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Abstract

In non-life insurance pricing, Generalized Linear models are used to

estimate the pure premium through the product of the claim frequency

and the claim severity. Traditionally, the methods in the Generalized

Linear models imply an independence between claim count and claim

amount. In practice the claim counts and amounts are often dependent.

In this thesis, the two models where the claim counts and amounts are

classically independent and a new approach where they are dependent

will be analyzed and compared. The underlying data for the models

considered is derived from a Swedish motorcycle insurance.
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1. Introduction

A non-life insurance policy is an agreement between the insurance company
and the policyholder. The policyholder pays a premium to the insurance com-
pany which represents the risk that is covered by the insurance policy. In prac-
tice the insurance company add other costs such as expenses and cost of capital
but in this thesis we only discuss the modeling of the risk based pure premium.
The pure premium should be based on the expected loss that is transferred from
the policyholder to the insurance company.

The fact that the expected losses vary between policies, can be due to:
properties of the policyholder, properties of the insured objects, properties of
the geographic region. This introduces the need for statistical methods and in
particular Generalized Linear Models (GLMs) for pricing of non-life insurance
policies. In non-life pricing the pure premium is modeled as the product of two
estimates: claim frequency and claim severity. Traditionally this assumes that
the claim counts and claim amounts are independent. The assumption that the
claim counts and claim amounts are independent is not always vindicated. For
example, motorcycle insurance policyholders who tend to file several claims
per year are often associated with lesser claim amounts than policyholders who
tend to file lesser claims per year.

An description in GLM can be found in Esbjorn Ohlsson and Bjorn Johans-
son’s textbook ’Non-Life Insurance Pricing with generalized Linear Models’
[1].

The goal in this thesis is to construct and analyze the classical model where
the claim counts and amounts are independent, and an extension of the clas-
sical model where the claim counts and claim amounts are dependent. The
extension of classical GLM analysis with independent frequency and sever-
ity to possible dependence is based on J.Garrido, C.Genest, J.Schulz’s article
’Generalized linear models for dependent frequency and severity for insurance
claims’ [2].
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2. Model building

The insurance data for the model building comes from the former Swedish
insurance company Wasa and the underlying insurance product is motorcycle
insurance. One of the main goal of a non-life insurance pricing is the tariff
analysis, which is to determine how the key ratios varies with respect to some
covariates.

2.1 Assumptions

Key ratios are needed for measuring data, and the analysis are carried out on
them. A key ratio is defined in non-life pricing as the ratio between the stochas-
tic variable response X and the volume measure, exposure w. The key ratios of
interest when modeling a Generalized Linear Model (GLM) are summarized
in Table 2.1 below.

The pure premium varies between policies due to for example, different
properties of the policyholder, properties of the insured objects and properties
of the geographic region. Hence, these variations can be estimated by a set
of variables called covariates. The range of each covariate are called classes,
meaning that each covariate is divided into disjoint intervals where each inter-
val is called a class. For example, let vehicle age be a covariate, two classes
could be defined as "Vehicle age at most 1 year" and "Vehicle age 2 years or
more". For every unique combination of covariates and class we have a tariff
cell. All the policies that are within the same tariff cell obtain the same pure
premium. There are three assumptions to be explained before describing the
GLMs.

• Policy independence. Let n be the number of policies and Xi be the
response for policy i. Then X1, . . . ,Xn are independent.

• Time independence. Let n be the number of disjoint time intervals and
Xi be the response for policy i. Then X1, . . . ,Xn are independent.

• Homogeneity. Let X1 and X2 be the response for two any policies in
the same tariff cell with same exposure. Then X1 and X2 have the same
probability distribution.
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These assumptions make the foundation of the GLMs. Note that these three ba-
sic assumptions are not always true in practice: Motorcycle crashes can occur
dependently of each other, which violates the policy independence. Motorcy-
cle owners that have been in an accident tend to be more careful in the future,
which violates the time independence. Homogenicity is rarely fulfilled since
grouping motorcycles in different homogeneous risk groups and charge them
with the same tariff is hard, this violates homogenicity. For put in best light,
the deviation from the basic model assumptions in practice does not lead to
any problems with the analysis of the tariff, hence we assume that the model
assumptions are true trough out this thesis.

The assumptions can be read in detail in p.6 [1].

Response X Exposure w Key ratio Y = X/w
Number of claims Duration Claim frequency
Claim cost Number of claims Claim severity
Claim cost Duration Pure premium

Table 2.1: Key ratios in GLM

2.2 The multiplicative model

The data in the insurance business is insufficient to estimate the expected cost
by observed pure premium. If we had enough claims data in each tariff cell,
we could determine a premium for the cell by simply estimating the expected
cost by the observed pure premium. Hence, there is a need for models giving
an expected pure premium that varies more smoothly over the cells, with good
precision of the cell estimates. The multiplicative model is the model to do so,
in fact it is the standard model in pricing.

Let M be the number of covariates, and let mi be the number of classes for
covariate i. Then a tariff cell is denoted by the vector (i1, . . . , iM). Let Xi1,...,iM
be the response and let wi1,...,iM be the exposure, then this gives that the key ratio
for a given tariff cell is Yi1,...,iM = Xi1,...,iM/wi1,...,iM . Let E(Yi1,...,iM) = µi1,...,iM be
the expectation value of the key ratio for a given tariff cell. The multiplicative
model is given by

µi1,...,iM = γ0γ1i1γ2i2 . . .γMiM , (2.1)

where γkik , ik ∈ {1, . . . ,mk} are the relativities for covariate k. The model is
over-parameterized at the moment. if we multiply all γ1i1 with a factor c ∈ N
and divide all γ2i2 with the same factor c we get the same expectation value µ .
Thus, to make the relativities unique we introduce a base cell γ11 = γ21 = · · ·=
γM1 = 1. This means that the first class in every covariate is equal to 1, and the
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other relativities measure the difference in relation to the base cell. In practice
we let the class with the largest exposure be equal to 1. By introducing a base
cell the, the number of parameters in the multiplicative model is reduced from
∏

M
j=1 m j to ∑

M
i=1 m j−M+1.

The multiplicative model described above is as any regression model, in
any regression model the parameters or in this case the relativities should be
interpreted as ceteris paribus. This means that the relativities measure the
effect when all other variables are held constant, or sometimes stated as "other
things being equal" or "holding everything else constant".

For more information see Murphy, Brockman and Lee’s article [3], and
p.12 [1].

GLM is a generalization of the ordinary linear regression models. The link
function is the fundamental object in a GLM, it links the mean to the linear
structure. We rewrite the equation 2.1 using the dummy variable zk j defined as

zk j =

{
1, j = ik, γkik 6= 1
0, otherwise

(2.2)

with a logarithm transform, we obtain

log(µi1,...,iM) = log(γ0)+
m1

∑
j=1

z1 jlog(γi j)+ · · ·+
mM

∑
j=1

zM jlog(γi j). (2.3)

Let

β1 = log(γ0)

β2 = log(γ12)

...

βm1 = log(γ1m1)

...

βm1+···+mM−M+1 = log(γMmM).

With these variables defined above, we can rewrite the multiplicative model
2.1 as a linear model for the mean,

ηi ≡ g(µi) = log(µi) =
p

∑
j=1

xi jβ j, (2.4)

where p=m1+ · · ·+mM−M+1 and xi j ∈R∏
M
j m j×p are the entries for a design

matrix with dimensions ∏
M
j=1 m j× p. Note that this is the same structure as the
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linear model µi = ∑
r
j=1 xi jβ j except that the mean depends on a function g(µi).

Since the function g(µi) links the mean to the linear structure, the function ηi≡
g(µi) is called the link function. In this case, the link function is the logarithm
function and will be used trough out this thesis because of the multiplicative
model.

Further discussions on the link function and multiplicative models can be
found in Brockman, M.J. and Wright, T.S article ’Statistical motor rating:
making efficient use of your data [4], and in p.9 [1]
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3. Generalized Linear Models

Generalized Linear Models (GLMs) is a rich class of statistical methods which
generalizes the linear models as described above. GLMs takes care of the prob-
lems that occurs with linear regression since it is not fully suited for non-life
insurance pricing: (i) GLMs assumes a general class of distributions instead
of the normal distribution, it is a problem since the later assumes normally
distributed random errors when in practice the number of insurance claims fol-
lows a discrete probability distribution on N, and claim cost are non-negative
and often skewed to the right. (ii) GLMSs have the link function instead of the
mean being a linear function of the covariates, since the multiplicative model
is more reasonable for pricing.

In this chapter we will deduce the classic GLM, that is well explained in
[1]. The approach is to estimate the claim frequency and the claim severity and
the estimated pure premium will be the product of the two. First, a description
of the Exponential Dispersion Models (EDMs) are required since these EDMs
are the probability distributions that will generalize the normal distribution
used in linear models into the GLMs.

The basic ideas of GLMs were introduced in Nelder and Wederburn article
’Generalized linear models’ [5]. More description on GLMs can be found in
p.15 [1].

3.1 Exponential Dispersion Models

The probability distribution of an Exponential Dispersion Model (EDM) is
given by the following probability density function in the continuous case and
a probability mass function in the discrete case,

fYi(yi,θi,φ) = exp
{

yiθi−b(θi)

φ/wi
+ c(yi,φ ,wi)

}
, (3.1)

where yi is the outcome of the key ratio stochastic variable Yi, φ > 0 is the
dispersion parameter and θi is a parameter that is allowed to depend on i. The
function b(θi) is assumed twice continuously differentiable, with invertible
second derivative. For every choice of the function b(θi), we get a family of
probability distributions.
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We use the cumulant-generating function to derive the expected value and
the variance of an EDM. The moment generating function of an EDM is de-
fined as

E[etYi ] =
∫

etYi fY (y,θi,φ)dy =
∫

exp
{

yi(θi + tφ/wi)−b(θi)

φ/wi
+ c(yi,φ ,wi)

}
dy

= exp
{

b(θi + tφ/wi)−b(θi)

φ/w

}
∗
∫

exp
{

yi(θi + tφ/wi)−b(θi + tφ/wi)

φ/wi
+ c(yi,φ ,wi)

}
dy.

The second factor right of the last equal sign is the integral of the probability
density function f (yi,θi + tφ/wi,φ) on the parameter space, thus it is equal
to one. Taking the logarithm on the equation, we conclude that the cumulant-
generating function of Yi, denoted Ψ(t) for an EDM exist and is given by

ΨYi(t) =
b(θi + tθi/wi)−b(θi)

φ/wi
. (3.2)

The first moment, the expected value is given by

E[Y ] = Ψ
′
(0) = b

′
(θ). (3.3)

And the second moment, the variance is given by

Var[Y ] = Ψ
′′
(0) = b

′′
(θ)φ/w. (3.4)

In general, it is more convenient to view the variance as a function of the
mean µ . Since µ = E[Y ] = b

′
(θ) and it is assumed that b

′
(θ) is an invertible

function. We can rearrange the variance Var[Y ] = b
′′
(θ)φ/w with θ = b

′−1(µ)
into

Var[Y ] = b
′′
(b
′−1(µ))φ/w≡ v(µ), (3.5)

where v(µ) is called the variance function. The variance function is important
in GLM model building since within an EDM class, a family of probability
distributions is uniquely characterized by its variance function.

We claim that the EDMs are closed under averaging two independent ran-
dom variables with different weights, this is called that EDMs are reproductive.
This result is important later on in the GLM extension in the next chapter, a
fact that is emphasized by the following theorem, it can be found in [1] where
the proof is left as an exercise.

Theorem 3.1.1. Let Y1 and Y2 be two independent r.v from the same EDM
family, i.e with the same b(θi) function, mean µ and dispersion parameter φ ,
with possibly different weights w1 and w2. Then w1Y1+w2Y2

w1+w2
belongs to the same

EDM family with weight w1 +w2.
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Proof. We will use the cumulant-generating function in this proof. It will
help us find the distribution of sums of independent random variables. The
cumulant-generating function is given by

ΨYi(t) =
b(θi + tθi/wi)−b(θi)

φ/wi
. (3.6)

The cumulant-generating function has two properties: the first property is

ΨY1+Y2(t) = log(E[et(Y1+Y2)]) = log(E[etY1 ]E[tY2 ])

= log(E[etY 1])+ log(E[etY 1]) = ΨY1(t)+ΨY2(t),

and the second property is

ΨaY1(t) = log(E[et(aY1)]) = log(E[e(at)Y1 ]) = ΨY1(at),

where a ∈ R. Combining these two properties will complete the proof

Ψ w1Y1+w2Y2
w1+w2

(t) = Ψ w1Y1
w1+w2

(t)+Ψ w2Y2
w1+w2

(t) = ΨY1(
w1t

w1 +w2
)+ΨY2(

w2t
w1 +w2

)

=
b(θ1 +

w1t
w1+w2

θ1/w1)−b(θ1)

φ/w1
+

b(θ2 +
w2t

w1+w2
θ2/w2)−b(θ2)

φ/w2

In the hypothesis, Y1 and Y2 have the same mean µ . Since µ = E[Y ] = b
′
(θ)

and b
′
(θ) is an invertible function, having the same mean µ is equivalent to

having the same θ parameter. Let θ1 = θ2 = θi,

Ψ w1Y1+w2Y2
w1+w2

(t) = (w1 +w2)
b(θi + tθi/(w1 +w2))−b(θi)

φ

=
b(θi + tθi/(w1 +w2))−b(θi)

φ/(w1 +w2)

Hence the weighted average w1Y1+w2Y2
w1+w2

belongs to the same EDM family as Y1
and Y2 with weight w1 +w2.

An overview of the theory of EDM can be found in Jorgensen’s article
’The theory of Dispersion Models’ [6], and in p.17 [1].

3.2 Inference

To estimate the β parameters in GLM we use the maximum-likelihood estima-
tion (ML). Let m be the number of classes. The log-likelihood function of θ is
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by independence,

l(θ ,φ ,y) = l(y1, . . . ,yn,θ1, . . . ,θn,φ) = log( fY1,...,Yn(y1, . . . ,yn,θ1, . . . ,θn,φ))

=
m

∑
i=1

log( fYi(yi,θi,φ)) =
1
φ

m

∑
i=1

wi(yiθi−b(θi))+
m

∑
i=1

c(yi,φ ,wi).

We are interested in finding the likelihood as a function of β rather than θ . It is
achieved through the relations µi = b

′
(θi), g(µi) = ηi = ∑i xi jβ j and the chain

rule. Fisher’s score function of θ becomes

∂ l
∂β j

=
m

∑
i=1

∂ l
∂θi

∂θi

∂β j
=

1
φ

m

∑
i=1

(wiyi−wib
′
(θi))

∂θi

∂β j
(3.7)

=
1
φ

m

∑
i=1

(wiyi−wib
′
(θi))

∂θi

∂ µi

∂ µi

∂ηi

∂ηi

∂β j
. (3.8)

If we use the property that ( f−1(x))
′
= 1

f ′ ( f−1(x))
then the log-likelihood of β

is

∂ l
∂β j

=
1
φ

m

∑
i=1

(wiyi−wib
′
(θi))

1
b′′(b′−1(µi)

1
g′(g−1(ηi))

xi j (3.9)

=
1
φ

m

∑
i=1

wi(yi−µi)
xi j

v(µi)g
′
(µi)

. (3.10)

By setting all these r partial derivatives equal to zero and multiplying by φ , we
get the ML equation:

m

∑
i=1

wi
yi−µi

v(µi)g
′
(µi)

xi j = 0, ∀ j. (3.11)

And thus, we can estimate the β = (β1, . . . ,βp)
T through µi = g−1(xβ ) where

x ∈ R∏
M
j m j×p is the design matrix with dimensions ∏

M
j m j× p.

For test of null hypotheses on parameters that have been estimated by max-
imum likelihood we use the Wald statistic. Let θ̂ be the estimate of the param-
eters θ obtained by maximizing the log-likelihood over the parameter space
Θ⊆ Rp,

θ̂ = argmax
θ∈Θ

l(θ ,φ ,y). (3.12)

We want to test the null hypothesis H0 : θo ∈ ΘR, where ΘR is the restricted
parameter space, a proper subset of Θ. The restriction being tested can be
written as

ΘR = {θ ∈Θ : g(θ) = 0}, (3.13)
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where g : Rp → Rr is a vector valued function, r ≤ p, all the entries of g are
continuously differentiable with respect to its arguments. If we want to test
the null hypothesis H0 : g(θ0) = 0, where g : Rp → Rr, r ≤ p, then the Wald
statistic is

W = ng(θ̂)T [Jg(θ̂)V̂ Jg(θ̂)
T ]−1g(θ̂), (3.14)

where p is the number of parameters in the estimate θ , n is the number of
observations, r is the number of arguments in the function g(θ0), Jg(θ) is the
Jacobian of g, i.e the r× p matrix of partial derivates of g(θ) with respect to
the entries of θ with rank r and V̂ is a consistent estimate of the asymptotic
covariance matrix of θ̂ . Asymptotically, the Wald statistic has a Chi-square
distribution with r degrees of freedom, W ∼ χ2

1−p(r) where 1− p is the confi-
dence level. The null hypothesis is rejected if

W > z, (3.15)

where z is a pre-determined critical value. The test of the null hypothesis can
be approximated by its asymptotic value,

p = P(W > z) = 1−P(W ≤ z)≈ 1−F(z), (3.16)

where F(z) is the Chi-square distribution function with r degrees of freedom.
The critical value z can be chosen as

z = F−1(1− p). (3.17)

In the univariate case, i.e the case where only one parameter is tested, the Wald
statistic under the null hypothesis H0 : θ = θ0 with confidence level of 1− p
becomes

W =
(θ̂ −θ0)

2

Var(θ̂)
∼ χ

2
1−p(1). (3.18)

In GLM a generalization of the idea of using the sum of squares of resid-
uals for a good measure of goodness-of-fit is the deviance function. One can
view the deviance function as a distance between two probability distributions
and can be used to perform model comparison. We will use the deviance func-
tion, essentially the distance of the data from the predicted values as model
validation. The smaller the mean of the deviance function the better the fit
of the model compared to the data. Let the number r be the number of non-
redundant parameters and let n equal the number of observations. If r = n,
then the model is called a saturated model and is the perfect fit by setting all
µi = yi. This model is trivial and is of non-practical interest, it is used as a
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benchmark in measuring the goodness-of-fit of other models, since it has the
perfect fit. Define the scaled deviance D∗ and the unscaled deviance D as,

D∗(y,µ) =
1
φ

D(y,µ) =
2
φ
(l(θ ,φ ,y)− l(θ ,φ ,µ)). (3.19)

The deviance functions will generate deviance plots for model validation, they
can asses which model fits the data best. Meaning that for each probability
distribution, the deviance function needs to be derived for model comparison.

Another criteria for estimating the quality of models in purpose for model
selection is the Akaike information criteria (AIC). AIC finds among candidate
models, the model that minimizes the information loss compared to the "true"
model (i.e the process that generates the data). Define AIC as,

AIC =−2l(θ̂ ,φ ,y)+2K, (3.20)

where K is the number of estimated parameters and l(θ̂ ,φ ,y) is the maximum
value of the log-likelihood function for the model. The estimated parameters θ̂

is estimated using the ML-equations 3.11, see definition 3.12. Since l(θ̂ ,φ ,y)
is the maximum log-likelihood, it chooses the parameters θ̂ s.t it maximizes
the probability that the parameters θ̂ explains the observations y. The log-
likelihood can thus be used as a measure of fit, higher log-likelihood gives
better model fit. This gives us that the lower AIC value compared to another
model the better the fit. But in equation 3.20 there is a positive parameter K,
meaning that the more parameters a model has the higher AIC value. In sum-
mary AIC rewards goodness of fit (as assessed by the log-likelihood function),
but it also includes a penalty that is an increasing function of the number of
estimated parameters.

∆i = AICi−AICmin is a measure of each model relative to the best model,
where AICmin is the minimum AIC value and represents the "best" model.

For further reading on scaled deviance testing see p.39 [1], and on the
Wald statistica and Akaike information criteria further reading can be done in
Leonhard Held and Daniel Sabanes Bove’s Applied Statistical Inference: Like-
lihood and Bayes [7] and in Marco Taboga’s Lectures on Probability Theory
and Mathematical Statistics [8].

3.3 Frequency and severity models

The aggregate losses incurred by an insurer is the total amount paid out in
claims over a fixed time period, S = ∑

N
j=1Yj. S is the aggregate losses in-

curred, N is the number of claims, Yj is the claim amount for the jth incurred
claim and j ∈ {1, . . . ,N}. It is assumed that conditionally on N, the individual
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claim amounts Y1, . . . ,YN are mutually independent, identically distributed. It
is further assumed that N is independent on the values of the claim amounts,
meaning that their distribution does not depend on N.

Because the frequency and severity are assumed to be independent one can
write the mean aggregate claims in terms of the two mean models,

E[S] = E[N]E[Y ]. (3.21)

For further details on independence see, Renshaw A.E’s article ’Modelling
the claims process in the presence of covariates’ [9], [1] and [2].

Let Ni be the number of claims in a tariff cell and let vi denote the expec-
tation, vi = E[Ni]. We assume that Ni is a poisson distribution of an individual
policy during any given period of time, Ni ∼ P(vi). Let Ni follow a poisson
distribution with probability mass function

fNi(ni,vi) = e−vi
(vi)

ni

ni!
, ni = 0,1,2, . . . (3.22)

This probability distribution is a member of the EDM family,

fNi(ni,vi) = e−vi
(vi)

ni

ni!
= exp{(nilog(vi)− vi)+ c(ni,wi)},

where c(ni,vi) = −log(ni!). By reparameterizing it through θi = log(vi) it
becomes clear that the poisson distribution is an EDM of the form of equation
3.1,

fNi(ni,vi) = exp{(niθ − eθi)+ c(ni,wi)}, (3.23)

where φ = 1 and b(θi) = eθi . The general ML-equations 3.11 becomes for the
poisson distribution,

∑
i

xi j(ni− vi) = 0. (3.24)

Since the variance function for the poisson distribution is obtained when v(E[N])=
E[N]p−1, p = 1, see equation 3.5, the ML-equation is easily simplified into the
above equation.

The unscaled deviance function of the poisson distribution can be obtained
by taking the logarithm from equation 3.23 onto equation 3.19,

D(n,v) = 2∑
i
(nilog(ni/vi)+(vi−ni)). (3.25)

For more detail see Beard and Pesonen’s textbook ’Risk Theory’ [10] and
[1].
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We assume that the cost of an individual claim Yi is gamma distributed
and let µi denote the expectation µi = E[Yi]. Let Yi ∼ G(α,β ) s.t the density
function is

fYi(yi) =
β α

i
Γ(α)

yα−1
i e−βyi , y > 0, (3.26)

where, α > 0 and β > 0. A parameterization is required to show that the
distribution is a member of the EDM family. Let µi = E[Yi] = α/β and φ =
1/α . The density function becomes

fYi(y) = fYi(yi,µi,φ) =
1

Γ(1/φ)

(
1

µiφ

)1/φ

y1/φ−1e−yi/(µiφ)

= exp
{
−yi/µi− log(µi)

φ
+ c(yi,φ ,wi)

}
,

where c(yi,φ ,wi) = log(yi/φ)/φ − log(yi)− logΓ(1/φ). To show that the dis-
tribution is an EDM in the form of 3.1.1 we do the parameterization θ =−1/µ .
This gives us that the gamma distribution is,

fYi(yi,θi,φ) = exp
{

yiθi + log(−θi)

φ
+ c(yi,φ ,wi)

}
. (3.27)

The gamma function is thus an EDM with b(θi) = −log(−θi). The ML-
equations for the gamma distribution can be obtained as with the poisson distri-
bution, but with the variance function v(E[Y ]) = E[Y ]p−1, p = 3, see equation
3.5. The ML-equation 3.11 is then simplified into,

∑
i

xi j

µi
(yi−µi) = 0. (3.28)

The unscaled deviance function for the gamma distribution is given by

D(y,µ) = 2∑
i
(−1+

yi

µi
+ log(

µi

yi
)), (3.29)

if we simplify equation 3.19 from equation 3.27 when µ =−1/θ . For further
details, see p.30 [1] and [3].
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4. Generalized Linear Models
extension

In this chapter an extension to the classic GLM will be put forth. Although
it is convenient to assume independent GLMs for claim counts and amount,
these variable are often associated in practice. We consider here a conditional
approach in which the GLM for the claim severity is allowed to depend on
the claim count. Two general approaches have been proposed to account for
dependence between frequency and severity, Frees and Wang’s article ’Cop-
ula credibility for aggregate loss models. Insurance Math’ [11], and Gschlobl
and Czado [12] together with Frees, E.W., Gao, J., Rosenberg, M.A’s article
’Predicting the frequency and amount of health care expenditures’ [13] . In
this paper we follow the dependency approach following the proceedings of
[2] which is based on [13] .

For a given class of policyholders, we continue to assume that condition-
ally on N, the individual claim amounts Y1, . . . ,YN are mutually independent
and identically distributed but conditionally on N. The distribution of N itself
does not depend on the values of the claim amounts. To account for depen-
dence, the mean of the severity distribution is allowed to depend on N. This
gives that,

E[S] = E[NE[Y |N]], (4.1)

where Y |N = (Y1+ · · ·+YN)/N is the average claim severity, S is the aggregate
losses incurred and N is the number of claims. Conventionally S ≡ 0 when
N = 0.

The claim count N is handled in the same manner as in the classic GLM ap-
proach explained above. Thus, the claim frequency is modeled with a poisson
distribution,

fNi(ni,vi) = exp{(niθ − eθi)+ c(ni,wi)}, (4.2)

where φ = 1 and b(θi) = eθi .
The deviance function is the same as 3.23 since it is the same probability

distribution. For more discussion on the average claim severity see [13] and
p.207 [2].

Let Y = (Y1 + · · ·+YN)/N where N > 0 denote the average claim severity.
In the proposed GLM extension model, the dependent setup requires modeling
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the average claim severity using claim count N as both covariate and weight
factor in the GLM with a logarithm link function. It is worth noting that Y is
functionally dependent on N.

We need the probability distribution for the average claim severity Y con-
ditionally on number of claims incurred, N, i.e an EDM for Y |N. Theorem
3.1.1 helps us prove that Y ∼ EDM(µ,φ/N). It can be found in p.207 [2].

Corollary 4.0.0.1. If Yj ∼ EDM(µ,φ) then Yj|N j ∼ EDM(µ,φ/N j), where
Yj = (Yj1 + · · ·+YjN j)/N j

Proof. Let Yj∼EDM(µ,φ), and Y
′
j |N j =

w1Y j1+···+wNY jN j
w1+···+wN

|N j. Let all the weights
equal to one, i.e w j = 1,∀ j. Then Y

′
j |N j = Yj|N j = (Yj1 + · · ·+YjN j)/N j|N j.

According to Theorem 3.1.1, Yj|N j = (Yj1 + · · ·+YjN j)/N j|N j belongs to the
same EDM family with weight N j.

Thus, modeling individual claim amounts is equivalent to modeling the av-
erage severity only when N is included as a weight in the model for Y . Hence,
the probability distribution is as in the independent case, the gamma distribu-
tion but with a weight . This gives us that the probability distribution for the
average claim severity is

fY i|Ni
(yi,θi,φ/ni) = exp

{
yiθi + log(−θi)

(φ/ni)
+ c(yi,φ/ni,wi)

}
(4.3)

= exp
{

yiθi + log(−θi)

φ
+ c(yi,φ/ni,wi)

}
exp{ni}. (4.4)

GLMs for N and Y are considered in order to incorporate the effect of
dependency. To be specific, for the logarithmic link function gN and gY we
have that,

v = E[N] = g−1
N (xa), µθ = E[Y |N] = g−1

Y (xβ +θN), (4.5)

where α and β are vectors of regression coefficients, and θ ∈ R induces a
degree of dependence between claim counts and amounts. The model formu-
lation is such that when θ = 0, µθ = µ0 = g−1

Y (xβ ) = µ , i.e the model for
the average claim severity using N as a weight is equivalent to modeling the
individual claim severities as is done in the independent claims model. With
gY being a logarithmic link function, one gets that µθ = exβ+θN ≡ µeθN . Thus
unless θ = 0, one has

E[S] = E[NE[Y |N]] 6= E[N]E[Y ]. (4.6)

24



In particular, the expected value of the aggregate claims can be written as

E[S] = E[E[S|N]] = E[E[NY |N]] = E[NE[Y |N]]

= E[Ng−1
Y (xβ +θN)] = E[Nexβ+θN ] = E[NµeθN ]

= µE[
∂

∂θ
eθN ] = µ

∂

∂θ
E[eθN ] = µM

′
N(θ),

where M
′
N is the moment generating function of N, which is poisson dis-

tributed. Hence, by definition the moment generating function of the Poisson
distribution is given by MN(θ) = ∑n eθn vn

n! e−v = ev(eθ−1). Thus the expected
value of the aggregate claims is

E[S] = g−1
Y (xβ )M

′
N(θ) = vµev(eθ−1)+θ . (4.7)

If we compare the equation 4.6 with the above GLM extension equation 4.7
one can see that the only difference is the multiplicative factor

exp{v(eθ −1)+θ}, (4.8)

which can be regarded as correction term for dependence. When θ = 0 that
multiplicative factor becomes equal to one, and the mean of the aggregate
claims E[S] becomes as in the classic GLM.

The parameters α and β from equations 4.5 is estimated using maximum
likelihood estimation (ML). For class i ∈ {1, . . . ,m}, let all policyholders in
the class share the same vector xi = (xi1, . . . ,xip) of rating variables. Then Ni

and Y i|Ni can be expressed as,

vi = exiα , µθ i = exiβ+niθ , (4.9)

where α =(α1, . . . ,αp)
T , β =(β1, . . . ,βp)

T and θ ∈R. The joint log-likelihood
becomes then,

l(α,β ,θ) =
m

∑
i

lN(α;ni)+
m

∑
i

lY |N(β ,θ ;yi|ni). (4.10)

Since claim count is modeled exactly in the same manner as in the classic
GLM, it has the poisson distribution Ni ∼ P(vi) that is described in equation
3.23. Thus, in the GLM extension claim count has the same ML-equations for
α as in the classical GLM,

m

∑
i

xi j(ni− vi) = 0. (4.11)

The average claim severity conditionally on number of claims incurred has
the gamma distribution with a weight N, Y i|Ni ∼ G(µθ i,φ/Ni), its probability
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distribution is the equation 4.3. From equation 3.10 one can obtain Fisher’s
score function,

∂ lY |N(β ,θ ;yi|ni)

∂β j
=

1
φ

m

∑
i=1

(yi−µθ i)
xi j

v(µθ i)g
′
(µθ i)

. (4.12)

With the variance function v(µθ i) = b
′′
(b
′
(µθ i)

−1)φ/ni, the ML-equation for
β j becomes

m

∑
i

nixi j

µθ i
(yi−µθ i) = 0. (4.13)

To determine θ an additional score function is required,

∂ lY |N(β ,θ ;yi|ni)

∂θ
=

1
φ

m

∑
i=1

(yi−µθ i)
ni

v(µθ i)g
′
(µθ i)

, (4.14)

with the same variance function v = v(µθ i) as above. the ML-equation for θ is

m

∑
i

n2
i

µθ i
(yi−µθ i) = 0. (4.15)

The deviance function for the GLM extension severity model differs by a
multiplicative factor due to the weight N that is described in corollary 4.0.0.1.
Thus, the unscaled deviance can be simplfied from the probability distribution
of Y |N,

D(y,µ) = 2
m

∑
i

ni(−1+
yi

µθ i
+ log(

µθ i

yi
)). (4.16)

Note that the difference from the classical GLM approach is the factor ni in the
sum. For further reading on the average claim severity, the correction term for
dependence and ML-equations see p.207 [2].
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5. Results

The analysis was carried out on data from the former Swedish insurance com-
pany Wasa, and concerns partial casco insurance for motorcycles. It contains
aggregated data on all insurance policies and claims during 1994-1998. The
data can be downloaded from here [1]. Further analysis of the data where
made. The covariates for the GLM analysis is a subset due to correlation be-
tween some of the covariates. Some classes were merged due to low duration
and small claim cost. Table 5.1 shows the covariates and classes together with
a short description. We find that the covariates and classes in Table 5.1 are best

Covariates Description Classes
Zon Geographic zone (1,2,3,4,5)
MC class Mc class (1,2,3,4)
Vehicle age The vehicle age (1,2,3,4)

Table 5.1: Data description with covariates and classes. These covariates and
corresponding classes are found independent and significant, and being used for
the analysis between the classic GLM and its extension.

suited for the GLM analysis since they are both independent and significant.
Table 5.2 gives a small description of the distribution of the data with re-

spect on claim count. One can see that the majority with 67% have claim
count equal to zero and hence the corresponding aggregate losses incurred is
also zero. Also 4% of the observations have claim count equal to 2. We see
a small positive association with claim count and average amount gives that
it may exist a positive correlation between frequency and severity. Consider-

Claim count Frequency Percent Average amount (Kr)
0 412 67 % 0
1 178 29% 83 372
2 26 4% 84 674

Table 5.2: Data distribution on claim count with a short description of the data.
4% of observations have claim count 2, 67% have zero in claim count.

ing the data at hand see Table 5.2, we have that claim count is either 1 or 2.
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When the claim count is 1 the extended GLM model, the average claim sever-
ity equals the classic GLMs claim amount, Yi = Yi when Ni = 1. Note that the
subset of the data where claim count is 2 is relativily small, only 4% of the set
of observations consists of Ni = 2, or 14% of claim count greater than zero.

It is natural to focus on the effect of dependency on the expected total loss
cost, in order to compare classic GLM with its extension. Secondly a com-
parison on the estimates of the average severity between the classic GLM and
GLM extension is necessary, since they both have exactly the same frequency
model and estimates.

In theory, dependency between the claim counts and amounts is reflected
only through the correction term exp{v(eθ −1)+θ}. We use the ML-equations
4.15 and 4.13 to obtain the estimate µ̂θ i, and through equation 4.9 we get β̂ j

and the estimated dependence parameter θ̂ . From the extension of the GLM
model the dependence parameter was estimated to

θ̂ =−0.3472. (5.1)

We use the Wald statistic for testing the null hypothesis that the claim count
has not a significant effect on confidence level 97.5% in the GLM extension,
H0 : θ̂ = θ0 = 0. Equation 3.18 and 3.16 gives us that the Wald statistic is
Wθ = 5.057. With confidence level of 97.5%, the Chi-square distribution func-
tion with 1 degree of freedom gives us χ2

0,025(1) = 5.024. The Wald statistic
is greater than the Chi-square distribution function with confidence level of
97.5%,

Wθ > χ
2
0.025(1). (5.2)

And by equation 3.15 we deduce that we can reject the null hypothesis and
thus the parameter θ is of significant effect of confidence level 97.5% in the
GLM extension model with p-value of 0,0245, this leads to the conclusion that
there is dependence between claim counts and claim amounts.

Fig 5.1, 5.2 shows the relativities for the frequency and severity models
both from the classical GLM model and the GLM extended model. All of
the estimated parameters are defined as in equation 3.12 since they are esti-
mated through their respective ML-equation. For the classical GLM model,
the parameter estimates β̂ j and α̂ j are deduced from the ML-equations 3.24
and 3.28. For the GLM extended model, the ML-equations 4.13, 4.11 and 4.15
are used for calculating the estimated parameters β̂ j, α̂ j and θ̂ . The relativities
are obtained through the link-function 2.4. Also in Fig 5.1 you can find the
correction term 4.8. Fig 5.3 describes the pure premium for the classical GLM
model with a red color, and the GLM extension with a green color. Their x-
axes represent the total classes over the covariates, and the y-axies represent
the relativities.
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One can conclude that since θ̂ < 0 gives the correction term to be < 1,
leading to lesser values for all policies for the severity estimates. This can
be misleading since the estimates of the severity also differ from one another
due to the absence/presence of the claim count N as a covariate. Fig 5.1 show
the relativities of the severity model between the approaches classic GLM and
GLM extension together with the correction term. One can see that the rela-
tivities of the GLM extension is always equal or less than the classic GLM,
this is due to the presence of the claim count N as a covariate in the sever-
ity model in the GLM extension, but it is absent in the classic GLM severity
model. The correction term is less than 1 everywhere as predicted and is shown
in Fig 5.1. Fig 5.2 shows that the relativities of the claim frequency is exactly
the same between the two approaches, since the claim frequency is modeled
in the same way. Fig 5.3 captures the difference in pure premium between the
two approaches. It follows that for the GLM extension model, the pure pre-
mium which is the product of the claim frequency and average claim severity,
is lesser than the classical GLM approach due to the difference in claim sever-
ity model and the correction term that emerges in the extension of the GLM
model.

The deviance residuals describes the difference in observed value and pre-
dicted value and are calculated through the deviance function. Fig 5.4, 5.5 and
5.6 describes the fitted values on the x-axis and deviance residuals on the y-
axis. The mean of the deviance residuals plotted against the fitted value should
be scattered around randomly neighboring zero, which the figures 5.4, 5.5 and
5.6 are showing. If the mean of the deviance residuals are equal to zero then the
predicted values show a good fit against the observed values. All the models
5.4, 5.5 and 5.6 seems to show that the mean of the deviance residuals are equal
to zero, but with different variances. Fig 5.4 shows how closely our model’s
predictions are to the observed outcomes, and are calculated in equation 3.25.
Fig 5.5 is calculated in equation 3.29, and Fig 5.6 is calculated trough 4.16

One can see that the deviance residuals are scattered more closely around
zero, giving lower variance for the severity model in the GLM extension in
Fig 5.6 compared to Fig 5.5 which is the severity model for the classical GLM.
This indicates the predicted values make a better fit against the observed values
for the GLM extension, and one can make the conclusion that claim count as a
covariate does make the severity model a better fit.

The Akaike’s information criteria (AIC) values have been used for deter-
mining which of the two models would best approximate reality given the data
at hand. In other words, which model minimizes the loss of information. For
each parameter estimate defined in 3.12 for a specific model the AIC value
have been calculated using equation 3.20. For the GLM extension, the AIC
value is AICGLMextension = 2637, but when we drop the claim count as an co-

29



variate the AIC value then becomes AICi = 2641, hence

AICmin = AICGLMextension < AICi. (5.3)

This gives us that
∆i = AICi−AICmin = 4. (5.4)

Meaning that the GLM extension have a lower AIC value compered with the
same model but without claim count as a covariate which makes the GLM
extension model a better model with respect to the goodness of fit and the
number of parameters used.

Figure 5.1: Comparison of the claim severity between the classic GLM and
the GLM extension. The x-axis equals the classes, and the y-axis the relativities.
The red represent the classical GLM severity model 3.27, the green represents the
GLM extension which has a dependent setup that requires modeling the average
using the claim count N as both a covariate and weight factor in the GLM 4.3.
Equation 4.8 is used for the correction term which represents the purple graph.
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Figure 5.2: Comparison of the claim frequency between the classic GLM and
the GLM extension. The x-axis equals the classes, and the y-axis the relativi-
ties. The claim frequency is handled in exactly the same way between the two
approaches. The relativties is shown in this plot, and they are indeed exactly the
same. Equation 3.23 is used both for the classical GLM model, and for the GLM
extension equation since they are the same.
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Figure 5.3: Comparison of the pure premium between the classic GLM and the
the GLM extension. The x-axis equals the classes, and the y-axis the relativities.
The pure premium is almost lower everywhere except for class m= 1 in the GLM
extension than the classic GLM, due to the difference in the severity and correc-
tion term. For the corresponding model the pure premium is the multiplication
between the corresponding models frequency and severity.

Figure 5.4: The deviance of the claim frequency model. The x-axis represent
the fitted values, the y-axis represents deviance residuals. The mean of the de-
viance is zero, and the deviances seem to be scattered randomly around zero. The
deviance of the frequency is obtained through equation 3.25.
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Figure 5.5: The deviance of the claim severity for the classical GLM. The x-axis
represent the fitted values, the y-axis represents deviance residuals. The mean is
also zero and the deviances seem to be scattered randomly. The deviance of the
severity for the classical GLM is calculated in equation 3.29.
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Figure 5.6: The deviance of the claim severity model for the GLM extension.
The x-axis represent the fitted values, the y-axis represents deviance residuals.
Also here one can see that the mean of the deviance is zero, and the deviances
seem to be scattered randomly around zero. Compared to fig 5.5 the deviances are
less scattered and more centered around zero, indicates that the GLM extension
fit better to the data than the classical GLM. The deviance of the severity for the
GLM extension is obtained in equation 4.16
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6. Conclusion

In this thesis we have discussed a proposal for how to extend the classical GLM
model by assuming that the claim count and claim amounts are independent
for estimating the aggregate losses incurred by an insurer. We found that the
dependence parameter 5.1 in the GLM extension was significant on the con-
fidence level 97.5%, see 5.2, which indicates that claim count is a significant
covariate in the GLM extension model.

When comparing the GLM extension model with and without the claim
amount as a covariate, the Akaike information criteria (AIC) found that the
GLM extension with the claim count is the best model to approximate reality,
see 5.3. A rule of thumb for interpreting ∆i is if 3 < ∆i < 7 then there is less
support for the GLM extension model without the claim count as a covariate
than the GLM extension model, see 5.4. The value ∆i in our case equals 4
and thus there is less support for the GLM extension model without the claim
count. This result is in alignment with the previous result, that the dependence
parameter 5.1 was significant on the confidence level 97,5 % 5.2. Note that
∆i = 4 is in the lower bound of (3,7) meaning that ∆i is not large enough
to fully accept claim count, nor is it small enough to omit it. The data at
hand may be to small to draw any conclusion from the AIC for testing the
GLM extension since only 4% of the data consists of claim counts greater
than one, see 5.2. This means that the severity model in the GLM extension
approach only differs from the classical GLM in these cases. This may be the
reason why the AIC value does not lead to a firm conclusion. Despite the small
data for the extended GLM model, we have a significant effect on dependence
between claim count and amount, and an AIC value that indicates that the
GLM extension model is the better one.

The deviance figures 5.6 and 5.5 both show that the mean of the deviance
residuals are equal to zero, but Fig 5.6 show that the deviance residual are
scattered more close to zero, the variance is lower compared to Fig 5.5. This
shows that the GLM extension model makes a better fit to the observations
compared to the classical GLM model. Fig 5.3 shows that the pure premium
will decrease if we assume a dependence between claim count and amount,
meaning that the risk which the insurance company takes is valued too high.
The reason is due to the fact that the severity model differs from the classical
GLM model, and the emergence of a correction term, both can bee seen in Fig
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5.1.
For insurance companies where the data is greater, the impact of depen-

dence may be great. However, ignoring dependence could have more reper-
cussions.

The structure for the dependence approaches makes it very easy to imple-
ment. The frequency model is exactly the same. For the severity model, the
dependent setup requires modeling the average severity using claim count as
a covariate and a weight factor in the GLM. The proposed extension makes it
an appealing way for account for dependence, and is valid irrespectively of the
choice of distribution for the claim counts and claim amounts.

Further studies can be done for different distributions for claim counts and
amounts and with greater data, where the share of claim count larger than one
is greater.
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