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Abstract

Assuring quality output is a vital part of the management of pro-
duction processes. This is no different to the area of sequencing where
the quality of sequenced data needs to be assured. In this thesis we
have provided a solution to the issue of detecting and finding changes in
transformed next-generation sequencing (NGS) quality control data us-
ing control charts from statistical process control (SPC) together with a
change-point estimation procedure. The transformed data was assumed
to follow a multivariate normal distribution. We monitored the mean vec-
tor using Hotelling’s T? statistic and Croiser’s MCUSUM control chart
(cf. Hotelling, (1947), Croiser, (1988)). To monitor the covariance matrix
we made use of properties of the singular Wishart distribution, introduced
by Bodnar et al., (2009). Change-points were estimated using a gener-
alized likelihood ratio when Croiser’s MCUSUM chart gave a indication
of a change. Our model was applied to data from an individual machine
with a certain setting. A simulation study was performed to test how the
control charts performed under tran- sient and persistent changes. The
results of this simulation showed that Hotelling’s T2 control chart was ef-
ficient for detecting transient and large changes but poorly for persistent
and small. The MCUSUM control charts detected small and persistent
changes in mean and covariance matrix while worse than Hotelling’s T2
for transient and large. In the simulation study, the change point esti-
mation procedure was shown to be accurate for large persistent changes.
The constructed control charts were also applied to transformed quality
control data from other machines of the same sort. In this application,
Hotelling’s T2 control chart showed no great difference for transformed
quality control data between the machines but a difference between the
settings on these machines. However, the MCUSUM charts detected large
structural differences between the machines on the same setting. These
differences were discovered in the mean and covariance matrix. All control
charts and simulations where migrated to C++ using the Rcpp package
together with OpenMP, a parallel programming model, to increase R’s
computational power. The improvement was shown to be large compared
to base R performance in a benchmark.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-
mail: ethorsn@gmail.com. Supervisor: Taras Bodnar.
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Introduction

Quality assurance is vital in the management of all production processes. This statement is just
as valid for the SNP&SEQ technology platform (SNP&SEQ) at the Science for Life Laboratory
in Uppsala. They provide state of the art sequencing and genotyping techniques to Swedish
researchers. FEnsuring that sequenced data is of high quality is therefore no exception to any
other production process. The platform currently use fixed quality limits, which are decided by
the machine manufacturer, to decide if a sample passes quality control or not. It is possible that
using these quality limits, we may fail to take the inherent variance of the process into account.
We may also fail to detect persistent changes in the process which manifests inside the quality
limits. A process may produce products of lower quality on average, while still being inside the
limits. It may also be so that the process produce products whose quality vary more inside these
limits, which may not be desirable. The aim of this thesis is to use statistical methods to detect
changes in next generation sequencing quality control data. Both transient- as well as persistent
changes will be considered. Transient changes will be considered in the mean and persistent
changes will be considered in the mean and variance/covariance structure. If we discover a
persistent change, we would like to estimate when it occurred. This will only be considered
for changes in the mean. In this thesis we will use the framework of statistical process control
to detect changes and a change point estimation procedure to say where in time these changes
occured.

Statistical process control (SPC) was initially developed by Shewhart, (1931) to provide a
framework for monitoring a process in a sequential setting. In his book, Shewhart introduced
several concepts but we will mainly focus on the control chart, which is to be considered one of
his major contributions. The control chart is an effective and intuitive statistical tool, originally
constructed for monitoring and analysing industrial production processes. It is used to deduce if
the monitored process is performing as expected or desired, referred by Shewhart as the process
is in control (IC). Times where the process is not performing as desired was referred to as out of
control (OC).

SPC has been applied to many different areas. Lim et al., (2014) discussed the use and
impact of SPC in the food industry and Thor et al., (2007) provided a systematic review of
SPC’s application in health care improvement. In Golosnoy et al., (2010]) the authors discussed
the use of SPC to monitor portfolio weights. SPC has been used in the area of genomics, as shown
in Model et al., (2002). Here, the authors considered transient changes in data from large scale
microarray experiments. To our knowledge, no previous research has been performed on how
statistical process control can be applied on NGS quality control data for detecting persistent
and transient changes in the mean and variance/covariance structure.

As described in chapter 1.3 Qiu, (2013), statistical process control is usually divided into 2
phases. Phase 1 includes deduction of the process’ ordinary behaviour and the characteristics of
it. This could include estimating in-control parameters or simply specifying desired in-control
paramters (cf. Chakraborti et al., (2008))). It can also include validating necessary assumptions
for the control charts. In the next phase, which is called Phase 2, we observe the process in a
sequential manner. The process is monitored with the help of our control chart together with
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its charting statistic. If the charting statistic exceeds a pre-specified control limit we deem the
process as being OC. This thesis will mainly focus on Phase 2 monitoring. This will include a
simulation study of how the control charts react to different OC behaviour and a application on
quality control data from next generation sequencing machines.

Since the introduction of statistical process control, new refinments have been introduced.
The cumulative sum (CUSUM) chart and exponential moving average (EWMA) (cf. Page,
(1954), Roberts, (1959)) are some of these refinements. The CUSUM chart was introduced to
answer the issue of detecting a small and persistent change in the mean of a process, which
had not been covered in Shewhart, (1931). In this thesis, we will use two multivariate control
charts to monitor changes in the mean and covariance matrix of a multivariate normal process.
These are Hotelling’s 7?2 statistic and Croisers MCUSUM chart presented in Hotelling, (1947)
and Croiser, (1988), respectively. Hotelling’s T2 control chart have been documented to detect
large and transient changes well, while being very poor at detecting small and persistent changes
(cf. Croiser, (1988)). Croisers MCUSUM chart will be used as a complement to detect small and
persistent changes of the process. Both charts are used to monitor the mean of a multivariate
normal distribution. To monitor the covariance matrix we will make use of properties of the sin-
gular Wishart distribution which was introduced in Bodnar et al., (2009). To estimate potential
change points of the observed process we will use an estimate based on a generalized likelihood
ratio, described in Gombay and Horvath, (1994)). This method will only be used for the mean of
the process.

The data to be used in this thesis consists of multivariate irregular time series. Each ob-
servation represent the machine being run at a specific time. We will sometimes use "run” as
a reference to an observation which provide quality control data. For each machine there is a
number of settings which provide different quality characteristic but also changes the inherent
dimensionality of the problem. The machine may be used on different settings from run to run
and it may stand idle from time to time. Therefore, the following assumptions will be made in
this thesis; the irregularity will be disregarded and a observation is independent from previous
observations. The data to be used in this thesis will be transformed and the transformed data
will be assumed to follow a multivariate normal distribution. Before the transformation is per-
formed, those runs which are poor according to today’s quality criteria are removed. A small
section, introducing the transformation methods and evaluating the validity of these assumptions
are presented in the Appendix section [7.]

The in-control parameters where estimated from transformed quality control data from a
specific machine. Using these in-control parameters, we constructed Hotelling’s 72 and Crois-
ers MCUSUM control chart for the mean and the covariance matrix. In a simulation study it
was shown that the MCUSUM chart was able to detect persistent and small changes quickly on
average. Hotelling’s T2 statistic showed very poor performance in the same simulation study
while being proficient in discovering transient changes in the mean. The change-point detection
procedure was seen to estimate the change-point well in the case of large changes in the mean
and when the in control period was larger or equal to the out-of-control period. The simula-
tions and code were implemented in C++ using the Repp extension (c.f. Eddelbuettel, (2013))
together with OpenMP, a parallel programming model (c.f. Chandra et al., (2001)), to increase
computational efficiency. In a benchmark, Rcpp computational power was compared to base R’s
and base R running in parallel using the foreach package. In this benchmark, Repp showed to be
very proficient in large simulation studies.

When applying the control charts to transformed quality control data from other machines
of the same sort, the chart showed the following results. Hotelling’s 72 statistic confirmed that
the different settings of the machines give different quality characteristics but did not show any
clear difference between the machines themselves. However, Croisers MCUSUM control chart
showed large evidence that the estimated in-control parameters do not fit the other machines’
transformed quality control data.
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All code used in this thesis can be obtained at the Github repository https://github.com/
Ethorsn/SPC-NGS-Rcppl

1.1 Outline

This thesis will be outlined as follows. First, a brief introduction on Next Generation Sequencing
(NGS) and the operational routines at the SNP&SEQ platform is presented. In this section we
introduce next generation sequencing, the variables which are collected when the sequencing is
performed. Thereafter a chapter presenting the methods to be used in this thesis is presented.
Next, an exploratory data analysis is conducted of the two datasets at our disposal and continuing
on with results in form of simulations and an application of our methods on quality control data
from NGS machines. We end this thesis with a discussion and conclusions.
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Introduction to NGS and operational rou-
tines at the SNP&SEQ platform

This section aims to provide some understanding to Next Generation Sequencing (NGS), the
structure of data, the quality measurements which are collected when sequencing a sample and
how the machines work. All information presented here have been attained from [lluminas
website (June 6, 2016) (machine manufacturer), through discussions with technicians at the
SNP&SEQ platform or otherwise as cited.

Next Generation Sequencing (NGS) was introduced in 2005, Illumina, (2016). As described in
Metzker, (2010)), NGS is a collection of approaches or work flows containing library preparation
and sequencing. Here, we will only consider one sequencing procedure, sequencing by synthesis
(SBS), which Illumina’s machines use. The general work flow with SBS follows the steps seen in
Table 2.1 with accompanying Figure [7.1] which is found in the Appendix, section[7.2] These two
provide a simplification of what is presented in Illumina, (2016).

Table 2.1: The general workflow using sequencing by synthesis.

1. Library preparation The DNA sample is randomly fragmented and then
prepared for placement on a plate (flowcell).

2. Cluster generation or amplification The prepared library is loaded onto a plate (flowcell)
which has some special features. These features to-
gether with what is called solid-phase amplification
make it possible to clone each fragment placed on the
flowcell such that each fragment results in a cluster.

3. Sequencing The flowcell is placed inside the machine where the
sequencing can begin using the SBS technology.

4. Preliminary & data analysis The sequenced data and quality variables are ex-
tracted.

The two first steps, library preparation and cluster generation, is performed manually or by
a machine. The third step where the sequencing is performed, constitutes of a process where
of one of four fluorescent-labelled nucleotides binds to their complementary base pair, contained
in the DNA fragment on the flowcell. This process results in a florescent light which can be
captured by a camera in the machine. There is a trade-off between cluster generation and
sequencing performance. Too much cluster generation results in over-clustering and the machine
can not distinguish the florescent lights that appear between adjacent clusters. On the other
hand, too few clusters results in under-clustering and the machine can not detect the florescent
light properly, resulting in low daya yeild.

The flowcell, which was previously mentioned in table has 8 lanes and each of these
lanes can provide two reads. Figure illustrates this hierarchical structure of a flowcell. The
measurements made on a lane will in general be worse for Read 2. The camera in the machine
emits a light in each step of the sequencing procedure. This light is said to damage the sample
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placed on the flowcell. The second reason is that the sequencing procedure takes time. The
second read can be performed up to two or three days after the run was started. The quality of
the sample can deteriorate under the sequencing procedure because of the amount of time it is
inside the machine.

Each read represents a measurement of the same cluster but from opposite directions. Be-
tween each read, the fragments which are to be sequenced, turns 180 degrees. We can therefore
interpret it as read 1 sequence the DNA fragment from the top to the bottom and read 2 sequence
the DNA fragment from the bottom to the top. This procedure is performed by the machine
with the help of a set of chemicals. The procedure is not deterministic and errors often occur.

When a client provides their sample, they will also specify a number of settings which is to
be taken into account in a run. A client will specify which tags corresponds to a specific sample.
A tag corresponds to a unique sequence of base pairs. A flowcell can provide several observations
from each read in a given lane, corresponding to the search for different tags. This is seen in
Figure[2.1] The number of observations may differ between flowcells. This is the structure of the
lowest level in a flowcell, which we will refer to as a flowcells "tag level”. A higher level exists and
at this level only one observation for each read is provided. We will call this level the "read level”.
The client also specifies the number of cycles, lanes and reads to be used in a run. The cycles
represents how many times we are repeating the SBS procedure. A higher cycle number implies
a longer run time. For some machines, there is only one cycle setting and for others several.

In Table we can see the quality variables provided by the machines and the data pipeline
at SNP&SEQ. These measurements are derived from the output of the machines. We list what
level they are measured on and a very brief description of them. Tag level measurements can
be aggregated, by the mean or sum, to receive their respective variable measurements found on
read level. This is true to the first decimal. The completed run cycles are not equal to the
actual setting which was used. We will therefore make the following assumption. A run which
has a specific number of completed run cycles had a cycle setting equal to the largest closest
possible run setting. Under this assumption we can deduce what type of cycle setting the run
was performed with.

Flowcell

[lane 1] [lane 2} [lane 3} {lane 4]

[read 1 read 2} [read 1] read 2]
{Tag A) [Tag AJ [Tag A) [Tag A)
[Tag B} {Tag B} {Tag BJ [Tag B}
[Tag Bj [Tag C} [Tag B} [Tag C}

Figure 2.1: The hierachical structure of data at the lowest level, tag level, of quality measurement.

There are a total of 10 Next Generation Sequencing (NGS) machines of three types (MiSeq,
HiSeq2500 and HiSeqX) at the SNP&SEQ platform. The HiSeqX machines are all of the same
model whereas the HiSeq2500 are mixed, upgraded from previous models amongst others. These
upgrades do not imply that the machines are equal in terms of their specifications. The three
different types of machines are generally used for different things. The single MiSeq machine is
mainly used for experimental samples. This machine provides less data and the cost of a run
is less compared to the others. The MiSeq machine is expected to perform worse since a large
portion of variation will come from the sample itself. The HiSeq machines are used for common
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samples and are expected to perform better than MiSeq. They cost more to run but has the
ability to produce larger output. Lastly, the HiSeqX machine is the least flexibile machine which
also is the most expensive to run. Although being the least flexible and the most expensive one,
a HiSeqX mechine is able to provide the largest amount of data and is deemed to be the most
accurate.

Before the NGS machines are used they are cleaned. If a machine is idle for too many days the
machine is put through the same maintenance to ensure that it does not deteriorate. It should
be noted that the maintenance performed only covers a certain set of parts in the machine, such
as drain pipes and pumps amongst others.

Table 2.2: Table containing quality variables, what level they are measured on and a short
description of them.

Variable Level Description

Mean Q tag/read The mean quality score of a read

Completed cycles  tag/read Number of completed cycles

Percent Q30 tag/read Percentage of base calls which had a Q-
value which where over 30

Error rate read Error rate of read sequence compared to a
reference genome

Percent tag error tag The percent of error of the alignment of
this tag
Raw cluster read The number of cluster’s detected in a read

Post filter Cluster tag/read The number of cluster’s detected, post fil-
ter

Raw Density read The cluster density

Post filter Density read The cluster density, post filter

In the next section we will introduce the methods to be used in this thesis.
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In this section we will introduce the model, control charts and the change-point estimation
procedure to be used in this thesis. We begin with introducing our problem, and how we will
approach it from a mathematical point of view. Thereafter, we introduce the control charts and
last the change-point estimation procedure.

3.1 Problem description

In Phase 1 we assumed that we have observed the target process, which we denote {Y;}. The
target process represents what was called the IC state or IC behaviour of the process. It is
assumed that realisations from this process are independent and identically distributed according
to a p-variate normal distribution with mean vector g, and non-singular covariance matrix X,
defined in section 2.3 Hair et al., (2006). In this thesis, the parameters are assumed to be
unknown and will therefore be estimated using a random sample. Let fi, and f]o denote the
maximum likelihood estimate based on a random sample Y = {Y1, Y2, ..., Y} from the target
process. Their closed forms can be found in section 3.2 Hair et al., (2006)).

In Phase 2 we consider a sequential p-dimensional process {X;}, which we will refer to as the
observed process. If the observed process were to coincide with the target process, then we will
say that the process is IC. On the contrary, if they do not share the same distribution we refer
to the process as being OC.

We will consider two types of changes, transient and persistent changes. Transient changes
are those where the observed process shows out of control behaviour but only for a specific
observation. The observed process then goes back to the target process. Persistent changes are
defined as whenever the observed process departs from the target process and do not return to
it. The problem of discovering persistent changes can be placed in a change-point framework (cf.
Chen and Gupta, (2011))), i.e.

Xt ~ Np(y‘O’ZO)v t<rT
Np(py,21), t>7

where pg, pq are two p-dimensional mean vectors and 3, 3; are two non-singular covariance
matrices. If 7 < oo then a change occurred at time 7. Thus, up until time 7 the observed process
coincides with the target process. In the change-point framework, we aim to test if as well as
when a change has occurred.

Transient changes will only be considered in the mean. For persistent changes, we will
consider shifts in the location, i.e. py # py, and also changes in the covariance matrix of the

distribution i.e. ¥ # 3.

(3.1)

3.2 Statistical process control - SPC

In this section we will introduce the control charts to be used in this thesis. These are Hotelling’s
T? chart (cf. Hotelling, (1947)) and Croiser’s multivariate cumulative sum (MCUSUM) chart (cf.
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Croiser, (1988)). The charts provide different characteristics and possibilities to detect different
behaviour. We will use Hotelling’s 72 chart to monitor transient and large changes and Croiser’s
MCUSUM to monitor persistent and small changes.

We will start with introducing Hotelling’s T2 statistic for Phase 2 monitoring. Initially,
Hotelling’s T2 statistic was derived as the generalisation of the univariate one-sample t-test to
the multivariate setting where he was also first to use the T2 statistic in multivariate statistical
process control (cf. Hotelling, (1947)).

3.2.1 Hotelling’s T2 control chart

In Phase 2 monitoring we observe X; one at a time, in a sequential manner. As presented by
Qiu, (2013)) in section 7.2.2, Hotelling’s T2 statistic for Phase 2 monitoring uses the following
charting statistic
T = (X; — 1) Sy (X = fug):

where f15 and f]o are the maximum likelihood estimates based on the IC sample Y. The charting
statistic T can be interpreted as the squared Mahalanobis distance (cf. Mitchell and Krzanowski,
(1985)) of X; to the estimated IC mean fi, with respect to the estimated IC covariance matrix
0.

Under the assumption that the observed process is IC, X; follows the target process. From
Hair et al., (2006), Collary 5.2.1, we have that

(M —p)M

2
p(M —1)(M + 1)Tt FpM—p

where F, j is the F-distribution with parameters a and b, M is the sample size of the in-control
sample and p is the number of elements in the target process. Under the assumption that
the target distribution is multivariate normal the distribution of the T}? statistic is exact. If
the assumption is violated the F-distribution is still the asymptotic distribution, which makes
Hotelling’s T2 statistic robust against distributional assumptions (cf. Kariya, (1981)).

The control limit A is calculated according to

p(M —1)(M +1)

h - (M — p)M l—a,p,(M—p) (32)

where F1_, p, (v—p) 18 the (1 — a)% percentile of the F;, ps—p, distribution. If T? > h we signal a
alarm and state that the process has gone OC.

In the following section we introduce the CUSUM chart by Page, (1954) in the univariate
setting and continue on to the multivariate CUSUM chart by Croiser, (1988)).

3.2.2 The cumulative sum (CUSUM) chart

The univariate CUSUM chart was originally presented by Page, (1954). Page constructed the
CUSUM chart based on what is called the sequential probability ratio test (SPRT). We start
with presenting some theory for the ordinary hypothesis testing and then extend it to the SPRT
framework. We then introduce the CUSUM chart and show how it is connected to SPRT.

Let Z denote a continuous random variable distributed according to some distribution F. Let
F have probability density function fr and z be a realisation from this distribution. As presented
by Siegmund, (1985)) in chapter 1, the regular framework of hypothesis testing considers the null
hypothesis together with the alternative in the following fashion

H():ZN.F
H1:Z~g
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where G is some distribution with density fg(z). The two distributions F and G are known and
therefore the hypothesis can be tested using a likelihood ratio test. Let

Az2) = fg(2)/ fr(2)

be the likelihood ratio. Using the single observation z the likelihood ratio can be computed. The
value of the likelihood ratio is then compared to a constant 1. If the likelihood ratio, A(z), is
larger then the constant r; we reject the null hypothesis. If it is less than r; we fail to reject
the null. A sequential probability ratio test introduces a third possibility for intermediate values
of A(z). That is, for 7o < A(z) < r; where rg < r;, we can neither reject nor fail to reject the
null. Intermediate values indicate that we need more information and should therefore continue
to observe, or gather, more observations from the process.

Now, let z; be realisations of the random variable Z at time point . These realisations
are obtained in a sequential order at regular intervals. Page, (1954) constructed the following
charting statistic

Ct = max(C’t_1 + zt, 0) C() = 0, (33)

in order to detect an increase in the mean of the distribution of Z. From equation , Cy=0
when C; < ming<;<¢ C;. Whenever the sequence C; receives a new minimum, the process resets
and starts again from zero. The charting statistic gives a signal of an increase in the mean if
Cy > h where h is a pre-specified control limit.

To see the connection to the SPRT framework we follow Qiu, (2013)), section 4.2.4. Assume
that Z follows a normal distribution with mean p and variance o2. We are interested in testing
the hypothesis

Ho : Z ~ N (uo,0?)
Hy : Z ~N(u1,0%)

or in more compact form Hy : p = po against Hy : p = g where pog < p1. Let zp = {21, 29, ..., 2t }
represent a random sample of size t. The log likelihood ratio can then be written as

log(A(zt)) = log(f1(zt)/ fo(z))

= log (H f1(Zi)/f0(Zi))
=1

= Zlog(fl(zi)) —log(fo(z:)) (3.4)
=1

where the sub-index of the densities f;, i = 0,1, refers to the distribution under the null and
alternative hypothesis, respectively. Using the density of the normal distribution in equation
(3.4) we have that

)2 (s — )2
fog(an) = 3 (~E 4+ B )

_ % S~ (241 — o) (1 +M0)2(M1 - Mo))
=1
= ”IO;MO Z (Zi — Mo — k‘) (35)
i=1
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where k = (u1 — po)/2. Let

~ o2
t = i — 10 log(A(zt))
= (2 —po— k) (3:6)
=1
=Cr1+ (2t — po) — & (3.7)

where Cy = 0. If we compare the statistic C, equation , to C,, seen in , the main
difference can be seen in the maximum and the addition of k. The maximum can be interpreted
as Page’s CUSUM chart will never fail to reject the null hypothesis. The CUSUM chart only
considers the two options of rejecting the null or what was described as the third option, we need
more information.

A natural extension of the chart suggested in equation , under the assumption of normally
distributed data, would be to include the constant k, which is referred to as the allowance constant
(cf. Qiu, (2013)) section 4.2.2). This implies the following charting statistic

Cy = max(Ci—1 + (2 — o) — k,0). (3.8)

Moustakides, (1986]) showed that Page’s CUSUM chart is quickest out of all SPRT tests to detect
persistent shifts of size p; —po = 2k, given an average run length (ARL) and a allowance constant
k. The average run length will be further explained in section [3.2.3] The size of the shifts are
seldom known beforehand which implies that k should be chosen such that we detect a desirable
shift as soon as possible.

The CUSUM chart was first extended by Croiser, (1988)) to the multivariate setting from
a two-sided univariate chart he introduced in Croiser, (1986). We will now introduce Croiser’s
multivariate CUSUM chart presented in 1988.

3.2.2.1 Croiser’s multivariate CUSUM chart

The natural and somewhat blunt extension of the univariate CUSUM chart, equation (3.8)), to
the multivariate setting would be to include vector variables in the scheme, i.e.

St = maX(St_l + (Xt - “0) - k, O) (39)

where X; ~ Nj(pg, Xo). However, deducing which is the largest, a vector or 0, is not trivial
nor is it clear how to choose the column vector of allowance constants k. Therefore, Croiser,
(1988) suggested the following. Consider the vector k, it must have the same direction as
Si—1 + (X; — pg), or otherwise increasing elements of k would not shrink S;_; + (X; — pg) — k
towards the zero vector. Also, Croiser suggested that k should shrink S;_; 4+ (X; — ptg) w.r.t the
variance, thus he suggested, (k’ Eok)l/ 2 = k, it should have length k. Therefore Croiser set

k = (k/Cp)(St—1 + (X¢ — o))

given that k < Cy, where C} is the length of S;_1 + (X — pg) w.r.t. o, i.e.

Cy = \/(St—l + Xt — /J'O)lzal(st—l + Xy — o)
Now that we have constructed k in such a way that it will shrink the vector S;_1 + (X: — pg)

towards the zero vector, the maximum taken in equation [3.9] can be seen as setting S; = 0
whenever Cy < k. Rather than considering the multivariate CUSUM in equation (3.9) we can
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consider the following, let

Cr = \/(St—l + X — o) S5 (Se-1 + Xt — pg) (3.10)
0 if Cy <k
¢ = o= (3.11)
(Si—1+ Xy — po)(1 —k/C;)  otherwise

where k is the allowance constant and Sg = 0. Let

Hy =1/S,3, 'Sy, (3.12)

be the charting statistic. The chart gives a signal if H; > h where h is a pre-specified control
limit.

Croiser, (1988) proved that the chart is directional invariant. It only depends on the non-
centrality parameter

A= (py — 1o) Bo(pey — 1)

where p; is the OC process mean vector and py the IC mean vector. The non-centrality can
be interpreted as the statistical distance of the new mean p; to the in control mean. Also, the
result implies that we only need to use one chart to monitor all possible changes in the mean
vector p. The allowance constant £ can be chosen in the same way as described in previous
section. The choice of h is not trivial and will be extended upon more thoroughly in the section
.23

In the next section we will introduce one method for monitoring the covariance matrix,
introduced in Bodnar et al., (2009). They constructed numerous charts for monitoring the
covariance matrix based on properties of the singular Wishart distribution.

3.2.2.2 Monitoring the covariance matrix using properties of the singular Wishart
distribution

Let X = (X1, X2, ..., X;,)" be a random sample of size n from N,(0,3). The dimensions of X is
equal to n x p, n > p. Let V = XX/, then V follows a p-dimensional Wishart distribution with
n degrees of freedom. The p-dimensional Wishart distribution, which we will denote W (n, 3)
has the following probability density function (cf. Forbes et al., (2011), chapter 47)

exp (—3tr(2,'V)) [V|n-p-1)/2
Ly (n/2)|25["/2

f(Vi%g) = (3.13)
where |A] is the determinant of the matrix A, tr(A) is the trace of the matrix A and I',(g) is
the p-dimensional gamma function. Consider the case where n < p, then V is a rank deficient
matrix since

rank(X) = min(n,p) =n
rank(V) = rank(XX') < min(rank(X), rank(X")) =n < p,

by 3.12, Seber, (2008). By the definition of the rank (cf. definition 4.2 Seber, (2008))), the matrix
V does not have an inverse and the determinant of the matrix is equal to zero. Under these
circumstances, the density in equation is zero for all outcomes V. The distribution on
the other hand, still exists and does so under the name of the singular Wishart distribution.
The properties of the Wishart and singular Wishart distribution was thoroughly investigated
in Bodnar and Okhrin, (2008). These properties were then placed in the multivariate SPC
framework by Bodnar et al., 2009.

To monitor the covariance matrix, Bodnar et al., (2009) proposed the following. Let n = 1,
then X = X, which is a single observation from the p-dimensional observed process at time
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point ¢. Let V; = X; X} be the maximum likelihood estimate for the covariance matrix at time
point ¢t and partition the matrices V; and X in the following way

Viir Vi Y1 X9
V= ’ ’ o= . 3.14
! (Vt-21 Vi 0 o1 XYoo (3:14)

)

Note that we removed the subscript 0 when partitioning the covariance matrix. This was done
in order to keep the notation readable. Consider the case where V.12 and 39 are row vectors.
For the i-th row and column we may reorder 3y and V; such that the element 3 is the ¢-th
diagonal element and X195, 391 the i-th row and column. Let 01-21- and I/t%n- be the i-th diagonal
elements of the covariance matrix ¥y and the matrix Vi, respectively. Let 3a1; and Vi1
denote the i-th column of ¥y and V; but without their respective i-th element diagonal element.
Let X35 —; denote the (p—1) x (p—1) matrix without the i-th column and row of 3y. The Schur
complement (cf. Seber, (2008) definition 14.1) for the i-th row is defined as

* — . Ryl 2
59 i = 222, i — 221,391 ;/ 0%

Partition the out-of-control covariance matrix 3 in equation (3.1]) in the same manner as above.
Let 37.95 _; be the Schur complement for the i-th row of the out-of-control covariance matrix
3. The following theorem was displayed in Bodnar et al., (2009)

Theorem 1. Let Y1,Ys,..., Y, be ani.i.d. p dimensional Gaussian process with Y; ~ N, (0, X).
Let observed process { X} be defined as

s 029
Then
(a) in the IC state
Mo = Tbo i 2 (Viri/ Vi — Zori/ o) veai ~ Np-1(0p-1,Tp1). (3.16)

where 0,1 is the zero vector of length p — 1 and 1,1 is the p — 1 dimensional identity
matriz.

(b) in the OC state

Elm; 4] = ( 32,i)1/29i0ii\\/[; (3.17)

Var(n, ;) = (232,—1‘)_1/2 (B0, + Qioli(1— QW_I)Q;) (252,—1‘)_1/2 (3.18)
where ; = 21;217,-/0%;“ — 221#’/”%'
Moreover, {n;,} are independent in the IC and OC state.

Proof of (a) was shown by Bodnar and Okhrin, (2008) and whereas part (b) was shown by
Bodnar et al., (2009). The process {7;:} is independent in time if the observed process {X;} is.

If Q; = 0,—1 then no shift has occurred in the covariance matrix of the original observed
process {X¢}. A shift in the covariance matrix would imply a shift in the mean of the transformed
quantity in equation . The result provides us with a way to monitor the covariance matrix
with methods to monitor changes in the mean of a multivariate normal distribution. Also, if a
shift in the mean vector would occur in the observed process in equation the distribution
of mit, i = 1,...,p is no longer a (p — 1)-variate normal distribution, shown by Bodnar et al.,
(2009). Any control chart which is constructed based on the process {n;;, i =1, ...,p} will thus
be sensitive to shifts in the covariance matrix and the mean vector of the initial observed process.

12



Statistical process control - SPC

In order to monitor the whole covariance matrix we need to use p different charts. As
suggested by Bodnar et al., (2009) we define the joint control chart, using Croiser’s MCUSUM
control chart as the foundation, as

Cit = \/(Sz’,t—l + 1) (Sit—1+15,) (3.19)
0 ifCi <k

S = St = (3.20)
(Sit—1+m;¢)(1 —k/Cit) otherwise

where k is the allowance constant and S; o = 0. Let

Hy=/S;,Si, (3.21)

fort=1,2,3,...,p. We define the charting statistic as
Ht = maX(HLt, H27t, PN Hp,t>'

We will now continue with specifying how to determine the control limit A and properly
define the average run length.

3.2.3 Control limits and average run length

The IC average run length was first introduced by Page, (1954) together with the CUSUM chart.
It is defined as the average number of observations we can observe in the sequential setting before
the chart gives an alarm. The literature differentiate between the IC ARL (ARLg) and the OC
ARL (ARL;) (cf. Qiu, (2013) or Mezzenga and Benassi, (2016)). The ARLg is defined as the
average number of observations until the chart gives a alarm when the process is in control. This
is closely related to the type 1 error in the regular hypothesis testing framework. The ARL;
represents the average number of observations for the chart to discover a change which is actually
present. It is closely related to the power of a test in the regular hypothesis testing framework.

Consider a random variable Z; with continuous support which appears in a sequential order.
In the case when Z; are i.i.d for all ¢, we can see the events Z; > h as independent Bernoulli
trials with probability of success a. One can define N}, as the number of independent Bernoulli
trials it takes until a successful event, Z; > h. For a finite value of h, the stopping time

Ny =inf{t € Zy : Z, > h}

is also a random variable, which follows a geometric distribution with probability of success «,
described by Grimmett and Stirzaker, (2001) page 487. The expectation of N, is by definition
equal to the ARLg. In the case of Hotellings T charting statistic all are independent and
therefore the disitribution holds of its ARL;. However, in the CUSUM setting the charting
statistics H; are not independent which implies that the distribution of the stopping time is not
geometric. The distribution of the ARL( was first investigated by Page, (1954) in the univariate
setting through renewal equations. Generalizing the renewal equations into the multivariate
setting becomes increasingly difficult as Croiser’s MCUSUM control chart as it is not of them
same form. While the calculations of the ARLg can not be done by closed forms it can be done
through simulations.

From section [3.9 where we defined the MCUSUM control chart, we can see that the charting
statstic Hy depends on the previous value of itself. This is famously known as the markov property,
described by Resnick, (2002)) page 63. Using a partition of the charting statistics support, one
can describe this stochastic process as a markov chain, where the last state is an absorbing one.
The ARL can be approximated using a markov chain approach, as described by Hawkins and
Olwell, (1998) page 152. However, by Hawkins and Olwell, (1998) page 156, one can simply use
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Monte Carlo simulation to construct trajectories of the the charting statistics, record the run
lengths and take the average of these. The average of the individual run lengths serve as an
estimate for the ARLy. We will use this approach to calculate the ARLy, i.e.

1 n
ARLo ~ ~ > Ny (3.22)
=1

where Nj,; is the ith simulated run length under a fixed control limit A and allowance constant.

The Monte Carlo approximation of E[N}] using Croiser’s MCUSUM chart is outlined in
Algorithm The monte carlo approximation is implemented in the functions SimulateARLO
and SimulateARLOSigma which are written in C++ together with OpenMP using the Repp
extension. The Repp extension is presented by Eddelbuettel, (2013]). It provides syntatic sugar
for C++, extending some of R’s syntax into C+-+. OpenMP is a parallell programming model
which is written for Fortran, C, C++ and is thoroughly described by Chandra et al., (2001)
which can be used together with the Rcpp package by changing to a compiler which supports
OpenMP. In the Appendix, section we present a comparison of SimulateARLO performance
inmplemented in base R, base R running in parallel using the foreach package and Rcpp using
the OpenMP extension.

input : An allowance constant k, a control limit h, the in control parameters pg and
b3
output : A vector with Run lengths

Initialize: t =0, H =0, Sy =0

1 while H; < h and t is less than some large number do

2 Simulate X from N, (g, o).

3 Calculate Cy with the help of S;_; and X, according to equation .
4 Calculate S; according to equation and then calculate Hy.

5 Updatet=t+1

6 end

7 Repeat n times.

Algorithm 1: Simulation of the IC average run length, given a control limit A and allowance
constant k.

In equation (3.22) and Algorithm [I| we are assuming a fixed control limit and allowance
constant. In order to find the optimal control limit given a target IC average run length, reffered
to as ARL{, and an allowance constant k, we consider the following function

F(h) = E[Na] — ARLE ~ (; f: Ni,h> _ ARLE. (3.23)
=1

We aim to find the h* which fulfils f(h*) = 0. In this thesis, we will use the bisection algorithm
described by Conte and Boor, (1980) page 75, to find 2* on a interval (ap, bg). In order for the
bisection algorithm to converge we need to choose a pair ag, by such that f(ag)f(bp) < 0 which
can be done by setting ag relatively small and by sufficiently large. The choice of ag and by
will have a large impact on the time until convergence. The bisection algorithm is implemented
in the R function CalculateControlLimit which makes use of the C++ functions previously
described. An outline of the algorithm is presented in Algorithm

In the next section we introduce the change-point estimation procedure. It will be used as a
retrospective tool for diagnostics when the MCUSUM chart gives a indication of a change. The
method to be used in this thesis is a change-point estimate based on the generalized likelihood
ratio.
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Change-point estimation using a generalized likelihood ratio

input : An allowance constant k, two endpoints in an interval [ag, by, a target ARL,
a maximum number Nmax of iterations, a small number € and IC parameters
1o and X
output : Simulated ARLg for each iteration together with the interval used in that
iteration step.
1 for i + 0 to Nmaz do
2 Set hZ':(CLi-f—bi)/Q
3 Use function SimulateARLO or SimulateARLOSigma to simulate E[N}] given h;, k, p
and Xg. Let ARLy = (% Z?:l Ni,h)
4 if |[ARLy — ARLj| < € then
5 break, convergence achieved.
6 else if ARLy < ARLj then
7 aiy1 = h;
8 biy1 =10
9 else
10 Ai+1 = G4
11 biv1 = h;
12 end
13 end

Algorithm 2: Bisection algorithm used to find the control limit A

3.3 Change-point estimation using a generalized likelihood ratio

Consider the model defined in equation . Let f(-; ) denote the density of a multivariate
normal distribution with mean vector . Consider the case where Croiser’s MCUSUM control
chart for the mean has given an alarm at the nth observation in Phase 2 monitoring. Let
X = (X1, X, ..., X,,)" denote the sample obtained in Phase 2 monitoring. Under the assumption
of i.i.d observations, the joint density for the sample is the product of each individual density.
However, since the Croiser’s MCUSUM chart has given an indication of a change, we assume that
the process, and therefore the distribution, has changed somewhere throughout the sample. To
estimate the change-point 7 we will consider a generalized likelihood ratio estimation procedure
defined by Gombay and Horvath, (1994]).
In the context of hypothesis testing, we would consider the following hypothesis

Hy:7>n against Hy : 7 < n.

Let [;(+;...), i = 1,2, denote the likelihood of the density under the different hypothesis. The
authors define the generalized likelihood ratio as

(7, o5 15 X)
lo(po; X)
J1(X5 7, 1o, 1)
fo(X5 1)
_ Hz—l Jo(Xi; o) Hz rfl(qul)
Hi 1 fo(Xis 1)

_ H 1 (X5 )
—r fO qu’O

AT, 13 X) =

= exp (—; (Z(X@- — 1) 25 (X = ) — (Xi — ) (X — Ho))) :

=T
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The generalized likelihood ratio depends on two parameters through the likelihood under the
alternative hypothesis. In this context the OC mean p; may be considered a nuisance parameter.
The profile likelihood (cf. Sundberg, (“Statistical modelling by exponential families”) page 234)
of the likelihood under the alternative hypothesis can be attained by can by ordinary means since
the score function exists, holding 7 fixed. Using the profile likelihood instead of the likelihood
we have that the generalized likelihood ratio is equal to

Ap(73 X) = A(T, 1y (7); X)

where

- 1 -

This profile likelihood ratio can be used to estimate the change-point 7. The estimator for 7
based on the generalized likelihood ratio is defined as

7 = arg max {A,(j; X)}.

The estimate is obtained by calculating all values of the generalized profile likelihood ratio and
then picking the index j which results in the largest value of the likelihood ratio. This index j
which supplied the largest value corresponds to the estimated change-point.
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Exploratory data analysis

In this section we will conduct an exploratory data analysis of the two datasets at our desposal.

The data to be used consists of two sets. The first set contains observations on the lowest
level, what we called the tag level. There is no fixed number of tags for each run and therefore
each flowcell can contain a different number of measurements. This dataset contains a total of
786 runs (unique flowcells) from 2012 up until the end of 2015.

The second dataset contains observations from what we called the read level. This dataset
contains a total of 801 runs. This implies that there is a difference between the datasets. A
total of 15 runs are missing from the tag level. The missing runs are from the MiSeq 1, HiSeq 3
and 6 machines. These missing runs will be excluded from the data. Also, it was advised that
data from 2012 was not to be used since runs performed in 2012 was done so under different
circumstances. The quality control data from 2012 will be removed from both datasets.

In Table we can see the completed run cycles for the HiSeq (Hi) and HiSeqX (HiX)
machines. The different machines are labeled with different index. We can start by noticing
that HiSeq 1 and 2 are not present in the table. These two have been taken out of production.
The HiSeq machines show a large variance in the completed cycles. This is a consequence of
the wide range of settings that have been used. We can see that HiSeq 6 (Hi6) have most runs
in the vicinity of 124-125 completed cycles. A cycle setting of 126 is one of the most common
cycle settings for HiSeq machines at the SNP&SEQ platform. We will use the HiSeq 6 machine
to represent the HiSeq machines. The HiSeqX machines have all been run on the same cycle
setting, with every completed cycle equal to 150. This is the only setting used at the SNP&SEQ
platform for HiSeqX machines. As the HiSeqX machines do not differ in the cycle setting we will
use the HiSeqX 1 to represent the HiSeqX machines. The MiSeq 1 machine has a wide range
of 0-500 completed cycles with a lot of different run settings. It is not included since the table
would be a page long but will be included, to some extent, in the exploratory analysis. All runs
which have 0 completed cycles have been documented to be malfunctions.

The last row in Table shows the total number of runs performed on each machine. The
HiSeq 4 machine has most runs of all but also a large diversity in the run settings.

We will now investigate the Mean Q values of each successive run at a tag level. In Figure|d.1
we can see the mean of Mean Q) tag level measurements together with the range (min to max)
for three different machines of different types for lane 1 stratified on read. The observations are
presented in their order of appearance.

For lane 1 measurements, the mean for HiSeq 6 of Mean Q tag level measurements correlates
well with its range. If the range is large then the mean is usually lower. The variability of mean
tag level measurements in read 2 is larger compared to read 1. HiSeqX is seen to have a small
range in each run, for read 1 and 2 measurements. Read 2 measurements are lower on average
but do not show any substaintial increase in variance. MiSeq 1 is seen to be the worst of all in
terms of its Mean Q tag level measurements. It is clearly seen in the large variance of the means
and the larger range throughout the runs. This is to be expected since the MiSeq machine was
used for experimental samples on several different settings.



Ezploratory data analysis

Mean Q score measurements on Tag level
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Figure 4.1: Figure containing the range (min to max) and mean of each successive run (flowcell).
Here, we are showing read 1 and 2 in lane 1, disregarding what type of setting the run is performed
on.
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Table 4.1: Table showing the number of flowcells with a specific number of completed cycles for
HiSeq (Hi) and HiSeqX (HiX) machine.

Machine
Cycles Hi3 Hi4 Hi5 Hi6 HiX1 HiX2 HiX3 HiX4 HiX5
0 1 2 3 3 1 1
49 7
50 16 10 11 7
60 3
99 2 4 2 1
100 73 49 15 6
124 22 22 30
125 53 46 50
150 11 2 14 16 30 27 22 32 16
200 1
250 6 1
p 115 143 110 117 30 30 22 33 17

We will now focus on the HiSeq machines with 102 to 126 completed cycles, in order to make
this EDA sufficiently short.

In Figure [.2] the range together with the mean of lane 1 and read 1 for HiSeq 6 is shown in
their order of appearance. The variables shown here are Percent Q30 and the percent tag error.
These measurements are from tag level for the HiSeq 6 machine with a cycle setting of 102 to 126.
The last figure contains the number of observations in each lane 1 and read 1. The first figure
with values of the Percent Q30 variable, shows an overall small amount of variation between
runs. The range is very small, except for a single observation where the mean is lower compared
to previous observations. The percent tag error can be seen to be very close to zero and at some
times equal to zero. This is surprising since the construction of the variable is connected to the
Error rate. If one is zero, the other should be as well. However, for some runs with zero percent
tag error, the Error rate is well above zero. We will refrain from using the percent of tag error
since the quality data can not be assured. The last figure in Figure illustrates the number of
observations contained in lane 1, read 1, in each successive run. This illustrates that the number
of observations between runs does not need to be equal and that they vary a lot.

We will now continue with the read level measurements. At this level one observation per
read and lane is supplied. We have 7 different variables, with 16 measurements in each. Since
the HiSeq 6 machine has been our main interest so far, we will continue in this fashion and
compare it to the other HiSeq machines. All runs will henceforth be using all 8 lanes and a cycle
setting on 126. The HiSeq 3 machine does not have any runs on this specific cycle setting and
will therefore be omitted.

Figure [4.3]shows the mean together with the range of the Error rate variable. We can see that
no measurements are zero in this case. The HiSeq 5 machine seems to have a lower Error rate
on average compared to the other machines. The HiSeq 6 machine has shown one, or possibly
several, runs with large Error rates in different lanes. To further investigate the distribution of
the Error rate together with those variables which have not been looked upon, we will look at
them in a histogram.

In Figure [£.4) we have histograms of the Error rate, raw cluster density and the number of
raw clusters for lane 1 and 2, both reads. Note that the scale of the variables differ. In the
Error rate (row one), we can see that read 2 contains more variability compared to read 1. The
distribution of read 1 is more peaked while the distribution for read 2 is quite flat. The density
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Figure 4.2: Figure showing the range (min to max) and mean of each succsessive run (flowcell)
in lane 1, read 1, of the two variables Percent Q30 and Percentage tag error. All runs shown
where performed on 126 cycles.

and cluster variable can be seen to be close to symmetric. The distribution of these two variables
look very much alike.

The Spearman correlation matrix is visualized in Figure The number of variables in the
Figure is equal to 112. In this figure the axis labels where omitted but a header for each group of
variables is placed next to them. As an example, the top 16 variables in Figure corresponds
to the Error rate for each read and lane which is denoted by the label. We will refer to this as a
section of variables.

We can see that the density and cluster sections of variables correlate almost perfectly. This
is especially true for measurements on the same read in a lane. The Mean @ and Percent Q30
sections seem to be correlated to each other while not having much correlation to the cluster
and density variables. The Error rate is negatively correlated with Percent Q30 and Mean Q
measurements from the same read and lane, while not showing much correlation to other reads
and lanes. The correlation matrix can almost be placed on a block diagonal form where three
first sections of variables create one block and the last four create another.

For further analysis we will consider the quality control data for HiSeq 6 with the variables;
Mean Q, Error rate and Percent Q30. We will continue to use a cycle setting of 126. The
Mean Q, Error rate can be assumed to have support on the positive real line. These variables
can not be assumed to follow a normal distribution and will therefore be transformed. We will
use a Box-Cox transformation (c.f. Box and Cox, (1964)) on these variables and estimate the
transformation parameter A using the Guerro method (cf. Guerrero, ) Also, if necessary,
we will divide the transformed variables by a constant to change the scale. The Percent Q30
variable has limited support on (0, 1) and will be transformed using the quantile normal function.
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Figure 4.3: Mean together with the range of the Error rate of each lane and read (lane read).
Notice that the HiSeq 5 has the lowest mean Error rate of all HiSeq machines.
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Figure 4.4: Error rates, the raw density and the number of raw clusters for each read in lanes 1
and 2. The variable name are listed in the following manner: Variable lane read.

Before the transformation and estimation of transformation parameters are performed we will
remove those runs which are poor. A run will be classified as poor if it does not fulfill todays
quality control criterias.

21



Ezploratory data analysis

The transformation methods are more thoroughly presented in the Appendix, section [7.1]
In this section, we also assess the assumption of normality for the transformed HiSeq 6 quality
control data, for the variables previously mentioned, together with the a short investigation of
autocorrelation. For further analysis, we assume that the transformed data of the Mean Q, Error
rate and Percent Q30 variables are generated by a multivariate normal distribution.
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Figure 4.5: Spearman correlation matrix of HiSeq 6 Read level measurements.
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Results

This section aims to show how the control charts perform in fictive scenarios and in practice. The
first section will present the calculated control limits and what parameters were used to calculate
these. We will introduce the performance measures to be used in three simulated scenarios of
different characteristics. The last section includes an application on HiSeq quality control data.
The control charts are constructed from transformed HiSeq 6 quality control data using the Mean
Q, Error rate and Percent Q30 variables from each respective lane and read. The transformation
methods are described in the Appendix, section [7.1]

5.1 Calculation of control limits

Using the Mean Q, Error rate and Percent Q30 variables from lane 1 to 8 with their respective
measurement from read 1 and 2, the total number of variables is equal to p = 48. Using a cycle
setting of 126 and excluding those observation that do not live up to todays quality control limits
the number of observation of the IC sample is equal to M = 73. The IC parameters p, and 3
were estimated from the transformed IC sample.

The control limit for Hotelling’s 7 control chart was calculated using a = 0.01 and is equal
to 337.57. To calculate the control limits for the MCUSUM control charts we use Algorithm
described in section [3.2.3] which is implemented in the function CalculateControlLimit. In
this thesis we will use a set of allowance constants k£ to see how the different control charts act
with the use of different allowance constants. The following inputs was used in the calculations
of the control limits.

e Allowance constants k = {0.30,0.40,0.50}.
e Target IC average run length ARLj = 100.
e Maximum number of iterations Nmax= 40.
e The convergence error € was set to 0.05.

e The number of simulations was set to 10°

The constant ag was set sufficiently small in each simulation to ensure convergence, often close
or equal to zero. The upper limit by was tailored for each allowance constant, k. For & = 0.3,
by was chosen large, equal to 1000 or 10000 since no prior information on the control limit is
available. In the next calculation with a larger allowance constant k, by was chosen close to the
calculated control limit in previous step with a smaller allowance constant. Table [5.1] displays
the MCUSUM control limits for the mean and covairance control chart with the use of different
allowance constants.
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Table 5.1: The control limits calculated using the function CalculateControlLimit for a set of
allowance constants k.

k
Type 0.3 0.4 0.5
Mean 2580.242 2100.029 1713.218

Covariance 382.812 226.562 116.547

5.2 Performance measures

In this section we present the performance measures to be used when evaluating the control
charts and the change-point detection procedure in the simulation study.

5.2.1 Control charts

To evaluate the performance of the control charts, three measures will be used. The first measure
will be used for transient changes. We will use proportion of discovered changes when the process
has gone OC for one simulated observation. Since our MCUSUM control chart depends on a
sequence of observations and not only the present we will supply a warm-up period before the
transient change occurs. Thus, we will perform the following simulation. We will simulate a
Phase 2 sequence of length k where the last observation is of OC nature. We will report the
proportion of detected changes on the kth position, i.e.

n
Z ]lHk>h
i=1

where 1. is the indicator function, n is the number of simulations performed and Hy, is the value
of the charting statistic at observation k. The second and third performance measures will be
used for persistent changes. It is the ARLj, which is described as the time it takes until we
discover a change which is present. It is defined in the same manner as the ARLyg, i.e.

P =

S|

N*=inf{t € Zy : H, > h} (5.1)
ARL; = E[N*| = E[inf{t € Z+ : H; > h}].

We have removed the subscript h and added a star to distinguish between the ARLy and ARL;.
In the case of persistent changes, we will set a max ARL; to 500. If any control chart does not
indicate a change after our max ARL; in a OC scenario we will say that it failed to detect the
change.

The ARL; assumes that the process goes OC as soon as we start to monitor it. To assume
that a machine breaks as soon as Phase 2 monitoring begins may not be a very realistic case.
As a third measure we will use the conditional expected delay (cf. Lai, [1995). It can be used to
emulate scenarios where changes occur after some time. The conditional expected delay (ED) is
defined as

ED,(N*) = E;[N* —7|N* > 7]

which allows for shifts at arbitrary times 7. In our simulations we will set 7 = 20.
All expectations will be approximated using monte carlo approximation with 10° repetitions.
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5.2.2 Change-point estimation

The performance of the change-point estimation model will be evaluated using following perfor-

mance measure
I 1o
D= EZDi: gZ(ﬁ—ﬂ
=1 =1
which we will call the average offset. It will give a indication on how our estimated change-
point compares to the true value, on average. Since the change-point estimation assumed a fixed
sample size we will perform the simulations in the following way:

e Simulate 7 = 20 observations from the target process.

e Simulate |ED,[N*]| number of observations for the given scenario, size of change and
allowance constant.

Here |-| is the floor, i.e. the closest lowest integer of the conditional expected delay as the
number of simulations for a given scenario and size of change. In the simulation of D we will
use the result of simulated expected delay with an allowance constant equal to 0.3. Also, the
suggested change-point procedure assumed that the change manifested in the mean and not in
the covariance matrix. We will investigate how the change-point estimation procedure would
detect the change-point if a change in the covariance matrix occured at the same time as the
mean. Let Da be the simulated average offset under a change in the covariance matrix by A.

We will continue with describing the simulation study and defining the three different sce-
narios we will consider.

5.3 Simulation study

We will consider three different OC scenarios. The first scenario will consider transient changes
whereas the later two will consider persistent changes. The first scenario will constitute of
the following. A total of 20 observations will be simulated from the target process. The 21st
observation will be of OC nature. This could be described as the process going OC because of a
flowcell being processed poorly or perhaps a poor sample on the flowcell. We aim to investigate
if the charts discover the 21st observation. In this scenario, we will not test the performance
of the change point estimation procedure, as we assume that the process would go back to the
target process afterwards.

The second scenario will emulate a broken lane, all measurements on this lane will persistently
show worse behaviour. The third scenario considers persistently worse behaviour in the Error
rate of lane 1, while every other variable performs as expected. We assume that these scenarios
can manifest itself in the mean and the covariance matrix.

Let the observed process X; be ordered in the following manner. The first three variables
are the Mean Q, percent q30 and Error rate variables from the first lane and read. The second
triplet of variables are from the first lane but the second read and so forth. Define the OC mean
vector p; and OC covariance matrix 3 in the following way

py = po + | 02 T =%+A (5.2)
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where
A ( A 0(p—6>x<p—6>>
0p—6)x(p-6) Op—6)x(p-6)
where Qg is a k X k matrix with all entries equal to zero. The submatrix A; have dimension
6 x 6. We will now continue simulations for scenario one.

5.3.1 Scenario 1 - Transient changes from poor samples on flowcells

In this scenario we consider transient changes. We will simulate Phase 2 sequence of length 21,
i.e. 21 observations where the last is of out-of-control nature. We will assume that no change
occur in the covariance matrix. We also assume that the poor sample will only manifest itself
in the Mean Q measurements of the first lane. Let §; > 0, do = d3 = 0 and A1 = Ogxg. The
proportion of detected changes at the 21st observation over different values of § is seen in Figure
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Figure 5.1: The proportion of detected changes at the 21st observation in scenario 1. Note that
the legend for Croisers MCUSUM is on the following form MCUSUM (k).

In Figure we can see that Hotelling’s T2 statistic is more proficient in detecting the
transient change at the 21st observation for small values of §; compared to Croiser’s MCUSUM.
Croiser’s MCUSUM chart with a allowance constant of 0.5 detects the transient changes best
among the MCUSUM charts.

We will continue with simulating scenario 2 where we assume that quality control data
indicates persistently bad performance in lane 1.

5.3.2 Scenario 2 - All quality control variables in lane 1 show persistently
poor behaviour

In this scenario the quality control data for lane 1 shows persistently worse behaviour which we
assume emulates a broken lane. Let 0; = § > 0 for i = 1,2,3. We also assume that this change
can manifest itself in the variance. Therefore, all off-diagonal elemets in A; are zero and the
diagonal elements are equal to a constant A > 0.

5.3.2.1 Simulation results of control charts

Figure [5.2] shows the ARL; and ED of the MCUSUM for different values of 6. The values of § are
small which is a result of the scale of the transformed data and also the number of components
that are changing in the mean vector. The ARL; goes down quickly for increasing values of §.
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The ED is seen to decrease quicker than the ARL; for small values of §. When ¢ becomes large,
the two measures are almost equal in this simulation study. The optimal value of the allowance
constant seem to be equal to 0.5 in both cases. The worst allowance constant switch between
Hotelling’s T2 statistic showed no indication of a change, the smallest OC ARL; for a subset
(evenly distributed) of the values of § was equal to 500 for this simulated scenario.
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Figure 5.2: OC ARL and ED for the MCUSUM chart of Scenario 2 - changes in the mean of all
variables of lane one.

In Table [5.2) we have the simulated ARL; and ED for persistent changes in the covariance
matrix. For small changes in the variance of the covariance matrix it takes close to the 100
observations to discover a change. As A grows the MCUSUM chart detects changes faster when
monitoring the covariance matrix. The ARL; and ED is in general smaller for an allowance
constant equal to 0.5 compared to the results of 0.3 or 0.4. For this specific scenario, the
allowance constant k seem to be optimal at 0.5 in the sense that it detects these changes the
fastest.

Table 5.2: Scenario 2. MCUSUM simulated OC ARL and ED for changes in covariance matrix.
Each cell is on the following form: ARL; (ED). The ARLy is equal to 100. 10° replications was
used in this simulation study.

A
k 0.01 0.1325 0.255 0.3775 0.5
0.3 92.84 (72.00) 59.59 (43.69) 30.55 (23.19) 18.84 (11.49) 13.72 (6.84)
0.4 94.18 (72.23) 57.54 (45.90) 25.71 (21.32) 14.49 (8.97) 10.87 (4.44)
0.5 87.16 (76.87) 48.35 (39.75) 18.11 (12.80) 10.44 (3.47)  7.85 (1.10)
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5.3.2.2 Simulation results of change-point estimation procedure

In Table we can see the results from the simulation study of the change-point estimation
procedure. In this table we have listed the floor of the simulated ED, that is how many obser-
vations was used after 20 in control observations in our simulation study. As an example, for
a 0 equal to 0.0001 we simulated 20 in control observations and 79 OC observations with the
use of the OC mean vector. The second row shows the average offset, D, with no change in the
covariance matrix. We can see that for a small values of § we heavily overestimate the change
point. As § grows we start to underestimate the change-point. Note that while it might take us
one observation to discover a change, the estimated change-points differ. The third row shows
the result of Da, where A = 0.1325. This type of change in the covariance matrix skewes the
estimated change-point heavily!

Table 5.3: Table containing change-point estimation simulations for Scenario 2. 20 in control
observations was used. The simulated ED originates from the use of a allowance constant of 0.3.
A was set equal to 0.1325.

o
le-04 0.0052 0.0103 0.0164 0.0215 0.0276 0.0327 0.0388 0.0439 0.05

|ED] 79.00 70.00 56.00 43.00 35.00 29.00 25.00 22.00 20.00 18.00

D 48.74  36.83  18.97 6.26 1.90 0.20 -0.21 -0.30  -0.17  -0.11

Da -10.19 -10.87 -11.04 -11.37 -11.34 -11.36 -11.68 -11.27 -11.54 -11.24

5.3.3 Scenario 3 - The Error rate of lane 1 shows persistently poor behaviour

In this scenario we will investigate how the charts behave in a situation where only two variables
in a lane is effected by some unknown change. In this case we assume that §; = do = 0 and
03 > 0. This implies that the Error rate increases on average, for lane 1 quality measurements.
In the case of changes in the covariance matrix, we assume that the variance will increase and
that covariance is held constant. All elements in the matrix Ay are zero except for the third and
sixth diagonal element.

5.3.3.1 Simulation results of control charts

In Figure [5.3| we can see the results for ARL; and ED. Note that the values of § are larger than
the values used in scenario 2. In this scenario the ARL; and ED decreases quickly for increasing
values of 6. The optimal allowance constant is equal to 0.5 in this scenario. Hotelling’s 72
statistic did not show any indication of a change, the smallest out-of-control ARL for all § was
equal to 500.

In Table [5.4] the results for the ARL; and ED for simulated changes in the covariance matrix.
Here, the value of the allowance constant is seen to have an impact on detecting changes in
variance structure of the covariance matrix. The optimal choice of k is equal to 0.5 for this
specific scenario.

5.3.3.2 Simulation results of change point estimation procedure

In Table[5.5] we can see the average offset for different shifts in scenario 3. For increasing values of
§ the average offset D decreases, our change-point estimation procedure becomes more accurate
on average. As previously seen in scenario 2, for the smallest value of § the average offset is
large, i.e. we overestimate the change-point. For all other values, the estimated change-point is
quite accurate on average.
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Figure 5.3: OC ARL simulations of scenario 3 - changes in the mean of the Error rate of lane
one.

Table 5.4: Scenario 3. MCUSUM simulated OC ARL and ED for changes in covariance matrix.
Each cell is on the following form: ARL; (ED). The ARLg is equal to 100. 10° replications was
used in this simulation study.

A
k 0.05 0.6625 1.275 1.8875 2.5

0.3 94.45 (74.05) 70.15 (51.24) 49.53 (34.93) 35.46 (23.63) 26.87 (16.83)
04 95.46 (73.17) 68.24 (49.39) 46.28 (31.53) 30.98 (19.90) 22.21 (12.89)
0.5 88.29 (66.32) 58.54 (42.01) 37.56 (23.46) 22.31 (12.33) 15.44 (6.60)

In the third row we can see how the change in the covariance matrix impacts the average
offset. In general, the increase in the variance of the Error rate by A = 0.6625 causes the average
offset to increase. In this simulated scenario the average offset is seen to increase when the
covariance matrix change according to A = 0.6625. This change is however quite small.
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Table 5.5: Table containing change-point estimation simulations for scenario 3. 20 IC observa-
tions were used. The simulated ED originates from the use of an allowance constant of 0.3. In
these simulations A was set to 0.6625.

4]

0.01 0.2131 0.4161 0.6598 0.8629 1.1065 1.3096 1.5533 1.7563 2
|ED] 78.00 19.00 10.00 7.00 5.00 4.00 3.00 3.00 3.00  2.00
D 4716  -0.19  -0.01 0.00 0.00 0.00 0.00 0.00 0.00  0.00
Da 92.56  8.65 3.18 1.40 0.73 0.39 0.23 0.14 0.07  0.04

5.4 An application on HiSeq quality control data.

In this section we will test the control charts, constructed from transformed quality control
HiSeq 6. These will be tested on three other HiSeq machines, namely HiSeq 3, 4 and 5. First,
we transform the quality control data from HiSeq 3, 4 and 5 using the Box-Cox transformation
with the estimated parameters from the HiSeq 6 data. For variables with limited support, we use
the quantile function of the normal distribution to transform the data. After the transformation
we test the constructed control charts on the new data. Any alarm that is given will only be
an indication that the IC parameters for HiSeq 6 does not fit the other machines. The HiSeq
3 machine has no runs on the same type of setting which we used for estimating our HiSeq 6
IC parameters. The data from the HiSeq 3 machine is performed on a mixture of settings. The
HiSeq 4 and 5 machines have runs performed on the same setting as those on HiSeq 6.

We will use a allowance constant k = 0.3 for both MCUSUM charts. The control limits can
be seen in Table for the mean and covariance chart, respectively. With a a = 0.01 Hotelling’s
T? control limit, defined in , was calculated to 337.57.

In Figure we can see Hotelling’s T statistic of the transformed HiSeq 3, 4 and 5 quality
control data. First, notice the difference in scale of the y-axis between the figures. The HiSeq 3
machine was used with different settings which can be a cause to what is seen in the left figure
of Figure Almost all observations are well above the control limit. The first run of HiSeq
3, where Hotellings T2 shows a value of 2.071688 x 10%, stands out in terms of great quality
measurements in lane 7 while having very poor quality measurements in read 2, lane 5 and lane
8. The majority of Hotelling’s T statistics based on transformed HiSeq 4 and 5 quality control
data are below the control limit.

The MCUSUM charts for the mean vector and covariance matrix are shown in Figure for
the HiSeq 4 and 5 machines. These were calculated according to the order of appearance. The
first observation in the sequence is the oldest one and the last the most recent one. HiSeq 3 was
removed since it did not have any runs on the same setting. Here we can see that all charts show
evidence of a strong OC situation. They give a strong indication that the estimated IC mean
vector and covariance matrix do not fit the transformed quality data of HiSeq 4 and 5 machines.

Assuming that the transformed quality control data for HiSeq 4 and 5 represents an IC
sample from their respective processes, we can calculate the non-centrality parameter, described
in section Note that we are not removing any observations from the HiSeq 4 and 5
quality control data and that we are using the transformation parameter estimated from HiSeq
6 quality control data. Let fi; be the maximum likelihood estimator of the mean vector based
on the i-th HiSeq (transformed) quality control data. Under the assumption that they share the
same covariance, the non-centrality parameter comparing IC mean between HiSeq 6 and HiSeq
4 can be calculated to

(20 — 1) S0 (f1g — f1a)/ = 0.205.
The non-centrality parameter comparing HiSeq 6 and HiSeq 5 is calculated to 4.926. Under the
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Figure 5.4: Hotelling’s control chart for the HiSeq 3 (left), HiSeq 4 (middle) and HiSeq 5 machines
with IC parameters based on HiSeq 6 data. The horizontal line represents the control limit.

assumption that the processes share the same covariance matrix, the means are distant from
each other in the transformed space.

The control charts for the covariance showed a even stronger OC scenario compared to the
mean. The covariance matrices can be compared using the determinant of the covariance matri-
ces. It represents the squared volume of the parallelotope in RP where the eigenvectors are the
principal edges (cf. Hair et al., (2006, page 385)). The ratio of the determinants can serve as
a measure of how the squared volume of the parallelotope relates to eachother. Let iz be the
maximum likelihood estimator based on transformed quality control data from the ¢-th HiSeq
machine. Let N

|

be the ratio between the IC covariance matrix and the estimated covariance matrix based on
the i-th HiSeq transformed quality control data. The ratio R; for HiSeq 4 transformed quality
control data is equal to Ry = 3.0064497 x 102 and for HiSeq 5 we have R5 = 5.5434293 x 108.
In the transformed space, these covariance matrices are not equal in terms of their parallelotope
volume. This will only give a illustration of whether or not their volume is equal. It does not take
the inherent structure of the covariance matrix into account. Since the charts gave a indication
of such a heavy OC scenario the change-point detection estimation procedures will not be used
in this application.
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Figure 5.5: MCUSUM control charts monitoring the mean vector and covariance matrix. The
IC parameters is estimated from transformed data from the HiSeq 6 machine. The horizontal
line is the control limit calculated with k=0.3.
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In this thesis we have investigated how statistical process control and a change-point estimation
procedure can be used to detect and estimate changes in transformed next generation sequencing
quality control data. The control charts presented in this thesis were applied on transformed
HiSeq 6 quality control data. The performance of these control charts were tested in a simulation
study. Three different scenarios were considered. The first scenario considered transient changes
and compared Hotelling’s 72 control chart and Croiser’'s MCUSUM control chart ability to detect
these changes. In the second scenario we investigated how quickly the control charts would detect
a persistent small change in all variables in a lane. In the third scenario we tested how quick the
control chart would detect a persistent change in a variable, read one and two, in a lane.

The results from the simulation study showed that Hotelling’s control chart was proficient in
detecting large and transient changes while poor in detecting small and persistent changes. The
two MCUSUM charts were shown to detect small and persistent changes well. These were not
as quick as Hotelling’s to detect transient and large changes. Hotelling’s control chart showed
poor performance in detecting small and persistent changes. For simulated persistent changes,
the change-point detection model was shown to be efficient in estimating the time of change if
the change was large and the number of runs in OC was short relative to the IC period. The
number of OC observations used in the estimation was determined by the conditional expected
delay. It was also shown that if a change had occurred in the covariance matrix, the change-point
estimation procedure was less accurate.

We applied the constructed control charts on similar machines’ transformed quality control
data. In this application, Hotelling’s T2 control chart showed large differences between runs
performed on different cycle settings. It did not detect any large differences between machines
with runs on the same setting. However, the MCUSUM control charts showed indications of
large structural differences in the mean and the covariance matrix between HiSeq 6 and HiSeq
4 and 5. These differences were also shown with the use of the non-centrality parameter and a
ratio between the determinants of the covariance matrices.

The strong OC scenarios shown by the control charts in section [5.4] can partially be explained
by the nature of the machines. Some of the HiSeq machines have been upgraded from older
versions and are not the same in terms of their specifications. The MCUSUM control chart
showed a very strong OC situation for the covariance matrix. As described in section [3.2.2.2
any control chart constructed from the transformed quantities, defined in equation , would
be sensitive to shifts in the mean. These results could partially be explained by the differences
in the non-centrality parameter.

The framework of SPC enables us to specify a desired mean and variance structure for the
target process. This could be applicable to our application as well. However, in the multivariate
setting a new issue arises. Specifying a desired mean for a multivariate distribution does not pose
a issue but specifying p(p+1)/2 elements in a covariance matrix may be very hard, especially if p
is large. Also, the transformation used in this thesis provides several complications. Consider the
case when the mean vector is known and is specified in the initial parameter space. We assumed
that the transformed data is normally distributed and therefore, we would need to transform
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the known mean to the new parameter space. The transformation was done by using a Box-
Cox transformation, where the parameter A was estimated from data. Any estimate contains
uncertainty and therefore the transformation is not deterministic. The problem becomes even
more complicated if the parameter A would be random.

In the Appendix, section the assumption of normality and temporal independence was
investigated. The transformed quality control data showed little evidence of being normally
distributed. The evidence shown by these statistical tests could perhaps be increased by further
investigating transformation methods. Since there was little evidence for the assumption of
normally distributed data any conclusions on temporal independence should be done with great
care. However, temporal independence is not only a desirable property for the quality control data
but should also be considered a necessary assumption. Not only did the data consist of irregular
time series, it was made even more irregular from the different run settings a machine could be
run on. Each run setting provided different quality characteristics and number of measurements.
For some types of settings only certain parts of the flowcell is used. The autocorrelation assumes
that data consists of regularly spaced time series, which is not the case. Therefore, using the
autocorrelation as a measure of temporal dependency is not only misleading but also violates the
assumptions it is built upon. A solution to this problem is to monitor results quality variables
at a flowcell level, aggregating each quality measurements for each read and lane to receive one
observation per variable. In this setting one could possibly consider the run settings as fixed,
regress upon these fixed settings and then monitor the residuals.

The use of Repp (c.f. Eddelbuettel, (2013)) significantly reduced the time to perform the
simulations in this thesis. The benchmarks, presented in the Appendix section provide
a great indication of how fast Rcpp together with OpenMP can be. It also provides a good
indication of what they can do for computer intensive methods in R. R provides a trade-off
between performance and readability. The programming language C++ does not follow this
paradigm. Rcpp tries to combine these two by using the performance of C++ and the syntax of
R. This makes the transition from R to C++ substantially easier.

The framework of SPC together with the change-point estimation procedure provides a solu-
tion to the problem of monitoring changes in NGS quality control data. However, the presented
methods all share the underlying assumption of normally distributed data. This advocates the
use of non-parametric SPC methods which could be a great subject for future research.
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Appendix

7.1 Transformation, normal assumption and autocorrelation.

In this section we will present the transformation methods and evaluate the assumption that the
process follows a multivariate normal distribution. We will also look upon the autocorrelation and
to what extent it is present in the data. However, the autocorrelation should be interpreted with
caution. Not only does the assumption of temporal independence depend upon the normality
assumption but it also assumes that the timeseries is regular.

For the variables which have support on the positive real line we will use the Box-Cox
transformation, presented in Box and Cox, (1964), i.e.

{XA)\_I for A #£0

log(X) else.

for transformation. The variables are transformed independently. The parameter )\ is estimated
using the method suggested in Guerrero, (1993)). The Box Cox transformation and the guerro
estimation method is implemented in the forecast package. For variables which have limited
support on (0, 1) we will use the standard normal quantile function as a transformation method.
Consider X having support on (0,1), then we have that

Z = (I)_I(X)v

where Z will follow a normal distribution.

Two statistical tests of the normal assumption are presented in Table performed on the
transformed data. Henze-Zirkler’s multivariate test of normality, presented in Henze and Zirkler,
(1990), shows some evidence that the data is normally distributed. The genaralized Shapiro-Wilk
test of normality, presented in Villasenor Alva and Estrada, (2009)), shows no evidence at all.

Test P.value
1 Henze-Zirkler’s 0.29
2 Generalized Shapiro-Wilk 0.00

Table 7.1: Two statistical tests of normality, Henze-Zirkler’s and a generalized Shapiro-Wilk’s
test. One out of two tests approves of the normality assumption.

Under the assumption that the transformed data is normally distributed, the autocorrelation
may be investigated. If the absolute value of the autocorrelation at a given lag is below the
standard normal distributions 97.5% percentile we can assume that the data is independent in
time. There are a total of 1176 correlation coefficients at each lag to investigate. In Table we
can see the proportion of absolute autocorrelationcoefficients which are greater than the standard
normal distributions 97.5% percentile.
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Lag Proportion

1

T~ W N

0.21
0.11
0.05
0.04
0.03

Table 7.2: Proportion of autocorrelation greater than the normal 95 percentile, at lags 1 through

5.

7.2 Figure from Illumina

A. Library Preparation

Ganomic DNA

l Fragmentaticn

— -—
—
Adapters -_— .- —

l Ligation

LiI:;'raryI

NGS library is prepared by fragmenting a gDNA sample and
ligating specialized adapters to bath fragment ends.

C. Sequencing
1y 'ﬂhl ““ —
otoflo oMy

Sequencing Cycles ( )
- Digital Image

Datais exported to an output file 1

Cluster 1 = Fead 1: GAGT..
Cluster 2 = Fead 2: TTGA.
Cluster 3 > Fead 3: CTAG...
Cluster 4 > Read 4: ATAC..  Text File

Sequencing reagents, including flucrescently labeled nucleo-
tides, are added and the first base is incorporated. The flow

«cellis imaged and the emission from each duster is recorded.

The emission wavelength and intensity are used to identify
the base. This cycle is repeated “n™ times to create a read
length of “n” bases.

Figure 7.1: Figure illustrating the general workflow in sequencing by synthesis. The figure is

taken from Illumina, (2016) with approval.

7.3 Benchmarks

A. Cluster Amplification

l Flow Gell

Bridge Am plification
Cycles

Library is loaded into a flow cell and the fragments hybridize
to the flow cell surface. Each bound fragment is amplified into
a clonal cluster through bridge amplification.

D. Alignment & Data Anaylsis

ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG
AGATGGTATTG
Reads GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATT
AGATGGCATTGCAATTTG

Reforence  AGATGGTATTGCAATTTGACAT

Genome

Reads are aligned to a reference sequence with bicinformatics
software. After alignment, differences between the reference
genome and the newly sequenced reads can be identified.

In this section we will shortly present some benchmarks of the SimulateARLO function imple-
mented in Rcpp compared to the same function implemented in base R and R run in parallel,
using the foreach package. To create the benchmarks we used the following inputs
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e The in control mean vector and covariance matrix from HiSeq 6 transformed quality control
data

A allowance constant equal to 0.3

The control limit 2580.24

e The number of threads was held constant, equal to 7.

The number of simulations N={102,10%,10* 10°}. Each simulation is performed 10 times and
the average time is taken as the benchmark for this specific setting. The test system was a
Intel®Core 17-4770S@3.1Ghz with 16Gb system RAM running Ubuntu 14.04.4. In Figure
we can see the average time it takes to perform N simulations. Rcpp using OpenMP is around
10 times faster compared to using base R. Using Rcpp together with OpenMP, compared to
base R in parallel using foreach package, only results in twice the performance. To perform 10*
simulations with Rcpp takes 32.53 minutes on average.

1.0e+07 - ¢
7.5e+06
% type
g ® R
S 5.0e+06 - R_foreach
« Rcpp_OpenMP
2.5e+06 -
[ ]
0.0e+00 - 8 2
le2 le3 led leS5

Number of simulations

Figure 7.2: Benchmark of the SimulateARLO function, implemented in base R, base R run in
parallel using the foreach package and Repp together with OpenMP.
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