can take the levels of the variable to create strata, while for

continuous variables some kind of categorisation is necessary.

In our data set (described in detail in Chapter 5) the outcome was the alcohol abuse

score and the drug abuse score of the individuals which is not continuous but ordinal.
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However, these scores can be seen as the observed realisation of the underlying contin-

uous ”strength of addiction” which can still be ranked, thus the RO-logit model can be

used as an estimator.

The outcome may contain ties, especially with an ordinal outcome, and the aim of the

thesis is to evaluate methods for handling ties.



Chapter 4

R Programming and Simulations

4.1 Introduction to the Simulation Study and R Program-

ming

In order to evaluate the different methods for handling ties we performed simulations of

scenarios with different degree of ties and different exposure and error distributions. For

each scenario we simulated 1000 samples of 1000 individuals each and in this Chapter

we will describe the different scenarios as well as the tools applied for handling ties.

Moreover, the outcome of the simulations will be presented in detail and the packages

and the functions used in R will be introduced as well as the reasons for using them.

4.2 Simulations using R

We simulated 4 different scenarios with different exposure and outcome distributions.

For each of the four scenarios, we assumed different degree of ties. In the first and second

scenario we simulated Extreme Value Type I distributed error terms, and the exposure

was normally distributed in the first and binomial in the second. For scenario 3 and 4

we had normally distributed error terms and the exposure was normally distributed in

the third and binomial in the fourth. The reason for choosing to simulate these four

scenarios was to evaluate the different methods of handling ties (the Breslow, the Efron,

the Discrete and the Adding methods) in various situations.

25
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4.2.1 Scenario 1

ε ∼ EVT1( 0 , 1 ) & x ∼ N(0.5 ∗ c , 1.5)

In our simulation study, we simulated 1000 samples of 1000 individuals each. The linear

model that we used is

yi = β0 + β1 · xi + β2 · ci + εi,

where i denotes the i-th individual (i = 1, . . . , 1000), the x and c variables are the

exposure and stratum variables respectively and ε the error terms.

For each sample, we created a data set of 1000 individuals, containing a c-variable for

each person sampled from a vector with integers from 1 to 10, with equal probability.

This way we obtained 10 categories (strata) and every individual belongs to one of

those 10 groups. Moreover, the exposures of interest were denoted by x, have a Normal

distribution, the mean of which depends on the c-variable in order to make c a confounder

and more specifically the mean equals 0.5∗ c. In addition, the error terms were assumed

to be independent and Extreme Value Type I distributed.

We specified β0 = 17 and β2 = 1, while for β1 we considered 0 and 0.15. Furthermore,

we created three different proportions of tied event times in our data set (5%, 20% and

60%). In order to do so, after sorting the outcome in increasing order, we specified

a number of categories to which the sample of 1000 individuals was to be divided in

and instead of the real value of outcomes in the group, all the individuals in the same

category were given the mean of the outcomes in the group. For a small proportion

of ties we chose 500 categories and in that way 5% of ties were created in the sample.

For a medium and large proportion of ties we divided the individuals into 200 and 50

categories respectively.

Since the underlying model is linear in the parameters and by assuming an extreme

value type I distribution for the error term the resulting likelihood is on the same form

as the likelihood for a stratified Cox-regression. In addition, for us the event indicator

in the Cox proportional hazards regression model (d) equals 1 for all individuals (see

Equation (3.26).Consequently, we fitted a stratified Cox proportional hazards regression

model using coxph (from survival package).
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For the different degree of ties, we used three different methods for handling ties imple-

mented in coxph, the Breslow, the Efron and the Discrete. In addition, as mentioned in

Section 2.3.4, we added a small, random number sampled from a Uniform distribution

to the values of the response variable that were duplicated, which is referred to as the

Adding method.

We will now present the R code for the the three different methods of handling ties. The

Efron method can be implemented as

coxph(Surv(y, d) ˜ x + strata(c), dataframe, ties = "efron") ,

the Breslow method as

coxph(Surv(y, d) ˜ x + strata(c), dataframe, ties = "breslow") ,

and the Discrete method as

coxph(Surv(y, d) ˜ x + strata(c), dataframe, ties = "exact") .

The Adding method was implemented by adding a small number from a uniform distri-

bution to the tied outcomes as

dataframe\$y[dup] <- runif(xn, min = 0.00001, max = 0.0001) + dataframe\$y[dup] ,

where xn is the number of tied outcomes and dup stands for ”duplicated” and gives the

indices of the vector of outcomes (y) that are tied). Thus, in R it suffice to fit a stratified

Cox proportional hazards regression model using coxph with the new outcome vector

with no ties.

The results of this simulation is found in Tables 4.1 in Section 4.2.5.

4.2.2 Scenario 2

ε ∼ EVT1( 0 , 1 ) & x ∼ Bin(1 , p)
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For Scenario 2 we followed the steps described above, but instead of a Normally dis-

tributed exposure variable, it is now sampled from a Binomial distribution, x ∼ Bin(1 , p),

where

pi =
exp{ci · 0.1}

1 + exp{ci · 0.1}
,

where i stands for the i-th individual. The results are found in Table 4.2 in Section

4.2.5.

4.2.3 Scenario 3

ε ∼ N( 0 , π2/6 ) & x ∼ N(0.5 ∗ c , 1.5)

This situation is similar to Scenario 1, where the exposure variable x is normally dis-

tributed and the mean of the Normal distribution depends on the c-variable. However,

the error terms εi,are normally distributed, with mean 0 and standard deviation π/
√

6,

ε ∼ N( 0 , π2/6 ).

The reason for the specific choice of standard deviation is to ensure equal variance for

the Extreme Value Type I and normally distributed error terms (as shown in Equation

(3.6) the Variance for EVT1 is π2

6 ). Table B.1 in Appendix B, displays the results of

this simulation.

4.2.4 Scenario 4

ε ∼ N( 0 , π2/6 ) & x ∼ Bin(1 , p)

Finally, in Scenario 4 we have the normally distributed error terms as above, ε ∼
N( 0 , π2/6 ), and the exposure variable has a Binomial distribution, x ∼ Bin(1 , p), as

described in Scenario 2. See Table B.2 in Appendix B for the results of this simulation.
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4.2.5 Results of Simulations

The results of our simulations are summarised in the two following tables (and the two

tables in Appendix B, Tables B.1 and B.2). For every scenario we calculated the average

coefficient, i.e. the mean of the estimated parameter, the average variance, i.e. the mean

of the estimated variances of the coefficients, the empirical variance, i.e. the variance

of the estimated coefficients, the coverage, i.e. the percentage of the times the 95%

confidence interval covers the true value of β1 and the power, i.e. the probability of

correctly rejecting the null hypothesis, H0, of the coefficient being 0. Our goal was to

evaluate the four available methods of handling ties in Cox-regression for the RO-logit

model, for different proportions of ties in the outcome and different exposure and error

distributions.
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ε ∼ EVT1( 0 , 1 ) & x ∼ N

True

Method

Prop of Avg Avg Emp

Cov

Type I

β1 Ties Coeff Var Var Error

(') (∗10−3) (∗10−3) (∗10−3)

0

NoTies - 0.9832 0.4710 0.4459 0.957 0.043

Efron

5% 0.1700 0.4700 0.4877 0.940 0.060

20% 1.6220 0.4696 0.4940 0.945 0.055

60% 1.1022 0.4671 0.4272 0.960 0.040

Breslow

5% 0.1734 0.4699 0.4816 0.944 0.056

20% 1.6236 0.4691 0.4727 0.948 0.052

60% 0.9724 0.4657 0.3639 0.970 0.030

Discrete

5% 0.1761 0.4761 0.4944 0.942 0.058

20% 1.7099 0.4926 0.5212 0.942 0.058

60% 1.1812 0.5706 0.5463 0.954 0.046

Adding

5% 0.1539 0.4705 0.4898 0.940 0.060

20% 1.5498 0.4709 0.4958 0.947 0.053

60% 1.4128 0.4710 0.4427 0.959 0.041

True

Method

Prop of Avg Avg Emp

Cov Powβ1 Ties Coeff Var Var

(') (∗10−3) (∗10−3)

0.15

NoTies - 0.1514 0.4938 0.4748 0.959 1

Efron

5% 0.1503 0.4925 0.5057 0.946 1

20% 0.1508 0.4921 0.5081 0.944 1

60% 0.1468 0.4889 0.4613 0.960 1

Breslow

5% 0.1494 0.4923 0.4996 0.949 1

20% 0.1476 0.4913 0.4865 0.953 1

60% 0.1342 0.4860 0.3880 0.910 1

Discrete

5% 0.1514 0.4992 0.5122 0.948 1

20% 0.1551 0.5180 0.4344 0.942 1

60% 0.1652 0.6051 0.5844 0.911 1

Adding

5% 0.1504 0.4929 0.5071 0.950 1

20% 0.1512 0.4935 0.5088 0.947 1

60% 0.1478 0.4933 0.4806 0.954 1

Table 4.1: Scenario I of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest were normally distributed and the error terms
extreme value type I distributed. The true parameter, β1, was assumed to take values
0 and 0.15 and three different degrees of ties (proportion of ties) were considered and
handled by three different approximations (methods). The results are the average
coefficient (Avg Coeff), the average variance (Avg Var), the empirical variance (Emp

Var), the coverage (Cov), the type I error (Type I Error) and the power (Pow).
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When β1 equals 0, Table 4.1 shows that for a small proportion of ties in the data (5%),

the estimated coefficient is closer to the true value of β1 when using the Adding method

compared to the others. Moreover, none of the methods returns biased estimates, in the

sense that all the, somewhat crudely calculated, 95% confidence intervals cover the true

value of β1. However, the Type I error is above 0.05, indicating that we could incorrectly

reject the null hypothesis (false positive) with a probability more than the commonly

accepted 5%. In addition, the Adding method also performs better for the medium

proportion of ties (20%), the Efron and Breslow are fairly good and the Discrete tends

to overestimate β1. However, for all four methods we get somewhat biased estimates

but the type I errors are closer to 5%. In the case where the proportion of ties is large

(60%), Breslow seems to give a better approximation than the other three. Moreover,

the 95% confidence intervals for the coefficients cover the true value of β1 except of the

case of the Adding method, which returned a biased estimate. In addition, Type I error

was below 0.05 for all four methods. For all three degrees of ties, confidence interval

coverage for all three estimators fell in the range of 94− 97%. Moreover, our approach

is considered conservative, since the variance is in most of the cases overestimated.

In the case where β1 was equal to 0.15, and for a small and medium proportion of ties

(5 & 20%), Efron seems to be the best approximation, since using that method we get

the closest average coefficient to the true value of β1. Moreover, when handling ties with

the other 3 available methods, the true β1 is estimated quite well and empirical variance

is close to the average variance. However, there are some biased estimates when using

the Discrete for small proportion of ties (5%) and the Breslow and Discrete for medium

proportion of ties in the data (20%) respectively. For the large proportion of ties the

Adding method, performs better than the other three. The power is 1 for all three

degrees of ties and all methods of handling ties, while the confidence interval coverage

ranges from 91 to 96%.
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ε ∼ EVT1( 0 , 1 ) & x ∼ Bin

True

Method

Prop of Avg Avg Emp

Cov

Type I

β1 Ties Coeff Var Var Error

(') (∗10−3) (∗10−2) (∗10−2)

0

NoTies - 0.6303 0.4615 0.4559 0.956 0.044

Efron

5% -0.4663 0.4645 0.4338 0.953 0.047

20% -1.4723 0.4604 0.4454 0.958 0.042

60% 0.2696 0.4575 0.4315 0.964 0.036

Breslow

5% -0.5047 0.4613 0.4286 0.952 0.048

20% -1.3423 0.4601 0.4264 0.960 0.040

60% 0.3253 0.4563 0.3643 0.980 0.020

Discrete

5% -0.5080 0.4676 0.4403 0.951 0.049

20% -1.3830 0.4836 0.4711 0.955 0.045

60% 0.4827 0.5604 0.5486 0.961 0.039

Adding

5% -0.4568 0.4619 0.4355 0.953 0.047

20% -1.5498 0.4618 0.4534 0.956 0.044

60% -0.0373 0.4616 0.4569 0.960 0.040

True

Method

Prop of Avg Avg Emp

Cov Powβ1 Ties Coeff Var Var

(') (∗10−2) (∗10−2)

0.15

NoTies - 0.1509 0.4647 0.4538 0.961 0.612

Efron

5% 0.1496 0.4646 0.4362 0.953 0.603

20% 0.1478 0.4633 0.4465 0.957 0.572

60% 0.1451 0.4598 0.4258 0.966 0.588

Breslow

5% 0.1487 0.4644 0.4306 0.954 0.601

20% 0.1447 0.4629 0.4274 0.961 0.557

60% 0.1332 0.4584 0.3581 0.968 0.514

Discrete

5% 0.1508 0.4709 0.4424 0.954 0.603

20% 0.1522 0.4868 0.4726 0.956 0.574

60% 0.1639 0.5642 0.5436 0.960 0.601

Adding

5% 0.1498 0.4651 0.4381 0.951 0.609

20% 0.1483 0.4648 0.4528 0.955 0.575

60% 0.1465 0.4641 0.4495 0.959 0.592

Table 4.2: Scenario II of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest had a Binomial distribution and the error terms
extreme value type I distributed. The true parameter, β1, was assumed to take values
0 and 0.15 and three different degrees of ties (proportion of ties) were considered and
handled by three different approximations (methods). The results are the average
coefficient (Avg Coeff), the average variance (Avg Var), the empirical variance (Emp

Var), the coverage (Cov), the type I error (Type I Error) and the power (Pow).
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From Table 4.2 we can see that when β1 equals 0, and for a small and large proportion

of ties (5 & 60%), the Adding method of handling ties estimates the true value of β1

better, in the sense that the estimates for β1 are closest to the true value. For the medium

proportion of ties Breslow seems to give a better estimate for the true parameter than

all the other methods. The the mean of the estimated variances of the coefficients (the

average variance) is for all cases almost equal to the variance of the estimated coefficients

(the empirical variance) and the coverage ranges from 95.2−98%. Furthermore, the type

I error is on average around 5%. Also, the 95% confidence intervals for the coefficients

show that there is no bias, since in all case the confidence intervals cover the true value

of β1.

In the second half of Table 4.2, we see that when β1 = 0.15, and for all proportion of

ties the Efron and Adding methods preform better. The power is 1 for all cases and

all proportion of ties and the coverage falls between 91 and 95.9%. However, for 60%

of ties Efron and Discrete give biased estimates, while Breslow returns biased estimates

for both medium and large proportion of ties. The power ranges from 51.4% to 60.9%

and the variance is in all cases overestimated.

In Appendix B one can find the results of the simulation of Scenarios 3 (Table B.1) and

4 (Table B.2). For Scenario 3, when β1 equals 0, there is no bias, since in all cases the

confidence intervals cover the true value of β1. For a small proportion of ties the Breslow

method performs better, while for medium and large proportion of ties Adding method

gives estimates closer to the true β1. However, when β1 equals 0.15, the estimates are

biased for all methods and degrees of ties, which could be due to the normally distributed

error terms. Moreover, for all degrees of ties the Discrete method performs better than

the other three.

For Scenario 4 (Table B.2), when β1 equals 0, there are no biased estimates for all

methods and degrees of ties. For a small proportion of ties the Efron method performs

better, while for medium and large proportion of ties Adding method gives estimates

closer to the true β1. For β1 = 0.15, Discrete method is the best approximation although,

similarly with Scenario 3, there is bias for all methods and degrees of ties.

4.3 The R Packages Used

4.3.1 Package ’foreign’

In order to perform the real data analysis, we used the package ’foreign’ (cran.r-project.org)

to read the data that were provided in Stata format into a data frame in R.
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4.3.2 Package ’SpatialExtremes’

We used the function rgev of the SpatialExtremes package (cran.r-project.org) in

order to generate Extreme value type I distributed error terms in our simulations. We

specified a location parameter 0 and scale parameter 1 in all cases.

4.3.3 Package ’stats’

The Package ’stats’ (R Documentation) was used in multiple occasions throughout

our simulations and real data analysis. The function rnorm was used for the random

generation for the normal distribution. Moreover, The (S3) generic function density

was used to compute kernel density estimates and kruskal.test was used in order to

performs multiple Kruskal-Wallis rank sum tests.

4.3.4 Package ’survival’

In order to fit the Cox proportional hazards regression models needed in our analy-

sis, we used the function coxph of the package ’survival’ (cran.r-project.org). This

function also provided us with three possible options for handling tied event times, the

Breslow approximation, the Efron approximation and the ”discrete” option. Although,

as described below the options are ties=c("efron","breslow","exact"), the ”exact”

options as described in cran.r-project.org, stands for the Discrete approximation for

handling ties. More specifically, it is written in the description of the methods for han-

dling ties that ”Using the ”exact partial likelihood” approach the Cox partial likelihood

is equivalent to that for matched logisitic regression. (The clogit function uses the coxph

code to do the fit.) It is technically appropriate when the time scale is discrete and has

only a few unique values, and some packages refer to this as the ”discrete” option. There

is also an ”exact marginal likelihood” due to Prentice which is not implemented here”

(https://cran.r-project.org/web/packages/survival/survival.pdf).

4.3.5 Package ’xlsx’

As mentioned above, when performing the real data analysis it was needed to read

the data that were provided in Stata format into a data frame in R. Eventually, we

used the function write.xlsx, of the package ’xlsx’ (cran.r-project.org), to write a

a data.frame to an Excel workbook. This way it was easier to import data into R and

after ”clearing” the data set to re-import them when needed.
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Real Data Analysis

Maria Ungdom is a family planning and sexual health clinic in Stockholm, Sweden,

where children, adolescents and young adults (between the ages of 16 and 25 years)

who have problems with alcohol or drugs, can find help. Moreover, this clinic is part

of the Addiction Centre Stockholm and the Stockholm County Council, and it also

interacts with, among others, social services and the police (Maria Ungdom website

http://mariaungdom.se).

We were provided with a data set from Maria Ungdom, which we will describe in this

Chapter, along with the data analysis that we performed. We will use this data set

to investigate whether it is a significant relationship between some single nucleotide

polymorphisms (SNP) (described in detail in Section 5.1) included in the data set, and

alcohol or drug abuse score of the individuals participating in this study. Alcohol and

drug abuse score, which is our outcomes, indicate the size or graveness of the addiction,

and the higher the score, the greater the addiction. This is a very suitable data set for

this thesis since it is a nominal outcome with potential for a large degree of ties.

5.1 Description of the data set

The data set provided by Maria Ungdom, consisted of 180 individuals, clients of the

clinic who were addicted to alcohol and/or drugs, as well as their parents and siblings.

The data included information on alcohol and drug addiction both represented by a

score, AUDIT (Alcohol Disorders Identification Test) and DUDIT (Drug Use Disorders

Identification Test) respectively (the greater the score the more serious the abuse), which

in our data took values from 0 to 35 and from 0 to 42 respectively. Both the variables of

AUDIT and DUDIT (Bergman a. 2012, Chapter 2 page 20) are tools for identifying problems

35
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with alcohol and drugs. Both AUDIT and DUDIT are calculated by short questionnaires

with 10 and 11 questions respectively (Bergman a. 2012, Chapter 2 page 20). AUDIT

was developed by WHO (World Health Organization http://www.who.int/en/) in the

late 1980s and DUDIT was developed by the Karolinska Institute in the early 2000s, and

the calculation of the response scores of both instruments is done similarly (Bergman a.

2012, Chapter 2 page 20). For illustration purposes we include Table 5.1 (Bergman a.

2012, Chapter 2 page 21), where the response scores for AUDIT are presented.

Risk AUDIT
Interpretation

Level Points

Zone I
Men 0-7

Not risky alcohol habits
Women 0-5

Zone II
Men 8-15 Heavy alcohol consumption but not

Women 6-13 necessarily an abuse dependence

Zone III
Men 16-19 Problematic alcohol use, it is likely that

Women 14-17 there is an alcohol-related diagnosis

Zone IV
Men 20+ Very problematic alcohol consumption, it is

Women 18+ likely that there is an alcohol-related diagnosis

Table 5.1: Response scores for AUDIT and interpretation.

In addition, and also for illustration purposes, we plot the Kernel density function of

the alcohol and drug abuse score of the data set. Figures 5.1 and 5.2 show that nei-

ther alcohol nor drug abuse score are normally distributed and the skewed distribution

indicate that an EVT1 distribution may be more suitable than a normal distribution.
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Figure 5.1: Kernel density function
for alcohol abuse score (AUDIT).

Figure 5.2: Kernel density function
for drug abuse score (DUDIT).

In addition, our data set consisted of information about the family history (including

the client), such as whether the parents or the siblings were also drug or alcohol abusers,

whether the family received welfare, whether there was depression in the family or history

of physical or sexual abuse. We consider these variables to be possible confounders and

aim to match them away using the RO-logit model.

Finally, the data set provided information about 64 single nucleotide polymorphisms

(SNPs, pronounced ’snips’ ). “A SNP is a variation in DNA occurring when a single

nucleotide (A, T, C or G) at a particular site in the genome differs between members of

a species” (Kirch 2008, p. 1305). For example, for two different individuals we obtain

two stretches of a DNA sequence at the same site, which after they are sequenced, are:

TTGCTATT for the first and TTGCAATT for the second. Hence, there is a difference

in a single nucleotide, and if both A allele and T allele at the specific site were frequent

enough on the chromosomes in the population of interest, the variants at this genomic

site would be called a biallelic SNP (Kirch 2008, p. 1305).

Furthermore, SNPs are determined by the unordered combinations of the two nucleotides

observed at the same site ”AA”, ”Aa” or ”aa”, where ”AA” and ”aa” are said to be

homozygotes and ”Aa” heterozygotes and ”A” and ”a” are the alleles A, T, C or G

(Hommersom et al.2015, Chapter 9). We considered the SNPs as numeric variables with

three levels, 0, 1 and 2. For example for a chosen SNP we could have that it is of the

form G:G, G:A and A:A. Then the most common variant out of the homozygotes, say

G:G for example, was chosen as reference i.e. the variable takes the value 0 and the
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least common (A:A), takes the value 2. The heterozygotes would always take the value

1. Hence for the specific SNP the explanatory variable would be

Xi =


0 if the SNP is G:G

1 if the SNP is G:A

2 if the SNP is A:A

Our final data set contained 61 SNPs, since 3 out of the 64 of the initial data set were

removed due to missing values.

Moreover, we created four binary variables, welfare, depression, sexual abuse and

physical abuse which took value 1 if at least one of the members of the family had

what the variable names describe or else 0. Our final data set consisted of 93 individuals,

out of the 180 included in the initial data set, after removing individuals with missing

values on SNPs, alcohol and drug addiction score. We discarded completely the cases

with missing values in one of those variables, since we assumed that they occurred at

random. Interaction of these variables formed 12 matched sets with sizes ranging from

1 to 15. However, the subject in the stratum of size 1 was removed, since there was

no effect of his presence in the data set and it does not contribute to the estimation in

stratified Cox-regressions.

The AUDIT and DUDIT contained 67% and 72% of ties respectively.

5.2 Results of real data analysis

The purpose of our study was to determine if there are any significant associations

between a selection of SNPs and alcohol and drug abuse scores when the confounders

”family receiving welfare”, ”depression in the family”, ”history of physical abuse” and

”history of sexual abuse” are matched away. We applied the four methods of handling

ties in Cox-regression in the RO-logit model on the data set from Maria Ungdom. More-

over, we performed the Kruskal-Wallis test on the data, a non parametric test used to

compare three or more independent samples, which gives us the crude or unadjusted p-

values (Theodorsson-Norheim E., 1986). The significant SNPs (when ignoring multiple

testing) are given in Tables 5.2 and 5.3, while the full tables are given in the Appendix

B (Tables B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12, B.13, B.14, B.15, B.16,

B.17, B.18, B.19 and B.20).
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Alcohol abuse score

Method of handling ties : Efron

SNP Odds ratio Confidence Interval p-value

rs1800497 0.5184608 (0.2873493 , 0.9354523) 0.02913901

rs2740204N 1.3974518 (1.0148388 , 1.9243170) 0.04034082

rs2770378N 1.4125413 (1.0018537 , 1.9915813) 0.04877354

rs2290045N 1.8200281 (1.1229623 , 2.9497895) 0.01506892

Method of handling ties : Breslow

SNP Odds ratio Confidence Interval p-value

rs1800497 0.5397309 (0.3006418 , 0.9689587) 0.03886413

rs2770378N 1.4243156 (1.0092177 , 2.0101460) 0.04419878

rs2290045N 1.7835376 (1.1002613 , 2.8911372) 0.01889030

Method of handling ties : Discrete

SNP Odds ratio Confidence Interval p-value

rs6277N 0.6825601 (0.4696162 , 0.9920618) 0.04530897

rs1800497 0.5065882 (0.2730594 , 0.9398380) 0.03102259

rs2740204N 1.4021167 (1.0070647 , 1.9521400) 0.04531774

rs2770378N 1.4694843 (1.0243549 , 1.1080429) 0.03655477

rs2290045N 1.8772316 (1.1338843 , 3.1078996) 0.01434558

Method of handling ties : Adding

SNP Odds ratio Confidence Interval p-value

rs1800497 0.5285183 (0.2943200 , 0.9490744) 0.03276118

rs2740204N 1.4077230 (1.0214635 , 1.9400438) 0.03663809

rs2290045N 1.7676635 (1.0879853 , 2.8719452) 0.02141676

Kruskal-Wallis Test

SNP p-value

rs1799971 0.05038

rs2740204N 0.04431

Table 5.2: The significant results of applying the RO-logit model and the Kruskal-
Wallis test on the real data, with exposure the particular SNP and outcome the alcohol
abuse score. The methods for handling ties used are the Efron, Breslow, Discrete and

Adding.

As shown in Table 5.2, using all four methods of handling ties (the Efron, Breslow,

Discrete and Adding), revealed that the SNPs rs2290045N and rs1800497 have a statis-

tically significant relationship with alcohol abuse score on the 5% level.For rs2290045N

we get a p-value around 0.017 (it varies from 0.01434558 to 0.021416) and the odds
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ratio was for all methods around 1.8. This imply that having the SNP rs2290045N

is associated with an increased probability of high alcohol abuse score. For rs1800497

the p-value was approximately 0.033 and the odds ratio below 1 indicating that having

the SNP rs1800497 decreases the probability of a high alcohol abuse score. However,

doing a crude test like the Kruskal-Wallis test, where there was no adjustment for the

confounders these SNPs were not significant with p-values 0.415 and 0.663 respectively,

Table B.11, Appendix B.

Moreover, the use of Efron, Discrete and Adding method resulted in a statistically

significant effect of the SNP rs2740204N. In all three cases the p-value was less than

0.05, the 95% confidence interval was above 1 and the odds ratio was approximately 1.4

(OR' 1.4). The Breslow method had a p-value of 0.05217597, and the odds ratio was

1.3728806 (Table B.6). That specific SNP was also found by Kruskal-Wallis test with a

p-value of 0.04431.

Furthermore, the odds of having a high alcohol abuse score was higher for the individuals

who had the SNP rs2770378, as shown in Table 5.2. With the methods Efron, Breslow

and Discrete, the p-value for that SNP was less than 0.05 (varying from 0.037 to 0.044)

and the odds ratio was approximately 1.43. When using the Adding method of handling

ties the p-value was 0.059 and the odds ratio 1.39, indicating that we could still consider

it a significant SNP. Once more, the Kruskal-Wallis test did not reveal the significance

of this SNP (p-value= 0.197, Table B.11).

Another SNP which was associated with alcohol abuse score, was rs6277N and when

using the Discrete method for handling ties the p-value was equal to 0.0453. When using

the Efron, Breslow and Adding the p-values were 0.0552, 0.0561 and 0.071 respectively,

while the odds ratio for all four methods was below 1, approximately 0.7, indicating that

individuals who have this SNP is less likely to have a high alcohol abuse score. For this

SNP, Kruskal-Wallis test resulted in a p-value of 0.674, as shown in Table B.11.

In Table 5.3 below, the significant SNPs found when we investigated their relationship

with the drug abuse score of the data set are presented.
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Drug abuse score

Method of handling ties : Efron

SNP Odds ratio Confidence Interval p-value

rs53576N 1.4631316 (1.0239376 , 2.0907076) 0.03662662

rs237880N 0.6173289 (0.4189563 , 0.9096294) 0.01473112

Method of handling ties : Discrete

SNP Odds ratio Confidence Interval p-value

rs53576N 1.7623717 (1.0457907 , 2.9699574) 0.03332460

rs237880N 0.5631450 (0.3478131 , 0.9117891) 0.01951121

Method of handling ties : Adding

SNP Odds ratio Confidence Interval p-value

rs237880N 0.6085972 (0.4110998 , 0.9009748) 0.01310276

Kruskal-Wallis Test

SNP p-value

rs6190N 0.01288

rs521674 0.04125

rs602618 0.0406

rs237880N 0.03812

rs1488467N 0.01669

Table 5.3: The significant results of applying the RO-logit model and the Kruskal-
Wallis test on the real data, with exposure the particular SNP and outcome the drug
abuse score. The methods for handling ties used are the Efron, Breslow, Discrete and

Adding.

The SNP rs237880N has a statistically significant relationship with drug abuse score

at the 5% level, for the Efron, Discrete and Adding methods. The p-value varies from

0.0131 to 0.0195 and the odds ratio is below 1, around 0.57. Moreover, when using the

Breslow method we found a p-value of 0.0673 and the odds ratio equal to 0.699, also

below 1. Hence, the probability that an individual who has the SNP to have a high

drug abuse score is smaller than the probability of an individual who has not. The

Kruskal-Wallis test also resulted in a p-value of 0.0381 for that SNP.

Furthermore, one can see that when using Efron and Discrete methods for handling ties

the SNP rs53576N appears to have a statical significant relationship at the 5% level

(p-value 0.0366 and 0.0333 for each methods respectively). The odds ratio is above 1

for both methods which indicates that is more likely to have a high drug abuse score

an individual who has the particular SNP. However, when using the Breslow or Adding

method does not result in a p-value less than 0.05 (p-value 0.119 and 0.216 for each of
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the methods respectively). Moreover, the Kruskal-Wallis test, as shown in Table B.20

of the Appendix B, resulted in a p-value of 0.656.

Finally, it is interesting that Kruskal-Wallis test resulted in four significant SNPs (rs6190N,

rs521674, rs602618 & rs1488467N) for the drug abuse score that were not identified in the

rank-ordered logit model. It could be due to confounding, since there was no adjusting

for confounders, which can lead to inaccurate results.

From the analysis we see that there are SNPs that can affect both the alcohol and

drug abuse score. Moreover, adjusting for confounders seems to be important, since the

Kruskal-Wallis test failed to identify the significant relationship of some SNPs with the

alcohol or drug abuse score, while in other cases possibly wrongly identified an effect of

some SNPs when the RO-logit model did not.
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Discussion and Conclusion

The aim of this thesis was to evaluate available tools for handling ties in Cox-regression in

the RO-logit model. In Chapter 2, we derived the partial likelihood of Cox proportional

hazards model with no tied event times and we presented four methods of handling

tied event times in the model. In Chapter 3, the Rank-Ordered logit model, a model

originally developed and applied in econometrics (Beggs et. al, 1981), was presented. In

Section 3.3, we proved that for the RO-logit model, when the underlying model is linear

in the parameters and by assuming an extreme value type I distribution for the error

term the resulting likelihood is on the same form as the likelihood for a stratified Cox-

regression. Similar to Cox-regression in survival analysis, the estimator assumes no ties

in the outcome, but since the estimator has the same form as a stratified Cox-regression

it was reasonable to assume that methodology for handling ties in survival analysis can

be adopted in the RO-logit model.

In Chapter 4, we simulated different scenarios with different degree of ties and different

exposure and error terms distributions. For the first scenario we had Extreme Value

Type I distributed error terms and normally distributed exposure (ε ∼ EVT1( 0 , 1 )

& x ∼ N). When β1 equals 0 and for small and medium (5 and 20%) proportion

of ties the estimated coefficient is closer to the true value of beta1 when using the

Adding method compared to the others, while for large (60%) proportion of ties the

Breslow has the best performance. When β1 was equal to 0.15 and for small and medium

(5 and 20%) proportion of ties the Efron method performs better and for large the

Adding is better. For the second scenario we had binomially distributed exposure (ε ∼
EVT1( 0 , 1 ) & x ∼ Bin)and when β1 was 0 for small and large proportion

of ties Adding was the best method, while for medium ties Breslow was best. When

β1 was equal to 0.15 Efron and Adding methods gave the best estimates. For the

third scenario we assumed a Normal distribution for the error terms and the exposure
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(ε ∼ N( 0 , π2/6 ) & x ∼ N) and when β1 equals 0 for medium and large proportion of

ties the Adding method performed better, while for small proportion of ties the Breslow

method performed better. In the case where β1 was assumed to be 0.15 and for all

degrees of ties the Discrete method performs better than the other three. For the fourth

scenario we had normally distributed error terms and binomially distributed exposure

(ε ∼ N( 0 , π2/6 ) & x ∼ Bin) and for β1 equal to 0 and for medium and large

proportion of ties Adding method gave estimates closer to the true β1, while for small

Efron. In the case where β1 was assumed to be 0.15 and for all degrees of ties the

Discrete method performs better than the other three. Furthermore, our approach is

considered conservative, since the variance was in most cases overestimated. Generally,

it is preferable to have overestimated variance compared to underestimated, which can

lead to false conclusions. In addition, the proportion of ties corresponds to the whole

data set, hence the proportion of ties in each stratum could vary. However, we expect

that the proportion of ties will be more or less the same in each stratum.

In Chapter 5, we apply the tools of handling ties on the data set from Maria Ungdom

and looked at the associations between a selection of SNPs and alcohol and drug abuse

scores. The data set consisted of 180 clients of the clinic who were addicted to alcohol

and/or drugs, as well as their parents and siblings. The data included information on

alcohol and drug addiction both represented by a score, information about the family

history (including the client), such as whether the parents or the siblings were also drug

or alcohol abusers, whether the family received welfare, whether there was depression

in the family or history of physical or sexual abuse. We consider these variables to be

possible confounders and we aimed to match them away using the RO-logit model. In

addition, the data set provided information about 64 single nucleotide polymorphisms

(SNPs). After excluding clients with missing values on SNPs, alcohol or drug abuse

score, we were left with 93 individuals. We divided the data into different strata, where

subjects within a stratum had similar family history and represented a matched set.

However, since the data set in the end was very small the confounding profiles were

quite crude. Consequently, as shown in Section 5.2, we applied the RO-logit model

(using all four methods of handling ties, Efron, Breslow, Discrete and Adding), and we

performed the Kruskal-Wallis test on the real data, with the particular SNP as exposure

and alcohol or drug abuse score as the outcome.

When the outcome was considered to be the alcohol abuse score, as shown in Table

5.2, using the methods of handling ties (the Efron, Breslow, Discrete and Adding),

revealed that the SNPs rs2290045N, rs1800497, rs2740204N, rs2770378N and rs6277N

have a statistically significant relationship with alcohol abuse score on the 5% level.

These relationships have not been discovered before. When doing a crude test like the

Kruskal-Wallis test, where there was no adjustment for the confounders, only rs2740204N
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was sognificant. Moreover, the SNP rs1799971 was found by Kruskal-Wallis test, while

it was not found by the RO-logit model.

When the drug abuse score was considered to be the outcome, from Table 5.3, we found

that using the RO-logit model and the four methods of handling ties, resulted in two sig-

nificant SNPS, rs53576N and rs237880N. The Kruskal-Wallis test found four significant

SNPs (rs6190N, rs521674, rs602618 & rs1488467N) for the drug abuse score that were

not identified in the rank-ordered logit model. This could be due to confounding, since

there was no adjusting for confounders, which can lead to inaccurate results. However,

it also found one of the two SNPs we found by applying the RO-logit model on data

(rs237880N).

From the analysis we see that there are SNPs that can affect both the alcohol and drug

abuse score. Furthermore, adjusting for confounders seems to be important, since the

Kruskal-Wallis test failed to identify the significant relationship of some SNPs with the

alcohol or drug abuse score, while in other cases possibly wrongly identified an effect

of some SNPs when the RO-logit model did not. Our findings suggest that the four

methods of handling ties are equivalent since they produced similar results.

One limitation of the RO-logit model is that the error terms must have an extreme value

type I distribution, in order to obtain a likelihood of the same form as the likelihood

for a stratified Cox-regression, which may not often be the case. Another limitation

concerns matching, as a way of adjusting for confounders. The advantage of this method

is that taking into account the relationship between the outcome and the potential

confounders is not needed and when the explanatory variable (exposure) is continuous

we can categorise it in order to create strata. However, when the sample is small, like

in our case, the groups or strata turn out to be quite crude and the confounding profiles

quite broad.

To conclude, in this thesis we focused on handling ties when the outcome was ordinal and

we used the RO-logit model by ”matching away” possibly complex relationships between

confounders and exposure/outcome by fitting stratified Cox-regressions. Similar to Cox-

regression in survival analysis, the estimator assumes no ties in the outcome, however,

handling ties in the same way as for Cox-regression in the RO-logit model, turned

out to be possible. However, this model should be used with caution since for some

methods of handling ties there was some bias. More specifically, when extreme value

type I distribution was assumed for the error terms in the simulations we performed, for

Scenario 1 and for β1 equal to 0, all four methods were biased for medium proportions

of ties, while for large proportion of ties the Adding returned biased estimates. When

β1 was equal to 0.15, the Breslow method was biased for small proportion of ties, while

the Discrete was biased for both small and medium proportion of ties. Furthermore,
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for Scenario 2 and for β1 equal to 0.15 the Efron and the Discrete methods returned

biased estimates for large proportion of ties, while the Breslow for both medium and

large. Finally, the Adding method seems to have an advantage over the others, however

in general all methods produced similar results.



Appendix A

The R Packages

A.1 The R Packages and The Functions Used In Simula-

tions and Real Data Analysis

For this thesis we used R in order to perform simulations and the real data analysis. In

this Appendix we will describe the packages, as well as the functions we used, how they

can be used and which are their arguments.

A.1.1 Package ’foreign’

In order to perform the real data analysis, we used the package ’foreign’ (cran.r-project.org)

to read the data that were provided in Stata format into a data frame in R.

A.1.1.1 Usage

read.dta(file, convert.dates = TRUE, convert.factors = TRUE,

missing.type = FALSE,

convert.underscore = FALSE, warn.missing.labels = TRUE)

47
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A.1.1.2 Arguments

file

convert.dates

convert.factors

missing.type

convert.underscore

warn.missing.labels

a filename or URL as a character string.

Convert Stata dates to Date class, and date-times

to POSIXct class?

Use Stata value labels to create factors?

(Version 6.0 or later).

For version 8 or later, store information about different types

of missing data?

Convert ” ” in Stata variable names to ”.” in R names?

Warn if a variable is specified with value labels

and those value labels are not present in the file.

A.1.2 Package ’SpatialExtremes’

We used the function rgev of the SpatialExtremes package (cran.r-project.org) in

order to generate Extreme value type I distributed error terms in our simulations. We

specified a location parameter 0 and scale parameter 1 in all cases.

A.1.2.1 Usage

rgev(n, loc = 0, scale = 1, shape = 0)

A.1.2.2 Arguments

n

loc

scale

shape

number of observations.

vector of the location parameters.

vector of the scale parameters.

a numeric of the shape parameter.

A.1.3 Package ’stats’

The Package ’stats’ (R Documentation) was used in multiple occasions throughout

our simulations and real data analysis. The function rnorm was used for the random

generation for the normal distribution. Moreover, The (S3) generic function density

was used to compute kernel density estimates and kruskal.test was used in order to

performs multiple Kruskal-Wallis rank sum tests.
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A.1.3.1 Usage

Function 1

rnorm(n, mean = 0, sd = 1)

Function 2

density(x, bw = "nrd0", adjust = 1,

kernel = c("gaussian", "epanechnikov", "rectangular",

"triangular", "biweight",

"cosine", "optcosine"),

weights = NULL, window = kernel, width,

give.Rkern = FALSE,

n = 512, from, to, cut = 3, na.rm = FALSE, ...)

Function 3

kruskal.test(formula, data, subset, na.action, ...)

A.1.3.2 Arguments

Function 1

n

mean

sd

number of observations. If length(n) > 1,

the length is taken to be the number required.

vector of means.

vector of standard deviations.
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Function 2

x

bw

adjust

kernel,

window

weights

width

give.Rkern

n

from,to

cut

na.rm

...

the data from which the estimate is to be computed.

the smoothing bandwidth to be used. The kernels are scaled

such that this is the standard deviation of the smoothing kernel.

(Note this differs from the reference books cited below,

and from S-PLUS.)

the bandwidth used is actually adjust*bw. This makes it easy

to specify values like ’half the default’ bandwidth.

a character string giving the smoothing kernel to be used.

This must partially match one of ”gaussian”, ”rectangular”,

”triangular”, ”epanechnikov”, ”biweight”, ”cosine” or

”optcosine”, with default ”gaussian”.

numeric vector of non-negative observation weights, hence of

same length as x. The default NULL is equivalent

to weights = rep(1/nx, nx) where nx is the length

of (the finite entries of) x[].

this exists for compatibility with S; if given, and bw is not,

will set bw to width if this is a character string, or to a

kernel-dependent multiple of width if this is numeric.

logical ; if TRUE, no density is estimated, and the

’canonical bandwidth’ of the chosen kernel is returned instead.

the number of equally spaced points at which the density

is to be estimated.

the left and right-most points of the grid at which the density is

to be estimated; the defaults are cut * bw outside of

range(x).

by default, the values of from and to are cut bandwidths

beyond the extremes of the data. This allows the estimated

density to drop to approximately zero at the extremes.

logical; if TRUE, missing values are removed from x.

If FALSE any missing values cause an error.

further arguments for (non-default) methods.
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Function 3

x

g

formula

data

subset

na.action

...

a numeric vector of data values, or a list of numeric data vectors.

Non-numeric elements of a list will be coerced, with a warning.

a vector or factor object giving the group for the corresponding

elements of x. Ignored with a warning if x is a list.

a formula of the form response ∼ group where response gives

the data values and group a vector or factor of the

corresponding groups.

an optional matrix or data frame (or similar: see model.frame)

containing the variables in the formula formula. By default the

variables are taken from environment(formula).

an optional vector specifying a subset of observations to be used.

a function which indicates what should happen when the data

contain NAs. Defaults to getOption("na.action").

further arguments to be passed to or from methods.

A.1.4 Package ’survival’

In order to fit the Cox proportional hazards regression models needed in our analy-

sis, we used the function coxph of the package ’survival’ (cran.r-project.org). This

function also provided us with three possible options for handling tied event times, the

Breslow approximation, the Efron approximation and the ”discrete” option. Although,

as described below the options are ties=c("efron","breslow","exact"), the ”exact”

options as described in cran.r-project.org, stands for the discrete approximation for

handling ties. More specifically, it is written in the description of the methods for han-

dling ties that ”Using the ”exact partial likelihood” approach the Cox partial likelihood

is equivalent to that for matched logisitic regression. (The clogit function uses the coxph

code to do the fit.) It is technically appropriate when the time scale is discrete and has

only a few unique values, and some packages refer to this as the ”discrete” option. There

is also an ”exact marginal likelihood” due to Prentice which is not implemented here”

(https://cran.r-project.org/web/packages/survival/survival.pdf).

A.1.4.1 Usage

coxph(formula, data=, weights, subset,

na.action, init, control,

ties=c("efron","breslow","exact"),

singular.ok=TRUE, robust=FALSE,
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model=FALSE, x=FALSE, y=TRUE, tt, method, ...)
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A.1.4.2 Arguments

formula

data

weights

subset

na.action

init

control

ties

singular.ok

robust

a formula object, with the response on the left of a ∼ operator,

and the terms on the right. The response must be a survival

object as returned by the Surv function.

a data.frame in which to interpret the variables named in the

formula, or in the subset and the weights argument.

vector of case weights. For a thorough discussion of these see the

book by Therneau and Grambsch.

expression indicating which subset of the rows of data should be

used in the fit. All observations are included by default.

a missing-data filter function. This is applied to the model.frame

after any subset argument has been used. Default is

options()$na.action.

vector of initial values of the iteration. Default initial value is

zero for all variables.

Object of class coxph.control specifying iteration limit and

other control options. Default is coxph.control(...).

a character string specifying the method for tie handling. If there

are no tied death times all the methods are equivalent. Nearly

all Cox regression programs use the Breslow method by default,

but not this one. The Efron approximation is used as the default

here, it is more accurate when dealing with tied death times, and

is as efficient computationally. The ”exact partial likelihood” is

equivalent to a conditional logistic model, and is appropriate

when the times are a small set of discrete values.

logical value indicating how to handle collinearity in the model

matrix. If TRUE,the program will automatically skip over

columns of the X matrix that are linear combinations of earlier

columns. In this case the coefficients for such columns will be NA,

and the variance matrix will contain zeros. For ancillary

calculations, such as the linear predictor, the missing coefficients

are treated as zeros.

this argument has been deprecated, use a cluster term in the

model instead. (The two options accomplish the same goal -

creation of a robust variance - but the second is more flexible).
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model

x

y

tt

method

...

logical value: if TRUE, the model frame is returned in component

model.

logical value: if TRUE, the x matrix is returned in component x

logical value: if TRUE, the response vector is returned in

component y.

optional list of time-transform functions.

alternate name for the ties argument.

Other arguments will be passed to coxph.control

A.1.5 Package ’xlsx’

As mentioned above, when performing the real data analysis it was needed to read

the data that were provided in Stata format into a data frame in R. Eventually, we

used the function write.xlsx, of the package ’xlsx’ (cran.r-project.org), to write a

a data.frame to an Excel workbook.

A.1.5.1 Usage

write.xlsx(x, file, sheetName="Sheet1",

col.names=TRUE, row.names=TRUE, append=FALSE, showNA=TRUE)

A.1.5.2 Arguments

x

file

sheetName

col.names

row.names

append

showNA

a a data.frame to write to the workbook.

the path to the output file.

a character string with the sheet name.

a logical value indicating if the column names of x are to be

written along with x to the file.

a logical value indicating whether the row names of x are to be

written along with x to the file.

a logical value indicating if x should be appended to an existing

file. If TRUE the file is read from disk.

a logical value. If set to FALSE, NA values will be left as empty

cells.



Appendix B

Tables

B.1 Results of The Simulations

In this Section we include the Tables that contain the results of the simulation scenarios

3 and 4 as described in Section 4.
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ε ∼ N( 0 , π2/6 ) & x ∼ N

True

Method

Prop of Avg Avg Emp

Cov

Type I

β1 Ties Coeff Var Var Error

(') (∗10−3) (∗10−3) (∗10−3)

0

NoTies - 0.4619 0.4712 0.4723 0.949 0.051

Efron

5% 0.8863 0.4722 0.4542 0.948 0.052

20% -0.4602 0.4698 0.4983 0.947 0.053

60% 0.6712 0.4680 0.4551 0.953 0.047

Breslow

5% 0.8840 0.4721 0.4503 0.948 0.052

20% -0.4587 0.4695 0.4809 0.947 0.053

60% 0.6559 0.4680 0.4551 0.969 0.031

Discrete

5% 0.8940 0.4770 0.4599 0.948 0.052

20% -0.4806 0.4884 0.5202 0.945 0.055

60% 0.7806 0.5513 0.5497 0.950 0.050

Adding

5% 0.9163 0.4725 0.4548 0.949 0.051

20% -0.4521 0.4709 0.5022 0.844 0.056

60% 0.4864 0.4711 0.4605 0.951 0.049

True

Method

Prop of Avg Avg Emp

Cov Powβ1 Ties Coeff Var Var

(') (∗10−3) (∗10−3)

0.15

NoTies - 0.1090 0.4811 0.4990 0.529 0.998

Efron

5% 0.1091 0.4821 0.4854 0.548 0.998

20% 0.1079 0.4795 0.5299 0.502 1

60% 0.1072 0.4776 0.4782 0.500 0.998

Breslow

5% 0.1087 0.4819 0.4809 0.545 0.998

20% 0.1065 0.4791 0.5119 0.481 1

60% 0.1011 0.4763 0.4119 0.380 0.997

Discrete

5% 0.1099 0.4874 0.4910 0.568 0.998

20% 0.1110 0.5000 0.5548 0.557 1

60% 0.1203 0.5704 0.5832 0.759 0.999

Adding

5% 0.1091 0.4824 0.4871 0.552 0.998

20% 0.1082 0.4806 0.5353 0.503 1

60% 0.1080 0.4810 0.4962 0.515 0.999

Table B.1: Scenario III of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest and the error terms were normally distributed. The
true parameter, β1, was consider to take values 0 and 0.15 and three different degrees of
ties (proportion of ties) were considered and handled by three different approximations
(methods). The results are the average coefficient (Avg Coeff), the average variance
(Avg Var), the empirical variance (Emp Var), the coverage (Cov), and the power (Pow).
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ε ∼ N( 0 , π2/6 ) & x ∼ Bin

True

Method

Prop of Avg Avg Emp

Cov

Type I

β1 Ties Coeff Var Var Error

(') (∗10−2) (∗10−2) (∗10−2)

0

NoTies - 0.0597 0.4623 0.4317 0.962 0.038

Efron

5% -0.1577 0.4617 0.4861 0.950 0.050

20% -0.1728 0.4613 0.4568 0.952 0.048

60% 0.0601 0.4590 0.4169 0.959 0.041

Breslow

5% -0.1594 0.4616 0.4818 0.950 0.050

20% -0.1714 0.4610 0.4422 0.956 0.044

60% 0.0650 0.4581 0.3640 0.969 0.031

Discrete

5% -0.1609 0.4666 0.4921 0.950 0.050

20% -0.1782 0.4799 0.4790 0.952 0.048

60% 0.0799 0.5421 0.5092 0.957 0.043

Adding

5% -0.1691 0.4621 0.4877 0.949 0.051

20% -0.1691 0.4624 0.4598 0.954 0.046

60% 0.0523 0.4622 0.4378 0.953 0.047

True

Method

Prop of Avg Avg Emp

Cov Powβ1 Ties Coeff Var Var

(') (∗10−2) (∗10−2)

0.15

NoTies - 0.1084 0.4633 0.4334 0.911 0.351

Efron

5% 0.1060 0.4626 0.4818 0.893 0.353

20% 0.1056 0.4623 0.4546 0.902 0.347

60% 0.1066 0.4598 0.4147 0.916 0.339

Breslow

5% 0.1056 0.4625 0.4775 0.894 0.351

20% 0.1044 0.4620 0.4397 0.899 0.339

60% 0.1010 0.4589 0.3617 0.914 0.297

Discrete

5% 0.1067 0.4675 0.4878 0.895 0.352

20% 0.1086 0.4809 0.4765 0.903 0.351

60% 0.1196 0.5430 0.5070 0.938 0.371

Adding

5% 0.1060 0.4630 0.4844 0.896 0.354

20% 0.1060 0.4635 0.4569 0.898 0.350

60% 0.1072 0.4631 0.4331 0.909 0.342

Table B.2: Scenario IV of simulations, where 1000 samples of 1000 individuals were
simulated, the exposures of interest had a Binomial distribution and the error terms
normally distributed. The true parameter, β1, was consider to take values 0 and 0.15
and three different degrees of ties (proportion of ties) were considered and handled by
three different approximations (methods). The results are the average coefficient (Avg
Coeff), the average variance (Avg Var), the empirical variance (Emp Var), the coverage

(Cov), and the power (Pow).
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B.2 Results of The Real Data Analysis

B.2.1 Alcohol abuse score

Method of handling ties : Efron

SNP Odds ratio Confidence Interval p-value

rs1176744 1.2141502 (1.8212708 , 1.7949753) 0.33063486

rs12529 0.9368151 (0.6915426 , 1.2690793) 0.67344528

rs1799836 0.9402567 (0.7032193 , 1.2571933) 0.67766365

rs1799971 0.7600798 (0.3590440 , 1.6090544) 0.47341049

rs4680 0.9299015 (0.6602652 , 1.3096507) 0.67742647

rs6265 1.0206384 (0.5939154 , 1.7539579) 0.94105098

rs36020 1.2258399 (0.7277732 , 2.0647688) 0.44399469

rs36029 0.8863914 (0.6453791 , 1.2174080) 0.45633720

rs6277N 0.7050693 (0.4932411 , 1.0078694) 0.05523789

rs6190N 0.7729107 (0.3333407 , 1.7921335) 0.54828385

rs6196N 1.0860293 (0.6563105 , 1.7971064) 0.74808430

rs242938 0.8366821 (0.4203389 , 1.6654109) 0.61166608

rs244465 0.7632601 (0.4216074 , 1.3817736) 0.37231814

rs521674 0.9037226 (0.6171267 , 1.3234148) 0.60294799

rs602618 0.9394968 (0.6520233 , 1.3537159) 0.73770414

rs53576N 1.0701231 (0.7786401 , 1.4707223) 0.67612939

rs1800497 0.5184608 (0.2873493 , 0.9354523) 0.02913901

rs1876831 0.8098933 (0.4793170 , 1.3684621) 0.43077078

rs1978340 1.2456302 (0.8821206 , 1.7589369) 0.21218757

rs3219151 1.3555047 (0.9589100 , 1.9161265) 0.08499542

rs3782025 1.1774281 (0.8107893 , 1.7098610) 0.39084885

rs6943555 1.1332093 (0.7256751 , 1.7696120) 0.58237063

rs7590720 0.9180267 (0.6498530 , 1.2968672) 0.62751529

rs9939609 1.4046884 (0.9508331 , 2.0751796) 0.08786395

rs237887N 0.8766991 (0.6242393 , 1.2312606) 0.44760584

rs237889N 0.9353512 (0.6711920 , 1.3034747) 0.69305241

rs237880N 0.8387399 (0.5772539 , 1.2186743) 0.35625070

rs237898N 0.9504303 (0.6483132 , 1.3933356) 0.79448767

rs110402N 1.0871093 (0.7519812 , 1.5715907) 0.65692477

rs242924N 1.0294282 (0.7165248 , 1.4789751) 0.87533506

rs7632287N 1.0113093 (0.6874637 , 1.4877097) 0.95446221

Table B.3: The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for handling ties

used is the Efron method (Part 1).
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Method of handling ties : Efron

SNP Odds ratio Confidence Interval p-value

rs2268491N 0.9737489 (0.5702376 , 1.6627924) 0.92237777

rs4561970N 0.6176241 (0.3072928 , 1.2413553) 0.17606723

rs4686302N 0.7619235 (0.4304711 , 1.3485864) 0.35061155

rs1042778N 0.9767273 (0.6865166 , 1.3896187) 0.89585152

rs1488467N 0.4677649 (0.1944980 , 1.1249677) 0.08969762

rs2268490N 0.7936006 (0.4651606 , 1.3539452) 0.39633021

rs2740204N 1.3974518 (1.0148388 , 1.9243170) 0.04034082

rs3800373N 0.8714082 (0.6025955 , 1.2601359) 0.46454090

rs4813625N 1.3089668 (0.9300652 , 1.8422299) 0.12254425

rs2770378N 1.4125413 (1.0018537 , 1.9915813) 0.04877354

rs6770632N 0.9069187 (0.5994081 , 1.3721896) 0.64377314

rs2268493N 1.1004236 (0.7742154 , 1.5640764) 0.59371932

rs2268498N 1.0476830 (0.7312802 , 1.5009838) 0.79954755

rs2290045N 1.8200281 (1.1229623 , 2.9497895) 0.01506892

rs1900586N 1.5447004 (0.9465299 , 2.5208916) 0.08184290

rs9296158N 0.9042189 (0.6300367 , 1.2977208) 0.58492487

rs7748266N 0.8107696 (0.4748633 , 1.3842877) 0.44214877

rs1360780N 0.9042189 (0.6300367 , 1.2977208) 0.58492487

rs9394309N 0.8956407 (0.6258550 , 1.2817220) 0.54670216

rs9470080N 0.8976686 (0.6426951 , 1.2537964) 0.52656559

rs4792887N 0.8414087 (0.4913128 , 1.4409733) 0.52928998

rs7209436N 1.0200251 (0.7215621 , 1.4419429) 0.91061481

rs1344694N 0.9465283 (0.6664734 , 1.3442636) 0.75881134

rs13316193N 1.1282211 (0.7894423 , 1.6123825) 0.50783153

rs13125511N 1.4260934 (0.9319593 , 2.1822223) 0.10197865

rs11131149N 1.1604660 (0.8112909 , 1.6599241) 0.41513481

rs13273672N 1.0379260 (0.6921503 , 1.5564400) 0.85709782

rs41423247N 1.1063341 (0.7454236 , 1.6419859) 0.61594403

rs35369693N 1.1087636 (0.5851638 , 2.1008761) 0.75152421

rs16859448N 1.2460725 (0.7359269 , 2.1098519) 0.41290484

Table B.4: The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for handling ties

used is the Efron method (Part 2).
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Method of handling ties : Breslow

SNP Odds ratio Confidence Interval p-value

rs1176744 1.1941116 (0.8095916 , 1.7612614) 0.37094256

rs12529 0.9289206 (0.6846102 , 1.2604157) 0.63582124

rs1799836 0.9401329 (0.7034175 , 1.2565083) 0.67657972

rs1799971 0.7704845 (0.3639291 , 1.6312143) 0.49565985

rs4680 0.9169334 (0.6517823 , 1.2899504) 0.61849929

rs6265 0.9890704 (0.5752117 , 1.7006959) 0.96830063

rs36020 1.1987197 (0.7110352 , 2.0208970) 0.49638015

rs36029 0.8917723 (0.6486648 , 1.2259921) 0.48059677

rs6277N 0.7061836 (0.4941687 , 1.0091598) 0.05614102

rs6190N 0.7710488 (0.3324995 , 1.7880218) 0.54459979

rs6196N 1.1030650 (0.6672176 , 1.8236215) 0.70213966

rs242938 0.8537325 (0.4286226 , 1.7004686) 0.65283535

rs244465 0.7495968 (0.4132734 , 1.3596214) 0.34274743

rs521674 0.9196637 (0.6281184 , 1.3465316) 0.66682461

rs602618 0.9545216 (0.6627564 , 1.3747306) 0.80252892

rs53576N 1.0702207 (0.7789399 , 1.4704243) 0.67543563

rs1800497 0.5397309 (0.3006418 , 0.9689587) 0.03886413

rs1876831 0.8065057 (0.4774363 , 1.3623837) 0.42143486

rs1978340 1.2467503 (0.8837428 , 1.7588673) 0.20908179

rs3219151 1.3478812 (0.9546117 , 1.9031651) 0.08986795

rs3782025 1.1776951 (0.8116668 , 1.7087870) 0.38910379

rs6943555 1.1405945 (0.7321205 , 1.7769696) 0.56086764

rs7590720 0.9160160 (0.6489378 , 1.2930135) 0.61792189

rs9939609 1.3719304 (0.9281712 , 2.0278511) 0.11271208

rs237887N 0.8894203 (0.6337015 , 1.2483297) 0.49805803

rs237889N 0.9467569 (0.6797156 , 1.3187113) 0.74622575

rs237880N 0.8394446 (0.5777290 , 1.2197195) 0.35857482

rs237898N 0.9403646 (0.6411589 , 1.3791989) 0.75301198

rs110402N 1.1061211 (0.7656156 , 1.5980656) 0.59107299

rs242924N 1.0482159 (0.7297417 , 1.5056787) 0.79883784

rs7632287N 1.0036944 (0.6827628 , 1.4754794) 0.98503346

Table B.5: The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for handling ties

used is the Breslow method (Part 1).



Appendix B Tables 62

Method of handling ties : Breslow

SNP Odds ratio Confidence Interval p-value

rs2268491N 0.9819869 (0.5757160 , 1.6749548) 0.94680247

rs4561970N 0.6365854 (0.3170868 , 1.2780130) 0.20403860

rs4686302N 0.7735950 (0.4374025 , 1.3681887) 0.37755514

rs1042778N 0.9590495 (0.6740483 , 1.3645549) 0.81622952

rs1488467N 0.4935071 (0.2055940 , 1.1846126) 0.11392759

rs2268490N 0.8043608 (0.4725133 , 1.3692657) 0.42249104

rs2740204N 1.3728806 (0.9970142 , 1.8904457) 0.05217597

rs3800373N 0.8716654 (0.6033208 , 1.2593640) 0.46439875

rs4813625N 1.3012864 (0.9243750 , 1.8318825) 0.13121779

rs2770378N 1.4243156 (1.0092177 , 2.0101460) 0.04419878

rs6770632N 0.9020333 (0.5961331 , 1.3649035) 0.62561835

rs2268493N 1.0867332 (0.7650789 , 1.5436173) 0.64227345

rs2268498N 1.0537996 (0.7357502 , 1.5093350) 0.77496732

rs2290045N 1.7835376 (1.1002613 , 2.8911372) 0.01889030

rs1900586N 1.5255605 (0.9368514 , 2.4842092) 0.08954756

rs9296158N 0.9067888 (0.6323717 , 1.3002889) 0.59467291

rs7748266N 0.8170764 (0.4785589 , 1.3950506) 0.45918778

rs1360780N 0.9067888 (0.6323717 , 1.3002889) 0.59467291

rs9394309N 0.8999244 (0.6302328 , 1.2850234) 0.56179560

rs9470080N 0.9016184 (0.6464949 , 1.2574202) 0.54169574

rs4792887N 0.8667410 (0.5068022 , 1.4823140) 0.60141849

rs7209436N 1.0369933 (0.7334831 , 1.4660940) 0.83709533

rs1344694N 0.9456354 (0.6665656 , 1.3415429) 0.75406662

rs13316193N 1.1105595 (0.7777711 , 1.5857395) 0.56391406

rs13125511N 1.4132759 (0.9255098 , 2.1581065) 0.10924746

rs11131149N 1.1395695 (0.7970870 , 1.6292054) 0.47373811

rs13273672N 1.0328821 (0.6900344 , 1.5460758) 0.87508176

rs41423247N 1.1060696 (0.7478732 , 1.6358253) 0.61361415

rs35369693N 1.0788072 (0.5700703 , 2.0415466) 0.81569041

rs16859448N 1.2415818 (0.7338010 , 2.1007402) 0.41998128

Table B.6: The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for handling ties

used is the Breslow method (Part 2).
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Method of handling ties : Discrete

SNP Odds ratio Confidence Interval p-value

rs1176744 1.2104527 (0.8089766 , 1.8111720) 0.35291356

rs12529 0.9224326 (0.6703609 , 1.2692893) 0.62004915

rs1799836 0.9353737 (0.6919338 , 1.2644620) 0.66401383

rs1799971 0.7611088 (0.3538510 , 1.6370919) 0.48481780

rs4680 0.9111932 (0.6399439 , 1.2974154) 0.60597410

rs6265 0.9879516 (0.5591261 , 1.7456679) 0.96670971

rs36020 1.2166667 (0.7058438 , 2.0971746) 0.48020530

rs36029 0.8829311 (0.6336089 , 1.2303607) 0.46206153

rs6277N 0.6825601 (0.4696162 , 0.9920618) 0.04530897

rs6190N 0.7607524 (0.3215912 , 1.7996269) 0.53363786

rs6196N 1.1123705 (0.6582073 , 1.8799067) 0.69079183

rs242938 0.8458073 (0.4164582 , 1.7177958) 0.64317146

rs244465 0.7321481 (0.3960461 , 1.3534809) 0.31997843

rs521674 0.9123450 (0.6119826 , 1.3601260) 0.65250621

rs602618 0.9504517 (0.6491444 , 1.3916140) 0.79391366

rs53576N 1.0757701 (0.7735393 , 1.4960861) 0.66426178

rs1800497 0.5065882 (0.2730594 , 0.9398380) 0.03102259

rs1876831 0.7924173 (0.4598750 , 1.3654259) 0.40198563

rs1978340 1.2700347 (0.8866254 , 1.8192442) 0.19232926

rs3219151 1.3716193 (0.9613630 , 1.9569501) 0.08138750

rs3782025 1.1906447 (0.8106985 , 1.7486583) 0.37355668

rs6943555 1.1599764 (0.7234933 , 1.8597897) 0.53779374

rs7590720 0.9098522 (0.6363444 , 1.3009166) 0.60453531

rs9939609 1.4149880 (0.9395425 , 2.1310275) 0.09661267

rs237887N 0.8808215 (0.6190692 , 1.2532467) 0.48060743

rs237889N 0.9425009 (0.6677005 , 1.3303987) 0.73632418

rs237880N 0.8278349 (0.5616917 , 1.2200832) 0.33968398

rs237898N 0.9342749 (0.6250419 , 1.3964976) 0.74026176

rs110402N 1.1148027 (0.7607101 , 1.6337171) 0.57728914

rs242924N 1.0522476 (0.7220556 , 1.5334348) 0.79095688

rs7632287N 1.0039496 (0.6740686 , 1.4952704) 0.98452652

Table B.7: The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for handling ties

used is the Discrete method (Part 1).
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Method of handling ties : Discrete

SNP Odds ratio Confidence Interval p-value

rs2268491N 0.9805452 (0.5628962 , 1.7080749) 0.94468673

rs4561970N 0.6091087 (0.2947801 , 1.2586110) 0.18062256

rs4686302N 0.7568513 (0.4184388 , 1.3689551) 0.35686067

rs1042778N 0.9555036 (0.6613434 , 1.3805037) 0.80843201

rs1488467N 0.4615582 (0.1864323 , 1.1426991) 0.09460416

rs2268490N 0.7891497 (0.4532802 , 1.3738901) 0.40253609

rs2740204N 1.4021167 (1.0070647 , 1.9521400) 0.04531774

rs3800373N 0.8631062 (0.5899985 , 1.2626343) 0.44815254

rs4813625N 1.3338158 (0.9341604 , 1.9044530) 0.11292382

rs2770378N 1.4694843 (1.0243549 , 1.1080429) 0.03655477

rs6770632N 0.8952731 (0.5828686 , 1.3751194) 0.61339755

rs2268493N 1.0974579 (0.7567306 , 1.5916020) 0.62390859

rs2268498N 1.0581701 (0.7285847 , 1.5368481) 0.76650258

rs2290045N 1.8772316 (1.1338843 , 3.1078996) 0.01434558

rs1900586N 1.5894711 (0.9518647 , 2.6541781) 0.07649091

rs9296158N 0.9008565 (0.6209293 , 1.3069803) 0.58237182

rs7748266N 0.8029224 (0.4600544 , 1.4013221) 0.43981938

rs1360780N 0.9008565 (0.6209293 , 1.3069803) 0.58237182

rs9394309N 0.8940063 (0.6193056 , 1.2905539) 0.54971442

rs9470080N 0.8962585 (0.6366418 , 1.2617445) 0.53022982

rs4792887N 0.8590742 (0.4949026 , 1.4912195) 0.58930064

rs7209436N 1.0396503 (0.7265487 , 1.4876811) 0.83157019

rs1344694N 0.9417916 (0.6555199 , 1.3530807) 0.74564427

rs13316193N 1.1225747 (0.7722777 , 1.6317628) 0.54458747

rs13125511N 1.4520177 (0.9339822 , 2.2573828) 0.09759486

rs11131149N 1.1548088 (0.7935390 , 1.6805516) 0.45209711

rs13273672N 1.0360316 (0.6792283 , 1.5802663) 0.86947138

rs41423247N 1.1137648 (0.7431767 , 1.6691480) 0.60167394

rs35369693N 1.0843840 (0.5605658 , 2.0976818) 0.80982896

rs16859448N 1.2545103 (0.7313834 , 2.1518073) 0.41012807

Table B.8: The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for handling ties

used is the Discrete method (Part 2).
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Method of handling ties : Adding

SNP Odds ratio Confidence Interval p-value

rs1176744 1.2090505 (0.8187592 , 1.7853882) 0.33981425

rs12529 0.9450363 (0.6962579 , 1.2827052) 0.71683746

rs1799836 0.9454144 (0.7065450 , 1.2650409) 0.70560580

rs1799971 0.7637754 (0.3608266 , 1.6167127) 0.48120800

rs4680 0.9360937 (0.6626716 , 1.3223314) 0.70787737

rs6265 1.0090718 (0.5881638 , 1.7311947) 0.97384022

rs36020 1.2708890 (0.7492862 , 2.1555966) 0.37385994

rs36029 0.8774748 (0.6363872 , 1.2098955) 0.42516777

rs6277N 0.7197362 (0.5037936 , 1.0282391) 0.07076385

rs6190N 0.7436553 (0.3204149 , 1.7259596) 0.49052643

rs6196N 1.1128135 (0.6699579 , 1.8484055) 0.67969630

rs242938 0.8497817 (0.4275311 , 1.6890676) 0.64234062

rs244465 0.7660627 (0.4203925 , 1.3959620) 0.38406582

rs521674 0.9143070 (0.6261578 , 1.3350584) 0.64276024

rs602618 0.9636943 (0.6707277 , 1.3846255) 0.84147867

rs53576N 1.0873370 (0.7900677 , 1.4964564) 0.60734250

rs1800497 0.5285183 (0.2943200 , 0.9490744) 0.03276118

rs1876831 0.8132498 (0.4796044 , 1.3790017) 0.44293477

rs1978340 1.2645195 (0.8943764 , 1.7878486) 0.18409924

rs3219151 1.3515830 (0.9555588 , 1.9117364) 0.08856190

rs3782025 1.1693163 (0.8047655 , 1.6990051) 0.41189526

rs6943555 1.1610879 (0.7430032 , 1.8144271) 0.51197689

rs7590720 0.9206001 (0.6513012 , 1.3012483) 0.63937789

rs9939609 1.4102806 (0.9547186 , 2.0832225) 0.08413272

rs237887N 0.8672419 (0.6180872 , 1.2168323) 0.40977514

rs237889N 0.9360024 (0.6696350 , 1.3083254) 0.69869361

rs237880N 0.8510845 (0.5857916 , 1.2365230) 0.39752735

rs237898N 0.9719977 (0.6592504 , 1.4331117) 0.88598935

rs110402N 1.0839979 (0.7513429 , 1.5639349) 0.66626409

rs242924N 1.0299488 (0.7157130 , 1.4821506) 0.87374645

rs7632287N 1.0119083 (0.6866621 , 1.4912115) 0.95228442

Table B.9: The results of applying the RO-logit model on the real data, with exposure
the particular SNP and outcome the alcohol abuse score. The method for handling ties

used is the Adding method (Part 1).
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Method of handling ties : Adding

SNP Odds ratio Confidence Interval p-value

rs2268491N 0.9525428 (0.5578903 , 1.6263731) 0.85861948

rs4561970N 0.6124919 (0.3047743 , 1.2308988) 0.16863024

rs4686302N 0.7838656 (0.4421775 , 1.3895898) 0.40447026

rs1042778N 0.9642269 (0.6773039 , 1.3726976) 0.83980060

rs1488467N 0.4581880 (0.1905603 , 1.1016790) 0.08121837

rs2268490N 0.7959805 (0.4681153 , 1.3534806) 0.39952463

rs2740204N 1.4077230 (1.0214635 , 1.9400438) 0.03663809

rs3800373N 0.8660072 (0.5977972 , 1.2545533) 0.44680005

rs4813625N 1.3030277 (0.9243448 , 1.8368483) 0.13080666

rs2770378N 1.3929863 (0.9870498 , 1.9658692) 0.05931700

rs6770632N 0.8969442 (0.5940020 , 1.3543874) 0.60496732

rs2268493N 1.0608278 (0.7466496 , 1.5072071) 0.74174829

rs2268498N 1.0546106 (0.7378752 , 1.5073057) 0.77044112

rs2290045N 1.7676635 (1.0879853 , 2.8719452) 0.02141676

rs1900586N 1.5642257 (0.9580084 , 2.5540508) 0.07369434

rs9296158N 0.9096142 (0.6323145 , 1.3085228) 0.60961424

rs7748266N 0.8235811 (0.4818432 , 1.4076900) 0.47789854

rs1360780N 0.8996068 (0.6254216 , 1.2939951) 0.56839818

rs9394309N 0.8959209 (0.6255450 , 1.2831597) 0.54874185

rs9470080N 0.8965873 (0.6414187 , 1.2532669) 0.52293323

rs4792887N 0.8435825 (0.4925855 , 1.4446862) 0.53545649

rs7209436N 1.0202901 (0.7231249 , 1.4395743) 0.90895023

rs1344694N 0.9641147 (0.6788539 , 1.3692449) 0.83821084

rs13316193N 1.1389474 (0.7958353 , 1.6299870) 0.47685197

rs13125511N 1.4060868 (0.9190931 , 2.1511206) 0.11616441

rs11131149N 1.1686312 (0.8152902 , 1.6751077) 0.39625955

rs13273672N 1.0562369 (0.7010621 , 1.5913517) 0.79360330

rs41423247N 1.1516251 (0.7728585 , 1.7160198) 0.48782245

rs35369693N 1.0941311 (0.5764331 , 2.0767767) 0.78321188

rs16859448N 1.2282028 (0.7254675 , 2.0793242) 0.44414005

Table B.10: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the alcohol abuse score. The method for handling

ties used is the Adding method (Part 2).
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Kruskal-Wallis Test

SNP p-value SNP p-value

rs1176744 0.20733530 rs2268491N 0.66236956

rs12529 0.47307913 rs4561970N 0.28942730

rs1799836 0.83219216 rs4686302N 0.33156496

rs1799971 0.05038266 rs1042778N 0.37913136

rs4680 0.32637823 rs1488467N 0.22539886

rs6265 0.22799036 rs2268490N 0.19213746

rs36020 0.30220461 rs2740204N 0.04431439

rs36029 0.30476617 rs3800373N 0.71743941

rs6277N 0.67404768 rs4813625N 0.42052835

rs6190N 0.19902116 rs2770378N 0.19744653

rs6196N 0.50716306 rs6770632N 0.14968130

rs242938 0.20136852 rs2268493N 0.17318190

rs244465 0.36955172 rs2268498N 0.72799896

rs521674 0.89178915 rs2290045N 0.41488267

rs602618 0.93721337 rs1900586N 0.15175623

rs53576N 0.93073838 rs9296158N 0.64334596

rs1800497 0.66299333 rs7748266N 0.73366628

rs1876831 0.33526236 rs1360780N 0.75567537

rs1978340 0.51602796 rs9394309N 0.94566100

rs3219151 0.82775828 rs9470080N 0.91562832

rs3782025 0.32089642 rs4792887N 0.29295767

rs6943555 0.50712396 rs7209436N 0.33875606

rs7590720 0.51281278 rs1344694N 0.46346618

rs9939609 0.20813247 rs13316193N 0.18406731

rs237887N 0.08549422 rs13125511N 0.27186695

rs237889N 0.24396498 rs11131149N 0.19217724

rs237880N 0.46029852 rs13273672N 0.92244822

rs237898N 0.97372721 rs41423247N 0.76214710

rs110402N 0.33543725 rs35369693N 0.19349334

rs242924N 0.38039510 rs16859448N 0.24300662

rs7632287N 0.21406434

Table B.11: The results of applying the Kruskla-Wallis test on the real data, with
exposure the particular SNP and outcome the alcohol abuse score.
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B.2.2 Drug abuse score

Method of handling ties : Efron

SNP 0. Odds ratio Confidence Interval p-value

rs1176744 0.9213345 (0.6503429 , 1.3052456) 0.64477813

rs12529 1.1800818 (0.8725602 , 1.5959849) 0.28238401

rs1799836 0.8356492 (0.6270282 , 1.1136812) 0.22048381

rs1799971 0.8533755 (0.4336053 , 1.6795223) 0.64623816

rs4680 1.0361229 (0.7611779 , 1.4103808) 0.82155551

rs6265 1.1756432 (0.7034103 , 1.9649086) 0.53691595

rs36020 1.0714105 (0.6196608 , 1.8524982) 0.80498474

rs36029 0.8909188 (0.6377724 , 1.2445447) 0.49825046

rs6277N 0.9199127 (0.6543493 , 1.2932535) 0.63100237

rs6190N 0.7854136 (0.3410458 , 1.8087733) 0.57035582

rs6196N 0.7517105 (0.4556691 , 1.2400855) 0.26379004

rs242938 1.0528781 (0.5215854 , 0.1253513) 0.88567273

rs244465 0.9500475 (0.5093055 , 1.7721979) 0.87201853

rs521674 0.8504745 (0.5745297 , 1.2589547) 0.41834064

rs602618 0.8673846 (0.5985032 , 1.2570626) 0.45233520

rs53576N 1.4631316 (1.0239376 , 2.0907076) 0.03662662

rs1800497 0.8140243 (0.4826000 , 1.3730534) 0.44045855

rs1876831 0.9594609 (0.5619489 , 1.6381654) 0.87948470

rs1978340 1.0118787 (0.7193983 , 1.4232706) 0.94590954

rs3219151 1.1366782 (0.8273628 , 1.5616333) 0.42920730

rs3782025 0.8352636 (0.5757533 , 1.2117434) 0.34299953

rs6943555 0.7778985 (0.4951571 , 1.2220890) 0.27581425

rs7590720 1.0010599 (0.7120899 , 1.4072955) 0.99513633

rs9939609 0.9893974 (0.6760855 , 1.4479046) 0.95624466

rs237887N 1.0044063 (0.7363027 , 1.3701321) 0.97785980

rs237889N 1.0160633 (0.7391341 , 1.3967488) 0.92180971

rs237880N 0.6173289 (0.4189563 , 0.9096294) 0.01473112

rs237898N 0.8967842 (0.6203132 , 1.2964770) 0.56239060

rs110402N 1.2724222 (0.8664599 , 1.8685900) 0.21912053

rs242924N 1.2303758 (0.8417962 , 1.7983266) 0.28433244

rs7632287N 1.1853143 (0.8268382 , 1.6992079) 0.35486054

Table B.12: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Efron method (Part 1).
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Method of handling ties : Efron

SNP Odds ratio Confidence Interval p-value

rs2268491N 1.3052359 (0.7968283 , 2.1380274) 0.29006529

rs4561970N 0.7829107 (0.4024824 , 1.5229213) 0.47095186

rs4686302N 0.8421137 (0.4919966 , 1.4413829) 0.53086662

rs1042778N 0.8611594 (0.6067167 , 1.2223093) 0.40284917

rs1488467N 0.6518915 (0.2977353 , 1.4273169) 0.28455699

rs2268490N 1.3281838 (0.7970773 , 2.2131757) 0.27597124

rs2740204N 0.8703576 (0.6364701 , 1.1901931) 0.38453231

rs3800373N 0.9754620 (0.6855738 , 1.3879265) 0.89017764

rs4813625N 0.9849474 (0.7166636 , 1.3536634) 0.92551585

rs2770378N 0.7724666 (0.5336040 , 1.1182537) 0.17136655

rs6770632N 1.2212259 (0.8200136 , 1.8187416) 0.32536344

rs2268493N 0.9701420 (0.6773262 , 1.3895454) 0.86865846

rs2268498N 1.1894403 (0.8176895 , 1.7302024) 0.36423302

rs2290045N 1.1632202 (0.7298782 , 1.8538453) 0.52489357

rs1900586N 1.0782038 (0.6810522 , 1.7069522) 0.74802954

rs9296158N 1.0509785 (0.7399327 , 1.4927786) 0.78123266

rs7748266N 1.3430080 (0.7962270 , 2.2652716) 0.26886778

rs1360780N 1.0673618 (0.7531355 , 1.5126910) 0.71404807

rs9394309N 1.1236339 (0.7984115 , 1.5813313) 0.50372608

rs9470080N 1.0249145 (0.7408343 , 1.4179281) 0.88186841

rs4792887N 1.2056258 (0.6925926 , 2.0986847) 0.50847670

rs7209436N 1.2084742 (0.8226785 , 1.7751891) 0.33447500

rs1344694N 1.0127464 (0.7202722 , 1.4239828) 0.94192938

rs13316193N 1.0088104 (0.7029463 , 1.4477613) 0.96204073

rs13125511N 1.1861882 (0.8133507 , 1.7299334) 0.37513379

rs11131149N 1.0267848 (0.7141129 , 1.4763590) 0.88655650

rs13273672N 1.3819974 (0.9319740 , 2.0493243) 0.10750299

rs41423247N 0.9283814 (0.6451764 , 1.3359014) 0.68898418

rs35369693N 1.2343384 (0.6354203 , 2.3977694) 0.53429985

rs16859448N 1.3187637 (0.8218840 , 2.1160378) 0.25141495

Table B.13: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Efron method (Part 2).
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Method of handling ties : Breslow

SNP Odds ratio Confidence Interval p-value

rs1176744 0.9491055 (0.6710604 , 1.342355) 0.76773766

rs12529 1.1364760 (0.8357632 , 1.545387) 0.41458216

rs1799836 0.8491963 (0.6348071 , 1.135990) 0.27084562

rs1799971 0.8278707 (0.4259399 , 1.609077) 0.57744379

rs4680 1.0472098 (0.7678860 , 1.428140) 0.77072438

rs6265 1.2104433 (0.7238578 , 2.024117) 0.46657203

rs36020 1.0092346 (0.5805126 , 1.754578) 0.97401124

rs36029 0.9233847 (0.6610055 , 1.289913) 0.64024377

rs6277N 0.9745534 (0.6966421 , 1.363332) 0.88037753

rs6190N 0.8683238 (0.3746165 , 2.012688) 0.74201553

rs6196N 0.8511988 (0.5177917 , 1.399287) 0.52525301

rs242938 0.9388251 (0.4682607 , 1.882269) 0.85882497

rs244465 0.9101647 (0.4938153 , 1.677550) 0.76286137

rs521674 0.8860463 (0.6031991 , 1.301524) 0.53743597

rs602618 0.8984932 (0.6249516 , 1.291764) 0.56335553

rs53576N 1.3238125 (0.9302923 , 1.883794) 0.11910441

rs1800497 0.8890237 (0.5312344 , 1.487786) 0.65433114

rs1876831 0.9913745 (0.5863467 , 1.676181) 0.97420847

rs1978340 1.0188308 (0.7285707 , 1.424730) 0.91316782

rs3219151 1.0886950 (0.7937240 , 1.493286) 0.59813053

rs3782025 0.8777854 (0.6101283 , 1.262861) 0.48241914

rs6943555 0.8336230 (0.5310798 , 1.308517) 0.42890267

rs7590720 0.9967982 (0.7107020 , 1.398064) 0.98517619

rs9939609 1.0083134 (0.6912514 , 1.470805) 0.96571624

rs237887N 1.0362242 (0.7578407 , 1.416869) 0.82359842

rs237889N 1.0407877 (0.7564010 , 1.432096) 0.80606355

rs237880N 0.6991074 (0.4764293 , 1.025863) 0.06732568

rs237898N 0.9744211 (0.6766265 , 1.403280) 0.88925467

rs110402N 1.1837868 (0.8201042 , 1.708748) 0.36761296

rs242924N 1.1653106 (0.8087357 , 1.679101) 0.41169542

rs7632287N 1.1422457 (0.7924600 , 1.646424) 0.47585751

Table B.14: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Breslow method (Part 1).
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Method of handling ties : Breslow

SNP Odds ratio Confidence Interval p-value

rs2268491N 1.2600048 (0.7658294 , 2.073062) 0.36294211

rs4561970N 0.7913868 (0.4089312 , 1.531537) 0.48732943

rs4686302N 0.8026311 (0.4695345 , 1.372033) 0.42154958

rs1042778N 0.8423916 (0.5928015 , 1.197068) 0.33873325

rs1488467N 0.6607798 (0.3018231 , 1.446642) 0.30001927

rs2268490N 1.2741439 (0.7658972 , 2.119661) 0.35084238

rs2740204N 0.8922209 (0.6514210 , 1.222033) 0.47733867

rs3800373N 0.9897711 (0.6957872 , 1.407969) 0.95440202

rs4813625N 0.9776902 (0.7100810 , 1.346153) 0.89002254

rs2770378N 0.8559612 (0.5926646 , 1.236230) 0.40694744

rs6770632N 1.1518061 (0.7735881 , 1.714940) 0.48647829

rs2268493N 0.9133622 (0.6407041 , 1.302053) 0.61640349

rs2268498N 1.1302639 (0.7808092 , 1.636119) 0.51641713

rs2290045N 1.1857570 (0.7468295 , 1.882651) 0.47007229

rs1900586N 1.1392261 (0.7144660 , 1.816512) 0.58397960

rs9296158N 1.0482409 (0.7369869 , 1.490948) 0.79323364

rs7748266N 1.2720144 (0.7584700 , 2.133269) 0.36174186

rs1360780N 1.0647302 (0.7502941 , 1.510942) 0.72541688

rs9394309N 1.1382114 (0.8076102 , 1.604147) 0.45962055

rs9470080N 1.0348738 (0.7464694 , 1.434705) 0.83705010

rs4792887N 1.0959970 (0.6358946 , 1.889007) 0.74137951

rs7209436N 1.1274735 (0.7818572 , 1.625868) 0.52061198

rs1344694N 1.0233080 (0.7268435 , 1.440694) 0.89497451

rs13316193N 0.9578267 (0.6730654 , 1.363065) 0.81082349

rs13125511N 1.1802432 (0.8076720 , 1.724678) 0.39183086

rs11131149N 0.9675944 (0.6778754 , 1.381137) 0.85601894

rs13273672N 1.2237107 (0.8312915 , 1.801375) 0.30613153

rs41423247N 0.9813280 (0.6849051 , 1.406041) 0.91818038

rs35369693N 1.3006786 (0.6794359 , 2.489955) 0.42750900

rs16859448N 1.2437527 (0.7780570 , 1.988184) 0.36206934

Table B.15: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Breslow method (Part 2).
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Method of handling ties : Discrete

SNP Odds ratio Confidence Interval p-value

rs1176744 0.9247166 (0.6047949 , 1.4138691) 0.71787876

rs12529 1.2317397 (0.8303669 , 1.8271234) 0.30019324

rs1799836 0.7619458 (0.5246879 , 1.1064891) 0.15318552

rs1799971 0.7523487 (0.3398408 , 1.6655702) 0.48281026

rs4680 1.0708186 (0.7335903 , 1.5630691) 0.72290873

rs6265 1.4199049 (0.7036510 , 2.8652411) 0.32769484

rs36020 1.0130731 (0.5249737 , 1.9549879) 0.96911005

rs36029 0.8817938 (0.5791223 , 1.3426529) 0.55758499

rs6277N 0.9563837 (0.6152222 , 1.4867309) 0.84294674

rs6190N 0.8263136 (0.3133576 , 2.1789615) 0.69976119

rs6196N 0.7825600 (0.4245876 , 1.4423409) 0.43190517

rs242938 0.9171373 (0.4069477 , 2.0669504) 0.83472809

rs244465 0.8673462 (0.4128023 , 1.8223967) 0.70714438

rs521674 0.8297003 (0.5147978 , 1.3372290) 0.44329064

rs602618 0.8423376 (0.5329207 , 1.3314040) 0.46261017

rs53576N 1.7623717 (1.0457907 , 2.9699574) 0.03332460

rs1800497 0.7798616 (0.3713618 , 1.6377132) 0.51128692

rs1876831 0.9859085 (0.5033307 , 1.9311671) 0.96699849

rs1978340 1.0323010 (0.6663662 , 1.5991888) 0.88680080

rs3219151 1.1491631 (0.7663902 , 1.7231117) 0.50114252

rs3782025 0.8107796 (0.5102783 , 1.2882451) 0.37460086

rs6943555 0.7408494 (0.4144800 , 1.3242082) 0.31139354

rs7590720 0.9947327 (0.6444240 , 1.5354691) 0.98097693

rs9939609 1.0143578 (0.6180486 , 1.6647909) 0.95502615

rs237887N 1.0595435 (0.7108179 , 1.5793531) 0.77641723

rs237889N 1.0758648 (0.6978011 , 1.6587609) 0.74061043

rs237880N 0.5631450 (0.3478131 , 0.9117891) 0.01951121

rs237898N 0.9526949 (0.5786420 , 1.5685477) 0.84892145

rs110402N 1.3732189 (0.8237081 , 2.2893186) 0.22388413

rs242924N 1.3392373 (0.8045854 , 2.2291686) 0.26117404

rs7632287N 1.2514291 (0.7729361 , 2.0261375) 0.36159585

Table B.16: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Discrete method (Part 1).
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Method of handling ties : Discrete

SNP Odds ratio Confidence Interval p-value

rs2268491N 1.7861425 (0.7750981 , 4.1160016) 0.17324174

rs4561970N 0.6851302 (0.2999794 , 1.5647856) 0.36949996

rs4686302N 0.7216281 (0.3773003 , 1.3801926) 0.32409447

rs1042778N 0.7408059 (0.4652139 , 1.1796582) 0.20625505

rs1488467N 0.5481519 (0.2186907 , 1.3739519) 0.19971459

rs2268490N 1.6693484 (0.7824856 , 3.5613741) 0.18499630

rs2740204N 0.8196788 (0.5411647 , 1.2415320) 0.34789213

rs3800373N 0.9844896 (0.6377584 , 1.5197286) 0.94374042

rs4813625N 0.9622705 (0.6337395 , 1.4611121) 0.85677178

rs2770378N 0.7515768 (0.4575184 , 1.2346336) 0.25944689

rs6770632N 1.2693064 (0.7539649 , 2.1368882) 0.36954167

rs2268493N 0.8546659 (0.5371382 , 1.3598992) 0.50750470

rs2268498N 1.2359988 (0.7583730 , 2.0144348) 0.39521905

rs2290045N 1.3359381 (0.7320898 , 2.437857) 0.34527202

rs1900586N 1.2844019 (0.6694827 , 2.4641238) 0.45148445

rs9296158N 1.0733887 (0.6958866 , 1.6556768) 0.74875147

rs7748266N 1.4444520 (0.7563275 , 2.7586482) 0.26529195

rs1360780N 1.1012450 (0.7120750 , 1.7031080) 0.66462941

rs9394309N 1.2794611 (0.7916901 , 2.0677544) 0.31429927

rs9470080N 1.0597195 (0.6921708 , 1.6224399) 0.78953076

rs4792887N 1.1443573 (0.5877653 , 2.2280212) 0.69160751

rs7209436N 1.2508667 (0.7538707 , 2.0755118) 0.38627088

rs1344694N 1.0405595 (0.6637834 , 1.6312010) 0.86238357

rs13316193N 0.9247824 (0.5754910 , 1.4860743) 0.74660633

rs13125511N 1.4013911 (0.8025145 , 2.4471792) 0.23542975

rs11131149N 0.9422729 (0.5845910 , 1.5188024) 0.80713193

rs13273672N 1.4749434 (0.8516974 , 2.5542617) 0.16542386

rs41423247N 0.9680345 (0.6038750 , 1.5517958) 0.89266363

rs35369693N 1.7693332 (0.6568958 , 4.7656566) 0.25901221

rs16859448N 1.4817873 (0.7752185 , 2.8323544) 0.23415842

Table B.17: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Discrete method (Part 2).
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Method of handling ties : Adding

SNP Odds ratio Confidence Interval p-value

rs1176744 0.9033193 (0.6315987 , 1.2919373) 0.57755746

rs12529 1.2145548 (0.9004920 , 1.6381527) 0.20288861

rs1799836 0.8712459 (0.6515938 , 1.1649428) 0.35240489

rs1799971 0.8449992 (0.4225162 , 1.6899323) 0.63388638

rs4680 1.0237722 (0.7516851 , 1.3943466) 0.88150892

rs6265 1.0829696 (0.6418621 , 1.8272198) 0.76519970

rs36020 1.0946353 (0.6293115 , 1.9040273) 0.74884573

rs36029 0.8961872 (0.6405139 , 1.2539174) 0.52243316

rs6277N 0.9105341 (0.6374119 , 1.3006855) 0.60647087

rs6190N 0.7690425 (0.3340852 , 1.7702863) 0.53700557

rs6196N 0.7894034 (0.4796843 , 1.2990996) 0.35214486

rs242938 0.9828265 (0.4878013 , 1.9802079) 0.96134391

rs244465 0.9888222 (0.5333312 , 1.8333246) 0.97153226

rs521674 0.8669415 (0.5824834 , 1.2903159) 0.48159572

rs602618 0.8366785 (0.5727290 , 1.2222725) 0.35648033

rs53576N 1.2524658 (0.8769695 , 1.7887402) 0.21571176

rs1800497 0.6008266 (0.3388228 , 1.0654319) 0.08130965

rs1876831 0.8798093 (0.5063087 , 1.5288388) 0.64967693

rs1978340 1.0767672 (0.7666928 , 1.5122453) 0.66949758

rs3219151 1.1360304 (0.8174912 , 1.5786898) 0.44744238

rs3782025 0.8319900 (0.5758741 , 1.2020118) 0.32716738

rs6943555 0.8112532 (0.5166483 , 1.2738488) 0.36355372

rs7590720 0.9261669 (0.6507807 , 1.3180861) 0.67009529

rs9939609 0.9524435 (0.6496276 , 1.3964133) 0.80290643

rs237887N 0.9344669 (0.6772500 , 1.2893739) 0.67986289

rs237889N 0.9650472 (0.6939462 , 1.3420579) 0.83253391

rs237880N 0.6085972 (0.4110998 , 0.9009748) 0.01310276

rs237898N 0.9940270 (0.6823488 , 1.4480714) 0.97510161

rs110402N 1.3372699 (0.9138621 , 1.9568496) 0.13458571

rs242924N 1.2512179 (0.8474419 , 1.8473787) 0.25959701

rs7632287N 1.1407008 (0.7930899 , 1.6406694) 0.47776862

Table B.18: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Adding method (Part 1).
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Method of handling ties : Adding

SNP Odds ratio Confidence Interval p-value

rs2268491N 1.3063093 (0.7797956 , 2.1883220) 0.31005485

rs4561970N 0.7202440 (0.3710445 , 1.3980843) 0.33217148

rs4686302N 0.8345359 (0.4867087 , 1.4309382) 0.51086728

rs1042778N 0.9399128 (0.6575101 , 1.3436083) 0.73392720

rs1488467N 0.6234970 (0.2844295 , 1.3667658) 0.23810509

rs2268490N 1.3463214 (0.7831080 , 2.3145995) 0.28208011

rs2740204N 0.8088235 (0.5807758 , 1.1264163) 0.20927458

rs3800373N 0.9559933 (0.6677190 , 1.3687243) 0.80584783

rs4813625N 1.0202776 (0.7296461 , 1.4266730) 0.90657661

rs2770378N 0.7604057 (0.5240685 , 1.1033229) 0.14923032

rs6770632N 1.1176498 (0.7508172 , 1.6637086) 0.58369020

rs2268493N 0.9965116 (0.6876874 , 1.4440214) 0.98526778

rs2268498N 1.1775285 (0.8070065 , 1.7181687) 0.39660114

rs2290045N 1.0262934 (0.6324738 , 1.6653311) 0.91630711

rs1900586N 1.0864921 (0.6812957 , 1.7326766) 0.72755988

rs9296158N 1.0453622 (0.7325472 , 1.4917564) 0.80682121

rs7748266N 1.4021937 (0.8103150 , 2.4263989) 0.22696088

rs1360780N 1.1132132 (0.7807917 , 1.5871630) 0.55341587

rs9394309N 1.1025210 (0.7742022 , 1.5700710) 0.58843040

rs9470080N 0.9709336 (0.6972114 , 1.3521180) 0.86141226

rs4792887N 1.1840874 (0.6592118 , 2.1268779) 0.57175427

rs7209436N 1.0519648 (0.7185205 , 1.5401509) 0.79450860

rs1344694N 1.0298456 (0.7269056 , 1.4590369) 0.86858063

rs13316193N 0.9494020 (0.6574256 , 1.3710512) 0.78184014

rs13125511N 1.1443550 (0.7850611 , 1.6680846) 0.48309207

rs11131149N 1.1022986 (0.7645578 , 1.5892353) 0.60181711

rs13273672N 1.4134016 (0.9536437 , 2.0948118) 0.08478778

rs41423247N 0.9464047 (0.6487289 , 1.3806719) 0.77496486

rs35369693N 1.1971642 (0.6076943 , 2.3584262) 0.60292706

rs16859448N 1.2034791 (0.7605015 , 1.9044828) 0.42899435

Table B.19: The results of applying the RO-logit model on the real data, with expo-
sure the particular SNP and outcome the drug abuse score. The method for handling

ties used is the Adding method (Part 2).
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Kruskal-Wallis Test

SNP p-value SNP p-value

rs1176744 0.15393621 rs2268491N 0.81329724

rs12529 0.10434891 rs4561970N 0.16645468

rs1799836 0.38563688 rs4686302N 0.58969790

rs1799971 0.14105728 rs1042778N 0.77006155

rs4680 0.62781523 rs1488467N 0.01669361

rs6265 0.45270376 rs2268490N 0.40006526

rs36020 0.69537178 rs2740204N 0.36584371

rs36029 0.16714798 rs3800373N 0.70865275

rs6277N 0.73399392 rs4813625N 0.75387036

rs6190N 0.01288415 rs2770378N 0.40809464

rs6196N 0.37086837 rs6770632N 0.31543295

rs242938 0.33408269 rs2268493N 0.51313924

rs244465 0.26226806 rs2268498N 0.77427436

rs521674 0.04124652 rs2290045N 0.75313004

rs602618 0.04060413 rs1900586N 0.75619734

rs53576N 0.65562310 rs9296158N 0.60721975

rs1800497 0.34602560 rs7748266N 0.48438300

rs1876831 0.22306606 rs1360780N 0.70211659

rs1978340 0.76213775 rs9394309N 0.74273544

rs3219151 0.57381320 rs9470080N 0.82090817

rs3782025 0.29783387 rs4792887N 0.55936844

rs6943555 0.12603501 rs7209436N 0.53064064

rs7590720 0.53694224 rs1344694N 0.55170293

rs9939609 0.37047460 rs13316193N 0.65900812

rs237887N 0.55411170 rs13125511N 0.59485728

rs237889N 0.77945353 rs11131149N 0.66671571

rs237880N 0.03812366 rs13273672N 0.69970238

rs237898N 0.56123642 rs41423247N 0.90125796

rs110402N 0.45371398 rs35369693N 0.91236219

rs242924N 0.37487800 rs16859448N 0.13095838

rs7632287N 0.32215626

Table B.20: The results of applying the Kruskla-Wallis test on the real data, with
exposure the particular SNP and outcome the drug abuse score.
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