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Abstract

In this project, we consider SIR (Susceptible → Infectious → Re-
covered) epidemics on random graphs generated by a version of the
configuration model with clustering. Miller (2009) investigated SIR
epidemics on graphs of this model under the assumption of homo-
geneous infectivity. We extend previous results by relaxing this as-
sumption. We use a branching process approximation of the spread of
the disease to provide expressions for the probability of a major out-
break and the expected final size. Furthermore, we show that for this
particular model, the basic reproduction number, here defined as the
rank based geometric growth rate of the epidemic, equals the perfect
vaccine-associated reproduction number. Moreover, we use maximal
coupling to prove that the branching process approximation is exact
in the limit as the population size approaches infinity.
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1 Introduction

Infectious diseases have played a dramatic role in the history of humankind. Among
the most lethal pandemics recorded are the Justinian Plague (541-544), the Black Death
(1346�1353) and the Spanish �u (1918-1920). The Justinian Plague, named after the
Byzantine emperor Justinian, and the Black Death, probably named after the black
plaques that appeared on the skin of patients, were caused by the bacterium Yersinia
pestis (Harbeck et al. 2013). The Justinian Plague hit the Byzantine Empire in 541, and
then spread rapidly to North Africa, Italy, Spain, and the French- German border. The
Black Death struck the Mediterranean and Europe. It is estimated that the Black Death
reduced the European population by 25% and the population of the Muslim Middle
East by 30% (Tibayrenc 2007). The 1918 �u pandemic, also called the Spanish �u, was
caused by a strain of the H1N1 in�uenza virus. One third of the world's population is
said to have been infected, with a total number of 40-50 million deceased (Taubenberger
and Morens 2006), which makes the Spanish �u one of the deadliest pandemics ever
recorded. Unlike many other in�uenza strains, the Spanish �u was especially dangerous
for previously healthy young adults. More recent outbreaks of infectious diseases include
SARS, MERS, Ebola, Zika and the 2009 H1N1 pandemic.

Finding adequate models for the spread of infectious diseases is of considerable impor-
tance to society. In order to take suitable prevention and control measures, adequate
understanding of the spread of the disease is required. The practical usefulness of an
epidemic model depends on its mathematical tractability and how well it captures the
most important mechanisms of the epidemic. In most modelling activities, one faces the
classical trade-o� of �delity versus simplicity. One of the most important factors that de-
termine the fate of an outbreak is the contact patterns in the population. The frequency
and duration of the contacts between individuals typically depends on the nature of their
relationship. To incorporate social structure in an epidemic model, the individuals of the
population and the relationship between them may be represented by a graph; the nodes
of the graph represent the individuals of the population, and an edge represents a "close"
social relationship (Figure 1.1). In other words, an edge represents a potential channel
for transmission of the disease.

Figure 1.1: Network with clustering repre-
senting a social network. Individuals are rep-
resented by nodes (black dots), an edge con-
necting two nodes signi�es a social relation-
ship. This picture was retrieved from the
paper by Newman (2009).

In this project, we incorporate two main
features in the analysis of the spread of
an infectious disease; heterogeneity in the
infectivity of the individuals of the pop-
ulation, and a feature of the underlying
social network called clustering.

Heterogeneity in individual infectivity
may, for instance, re�ect variability in the
infectious periods of the individuals who
contract the disease, or variability in the
type and amount of social interaction that
individuals engage in.

A network exhibits clustering if it has a
high amount of triangles (see Figure 1.1).
For a social network, the presence of tri-
angles represents a tendency to have mu-
tual acquaintances. That is, the friends
of an individual tend to be friends as well.
To incorporate clustering, we use a version
of the con�guration model1, proposed by

1For an account on the standard con�guration model we refer the reader to the book by van der
Hofstad (2016, Chapter 7).
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Miller (2009) and Newman (2009), independently.

Miller (2009) investigated the spread of a disease on a graph generated by the con�g-
uration model with clustering, assuming homogeneous infectivity and susceptibility of
infectives. In other words, transmission occurs along each infected-susceptible edge in-
dependently with some �xed probability T . In this project, we extend these results
by allowing for heterogeneity in individual infectivity. We employ a branching process
approximation, which enables us to provide expressions for the probability of a major
outbreak (that is, the probability that a non-negligible fraction of the population is in-
fected). We use a similar approach, based on susceptibility sets and backward branching
processes (see section 3.2) to provide expressions for the expected �nal size of a major
outbreak.

The basic reproduction number R0, loosely de�ned as the expected number of infected
cases caused by a "typical" infected individual in an otherwise susceptible population,
has the threshold property that a major outbreak is possible if and only if R0 > 1.
Miller (2009) calculated the basic reproduction number by attributing all secondary and
tertiary cases infected by virtue of transmission within a given triangle to the primary
case in that triangle, regardless of the true path of transmission. In this thesis, we
extend this result by calculating the rank based reproduction number. In addition, we
incorporate vaccination in the epidemic model and show that, for the particular model
under consideration, vaccinating a fraction 1− 1

R0
of the population with a perfect vaccine

is su�cient to surely prevent a major outbreak.

This report is structured as follows. In section 2, we specify the epidemic model and
describe the tools we use to analyse the spread of the disease. Section 3 contains a
description of how a branching process approximation can be employed to approximate
the probability and size of a major outbreak. In section 4 we analyse an SIR epidemic in
discrete time and provide expressions for the probability and size of a major outbreak.
The continuous time case is discussed brie�y in section 5. In section 6 we incorporate
immunity stemming from vaccination in the epidemic model, and show that the basic
reproduction number equals the perfect vaccine-associated reproduction number. In
section 7 we give a brief summary of the results presented and discuss possible extensions
and future work.

A list of frequently used notation and its (usual) meaning, and a list of the assumptions
made, are available in Appendix A. In Appendix B we discuss tools to compare the
�nal size and the probability of non-extinction of epidemic models by the infectivity and
transmissibility of the models. In Appendix C we describe the concept of coupling, which
we use to prove that the branching process approximations are exact in the limit of large
population sizes. The proof is presented in Appendix D.
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2 Background

In this section, we describe the tools that we will later use to analyse the spread of the
disease.

2.1 The SIR model

In this project, we use an SIR model to investigate the dynamics of the spread of an
infectious disease. At any given time point, the population is divided into three groups,
depending on health status. The groups are susceptible (S), infectious (I) and recovered
(R) (Britton 2010). The role of an individual in the epidemic is determined by its
group. Individuals of the population make contact with other individuals at (possibly
random) points in time. If, at some time point, an infectious individual makes contact
with a susceptible individual then the susceptible individual instantaneously becomes
infectious. An infectious individual may cease to be contagious after a period of time,
which we call the infectious period of the individual in question, and is then transferred to
the group recovered. Recovered individuals are those that are immune to the disease (or
dead). Individuals belonging to this group play no role in the spread of the disease. The
population is assumed to be closed. This means that we ignore births, deaths (except
for the individuals in the group recovered) and migration.

In the simplest case, we only allow the transitions S → I and I → R. That is, recovered
individuals gain lasting immunity against the disease. This model, the SIR model, is the
model considered in this report. One possible extension of this model is to incorporate
waning immunity in the model by, in addition, allowing the transition R → S, which
results in the SIRS model. These two models are illustrated in Figure 2.1. Another
possible extension of the SIR model is to incorporate incubation periods by adding the
latent group "exposed" (E) to the model. In the SEIR model, a susceptible individual
that gets infected resides in the group exposed for a period of time (the incubation period)
before transferring to the group infectious. We now turn our attention to the SIR model
again.

S I R

S I R

Figure 2.1: Allowed transitions in two di�erent models. Top: An SIRS model with
waning immunity. Bottom: An SIR model with lasting immunity. This is the model
considered in this report.

More formally, let the set T be a time index set. We consider epidemics in discrete time,
corresponding to T = {0, 1, 2, . . .}, and in continuous time, corresponding to T = R+.
For each time point t ∈ T , let S(t) be the set of susceptible individuals at t. Similarly, let
I(t) be the set of infectious individuals at time t, andR(t) the set of recovered individuals
at t. The number of susceptible, infectious and recovered individuals at t is then given
by |S(t)|, |I(t)| and |R(t)| respectively.

Throughout, we denote the population size by N . At the start of the epidemic (that is
at time t = 0), we typically have a relatively small number of infectious and no recovered
individuals, say |I(0)| = m initially infected and |S(0)| = N − m initially susceptible.
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In our analysis, we assume that there is one initially infected individual and that the
population size N is large.

We divide the individuals of the populations into the three sets S(0), I(0) and R(0)
according to their health status at time 0. We often assume that R(0) is empty, that is
that all individuals except for the initial case(s) are initially susceptible to the disease.

If v is an initial case then the time point t
(v)
I at which v contracts the disease is set to

0.

The disease is transmitted if an infectious individual makes contact with a susceptible
individual. In a real world setting, the contact pattern between individuals typically
varies from pair to pair. To capture these heterogeneities we introduce contact processes
(not to be confused with an SIS epidemic, which is often referred to as a contact process,

see for instance (Liggett 1999)) of the form C(u,v) = {C(u,v)
n }n∈N. For each pair of

individuals u, v the time points at which u attempts to make contact with v is a point
process C(u,v) on T . Note that the time points C(u,v) at which u attempts to make contact
with v are in general not the same as the time points C(v,u) at which v attempts to make
contact with u. In section 2.3 we incorporate social structure and "friendship" in our
model, so that the probability law of C(u,v) is determined by the nature of the relationship
between u and v. In the continuous time case, we assume that the attempted contacts
between individuals are independent homogeneous Poisson processes. If an infectious
individual attempts to make contact with a susceptible individual and succeeds, then the
susceptible individual immediately becomes infectious. Whether an attempted contact
is successful or not is governed by some probability law, speci�ed in the model. We may,
for instance, consider a so called leaky vaccine. Such vaccine provides partial protection
against the disease, in the sense that the risk of transmission at an attempted infectious
contact is reduced, but not eliminated. Leaky vaccines are brie�y discussed in Example
B.2, Appendix B.

We now give a description of how individuals transfer from the group infectious to the
group susceptible and from susceptible to recovered. Assign to each individual v two

numbers, the time point t
(v)
I ∈ T ∪ {∞} at which v gets infected, and the infectious

period τv of v, where 0 ≤ τv ≤ ∞. An individual v is susceptible at time points in

[0, t
(v)
I ), infectious in [t

(v)
I , t

(v)
I + τv) and recovered in [t

(v)
I + τv,∞). If v ultimately

escapes infection then t
(v)
I =∞. These numbers are assigned according to the following

rules.

For any function f with domain T , we de�ne f(t−) as the limit as t goes to 0 from
below. For instance, S(t−) is the set of individuals that are susceptible "right before"
t. In the discrete time case S(t−) = S(t − 1) for each t ∈ T>0. In the continuous time
case, S(t−) consists of precisely the individuals u that are susceptible in the non-empty
time interval (t− δ, t) for some δ(u) > 0. In our model, transmission of the disease and
recovery happens at time points t−, t ∈ T>0. If at some time point t ∈ T the individuals
u makes contact with v, and u ∈ I(t−) and v ∈ S(t−), then v instantaneously becomes
infected, and stays infectious for a time period of length τv. That is v ∈ I(s) for all

t ≤ s < t+ τv and v ∈ R(s) for s ≥ t+ τv, and t
(v)
I = t.

One of the simplest SIR models is the standard stochastic SIR model, in which homo-
geneous mixing of the population is assumed, i.e. any pair of individuals is assumed
to be equally likely to interact with each other during any given time period. In this
continuous time model, the contact processes of {C(u,v)} are independent and all obey
the same probability law. That is, the contact processes {C(u,v)} are independent homo-
geneous Poisson processes on R+ with common intensity. Let λ be the positive number
that satis�es that the per-pair contact intensity is λ

N−1 , where N is the population size.
For a speci�c individual u, the rest of the population attempts to make contact with u
at a Poisson rate λ. Similarly, at any given time point t, infectious individuals attempts

to make contact with a speci�c susceptible individual at a Poisson rate |I(t)|
N−1 . In this
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model, the infectious periods of the individuals are assumed to be independent and expo-
nentially distributed with common mean. Note that the standard stochastic SIR model
is Markovian, i.e. (I(t),S(t),R(t)), t ∈ R+, is a Markov process.

2.2 Reproduction numbers

One of the key quantities in the study of epidemics is the basic reproduction number,
often denoted by R0. One of the most important features of R0 is its threshold properties;
a major outbreak is only possible if R0 > 1. We say that an outbreak is major if a non-
negligible fraction of the population contracts the disease. In section 3.2, we will see
that for the models considered in this thesis, the distribution of the proportion of the
population that is ultimately infected converges to a two point distribution concentrated
on {0, f} for some constant 0 < f < 1 as the population size N → ∞ (Theorem 3.1),
provided that R0 > 1. In other words, in the limit of large population sizes, an outbreak
may be minor, with a fraction ≈ 0 of the population ultimately infected, or major with
a fraction ≈ f of the population ultimately infected. Another important feature of R0 is
that it has the interpretation of the expected number of infected cases caused by a typical
infected individual in an otherwise susceptible population (Heesterbeek 2002). It has its
roots both in epidemiology and ecology/demography. In ecology and demography, R0

represents the expected number to female o�spring born to one female of the population
over the course of her lifetime. As we will see in this report, the two interpretations are
closely related.

It is in general not straightforward to de�ne R0 for more complex models, where the
interactions between the individuals of the population depend on the underlying social
structure established by the individuals of the population. There is a vast number of
proposed reproduction numbers for such models, see for instance Ball et al. (2016) for
a overview and comparison of a number of reproduction numbers for epidemics among
households and households-workplaces.

For many models, including those analysed in this report, the basic reproduction R0

number may be de�ned as the geometric growth rate (Pellis et al. 2012)

lim
k→∞

lim
N→∞

E
(
X

(k)
N

)1/k

, (2.1)

if this limit exists2, where X
(k)
N is the number of cases of generation k of an epidemic in a

population of size N . For k ∈ N, an infected case v is said to belong to generation k if the
chain of transmission from an initial case to v is of length k. That is, the initial case(s)
belongs to generation zero, the cases caused by the initial case(s) belongs to generation
one etc.

If the spread of the disease in the early phase of the epidemic is well approximated by a
suitably chosen branching process, then the interpretation of R0 as the expected number
of cases cased by the typical individual in the early phase of the epidemic is retained
by this de�nition. The approximating branching process may be a single or multi-type
branching process. In the single-type case, the expected number of individuals infected
by a typical infected individual during the early stages of the epidemic is given by the
expected number of o�spring µ of an individual in the approximating branching process.
As we will see in section 2.6, the probability of extinction of the branching process is
less than one if and only if µ > 1. Thus, R0 = µ is a threshold parameter. The
multi-type case, which is discussed in more detail in section 3.3, can be given a similar
interpretation.

2 Under mild conditions, the limit in (2.1) exists and has the threshold properties of the basic
reproduction number. This is discussed in more detail in section 3.3
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In addition to the basic reproduction numberR0, we consider the perfect vaccine-associated
reproduction number RV . A vaccine is perfect if it provides full and permanent immunity.
That is, an individual vaccinated with a perfect vaccine cannot contract the disease. The
perfect vaccine-associated reproduction number RV is de�ned as (Ball et al. 2016)

RV =
1

1− f (c)
v

,

where f
(c)
v is the critical vaccination coverage. The critical vaccination coverage is de�ned

as the fraction of the population that has to be vaccinated with a perfect vaccine in order

to reduce R0 to unity. That is, f
(c)
v is the fraction necessary to vaccinate in order to

be guaranteed to prevent a major outbreak (Britton 2010). Note that if R0 ≤ 1 then

f
(c)
v = 0.

In the example of the standard stochastic SIR epidemic model introduced in section
2.1, RV = R0 (Britton 2010). Ball et al. (2016) showed that, for the households and
households-workplaces models RV ≥ R0 if R0 > 1. That is to say, in order to surely
prevent a major outbreak, vaccinating a fraction 1− 1

R0
with a perfect vaccine is su�cient

to surely prevent a major outbreak only if RV = R0. However, if a fraction strictly less
than 1 − 1

R0
is vaccinated with a perfect vaccine then a major outbreak might still

occur.

In section 6, we show that for the models analysed in this report, RV = R0.

2.3 Graph interpretation of an epidemic

The spread of an epidemic can be given a directed graph interpretation. As we pointed
out in section 2.1, the contact processes {C(u,v)} typically varies from pair to pair.
The contact pattern in a population can be represented by a social network, where the
structure of the network is determined by the interactions between the individuals of the
population. A link between two individuals in such network represents a relationship.
Contacts are often directed in the sense that an individual makes contact with another
individual. To capture directed contacts, we represent the social network by a directed
graph, where the nodes of the graph represents the individuals of the population and
a directed edge represents frequent (directed) contact between the two individuals. In
this project, we investigate the spread of SIR epidemics in populations where the social
structure can be represented by a graph generated by the con�guration model with
clustering presented in section 2.5.

Consider a graphGN consisting ofN nodes v1, v2, . . . , vN , each representing an individual
of the population. Let V = {v1, v2 . . . , vN} be the node set. In the graph interpretation,
potential infectious contacts between individuals are represented by weighted directed
edges. Let E be a set of ordered triples, or directed edges, (vi, vj , dij) such that vi, vj ∈ V
and dij ∈ R+ ∪ {∞}. We sometimes write (vi, vj) instead of (vi, vj , dij), not making the
edge weight dij explicit. Given an edge (vi, vj), we refer to vi as the tail of (vi, vj) and
to vj as the head of (vi, vj). In Figure 2.2, a graph representation of an epidemic in a
small population is illustrated. Each directed edge is represented by an arrow, pointing
from the tail to the head. The edge weight dij of an edge (vi, vj , dij) is to be interpreted
as the transmission time from vi to vj , should vi contract the disease. That is to say, if
vi gets infected at the time point t say, then vj gets infected at t + dij , provided that
vi transmits the disease to vj . In the example of Figure 2.2, the disease would not be
transmitted along the edge (v2, v1) since the edge weight d21 is in�nite. The disease
would, on the other hand, be transmitted along the edge (v4, v3) if v4 were to contract
the disease, since the edge weight d42 = 3 is �nite.
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Figure 2.2: Graph representation of an epidemic in a small (N = 6) population. A solid
arrow (a directed edge) from a node (the tail) to another node (the head) represents that
the tail would attempt to infect the head, if infected. Each edge is labeled with an edge
weight, which is to be interpreted as the time of disease transmission from the tail to the
head.

Let i1, i2, . . . , ik be indices such that there is a directed edge from the node vim to the node
vim+1

for m = 1, 2, . . . , k−1. We may then de�ne the path vi1 → . . .→ vik as the ordered

sequence {(vim , vim+1
)}k−1
m=1. In the example of Figure 2.2, the path v1 → v2 → v3 exists

since there is a sequence of directed edges corresponding to v1 → v2 → v3. However, the
path v1 → v3 does not exist. We refer to vi1 as the starting point of vi1 → . . .→ vik and
to vik as the end point of vi1 → . . . → vik . We de�ne the length L(vi1 → . . . → vik) of
the path vi1 → . . .→ vik as

L(vi1 → . . .→ vik) =

k−1∑
m=1

dimim+1 .

We make the convention that for any node v, there exists a path v → v from v to itself
of length 0. For vi, vj ∈ V de�ne the distance d(vi, vj) from the node vi to the node vj
as the minimum length taken over all paths with starting point vi and end point vj . If
no such path exists then d(vi, vj) is taken to be ∞. Note that the distance between a
node and itself is 0, that is d(v, v) = 0 for all nodes v. The distance d(u, v) from a node
u to another node v represents the transmission time of the disease from u to v, should
u contract the disease.

An edge v gets infected if and only if d(v∗, v) <∞, where v∗ is the initial case. It should
be noted that an edge with �nite weight does not necessarily transmit the disease, since
the weight represents the time of transmission, should the tail get infected. In the example
of Figure 2.2, the disease would not be transmitted along the path v1 → v2 → v3, since
the path v1 → v4 → v3 is shorter. In the case of a non-atomic weight distribution the
path lengths are almost surely distinct, and the paths of transmission are almost surely
well de�ned. We refrain from elaborating on the path of infection in the case of weight
distributions with atoms, since it is not relevant for our analysis.

In the setting with random infectious periods described in section 2.1, the graph may be

constructed as follows. Recall that t
(vi)
I is the time point at which the node vi contracts

the disease. To each node vi, assign an infectious period τi, and for each directed edge

(vi, vj) let tij be the time elapsed between t
(vi)
I and the �rst time point in (t

(vi)
I ,∞) at

which vi contacts vj . If vi does not contact vj then tij is taken to be∞. The edge weight
dij of the edge (vi, vj) is then taken to be dij =∞ · 1(τi < tij) + tij , where we agree to
∞ · 0 = 0.

2.4 Clustering

In this project, we analyse epidemics in populations where the structure of the contact
network established by the individuals of the population may be represented by a graph
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with high degree of clustering. A graph exhibits clustering if nodes with mutual neigh-
bours tends to be neighbours as well (van der Hofstad 2016, Section 1.5). In other words,
a network with high degree of clustering contains a relatively high amount of triangles.
A high degree of clustering is, for instance, prevalent in social networks.

Let G = (E, V ) be an undirected graph with node set V and edge set E. The clustering
coe�cient of G = (V,E) is a measure of the degree of clustering of G. Three nodes u, v,
w ∈ V are said to form an ordered wedge (u, v, w) if v is connected both to u and to
w. If, in addition, u and w share an edge then the wedge (u, v, w) is called a triangle.
The ordered wedge/triangle (u, v, w) is said to be centered on v. We note that (u, v, w)
is an ordered wedge if and only if (w, v, u) is an ordered wedge. Furthermore, if u, v and
w constitute a triangle then there exist six ordered wedges with members u, v and w.
Let

WG = {(u, v, w) ∈ V 3 : (u, v), (v, w) ∈ E}

be the set of all ordered wedges of G and

WG
∆ = {(u, v, w) ∈ V 3 : (u, v), (v, w), (w, u) ∈ E} ⊂ W

be the set of all ordered triangles of G. The clustering coe�cient C(G) of a graph G is
de�ned as the fraction of ordered wedges that are also triangles:

De�nition 2.1 (Clustering coe�cient). Let G = (V,E) with |WG| > 0. The clustering
coe�cient of G, C(G), is given by

C(G) =
|WG

∆ |
|WG|

.

Let G = {Gn}n∈N be a sequence of graphs. The sequence G is said to be highly clustered
if

lim inf
n→∞

C(Gn) > 0.

2.5 The graph model

In this project, we investigate an SIR epidemic on random graphs with clustering, gen-
erated by a version of the con�guration model (see for instance van der Hofstad (2016,
Chapter 7). The con�guration model with clustering was independently introduced by
Miller (2009) and Newman (2009). For alternative graph models with clustering, see for
instance Deijfen and Kets (2009) and Trapman (2007).

A graph generated from this model is constructed as follows. Let

{p(kS , k∆)}kS ,k∆∈N0

be a prescribed joint degree distribution, where kS denotes the number of single edges,
and k∆ denotes the number of pairs of triangle edges. Throughout, the two-dimensional
random vector (S,∆) is assumed to have the joint degree distribution p. Let {(Si,∆i)}Ni=1

be a sequence of independent copies of (S,∆). In other words, we assume that the ele-
ments of this sequence are independent realizations of the degree distribution p. Anal-
ogously to the standard con�guration model, a graph GN = GN (p) of size N is then
constructed by �rst assigning the single degree Si and the triangle degree ∆i to the
node vi, i = 1, 2, . . . , N . It may be helpful think of this step in terms of half-edges; to
each node vi, we attach Si single half-edges and ∆i pairs of triangle half-edges. The
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single half-edges are then matched uniformly, and the triangle half-edges are matched
uniformly. The process of joining half-edges is illustrated in Figure 2.3.

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

Figure 2.3: Schematic illustration of the construction of a con�guration graph with
clustering. Triangle half-edges (marked with a triangle) and single half-edges (marked
with a perpendicular line) are assigned to the nodes of the graph (left). The half-edges
are then matched uniformly at random (right).

In practice, the matching may be carried out as follows. Two lists of nodes, one single
degree list and one triangle degree list are created. A node with joint degree (kS , k∆)
will appear kS times in the single list and k∆ times in the triangle list. The lists are then
shu�ed uniformly, and the nodes on positions 2m+ 1 and 2m+ 2 in the single list and
positions 3m+1, 3m+2 and 3m+3 in the triangle list are then matched, m ∈ N0.

We de�ne the total single degree as

D
(N)
S =

N∑
i=1

Si

and the total triangle degree as

D
(N)
∆ =

N∑
i=1

∆i.

If the total single degree (that is, the length of the single degree list) is not even, or if the
total triangle edge degree (the length of the triangle degree list) is not a multiple of three,
then we erase a single half-edge and/or one or two triangle half-edge pairs. Similarly, we
erase self-loops and multiple edges, so that the resulting graph is simple. The impact on
the degree distribution is negligible as the number of nodes N tends to in�nity, as we
will see below.

We assume that S and ∆ both have �nite second moments. Note that this assumption
implies that S∆ is integrable. This follows from Hölders inequality (Friedman 1982,
Theorem 3.2.1), or just from noting that 2|S∆| ≤ (S2 + ∆2). It holds that under the
assumption of �nite second moments the number of single self loops and single double
edges converge in distribution to independent Poisson random variables with means (van
der Hofstad 2016, Proposition 7.13)

1

2
E(S

(s)
• ) and

1

4
E(S

(s)
• )2

respectively, where S
(s)
• has the downshifted single size biased distribution (de�ned on

page 18), that is E(S
(s)
• ) =

(
E(S2)
E(S) − 1

)
. One can show that for a con�guration model

graph with clustering, the number of triangle self loops (that is, the number of unordered
"triangles" u, v, w where at least two of the nodes u, v and w are identical), the number of
triangle parallel edges and the number of triangle edges that are parallel with a single edge
converge in distribution to independent Poisson random variables with �nite means. The
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proof, which is completely analogous to the proof of Proposition 7.13 in van der Hofstad
(2016), is omitted.

Thus, self loops and multiple edges are negligible in the limit asN →∞. In the remainder
of this report, we ignore the small di�erences in the topology of the graph that arise from
erasing multiple edges or self loops. In addition, we ignore the small di�erences that arise
from erasing half-edges so that the number of single and triangle half-edges are multiples
of two and three, respectively.

An important feature of the matching process is that it may be carried out sequentially, in
a random order. In each step, a half-edge (or a half-edge triangle pair) is chosen according
to some arbitrary, possibly random, rule. The chosen half-edge (or pair) is then paired
with another half-edge (or to two other triangle half-edge pairs) chosen uniformly at
random. The (possibly random) order in which the pairing is carried out does not a�ect
the distribution of the topology of the graph, as long as the matching is done uniformly
(van der Hofstad 2016, Lemma 7.6). We say that the order in which the pairing is carried
out is exchangeable.

This is a useful result, since it allows us to construct the graph by exploring the neigh-
bourhood of a vertex in a random order (van der Hofstad 2016, Section 7.2). In other
words, we may construct/explore the graph GN as the epidemic propagates, by matching
the half-edges attached to a node when the node gets infected. The exchangeability of
the pairing order plays a crucial role in the proofs presented in Appendix D.

2.5.1 Assumptions on the degree distribution

Recall that (∆, S) has the joint degree distribution p. We make the following assumptions
on p.

A1) E(∆2) <∞ and E(S2) <∞.

A2) E(∆2 log(∆)) <∞ and E(S2 log(S)) <∞

A3) P (max(∆, S) ≥ 2) > 0 and E(∆S) > 0.

It is not hard to see that assumption A2 implies assumption A1. Assumption A2 ensures
that the condition given in (2.11), section 3, is satis�ed for the approximating branching
process. Note that the assumption A1 implies E(S∆) < ∞ by the inequality S∆ ≤
S2+∆2

2 . Similarly, assumption A2 implies E(S∆ log(∆)) < ∞ and E(S∆ log(S)) <
∞.

2.5.2 Clustering coe�cient of the graph model

Let the degree sequence d̄ = {(Si,∆i)}i∈N be a given sequence of independent copies
of (S,∆). Consider the graph sequence G = {GN}N∈N of graphs generated by the
con�guration model with clustering, where the degree sequence of the graph GN is given
by d̄N = {(Si,∆i)}Ni=1 for each N . We now show that the graph sequence G is highly
clustered for almost every realization of the degree sequence d̄.

Ignoring the small changes in the empirical degree distributions of the graphs of G that
might arise from multiple edges, self loops or total single (triangle) degrees that are not
a multiple of two (three), the total number of ordered triangles of GN is bounded from
below by

|WGN

∆ | ≥
N∑
i=1

2∆i.

10



and the total number of ordered wedges is given by

|WGN | =
N∑
i=1

(
Si + 2∆i

2

)
2 =

N∑
i=1

(Si + 2∆i)(Si + 2∆i − 1).

Indeed, for a given node ui of GN with joint degree (Si,∆i), the number of ordered
triangles formed by triangle half-edges centered on ui is given by 2∆i. Similarly, the
number of ordered wedges centered on ui is given by 2

(
Si+2∆i

2

)
.

By the Strong Law of Large Numbers (Theorem D.1) and the assumption A1 that S and
∆ both have �nite second moments

C(GN ) ≥

(∑N
i=1 2∆i

N

)
(∑N

i=1(Si+2∆i)(Si+2∆i−1)

N

) → E(2∆)

E((2∆ + S)2)− E(2∆ + S)
(2.2)

as the population sizeN →∞ for almost every realization of the degree sequence d̄. Thus,
the graph sequence G is almost surely highly clustered, provided that E(∆) > 0.

This bound is tight in the limit as the number of nodes N →∞ (Newman 2009). Indeed,
by the Strong Law of Large Numbers (Theorem D.1), for almost every realization of the
degree sequence d̄, the empirical second moments of the components of the elements of
d̄N converge to the corresponding expected values as N → ∞. Denote by WGN

s the set
of ordered triangles of GN that consists solely of single edges, i.e.

WGN
s = {(u, v, w) ∈ V 3

N : (u, v), (u,w) and (v, w) are single edges},

where VN is the node set of GN . To stress that the degree sequence d̄ is regarded as
given, we denote the underlying probability measure governing G by Pd̄(·), and by Ed̄ the
corresponding conditional expectation. For the given degree sequence d̄, the expected
number of triangles of GN formed by single edges is (approximately) given by (ignoring
self-loops, multiple edges the small change in the set of free half-edges that arise as
half-edges are paired)

Ed̄
(
|WGN

s |
)

=
∑
i

2

(
Si
2

)∑
j 6=i

Sj

D
(N)
S

∑
l 6=i,j

Sl

D
(N)
S

(
(Sj − 1)(Sl − 1)

D
(N)
S

) (2.3)

where the sums run over the integers 1, . . . , N . The term 2
(
Si

2

)
arises because, for a

node vi with single degree Si, there are
(
Si

2

)
ways to choose two of the Si single half-

edges attached to vi. The terms
Sj

D
(N)
S

and Sl

D
(N)
S

result from the fact that the probability

that a node is chosen in the pairing procedure is proportional to its degree. The term
(Sj−1)(Sl−1)

D
(N)
S

arises because the probability that the nodes vj and vl are neihgbours is

approximately
(Sj−1)(Sl−1)

D
(N)
S

, given that they are both neighbours of vi.

By the Strong Law of Large Numbers, dividing by N in (2.3) and letting N approach
in�nity gives

Ed̄

(
|WGN

S |
)

N
→ 0

as N →∞ for almost every realization of d̄. Since convergence in mean implies conver-
gence in probability

|WGN

S |
N

→ 0

in Pd̄ -measure as N →∞ for almost every realization of the degree sequence d̄. Repeat-
ing this for triangles formed by a combination of triangle and single edges gives

C(GN )
Pd̄−→ E(2∆)

E((2∆ + S)2)− E(2∆ + S)
. (2.4)
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That is, the asymptotic lower bound in 2.2 is attained in the limit as N →∞.

Remark 2.1. We may also regard the degree sequence d̄ as random. By bounded con-
vergence (Friedman 1982, Theorem 2.9.1) and the fact that Pd̄(·) ≤ 1 the convergence in
(2.4) holds also in the (unconditional) measure P as N →∞.

2.6 Branching processes

To analyse the spread of the disease in the early stages of the epidemic, we employ a
multi-type branching process approximation. In the early phase of the epidemic, short
cycles (except for the triangles formed by triangle half-edges) are unlikely to occur. For
this reason, the early spread of the disease is well approximated by a suitably chosen
branching process. In Appendix D, we construct a coupling of the epidemic process and
a branching process and show that in the limit as the population size N →∞, the prob-
ability of a major outbreak is given by the probability that the approximating branching
process avoids extinction. Furthermore, the expected fraction of the population that
contracts the disease provided that a major outbreak occurs is given by the probability
that the approximating backward process described in section 3.2 avoids extinction. A
more extensive branching process framework is described in Appendix D.

In this project, we consider multi-type branching processes in discrete time. An s-
type Galton-Watson process is a branching process in discrete time, involving s types of
individuals. Let T = N0 be the time index set. Each individual has a unit life length,
and reproduces at age one, independently of the other individuals of the process. Let
ν = (ν1, . . . , νs) be the distributions governing the reproduction of the individuals of the
branching process. At age one, a type i individual is transformed into a �nite number jk
of individuals of type k, k = 1, . . . , s with probability νi(j), where j = (j1, . . . , js)

T ⊂ Ns0.
Denote the total number of type i individuals born at time n by Zn,i, and let Z̄n =
(Zn,1, . . . , Zn,d)

T. We refer to n as the generation of Z̄n.

Denote the standard basis of Rs by ē1, . . . , ēs. That is, ēi = (0, . . . , 0, 1, 0, . . . , 0)T with

the 1 in the ith component. We write Z̄
(i)
n = (Z

(i)
n,1, . . . , Z

(i)
n,d)

T to indicate that the

ancestor is of type i. That is to say, Z̄
(i)
0 = ēi. A Galton-Watson process can be

described as a Markov chain Z = {Z̄n; n ∈ N0} on the state-space Ns0. The transition
probability

P (Z̄n+1 = (j1, . . . , js)|Z̄n = (i1, . . . , is))

of the Markov chain is the probability that the aggregated o�spring vector of the i1 +
. . .+ is individuals of generation n is (j1, . . . , js).

We refer to the individuals of generation 0 as the ancestors of Z. In this project, we
typically consider a branching process with a single ancestor of a di�erent type than the
other individuals of the branching process. If this is the case, the type of the ancestor
is taken to be 0 and the type space is taken to be {0, 1 . . . , s}. Although the number of
types is s+ 1, we refer to such branching process as an s-type branching process.

Throughout this section, Z denotes a s-type Galton-Watson process. The following theo-
rems and de�nitions (Jagers 1975, Chapter 4) are central when analysing the asymptotic
behaviour of branching processes.

De�nition 2.2 (Mean matrix). The mean matrix M = (mi,j)
s
i,j=1 of Z is the matrix

with entries mi,j = E(Z
(i)
1,j).

12



In the remainder of this section, we denote the mean matrix of Z by M = (mi,j)
s
i,j=1.

Conditioning on the previous generation n−1 yields the following recursive expression for
the expected number of individuals of generation n for n ≥ 1 (Haccou et al. 2005)

E(Z̄T
n ) = E(Z̄T

n−1)M.

Thus

E(Z̄T
n ) = E(Z̄T

0 )Mn (2.5)

for n ∈ N. If the ancestor is of a di�erent type than the other individuals, the ex-
pected number of individuals of generation n is given by the slightly modi�ed version of
(2.5)

E(Z̄T
n ) = E(Z̄T

1 )Mn−1 (2.6)

for n ≥ 1, where E(Z̄T
1 ) is the expected number of o�spring produced by the ances-

tor.

De�nition 2.3 (Positive regularity). The mean matrixM is said to be positively regular
if all entries of M are �nite and non-negative and if there exists some positive integer n
such that all entries of Mn are strictly positive. If M is positively regular then Z is said
to be positively regular.

Theorem 2.1 (Perron-Frobenius theorem, cf. Jagers (1975) Therorem 4.2.1). Let M be
positively regular. Then M has a real-valued eigenvalue r > 0 such that for any other
eigenvalue λ of M it holds that |λ| < r, and there exists vectors ū, v̄ with strictly positive
coordinates such that

Mū = ū and v̄TM = v̄T.

If ū and v̄ are normalized, so that ū · 1̄ = v̄ · ū = 1, then

1

rk
Mk → ūv̄T

as k →∞.

De�nition 2.4 (Perron root). Let M and r be as in Theorem 2.1. The eigenvalue r is
then called the Perron root of M .

If the Perron root r of the mean matrix of Z is strictly less than 1 then Z is said to be
subcritical, if r equals 1 then Z is said to be critical and if r is strictly larger than 1 then
Z is said to be supercritical.

For two s-dimensional vectors ā = (a1, . . . , as)
T and b̄ = (b1, . . . , bs)

T, we de�ne

ā b̄ := ab11 · . . . · abss .

Let f : [0, 1]s → Rs be the probability generating function of the o�spring distribution
of the s types. That is, for z̄ =∈ [0, 1]s, the ith component of the vector-valued function
f evaluated at z̄ is given by

(f(z̄))i = E
(
z̄ ξ̄i
)

13



where ξ̄i = (ξi,1, . . . , ξi,s) is distributed as the o�spring of a type i individual, i =
1, 2, . . . , s.

The probability that a process started by a type i individual, i = 1, . . . , s, goes extinct
is given by qi, where q̄ = (q1, q2, . . . , qs)

T is a solution of (Bellman and Kalaba 1967,
Theorem 7.1)

q̄ = f(q̄).

De�nition 2.5 (Singular branching process). If the probability generating function f of
the o�spring distribution of Z is given by f(z̄) = Mz̄ then Z is said to be singular.

That is, Z is singular if almost surely each individual of Z gives birth to precisely one
individual over the course of its life time (Athreya and Ney 1972, page 183).

Theorem 2.2 (Extinction probability). Let qi be the probability of extinction of Z,
conditioned on Z̄0 = ēi. If Z is positively regular and non-singular then q̄ = (q1, . . . , qd)

T

is the unique solution of

f(q̄) = q̄

that lies closest to the origin in the unit cube, where f is the probability generating
function of the o�spring distribution of Z. Moreover, if Z is critical or subcritical then
q̄ = 1̄. If Z is supercritical then qi < 1, i = 1, . . . , d.

One can show that if Z is non-singular and positively regular then the extinction prob-
ability vector q̄ and 1̄ are the only �xed points of f in the unit cube [0, 1]s (Athreya and
Ney 1972, page 186).

For n ∈ N0, let fn : [0, 1]s → Rs be the probability generating function of generation n
in a branching process descending from a type 1, . . . , s individual. That is, for ā ∈ [0, 1]s

the ith component, i = 1, . . . , s, of the vector-valued function fn evaluated at ā is given
by

(fn(ā))i = E
(
ā Z̄

(i)
n

)
. (2.7)

Note that f0(z̄) = z̄ and f1(z̄) = f(z̄) for all z̄ ∈ [0, 1]s. By conditioning on the individuals

Z̄
(i)
n−1, i = 1, . . . , s, of the preceding generation n − 1 we obtain the following recursive

expression for fn

fn(z̄) = f(fn−1(z̄)) (2.8)

for n ∈ N. This implies

fn = f◦n (2.9)

where f◦n is the composition of f with itself n times, and f◦0 is the identity operator.

The event {Z̄(i)
n = 0} that a branching process descending from an individual of type i

has gone extinct in generation n is monotonically increasing in n and it is readily checked
that

P (Z̄(i)
n = 0̄) = (fn(0̄))i
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for i = 1, . . . , s. Since the sample space has measure 1 < ∞ it follows that (Friedman
1982, Theorem 1.2.1)

qi = P
(
∪n{Z̄(i)

n = 0̄}
)

= lim
n→∞

P
(
{Z̄(i)

n = 0̄
)

= lim
n→∞

(fn(0̄))i

= lim
n→∞

f◦n(0̄)i.

(2.10)

Thus, the extinction probabilities (q1, . . . , qs) can be approximated by repeated applica-
tion of f until convergence.

In our analysis, the o�spring distribution of the ancestor of Z typically di�ers from
the o�spring distribution of the s types, since we assume that the initial case is chosen
uniformly at random (see section 3.1). Let f∗ : [0, 1]s → R be the probability generat-
ing function of the o�spring distribution of the ancestor. If ξ̄∗ = (ξ∗,1, ξ∗,2, . . . , ξ∗,s) is
distributed as the o�spring of the ancestor, then f∗ is given by

f∗(z̄) = E
(
z̄ ξ̄∗
)
.

Since Z becomes extinct if and only if each of the processes started by the children of
the ancestor dies out, the probability of extinction is given by

f∗(q̄).

As the following theorem asserts, the asymptotic growth rate of a supercritical branching
process Z is given by the Perron root of the corresponding mean matrix M if and only
if the following inequality is satis�ed

E(Z
(i)
1,k logZ

(i)
1,k) <∞ (2.11)

for i, k = 1, . . . , s.

Theorem 2.3 (cf. Jagers (1975) Therorem 4.2.6 ). Let Z(i), 1 ≤ i ≤ s, be a supercritical
positively regular process. If Z satis�es (2.11) for i, k = 1, . . . , s then for each i there is
a random variable Wi, E(Wi) = ui, such that

Z̄
(i)
n

rn
a.s.→ Wiv̄ as n→∞,

where r is the Perron root of M and ū and v̄ are the eigenvectors corresponding to r.

Moreover, {Wi = 0} P= {Z̄(i) → 0}.

If Z does not satisfy (2.11) then

Z̄
(i)
n

rn
a.s.→ 0̄ as n→∞,

Corollary 2.3.1 (cf. Jagers (1975) Corollary 4.2.7 ). Under the conditions of Theorem
2.3 it holds for i, k = 1, . . . , k that

Z
(i)
n,k

Z
(i)
n,1 + . . .+ Z

(i)
n,s

a.s.→ vk
v1 + . . .+ vs

as n→∞
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on {Z(i) 6→ 0}.

Now assume that the ancestor of Z is of type 0 with o�spring ξ̄∗ = (ξ∗1 , . . . , ξ
∗
s )T. From

Theorem 2.3 we deduce that if Z(i) is supercritical and positively regular for i = 1, . . . , s,
then

Z̄n
rn

a.s.→ Wv̄ as n→∞, (2.12)

whereW is distributed as the sum of ξ∗1 independent copies ofW1, ξ
∗
2 independent copies

of W2..., and ξ
∗
s independent copies of Ws.
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3 Branching process approximation

This section serves as an informal description of how branching processes can be used
to approximate the spread of the disease in the early phase of the epidemic. This ap-
proximation enables us to obtain expressions for the probability that a major outbreak
occurs. By reversing the direction of the edges in the directed graph representation of the
epidemic, a similar technique can be used to obtain expressions for the expected �nal size
of a major outbreak. Proofs of these results are available in Appendix D. This section
draws heavily on Ball et al. (2009, 2014).

3.1 The early phase of the epidemic

As described in section 2.5, the graph GN may be constructed by joining the half-edges
in a random order. In particular, the graph GN may be constructed (or explored) as the
epidemic progresses. Starting with the initial infected case u∗, we sequentially join half-
edges. An infected individual u is said to belong to generation n if the chain of infection
from the initial case v∗ to u consists of n edges. That is, the initial case v∗, which belongs
to generation 0, transmits the disease to the individuals of generation 1. The individuals
of generation 1 then transmit the disease to the individuals of generation 2 etc. The graph
GN is explored generation-wise. That is, each of the half-edges attached to an explored
node of generation n is paired with some unpaired, or free, half-edge/half-edge pair chosen
uniformly at random before the half-edges attached to nodes of subsequent generations
are paired. For a epidemic in discrete time with unit infectious period, the individuals of
generation n are the members of I(n). That is, the individuals of generation n are those
who are infectious in the time step n.

If only a small part of the graph GN is explored, short loops (except for the triangles
formed by triangle edges) and multiple edges are unlikely to occur. This is illustrated
in Figure 3.1. If the spread of the disease on a treelike graph such as the graph showed
in Figure 3.1 can be described by a suitably chosen branching process, then we may use
this branching process to approximate the spread of the disease in the early stages of the
epidemic.

v∗

v1

v2 v3

Figure 3.1: The local structure of GN around the initial case v∗ is treelike, except for
the triangles formed by triangle edges. We may therefore ignore paths from v∗ to v2 and
v3 that do not go through v1 in the early stage of the epidemic.

We denote the empirical degree distribution of GN by p(N). Since half-edges are chosen
uniformly at random, the probability to choose a speci�c node is proportional to the
number of free half-edges attached to the node in question. That is, if we pair a single
half-edge, the probability of choosing a speci�c node with kS unpaired single half-edges
is proportional to kS . For this reason, the degree distribution a node explored by joining
a single half-edge in the early phase of the epidemic is well approximated by the single
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size biased empirical degree distribution p
(N,s)
◦

p
(N,s)
◦ (k∆, kS) = kSp

(N)(k∆,kS)
E(S(N))

(3.1)

where (∆(N), S(N)) ∼ p(N).

Similarly, the degree distribution of the nodes explored by joining three triangle half-
edge pairs in the early phase of the epidemic is close to the triangle size biased empirical

degree distribution p
(N,∆)
◦

p
(N,∆)
◦ (k∆, kS) = k∆p

(N)(k∆,kS)
E(∆(N))

. (3.2)

The single size biased degree distribution p
(s)
◦ and the triangle size biased degree distri-

bution p
(∆)
◦ are de�ned analogously:

p
(s)
◦ (k∆, kS) = kSp(k∆,kS)

E(S) (3.3)

and

p
(∆)
◦ (k∆, kS) = k∆p(k∆,kS)

E(∆) . (3.4)

In the early stage of the epidemic, the degree distribution of the unexplored nodes is
close to the empirical distribution p(N), and if the population size N is large, the em-
pirical size biased degree distributions (3.1) and (3.2) are close to the size biased degree
distributions (3.3) and (3.4). For this reason, we approximate the degree distributions of
nodes infected along single and triangle edges by the size biased distributions (3.3) and
(3.4), respectively.

To account for the fact that an infected individual has at least one non-susceptible
neighbour (namely the source of its infection) we introduce the downshifted size biased

degree distributions p
(N,s)
• , p

(N,∆)
• , p

(s)
• and p

(∆)
• . To �x ideas, assume that the �rst half-

edge to be paired is a single half-edge. The number of susceptible neighbours/triangle
pairs of susceptible neighbours of the �rst node, w1 say, explored by joining this �rst

single half-edge has (approximately) the distribution p
(N,s)
◦ (k∆, kS) shifted down by one

degree in kS , since the node that transmitted the disease to w1 is not susceptible. That
is, the distribution of the number of susceptible neighbours of w1 is approximately

∼ 2∆
(s)
◦ + (S

(s)
◦ − 1)

where (∆
(s)
◦ , S

(s)
◦ ) has the single size biased degree distribution p

(s)
◦ , provided that the

population size N is large.

Similarly, the number of susceptible single neighbours/triangle pairs of susceptible neigh-
bours of the �rst nodes explored by joining the �rst triangle half-edge pair has distribution

p
(N,∆)
◦ (k∆, kS) shifted down by one degree in k∆.

The downshifted size biased degree distributions p
(N,s)
• , p

(N,∆)
• , p

(s)
• and p

(∆)
• are given

by

p
(N,s)
• (k∆, kS) = p

(N,s)
◦ (k∆, kS + 1)

p
(N,∆)
• (k∆, kS) = p

(N,∆)
◦ (k∆ + 1, kS)

p
(s)
• (k∆, kS) = p

(s)
◦ (k∆, kS + 1)

p
(∆)
• (k∆, kS) = p

(∆)
◦ (k∆ + 1, kS).

(3.5)
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Throughout, we will make frequent reference to the following random vectors

(∆, S) ∼ p

(∆
(s)
◦ , S

(s)
◦ ) ∼ p(s)

◦

(∆
(∆)
◦ , S

(∆)
◦ ) ∼ p(∆)

◦

(∆
(s)
• , S

(s)
• ) ∼ p(s)

•

(∆
(∆)
• , S

(∆)
• ) ∼ p(∆)

•

(∆(N), S(N)) ∼ p(N)

(∆
(N,s)
◦ , S

(N,s)
◦ ) ∼ p(N,s)

◦

(∆
(N,∆)
◦ , S

(N,∆)
◦ ) ∼ p(N,∆)

◦

(∆
(N,s)
• , S

(N,s)
• ) ∼ p(N,s)

•

(∆
(N,∆)
• , S

(N,∆)
• ) ∼ p(N,∆)

•

(3.6)

and their expected values

E(∆
(s)
• ) =

E(S∆)

E(S)

E(∆
(∆)
• ) =

E(∆2)

E(∆)
− 1

E(S
(s)
• ) =

E(S2)

E(S)
− 1

E(S
(∆)
• ) =

E(S∆)

E(∆)
.

(3.7)

We approximate the distribution of the number of susceptible neighbours of a node

infected along a triangle edge by p
(N,∆)
• . Similarly, the distribution of the number of

susceptible neighbours of a node infected along a single is approximated by p
(N,s)
• As

the population size N →∞, the empirical downshifted size biased distributions converge
almost surely to the corresponding downshifted size biased distributions by the Strong
Law of Large Numbers (Theorem D.1) and assumption A1.

As half-edges are paired, the set of free half-edges changes. For this reason, the accu-
racy of the branching process approximation described above decreases as the epidemic
propagates. By a birthday problem (see for instance Mosteller (1962)) type of argument,
one can show that in the limit as the population size N →∞, the coupling breaks down
when the epidemic reaches a size of order

√
N .

3.2 Susceptibility sets and backward processes

In section 2.3 we described the graph representation of an epidemic; an individual con-
tracts the disease if and only if there is a path of �nite length from the initial case to the
node representing the individual in question. In the present section, we describe how a
branching process approximation of the behaviours of the susceptibility sets of the nodes
can be used to approximate the expected �nal size of the epidemic, provided that it does
not go extinct at an early stage, see for instance Ball et al. (2009, 2010, 2014) and Miller
(2007).

De�nition 3.1 (Susceptibility sets). Let v be some node of the graph GN . The suscep-
tibility set S(v) of v is the set of nodes v∗ of GN such that

d(v∗, v) <∞.

Figure (3.2) shows a schematic illustration of a susceptibility set. We sometimes write
SN (v) to make the population size N explicit.

Let v be some node of GN chosen uniformly at random. The individual represented by
v contracts the disease if and only if the initial case v∗ belongs to S(v). In terms of
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v1

v2

v3

v4 v5 v6

v7
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v9

Figure 3.2: Graph representation of an epidemic in a small (N = 9) population. As in
Figure 2.2, the grey dashed edges have in�nite transmission weight. The nodes in the
susceptibility set S(v5) = {v1.v2, v3, v5, v7} of v5 are enclosed by the blue dotted line.
The nodes that v5 would infect if infected, directly or through other nodes, are enclosed
by the orange dashed line. The transmission weights are omitted for ease of presentation.

the graph representation of the epidemic, S(v) consists of precisely the nodes that can
be reached from v by tracing a path of �nite length backwards. If the initial case v∗
is chosen uniformly at random, then the probability that v is ultimately infected is the
expected fraction of the nodes of GN that are members of S(v),

E

(
|SN (v)|
N

)
. (3.8)

By exchangeability of the nodes, the expected value in (3.8) is also the expected propor-
tion of the population ultimately infected.

By reversing the direction of the edges of the graph representation described in section
2.3, but keeping the weights, the expected �nal fraction of the population infected in a
major outbreak and the probability of a major outbreak are interchanged (Miller 2008),
provided that the initial case is chosen uniformly at random. The process so obtained is
called the backward epidemic process of the node v. If the underlying epidemic model is
such that the backward epidemic process can be described as a branching process, then
we can use the techniques described in section 3.1 to compute the asymptotic distribution

of the proportion |SN (∞)|
N of the population that ultimately escapes infection. This is

made precise in the following theorem, due to Ball et al. (2014, Theorem 3.5), who proved
the theorem for the related case of random intersection graphs.

Theorem 3.1. Let q and qb be the extinction probabilities of the forward and backward
approximating branching processes, respectively, and let

|SN (∞)|
N

be the proportion of the population that ultimately escapes an epidemic in a population
of size N . Then

|SN (∞)|
N

d→ E

as N →∞ where P (E = 1) = 1− P (E = qb) = q.

In other words, in the limit of large population sizes, the epidemic "takes o�" with
probability 1 − q, and if this happens a fraction 1 − qb of the population is ultimately
infected.
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3.3 Geometric growth rate

We now turn our attention back to the de�nition of the basic reproduction number as
the geometric growth rate. Let the graph sequence G and degree sequences d̄ and d̄N be
as in section 2.5.2. That is, the graph GN is generated by the con�guration model with
clustering based on the degree sequence d̄N = {(Si,∆i)}Ni=1, where d̄N consists of the
�rst N elements of the in�nite degree sequence d̄ = {(Si,∆i)}N∈N, and d̄ is a sequence
of independent copies of (S,∆).

By the Strong Law of Large Numbers (Theorem D.1), for almost every realization of the
degree sequence d̄ the following regularity conditions are satis�ed (cf. van der Hofstad
(2016, Condition 7.8 a-c))

C1) p
(N)
◦ → p◦ as N →∞

C2)
∑N

i=1 S

N → E(S) and
∑N

i=1 ∆i

N → E(∆) as N →∞

C3)
∑N

i=1 S
2
i

N → E(S2),
∑N

i=1 ∆2
i

N → E(∆2) and
∑N

i=1 S∆i

N → E(S∆) as N →∞

We consider epidemics on the graphs of G. By the regularity conditions C1-C3 and
the Perron-Frobenius Theorem, the limiting geometric growth rate as the population
size N → ∞ is given by the Perron root of the mean matrix M of the approximating
branching process Z. Thus, the geometric growth rate has the threshold properties of R0

for the limiting approximating branching process in the limit as N →∞. It follows from
the proof presented in Appendix D that the geometric growth rate has the threshold
properties of R0 for the epidemic process in the limit as N →∞.

Recall that, for simpler models, the basic reproduction number is loosely de�ned as the
expected number of infected cases caused by a "typical" infected individual in an other-
wise susceptible population. By Corollary 2.3.1, the type composition of the branching
process population converges to a stable, asymptotic composition as the generation n
approaches in�nity, provided that the branching process avoids extinction. That is, the
asymptotic population is a combination of the types of the branching process, in pro-
portions given by the left eigenvector v̄ corresponding to the Perron root of the mean
matrixM . By letting the population size N and the generation n of the epidemic process
approach in�nity in an appropriate manner, the type composition of the nth generation
of the epidemic process converge in distribution to the type composition of the nth gen-
eration of the approximating branching process (see Appendix D for further details).
Thus, the "typical case" of the epidemic can be interpreted as a weighted combination
of the types of the approximating branching process, where the weights are proportional
to the elements of the left eigenvector v̄, and the Perron root has the interpretation of
the average number of o�spring produced by a typical individual.
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4 An SIR epidemic in discrete time

We now have the tools to derive expressions for the probability of extinction and the
expected �nal size of a major outbreak. Miller (2009) analysed an SIR epidemic on a
con�guration model graph with clustering under the assumption of homogeneous infec-
tivity. In the present section, we extend the results presented by Miller (2009) by relaxing
this assumption. A straightforward interpretation of the results presented in the present
section is an SIR epidemic in continuous time with general infectious periods, see section
4.1 for further details.

We consider an SIR epidemic in discrete time (that is T = {0, 1, 2, . . .}) on the clustered
graph GN . We assume heterogeneity in infectivity. That is, some infected individuals
are more contagious than others. To this end, let T be a random variable with support
in [0, 1], and let {Ti}Ni=1 be independent random variables distributed as T . To each
node vi of GN , we assign the transmission weight Ti of vi. If vi gets infected, then
each susceptible neighbour of vi gets infected independently in the next time step with
probability Ti (conditioned on {Ti}i). The node vi thereafter becomes immune, playing
no further role in the epidemic.

In other words, the marginal probability of transmission along an edge is E(T ), provided
that the tail contracts the disease. An infected node transmits the disease independently
of the transmissions from other infected nodes. An infected node does not, however,
transmit the disease to its neighbours independently, unless the distribution of T is
degenerate. Conditioned on the transmission weights {Ti}i and the structure of GN , the
number of neighbours that an infected node vi makes contact with while infectious has a
binomial distribution with parameters di and Ti, where di is the number of edges with tail
vi. We assume that susceptible individuals are fully susceptible, so that each contact with
a susceptible individual made by an infectious individual results in transmission.

The spread of this epidemic can be fully captured by a directed graph (see section 2.3). To
construct such directed graph from the undirected con�guration model graph described
in section 2.5, we replace each undirected edge of GN by two parallel directed edges,
pointing in the opposite direction. The weight of an edge (vi, vj) is taken to be 1 if vi
would make infectious contact with vj if infected, and∞ otherwise. That is, conditioned
on Ti, the edge weights {dij}j are independent and have a two-point distribution.

If the population size N is large, the graph GN is locally treelike, except for triangles
formed by triangle edges. Therefore, for large N , short cycles (except for the triangles)
are negligible in the early phase of the epidemic. For a given triangle u, v, w, where u is the
�rst individual to be infected in the triangle u, v, w, we refer to v and w as brothers. The
spread of the disease in the early phase may be approximated by a multi-type branching
process consisting of the following three types (except for the initial case):

Type I: A node infected along a triangle edge that does not have susceptible brother
at the time point of infection

Type II: A node infected along a triangle edge that has a susceptible brother at the
time point of infection

Type III: A node infected along a single edge

Figure 4.1 shows three examples of possible paths of transmission within a triangle giving
rise to type I and II individuals in the approximating branching process.

Nodes represented by individuals of type I or II have the triangle size biased degree

distribution p
(∆)
◦ de�ned in (3.4). Similarly, a node represented by a type III individual

has the single size biased degree distribution p
(s)
◦ de�ned in (3.3) We assume that the

initial case is chosen uniformly at random. The node representing the initial case then
has degree distribution p. That is, the ancestor of the approximating branching process,
which represents the initial case, is of a di�erent type than the other individuals.
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v2

v1

v3 v2

v1

v3 v2

v1

v3

Figure 4.1: Three examples of possible paths of transmission in a triangle v1, v2, v3,
where v1 is the �rst node to be infected. Left: v1 infects both v2 and v3. Both v2 and v3

are represented by type I individuals in the approximating branching process. Center:
v1 infects v2 and v2 infects v3. Then v3 and v2 are represented by type I and type
II individuals, respectively. Right: v1 infects v2. Then v2 is represented by a type II
individual.

Denote by

Mf = (mij)
3
i,j=1

the mean matrix of the above described branching process. Suppose that v1 is the �rst
individual to be infected in the triangle v1, v2, v3. The probability that v1 transmits the
disease both to v2 and v3 is

E(T 2).

Similarly, the probability that v1 transmits the disease to either v2 or v3, but not to both,
is

2E(T (1− T )).

By linearity of expectation

Mf =



2E(T 2)E(∆
(∆)
• ) 2E(T (1− T ))E(∆

(∆)
• ) E(T )E(S

(∆)
• )

2E(T 2)E(∆
(∆)
• ) + E(T ) 2E(T (1− T ))E(∆

(∆)
• ) E(T )E(S

(∆)
• )

2E(T 2)E(∆
(S)
• ) 2E(T (1− T ))E(∆

(S)
• ) E(T )E(S

(S)
• )


(4.1)

since the distribution of the susceptible neighbours of infected nodes in the early phase
of the epidemic is given by the downshifted degree distributions in (3.5). Recall that

the random variables ∆
(∆)
• , ∆

(s)
• , S•(∆) and S•(s) de�ned in (3.6) have the downshifted

size biased distributions. We note that all entries of Mf are �nite and by assumption
A1 that S and ∆ both have �nite second moments. This follows from the inequality
2|ab| ≤ a2 + b2, a, b ∈ R.

With a little e�ort, one can use the expected values provided in (3.7) to show that
necessary and su�cient conditions for Mf to be positively regular are that assumption
A3 holds and that 0 < E(T ) < 1. If some of these conditions are not satis�ed, we may
analyse the spread of the disease by reducing the number of types of the approximating
branching process to one or two.

We refrain from giving an explicit expression for the Perron root of Mf , since we do not
expect it to provide further insight.
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4.1 The rank based geometric growth rate

A straightforward interpretation of the above discussed results is an epidemic in contin-
uous time with random infectious periods. Miller (2009) calculated a basic reproduction
number by attributing all cases in a given triangle to the primary case in that triangle,
regardless of the true paths of transmission. This means that, in the example of Figure
4.2, v2 and v3 are attributed to v1, and w2 and w3 are attributed to w1, despite the fact
that v1 and w1 do not transmit the disease to v3 and w3, respectively. In this project,
we calculate the rank based geometric growth rate (de�ned below).

v2

v1

v3

42

1 w2

w1

w3

∞2

1

Figure 4.2: The di�erence between rank based generations, true generations and the
method used by Miller (2009). Left: The length 4 of the path v1 → v3 exceeds the length 3
of the path v1 → v2 → v3. Therefore, the true path of transmission is v1 → v2 → v3. In the
rank based approach, however, v3 is attributed to v1. In the method proposed by Miller
v2 and v3 are attributed to v1. Right: The true path of transmission is w1 → w2 → w3.
In this case, the rank based generations and the true generations coincide. In the method
used by Miller w2 and w3 are attributed to w1.

Suppose that the infectious period is distributed as the random variable τ , τ ∼ F ,
and independent for di�erent nodes. Suppose further that a node makes contact with
each neighbour independently at a Poisson rate β while infected, and that susceptible
individuals are fully susceptible, so that each infectious-susceptible contact results in
transmission. Without loss of generality we assume β = 1, since we may rescale time
(and F accordingly). The transmission weight T is then distributed as 1− e−τ .

Denote the initial case by v∗. The rank of a node v in GN is the distance from v∗ to v,
if every edge along which the disease would be transmitted is assigned the edge weight
1, and every other edge is assigned the edge weight ∞. That is, the rank of v is the
smallest number of directed edges that have to be traversed in order to follow a path of
(potential) transmission from v∗ to v. We may then calculate the rank based geometric
growth rate, by letting generation n of the epidemic process consist of the individuals of
rank n. If, for instance, v1 is the �rst node in a triangle consisting of the nodes v1, v2, v3

to be infected, and v1 infects v2 and thereafter attempts to infect v3, then v3 is attributed
to v1 regardless of whether v1 or v2 infected v3. This is illustrated in Figure 4.2.

Let L(z) =
∫
R+
e−zxdF (x) be the Laplace transform of the infectious period τ . Then

E(T ) = 1−L(1) and E(T (1−T )) = L(1)−L(2). The rank based geometric growth rate
is obtained by substituting these identities into the mean matrix Mf in (4.1).

4.2 Probability of a major outbreak

Let f : [0, 1]3 → R3 be the probability generating function of the o�spring distribution
of the three types. That is, for z̄ = (z1, z2, z3)T ∈ [0, 1]3

f(z̄)T = (E(z
ξ1,1
1 z

ξ1,2
2 z

ξ1,3
3 ), E(z

ξ2,1
1 z

ξ2,2
2 z

ξ2,3
3 ), E(z

ξ3,1
1 z

ξ3,2
2 z

ξ3,3
3 )) (4.2)

where (ξi,1, ξi,2, ξi,3) is distributed as the o�spring of a type i individual, i = 1, 2, 3.
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Similarly, let f∗ : [0, 1]3 → R be the probability generating function of the o�spring
distribution of the initial case. If (ξ∗,1, ξ∗,2, ξ∗,3) is distributed as the o�spring of the
initial case, then f∗ is given by

f∗(z̄)T = E(z
ξ∗,1
1 z

ξ∗,2
2 z

ξ∗,3
3 ).

For i = 1, 2, 3, let (S(i),∆(i)) be distributed as the joint degree of a type i case with
o�spring (ξi,1, ξi,2, ξi,3). That is,

(S(1),∆(1))
d
= (S(2),∆(2))

d
= (S

(∆)
◦ ,∆

(∆)
◦ )

and

(S(3),∆(3))
d
= (S

(s)
◦ ,∆

(s)
◦ ).

By conditional independence we have

E(z
ξi,1
1 z

ξi,2
2 z

ξi,3
3 ) = E(E(z

ξi,3
3 |T, S(i),∆(i))E(z

ξi,1
1 z

ξi,2
2 |T, S(i),∆(i))).

Conditioned on the transmission weight T and the single degree S(1), ξ1,3 has a binomial
distribution with parameters S(1) and T . Thus

E(z
ξ1,3
3 |T, S(1),∆(1)) =

∑
k0+k1=S(1)

(
S(1)

k1

)
(Tz3)k1(1− T )k0

=(Tz3 + 1− T )S
(1)

.

Similarly

E(z
ξ1,1
1 z

ξ1,2
2 |T, S(1),∆(1)) =

∑
k0+k1+k2=∆(1)−1

(
∆(1) − 1

k0, k1, k2

)
(1− T )2k0(2(1− T )Tz1)k1(Tz2)2k2

= ((1− T )2 + 2T (1− T )z1 + T 2z2
2)∆(1)−1.

Thus

E(z
ξ1,1
1 z

ξ1,2
2 z

ξ1,3
3 )

= E((Tz3 + 1− T )S
(∆)
• ((1− T )2 + 2T (1− T )z1 + T 2z2

2)∆
(∆)
• )

(4.3)

where (∆
(∆)
• , S

(∆)
• ) is independent of T .

Since the conditional o�spring distribution of a type II individual is identical to the
o�spring distribution of a type I individual except that a type II individual may give
birth to one additional type I individual with probability T , we have

E(z
ξ2,1
1 z

ξ2,2
2 z

ξ2,3
3 )

= E((Tz3 + 1− T )S
(∆)
• ((1− T )2 + 2T (1− T )z1 + T 2z2

2)∆
(∆)
• (Tz1 + 1− T )).

(4.4)
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Similarly

E(z
ξ3,1
1 z

ξ3,2
2 z

ξ3,3
3 ) = E((Tz3 + 1− T )S

(s)
• ((1− T )2 + 2T (1− T )z1 + T 2z2

2)∆
(s)
• ).

(4.5)

Substituting (4.3)-(4.5) into (4.2) gives an expression for f .

By Theorem 2.2, the extinction probability of a process descending from a type i indi-
vidual, i = 1, 2, 3, is given by qi, where q̄ = (q1, q2, q3)T is a solution of

q̄ = f(q̄).

As we saw in section 2.6, the extinction probabilities q̄ = (q1, q2, q3)T are given by

q̄ = lim
n→∞

f◦n(0̄). (4.6)

Since the approximating branching process dies out if and only if each of the processes
started by the children of the initial case dies out, the probability of extinction is given
by

f∗(q̄).

After some calculations, similar to the calculations that led to (4.3)-(4.5), we �nd that
the probability of extinction is given by

f∗(q̄) = E
(
(Tq3 + 1− T )S((1− T )2 + 2T (1− T )q1 + T 2q2

2)∆
)

where (S,∆) is independent of T .

We conclude that the probability of a major outbreak is given by

1− f∗(q̄),

where q̄ is the limit in (4.6).

4.3 The backward process

We now turn our attention to backward processes. Let w be a given node of GN , chosen
uniformly at random. We use the results presented in section 3.2 to approximate the
probability that a w contracts the disease, which by an exchangeability argument equals
the expected �nal size of a major outbreak. To this end, we classify each member v of
the susceptibility set of the node w by the type of the �rst edge in the shortest (in terms
of the rank based-distance) path from v to w. In the limit as the population size goes to
in�nity, the possibility that more than one path will attain the distance from v to w is
negligible for short distances. The members of the susceptibility set are divided into the
following two groups.

Type I: Included in the susceptibility set by virtue of potential transmission along
a single edge

Type II: Included in the susceptibility set by virtue of potential transmission along
a triangle edge
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The o�spring of an individual v in the backward process are the individuals that would
have infected v, if infected. In the limit as N →∞, the degree of a node represented by

a type I individual has the single size biased degree distribution p
(s)
◦ , and the degree of a

node represented by a type II individual has the triangle size biased degree distribution

p
(∆)
◦ .

We assign kinship as follows. The children of type I of an individual v are the individuals
included in the susceptibility set due to potential transmission along a single edge. The
children of type II of v are the individuals included in the susceptibility set due to
potential transmission of the disease to v, within a triangle of which v is a member. We
note that, given a triangle v, v1, v2, both v1 and v2 will be members of the susceptibility
set of v by virtue of transmissions within the triangle if and only if at least one of the
following events happens:

E1) v1 and v2 both infects v

E2) v1 infects v and v2 infects v1

E3) v2 infects v and v1 infects v2

The events E1-E3 are illustrated in Figure (4.3).

v1

v

v2 v1

v

v2 v1

v

v2

Figure 4.3: The individuals v1 and v2 are both in the susceptibility set S(v) of v by
virtue of transmission within the triangle v, v1, v2 if and only if at least one of the events
E1 (left), E2 (center) or E3 (right) happens.

Standard calculations gives that the probability of the union of the events E1-E3 is given
by p2 = 3E(T )2 − 2E(T )E(T 2). Similarly, the probability that neither v1 nor v2 will
be members of the susceptibility set of v by transmissions within the triangle is given
by p0 = (1 − E(T ))2. Let p1 = 1 − p0 − p2. The expected number of type II o�spring
produced by a type I individual is then given by

(2p2 + p1)E(∆
(S)
• ) = 2E(T )(1 + E(T )− E(T 2))E(∆

(S)
• )

and the expected number of type II o�spring produced by a type II individual is

2E(T )(1 + E(T )− E(T 2))E(∆
(∆)
• ).

The probability that a single edge has �nite edge weight is E(T ). Thus the expected
number of type I individuals produced by a type I individual is given by

E(T )E(S
(S)
• ).

Similarly, the expected number of type I individuals produced by a type II individual is
given by

E(T )E(S
(∆)
• ).

Combining these results yields the mean matrix
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Mb = E(T )


E(S

(S)
• ) 2(1 + E(T )− E(T 2))E(∆

(∆)
• )

E(S
(∆)
• ) 2(1 + E(T )− E(T 2))E(∆

(∆)
• )

 .

If E(T ) > 0 and assumption A3 holds then Mb is positively regular. We refrain from
giving the explicit expression for the Perron root of Mb.

4.4 Expected �nal size of a major outbreak

Let b be the probability generating function of the o�spring distribution of the two types
of the approximating backward branching process. That is

b(z̄) = (b1(z1, z2), b2(z1, z2)) = (E(z
ξb1,1
1 z

ξb1,2
2 ), E(z

ξb2,1
1 z

ξb2,2
2 ))

where (ξbi,1, ξ
b
i,2) is distributed as the o�spring of a type i, i = 1, 2, individual. Let further

b∗ be the probability generating function of the o�spring distribution of the initial case
w, i. e.

b∗(z̄) = E(z
ξb∗,1
1 z

ξb∗,2
2 )

where (ξb∗,1, ξ
b
∗,2) is distributed as the o�spring of the ancestor.

Analogously to the forward process, the probability that the bloodline started by a type
i, i = 1, 2, individual will become extinct is given by qbi , where q̄b = (qb1, q

b
2)T is the

solution of

q̄b = b(q̄b)

that satis�es

q̄b = lim
n→∞

b◦n(0̄). (4.7)

The probability of extinction is then given by

b∗(q̄b).

Similar calculations as in Section 4.2 yields

(b(z1, z2))1 = E((E(T )z1 + 1− E(T ))S
(s)
• (p0 + p1z2 + p2z

2
2)∆

(s)
• )

where p1, p2 and p3 are as in section 4.3. Similarly

(b(z1, z2))2 = E((E(T )z1 + 1− E(T ))S
(∆)
• (p0 + p1z2 + p2z

2
2)∆

(∆)
• )

The probability of ultimate extinction of the backward process is given by

b∗(q̄b) = E((E(T )qb1 + 1− E(T ))S(p0 + p1q
b
2 + p2(qb2)2)∆).

We conclude that the expected �nal size of a major outbreak is given by

1− b∗(q̄b).
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5 An SIR model with general infectious periods

In section 4.1, we provided expressions for the rank based geometric growth rate. In the
case with general infectious periods where infected individuals makes contact at Poisson
rate 1, the expected number of cases infected in the true generation n can be computed
by classifying the infected individuals according to the following three types.

Type I: A node infected along a triangle edge whose brother is not susceptible at
the time point of infection

Type II: A node infected along a triangle edge whose brother is susceptible at the
time point of infection

Type III: A node infected along a single edge

As before, let the infectious periods of the individuals of the process have distribution F ,
and assume that an individual make contact with each of its neighbours at rate β = 1.

Let the random variable tij be the time elapsed between the time point t
(vi)
I at which

the node vi contracts the disease and the �rst time point after t
(vi)
I at which vi makes

contact with vj . Then {tij}i,j is an sequence of independent exponentially distributed
random variables with expected value 1. Let further the infectious periods {τi}Ni=1 be a
sequence of independent and identically distributed random variables with distribution
F , independent of the tij .

The approximating process with the above described types does not constitute a branch-
ing process in general, with the exception of �xed infectious periods. Indeed, assume that
the infectious period has strictly positive variance, and that v1 is the �rst to be infected
in the triangle v1, v2, v3, and that v1 makes (infectious) contact with v2 before making
contact with v3. The o�spring distribution of v2 depends on the infectious period of v1,
since v1 and v2 compete to transmit the disease to v3. That is, the o�spring distribution
of v2 depends on the number of children of v2.

As described in section 3.1 (Figure 3.1), in the limit as the population size N →∞, we
may use a branching process (with transmission weight T = 1 almost surely) to approx-
imate the local structure of the graph GN . The graph so obtained is locally treelike,
except for the triangles formed by triangle edges. For this reason, we approximate the
number of susceptible neighbours of a case by the downshifted triangle (types I and II)
or single (type III) size biased degree distribution, depending on the type of the edge
along which the disease was transmitted to the case in question.

Suppose that the node v1 is the �rst node in the triangle v1, v2, v3 to be infected. In the
early stage of the epidemic, we may ignore the possibility of transmission of the disease
to v2 or v3 from nodes that are not members of the triangle v1, v2, v3. The length of the
path v1 → v3 is given by

L(v1 → v3) =∞ · 1(t1,3 > τ1) + t1,3

and the length of the path v1 → v2 → v3 is given by

L(v1 → v2 → v3) =∞ · 1(t1,2 > τ1) +∞ · 1(t2,3 > τ2) + t1,2 + t2,3.

Let Dτ ′ be the cumulative distribution function of the transmission time L(w1 → w2)
from a node w1 to its neighbour w2, conditioned on the infectious period τ ′ of w1. That
is, for 0 ≤ x <∞,

Dτ ′(x) = 1− e−min(x,τ ′),

and let
dτ
′
(x) = 1(0 ≤ x ≤ τ ′)e−x

be the (improper) density of Dτ ′(x).
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Now, conditioning on the infectious period τi of vi, i = 1, 2 and the length t of the path
v1 → v3 yields

ϑ :=P (L(v1 → v2 → v3) < L(v1 → v3) <∞)

=

∫∫
R2

+

(∫
[0,τ1]

(∫
[0,t)

dτ1 ∗ dτ2(s)ds

)
(dDτ1(t))

)
d(F × F )(τ1, τ2)

where ∗ denotes convolution. Standard but tedious calculations give

ϑ =

∫∫
R2

+

H(τ1, τ2)d(F × F )(τ1, τ2)

where

H(τ1, τ2) =


1

4
(eτ1 − 1) e−3τ1−2τ2

(
4eτ1+τ2 − 4eτ1+2τ2 + e2(τ1+τ2) − e2τ1 + 2e2τ2τ2

)
if τ1 > τ2 > 0

1

4
e−2τ2

(
2τ2 − 4eτ2 + e2τ2 + 3

)
if τ2 ≥ τ1 > 0.

The probability that v1 transmits the disease to both v2 and v3 (that is, that the paths
v1 → v2 and v1 → v3 are both of �nite length and that

max(L(v1 → v2), L(v1 → v3)) < min(L(v1 → v2 → v3), L(v1 → v3 → v2))

holds) is given by

P (L(v1 → v2) <∞, L(v1 → v3) <∞)− 2ϑ = (1− 2L(1) + L(2)− 2ϑ). (5.1)

Hence, the expected number of type I individuals infected by v1 in the triangle v1, v2,
v3 is given by the expression in (5.1).

Similarly, the probability that v2 transmits the disease to v3 if v2 is the �rst node in the
triangle to which v1 transmits the disease is given by

Υ : = P (L(v1 → v2 → v3) < L(v1 → v3)|L(v1 → v2) < L(v1 → v3))

=
P (L(v1 → v2 → v3) < L(v1 → v3))

P (L(v1 → v2) < L(v1 → v3))

=
ϑ+ P (L(v1 → v2 → v3) < L(v1 → v3) =∞)

P (L(v1 → v2) < L(v1 → v3))

=
ϑ+ E(e−τ1(1− e−τ1)(1− e−τ2))

1
2 (1− L(2))

= 2
ϑ+ (1− L(2))(L(1)− L(2))

(1− L(2))
.

(5.2)

Using similar notation and terminology as for branching processes, let the elements of
the vector V̄ T

n = (Vn,1, Vn,2, Vn,3) be the number of type I, II and III individuals of
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generation n. By linearity of expectation and the fact that the infectious period τu and
contact processes {C(u,v)}v of an infectious individual u are independent of the path of
transmission to the individual u, the expected number of type j individuals of generation
n is given by

3∑
i=1

E(Vn−1,i)m̃i,j , (5.3)

In view of (5.1) and (5.2)

m̃1,1 = (1− 2L(1) + L(2)− 2ϑ)E(∆
(∆)
• )

and

m̃2,1 = m̃1,1 + Υ.

Similarly, the expected number of type I individuals infected by a type III individual is
given by

m̃3,1 = (1− 2L(1) + L(2)− 2ϑ)E(∆
(s)
• )

Proceeding in this fashion yields the mean matrix M̃ = (m̃i,j)
3
i,j=1

M̃ =



A1E(∆
(∆)
• ) A2E(∆

(∆)
• ) A3E(S

(∆)
• )

A1E(∆
(∆)
• ) + Υ A2E(∆

(∆)
• ) A3E(S

(∆)
• )

A1E(∆
(S)
• ) A2E(∆

(S)
• ) A3E(S

(S)
• ).


(5.4)

where A1 = (1− 2L(1) + L(2)− 2ϑ), A2 = (1− L(2)) and A3 = (1− L(1)).

Analogously to the rank based case, by (5.3) the expected number of individuals of
generation n is given by

E(V̄ T
n ) = E(V̄1)TM̃n−1. (5.5)

The expected value in (5.5) is similar to the expression for the expected number of
individuals of generation n of a branching process given in (2.6). We stress that the
approximating process is not a branching process in general. The Perron root r of Mf

is strictly smaller than 1 if and only if he Perron root r̃ of M̃ is strictly smaller than 1,
where Mf is the mean matrix of the approximating branching process Z of Section 4.
This follows from

E

(
n∑
i=0

V̄ T
i 1̄

)
≤ E

(
n∑
i=0

Z̄T
i 1̄

)
≤ E

(
2n∑
i=0

V̄ T
i 1̄

)
(5.6)

and the fact that for a matrix M satisfying the Frobenius-Perron theorem 2.1 (note that
by assumption A3, M̃ is positively regular if the infectios periods are not concentrated
at 0)
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lim
n→∞

n∑
i=0

M i1̄ <∞

holds if and only if the corresponding Perron root is strictly less than 1. Note that
inequalities are to be interpreted element-wise. Similarly, by sending n to in�nity in
(5.6) we see that the Perron root r of Mf is equal to 1 if and only if he Perron root r̃ of

M̃ is is equal to 1. Thus, the threshold property of the Perron root of the mean matrix
is retained, even though the process is not a branching process in general.

5.1 Infectious periods with �nite support

If the infectious period has �nite support H, then the process may be analysed as a
multi-type branching process Z(H). We may, for instance, let the type space be given by
H × {1, 2, 3}. The �rst component of the type of an individual v is then given by the
infectious period τv of v. The second component of the type of v indicates which one of
the following three cases holds.

1. v is infected along a single edge

2. v is infected along a triangle edge, and v transmits the disease to its brother

3. v is infected along a triangle edge, and v does not transmits the disease to its
brother.

Denote the mean matrix of this branching process byMH, and the corresponding Perron
root by rH. We have that r̃ = rH, where r̃ is the Perron root of the mean matrix in
(5.4).

Indeed, this follows from the fact that the expected number of individuals of generation
n is

E(Z
(H)
1 )TMn−1

H 1̄ = E(V̄1)TM̃n−11̄,

hence
(r̃)n �n (rH)n.

We conclude that the Perron root rH of MH is given by r̃.
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6 Vaccination

We now turn our attention to vaccination. To incorporate immunity stemming from
vaccination, we extend the model investigated in section 4.

6.1 Random vaccination with a perfect vaccine

Assume that a fraction fv < 1 of the population is vaccinated, and that the vaccinated
individuals are chosen uniformly at random (without replacement) from the population.
The vaccine is perfect, in the sense that a vaccinated individual gains full and lasting
immunity to the disease. If the population size N is large, we may use a slightly di�erent
model, where each individual is vaccinated with probability fv, independently of the
vaccination status of other individuals. By the Strong Law of Large Numbers, for our
purposes the models are equivalent in the limit as the population size N →∞.

A before, we may approximate the early phase of the epidemic by a multi-type branch-
ing process. Assume that, in the early phase of the epidemic, v is the initial infected
in the triangle v, v1, v2. If v attempts to transmit the disease both to v1 and v2 and
succeeds (that is, none of v1 and v2 are vaccinated) then both v1 and v2 are repre-
sented by type I individuals in the approximating branching process. This happens with
probability

E(T 2)(1− fv)2. (6.1)

If v attempts to transmit the disease both to v1 and v2, but only succeeds to transmit the
disease to v2 (that is, v1 is vaccinated and v2 is not vaccinated) then in the approximating
branching process, the individual representing v gives birth to one type I individual
(representing v2) within the triangle v, v1, v2. This happens with probability

E(T 2)fv(1− fv). (6.2)

If v attempts to transmit the disease only to v1 and succeeds (that is, v1 is not vaccinated)
then in the approximating branching process, the individual representing v gives birth to
one type II individual (representing v1) within the triangle v, v1, v2. This happens with
probability

E(T (1− T ))(1− fv). (6.3)

The above described events are illustrated in Figure 6.1.

In summary, the individuals of the approximating branching process are of the following
three types.

Type I: Infected along triangle edge and has a brother that is guaranteed not to be
susceptible

Type II: Infected along triangle edge and has a brother that might be susceptible

Type III: Infected along single edge

Denote the mean matrix of the approximating branching process by M
(v)
f = (m

(v)
i,j )3

i,j=1.
Using the expressions in (6.1) and (6.2) gives the expected number of type I individuals
produced by a type I individual

m
(v)
1,1 = (2(1− fv)2E(T 2) + 2(1− fv)fvE(T 2))E(∆

(∆)
• )

= (1− fv)2E(T 2)E(∆
(∆)
• )

= (1− fv)m1,1
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v1

v

v2 v1

v

v2 v1

v

v2

Figure 6.1: Three examples of transmission dynamics within a triangle v, v1, v2. An
attempted transmission of the disease is represented by an arrow, an attempted trans-
mission to a vaccinated individual is represented by an arrow and a blue bar. Left: v
attempts to transmit the disease both to v1 and v2, and succeeds. Both v1 and v2 are
represented by type I individuals in the approximating branching process. Center: v
attempts to transmit the disease both to v1 and v2, the transmission to v1 is blocked
since v1 is vaccinated. Then v2 is represented by a type I individual. Right: v succeeds
to transmit the disease to v1, but does not attempt to infect v2. Then v1 is represented
by a type II individual.

where m1,1 is an element of he mean matrix Mf of the forward process presented in
section 4.

Similarly, the expected number of type II o�spring produced by a type I individual is
given by

m
(v)
1,2 = 2(1− fv)E(T (1− T ))E(∆

(∆)
• )

= (1− fv)m1,2.

Proceeding in the same fashion, we obtain the elements of the mean matrix M
(v)
f =

(m
(v)
i,j )3

i,j=1 of the branching process with random vaccination. It turns out that

M
(v)
f = (1− fv)Mf .

It is readily veri�ed that the Perron root of M
(v)
f is

r
(v)
f = (1− fv)rf , (6.4)

where rf is the Perron root of Mf . Setting r
(v)
f to 1 in (6.4) and solving for fv yields the

critical vaccination coverage

f (c)
v

= 1− 1

rf
.

The critical vaccination coverage f
(c)
v is de�ned as the fraction of the population necessary

to vaccinate in order to be guaranteed to prevent a major outbreak (Britton 2010).

That is, if a fraction f
(c)
v is vaccinated then the probability of a major outbreak is

zero. We conclude that, for this particular graph model, equality holds between the
basic reproduction number R0 and the prefect vaccine-associated reproduction number
RV .
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6.1.1 Probability of a major outbreak

Let h : [0, 1]3 → R3 be the probability generating function of the o�spring distribution
of the three types. As in section 4.2, we use the probability generating function to
approximate the probability of extinction of the epidemic. To this end, let (ζi,1, ζi,2, ζi,3)
be distributed as the o�spring of a type i individual with transmission weight T , i =
1, 2, 3, and let (S(i),∆(i)) be distributed as the joint degree of this individual. That
is,

(S(1),∆(1))
d
= (S(2),∆(2))

d
= (S

(∆)
◦ ,∆

(∆)
◦ )

and
(S(3),∆(3))

d
= (S

(s)
◦ ,∆

(s)
◦ ).

We assume that (S(i),∆(i)) and T are independent.

By conditional independence

E
(
z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3

)
= E

(
E
(
z
ζ1,3
3 |S(1),∆(1), T

)
E
(
z
ζ1,1
1 z

ζ1,2
2 |S(1),∆(1), T

))
for z̄ = (z1, z2, z3)T ∈ [0, 1]3.

Conditioned on the transmission weight T and the joint degree (S(1),∆(1)), the number
of attempted transmissions from a type I individual along single edges has a binomial
distribution with parameters S(1) and T , and each attempted transmission succeeds with
probability (1− fv). Thus

E
(
z
ζ1,3
3 |S(1),∆(1), T

)
=

∑
k0+k1=S(1)

(
S(1)

k0, k1

)
zk1

3

(
T (1− fv)

)k1
(
(1− T ) + Tfv

)k0

=
(
T (1− fv)z3 + 1− T + Tfv

)S(1)

.

(6.5)

Similarly, for a type I individual v with triangle degree ∆(1), by conditioning on the
number of attempted transmissions (in ki of the ∆(1)−1 triangles that is not yet a�ected
by the disease, v attempts to transmit the disease to i individuals, i = 0, 1, 2) and the
vaccination status of the individuals contacted by v we obtain
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E(z
ζ1,1
1 z

ζ1,2
2 |S(1),∆(1), T )

=
∑

k0+k1+k2=∆(1)−1

(
∆(1) − 1

k0, k1, k2

)
(1− T )2k0

(
2T (1− T )

)k1
T 2k2

 ∑
k̃0+k̃1+k̃2=k2

(
k2

k̃0, k̃1, k̃2

)(
(1− fv)z1

)2k̃2
(
2fv(1− fv)z1

)k̃1
f2k̃0
v


 ∑
k′0+k′1=k1

(
k1

k′0, k
′
1

)
(1− fv)k

′
1z
k′1
2 f

k′0
v



=
∑

k0+k1+k2=∆(1)−1

(
∆(1) − 1

k0, k1, k2

)
(1− T )2k0

(
2T (1− T )

)k1
T 2k2

((
(1− fv)z1

)2
+ 2fv(1− fv)z1 + f2

v

)k2

(
(1− fv)z2 + fv

)k1

=
(

(1− T )2 + 2T (1− T )
(
(1− fv)z2 + fv

)
+ T 2

((
(1− fv)z1)2 + 2fv(1− fv)z1 + f2

v
)
)∆(1)−1

.

(6.6)

Combining (6.5) and (6.6) yields

E
(
z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3

)
= E

[(
T (1− fv)z3 + 1− T + Tfv

)S(∆)
•

(
(1− T )2 + 2T (1− T )

(
(1− fv)z2 + fv

)
+ T 2

((
(1− fv)z1

)2
+ 2fv(1− fv)z1 + f2

v

))∆
(∆)
•
]
.

(6.7)

By noting that the o�spring distribution of a type II individual is identical to the o�spring
distribution of a type I individual, except that a type II may give birth to one additional
type I individual with probability T (1− fv)

E
(
z
ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3

)
= E

[(
T (1− fv)z3 + 1− T + Tfv

)S(∆)
•

(
(1− T )2 + 2T (1− T )

(
(1− fv)z2 + fv

)
+ T 2

((
(1− fv)z1

)2
+ 2fv(1− fv)z1 + f2

v

))∆
(∆)
•

(
z1T (1− fv) + 1− T (1− fv)

)]
.

(6.8)
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Similarly

E
(
z
ζ3,1
1 z

ζ3,2
2 z

ζ3,3
3

)
= E

[(
T (1− fv)z3 + 1− T + Tfv

)S(s)
•

(
(1− T )2 + 2T (1− T )

(
(1− fv)z2 + fv

)
+ T 2

(((
(1− fv)z1)2 + 2fv(1− fv)z1 + f2

v

))∆
(s)
•
]
.

(6.9)

Combining these results yields the probability generating function h of the o�spring
distribution of a type I, II, III individual respectively. That is, h(z̄)1 is given by (6.7), ,
h(z̄)2 is given by (6.8) and h(z̄)3 is given by (6.9).

The probability generating function h∗ of the initial case is given by

h∗(z̄) =E(z
ζ∗,1
1 z

ζ∗,2
2 z

ζ∗,3
3 )

=E

[(
T (1− fv)z3 + 1− T + Tfv

)S
(

(1− T )2 + 2T (1− T )
(
(1− fv)z2 + fv

)
+ T 2

((
(1− fv)z1

)2
+ 2fv(1− fv)z1 + f2

v

))∆
]
.

(6.10)

for z̄ = (z1, z2, z3)T ∈ [0, 1]3, where (S,∆) is distributed as the joint degree of the initial
case and independent of T . The probability of extinction of the approximating branching
process is given by

h∗(q̄ (v)),

where q̄ (v) is given by the point in [0, 1]3 closest to the origin that satis�es

q̄ (v) = h(q̄ (v)).

Thus, the probability of a major outbreak is

1− h∗(q̄ (v)).

6.1.2 The backward process

We now turn our attention to the backward process and �nal size of an epidemic in a
population where a fraction fv is vaccinated with a perfect vaccine. To this end, we intro-
duce the following three types, where individuals are classi�ed by their vaccination status
and the type of the edge along which they would transmit the disease, if infected.

Type I: Transmits along single edge, no information on vaccination status is avail-
able

Type II: Transmits along triangle edge and is guaranteed not to be vaccinated

Type III: Transmits along triangle edge, no information on vaccination status is avail-
able

Let v, v1, v2 be a given triangle. At least one of v1 and v2 belongs to the susceptibility
set of v by virtue of potential transmissions within the triangle if and only if some the
following events, illustrated in Figure 6.2, happens. Note that all cases infected by virtue
of transmission within the triangle v, v1, v2 are attributed to v.
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E1) v1 attempts to infect v and v2 attempts to infect v1, both succeed, and v2 does not
attempt to infect v. Or the same thing might happen, with v1 and v2 interchanged.
This results in one type II and one type III individual in the approximating branch-
ing process. If v is represented by a type I or III individual this happens with
probability

2
(
1− fv

)2
E(T )E

(
T (1− T )

)
,

if v is represented by an individual of type II this happens with probability

2(1− fv)E(T )E
(
T (1− T )

)
.

E2) Only one of v1 and v2 attempts to infect v, and succeeds. The other node does
not attempt to infect any node within the triangle. This results in one type III
o�spring. If v is represented by an individual of type I or III this happens with
probability

2(1− fv)E(T )E
(
T (1− T )

)
,

if v is represented by an individual of type II this happens with probability

2E(T )E
(
T (1− T )

)
.

E3) v1 and v2 both attempt to infect v and succeeds. This results in two type III
individuals born in the approximating branching process. If v is represented by an
individual of type I or III this happens with probability

(1− fv)E(T 2),

if v is represented by an individual of type II this happens with probability

E(T 2).

E4) v1 attempts to infect v and succeeds. The other node, v2, attempts to infect v1,
but fails due to v1 being vaccinated. The individual v2 does not attempt to infect
v. In this scenario, v1 belongs to the susceptibility set of v. However, we choose
not to include v1 is the approximating branching process. This does not have any
impact on the result of our analysis, since we are only interested in the probability
of extinction of the backward process.

v1

v

v2 v1

v

v2 v1

v

v2 v1

v

v2

Figure 6.2: At least one of v1 and v2 will belong to the susceptibility set of v by virtue of
potential transmissions within the triangle if and only if some of the following types of
scenarios (left to right in the picture) occur: E1, E2, E3, E4. An attempted transmission
of the disease is represented by an arrow, an attempted transmission to a vaccinated
individual is represented by an arrow and a blue bar.
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6.1.3 Expected �nal size

Let b(v) be the probability generating function of the o�spring distribution of the three
types of the approximating backward branching process. That is

b(v)(z̄)i = E(z
ζbi,1
1 z

ζbi,2
2 z

ζbi,3
3 )

where ζ̄i = (ζbi,1, ζ
b
i,2, ζ

b
i,3) is distributed as the o�spring of a type i, i = 1, 2, 3, individual.

For i = 1, 3, denote by Es expectation conditioned on that the parent of (ζbi,1, ζ
b
i,2, ζ

b
i,3)

is not vaccinated. Let further b
(v)
∗ be the probability generating function of the o�spring

distribution of the initial case, that is

b
(v)
∗ (z̄) = E

(
z
ζb∗,1
1 z

ζb∗,2
2 z

ζb∗,3
3

)
where (ζb∗,1, ζ

b
∗,2, ζ

b
∗,3) is distributed as the o�spring of the ancestor.

Analogously to the forward process, the probability that the bloodline started by a type
i, i = 1, 2, 3, individual will go extinct is given by qbi , where q̄b = (qb1, q

b
2, q

b
3)T is the

solution of

q̄b = b(v)(q̄b)

in [0, 1]3 closest to the origin. The probability of ultimate extinction of the backward
process is then given by

b
(v)
∗ (q̄b). (6.11)

To �nd an expression for (b(v))1, we note that for z̄ = (z1, z2, z3)T

E
(
z̄ζ̄1
)

= fv + (1− fv)Es

(
Es

(
z
ζb1,1
1 |S(1),∆(1)

)
Es

(
z
ζb1,3
3 z

ζb1,2
2 |S(1),∆(1)

))
(6.12)

where, as before, (S(i),∆(i)), is distributed as the joint degree of a type i individual,
i = 1, 2, 3.

Now

Es

(
z
ζ1,1
1 |S(1),∆(1)

)
=

∑
k0+k1=S(1)−1

(
S(1) − 1

k0, k1

)
zk1

1 E(T )k1E(1− T )k0

=
(
E(T )z1 + 1− E(T )

)S(1)−1
.

(6.13)

By conditioning on the number of triangles k2 in which an event of type E3 occurs, the
number of triangles ka1 in which an event of type E1 occurs, the number of triangles kb1
in which an event of type E4 occurs and the number of triangles kc1 in which an event of
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type E2 occurs we obtain

Es(z
ζ1,2
2 z

ζ1,3
3 |S(1),∆(1)) =

∑
k0+ka1 +kb1+kc1+k2=∆(1)

(
∆(1)

k0, ka1 , k
b
1, k

c
1, k2

)
E(1− T )2k0

(
2E(T )E

(
T (1− T )

)
(1− fv)

)ka1
(

2E(T )E
(
T (1− T )

)
fv

)kb1(
2E(T )E

(
(1− T )2

))kc1
E(T )2k2z

ka1
2 z

ka1 +kc1+2k2

3

=
((
E(1− T )

)2
+ 2E

(
T
)
E
(
T (1− T )

)
(1− fv)z2z3 + 2E(T )E

(
T (1− T )

)
fv

+ 2E(T )E
(
(1− T )2

)
z3 + E(T )2z2

3

)∆(1)

.

(6.14)

Inserting the right hand sides of (6.13) and (6.14) in (6.12) gives

E(z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3 ) = fv + (1− fv)E

[(
E(T )z1 + 1− E(T )

)S(s)
•

((
E(1− T )

)2
+ 2E(T )E

(
T (1− T )

)
(1− fv)z2z3

+ 2E(T )E
(
T (1− T )

)
fv

+ 2E(T )E
(
(1− T )2

)
z3 + E(T )2z2

3

)∆
(s)
•
]
.

(6.15)

Similarly

E(z
ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3 ) = E

[(
E(T )z1 + 1− E(T )

)S(∆)
•

((
E(1− T )

)2
+ 2E(T )E

(
T (1− T )

)
(1− fv)z2z3

+ 2E(T )E
(
T (1− T )

)
fv

+ 2E(T )E
(
(1− T )2

)
z3 + E(T )2z2

3

)∆
(∆)
•
]
.

(6.16)

and

E(z
ζ3,1
1 z

ζ3,2
2 z

ζ3,3
3 ) = fv + (1− fv)E(z

ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3 ). (6.17)

Combining these results yields the probability generating function of the o�spring dis-
tribution of the three types; (b(v)(z̄))1 is given by (6.15) and (b(v)(z̄))2 is given by

(6.16). By replacing (S
(s)
• ,∆

(s)
• ) in the right hand side of (6.15) by (S

(∆)
• ,∆

(∆)
• ) we

obtain (b(v)(z̄))3.

By replacing (S
(s)
• ,∆

(s)
• ) in the right hand side of (6.15) by (S,∆) (recall that (S,∆) has

the size biased degree distribuion) we obtain the probability generating function b
(v)
∗ (z̄)
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of the o�spring of the initial case. The expected �nal size of the epidemic, conditioned
on that a major outbreak occurs, is given by

1− b(v)
∗ (q̄b),

where b
(v)
∗ (q̄b) is the probability of extinction in (6.11).

41



7 Summary and discussion

In this thesis we have considered SIR epidemics in populations where the social structure
is represented by graphs with clustering. The main goal and contribution of this thesis
was to extend previous results obtained by Miller (2009). Miller analysed the spread
of SIR epidemics on graphs of this model under the assumption of homogenous infec-
tivity and susceptibility, by attributing all secondary and tertiary cases in a triangle to
the initial infective in that triangle, regardless of the true path of transmission within
the triangle. We have used a branching process approach to provide expressions for the
probability that a major outbreak occurs, and the expected �nal size of a major out-
break. We have extended the Miller's results by allowing for heterogeneity in individual
infectivity. Furthermore, we have calculated the rank based basic reproduction number,
and shown that vaccinating a fraction 1 − 1

R0
of the population with a perfect vaccine

is su�cient to prevent a major outbreak. In Appendix D, we prove that the branching
process approximations are exact in the limit as the population size N →∞.

In most modelling e�orts, a balance must be struck between accuracy, interpretability
and tractability. Including too little detail in the model puts one at the risk of missing
important mechanisms of the modelled process, which may result in a too simplistic model
that does not faithfully replicate reality. Including too much detail in the model may
result in an intractable model, whose key features are di�cult to interpret. An important
feature of the contact patterns in a population is the concept of groups. People typically
belong to a wide range of groups (workplaces, families, sport teams, groups of friends,
to name a few) whose members interact frequently with each other. Many network
models, including the standard con�guration model, do not capture this feature at all.
By considering the con�guration model with clustering, we have included an element
of social groups in the model. Although the con�guration model with clustering does
incorporate group structure, the group size is restricted to three (or two). A graph of this
model is locally treelike, except for the triangles formed by triangle edges. In other words,
except for small groups of two or three individuals, there are virtually no groups. A real
world social network is, however, typically characterised by layers of groups of varying
size, some tightly and some more loosely formed. The branching process approximation
used in this thesis relies heavily on the fact that, except for the triangles formed by
triangle edges, short cycles are rare, provided that the number of nodes N of the graph is
large. For this reason, it is not straightforward to directly extend the techniques employed
in this thesis to more general graph models with clustering, where the structure is not
locally treelike at some level.

The focus of this thesis was epidemics in discrete time, since we were mainly interested
in the probability of a major outbreak and the expected �nal size of a major outbreak.
A possible extension of this thesis would be epidemics in continuous time on graphs
generated by the con�guration model with clustering. A possible issue to address would
be the real time growth rate of the epidemic. An SIR epidemic on a graph generated
by the standard con�guration model grows exponentially during the early phase (Pellis
et al. 2015). We expect similar results to hold for SIR epidemics on a graphs generated
by the con�guration model with clustering. The challenge would lie in describing the real
time epidemic process as a branching process, since dependencies arise from the presence
of triangles. To be more speci�c, the o�springs of the �rst two cases in a triangle are
not independent, since these cases compete to transmit the disease to the remaining
susceptible individual in the triangle in question. One possible approach would be to
describe the real-time spread of the disease as an in�nite type branching process, see for
instance Bollobás et al. (2007).
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A List of symbols, notation conventions and assump-

tions

Table 1: Frequently used notation.

Notation Usual meaning Page

∼ X The distribution of the random variable X

f(x) �x g(x) f(x)
g(x) → 1 as x→∞

N {1, 2, 3, . . .}

N0 {0, 1, 2, 3, . . .}

N∞ {1, 2, 3, . . . ,∞}

R+ [0,∞)

ē1, . . . , ēs Standard basis of Rs

1̄ (1, . . . , 1)T

0̄ (0, . . . , 0)T

ā b̄ ab11 · . . . · abss where ā = (a1, . . . , as)
T and b̄ = (b1, . . . , bs)

T

A
P
= A The events A and B are identical up to null sets, i.e. P (A \

B) = P (B \A) = 0

C(u,v) A point process whose points are the time points at which
the individual u attempts to make contact with the individ-
ual v

4

t
(v)
I The time point at which the individual v contracts the dis-

ease
4

τvi or τi The infectious period of vi 4

R0 Basic reproduction number 5

RV Perfect vaccine-associated reproduction number 6

f
(c)
v Critical vaccination coverage 6

N The population size

GN Graph consisting of N nodes, generated by the con�guration
model with clustering

9

D
(N)
S The total single degree of GN 9

D
(N)
∆ The total triangle degree of GN 9

v1 → . . .→ vn The path {(vi, vi+1)}n−1
i=1 7

L(v1 → . . .→ vn) The length of the path v1 → . . .→ vn 7

d(u, v) The distance between the nodes u and v 7

p The degree distribution {p(k∆, kS)}k∆,kS∈N 8

(S,∆) Random vector with distribution p 8

S(v) The susceptibility set of the node v 19

L(z) Laplace transform
∫
e−zxdF (x) of the infectious period 24
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Table 1: Frequently used notation.

Notation Usual meaning Page

p
(s)
◦ Single size biased degree distribution 18

p
(∆)
◦ Triangle size biased degree distribution 18

p
(s)
• Downshifted single size biased degree distribution 18

p
(∆)
• Downshifted triangle size biased degree distribution 18

p(N) Empirical degree distribution of GN 18

p
(N,s)
◦ Single size biased empirical degree distribution of GN 18

p
(N,∆)
◦ Triangle size biased empirical degree distribution of GN 18

p
(N,s)
• Downshifted single size biased empirical degree distribution

of GN

18

p
(N,∆)
• Downshifted triangle size biased empirical degree distribu-

tion of GN

18

{Y → 0} The event that the branching process Y eventually becomes
extinct

{Y 6→ 0} The event that the branching process Y avoids extinction

Table 2: Assumptions.

Assumption Page

A1 10

A2 10

A3 10

A4 53

A5 53

A6 57

A7 57
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B Tools to compare epidemic models

In this section, we provide tools to compare the �nal size and the probability of non-
extinction of an epidemic on GN for di�erent transmission mechanisms. The results
described in the present section can, for instance, be used to compare the probability and
�nal size of a major outbreak for di�erent distributions of the transmission weights in the
epidemic model presented in section 4. We illustrate this in Example B.1 and Example
B.2 by comparing the probability of a major outbreak for six di�erent models.

First, we will need some notation. Let {(Si, Ti)}i be a sequence of i.i.d. random vectors
taking values in R2 and let θ : R2 → R be a non-decreasing function (that is θ(x1, y2) is
non-decreasing in xi for �xed xj , i 6= j) such that 0 ≤ θ(T1, S1) ≤ 1 holds almost surely.
We often assume that θ(x, y) = θ(xy). This covers the models considered in this project.
We refer to Ti as the transmission weight of vi and Si as the susceptibility weight of vi.
We denote by M := (θ, {(Si, Ti)}i) the model for an epidemic governed by the weights
{(Si, Ti)}i and the transmission probability function θ. Let (vi, vj) be an edge of GN .
For the model M , the conditional probability of transmission along (vi, vj) if the tail
vi contracts the disease is θ(Ti, Sj). Given the transmission and susceptibility weights,
(potential) transmissions along the edges of GN are independent for di�erent edges. We
assume that the weights of di�erent nodes are independent. However, the transmission
weight Ti and the susceptibility weight Si need not be independent, i = 1, . . . , N .

Example B.1. Let θ : R → R be the identity operator and let T be some real valued
random variable with support in [0, 1]. Let further TBe be Bernoulli distributed with
expected value E(T ).

Consider the following three models:

M1) The probability of transmission is distributed as θ(T ) = T

M2) The probability of transmission is distributed as θ(E(T )) = E(T )

M3) The probability of transmission is distributed as θ(TBe)) = TBe

Note that the distribution governing the susceptibility of the individuals is degenerate
and concentrated at 1, that is Si = 1 almost surely for the modelsM1-M3. The marginal
probability of transmission along an edge (vi, vj) is the same for the three models. How-
ever, as we will se in the present section, the dynamics of the spread of the disease for
these three cases are not the same. This model was investigated further in section 4. �

Example B.2. Let τ be a nonnegative extended real valued random variable (that
is, τ takes values in R+ ∪ {∞}). Let the infectious period Ti of an individual vi have
distribution ∼ τ and assume that each individual makes contact independently with each
of its neighbours at a Poission rate with intensity 1.

Assume that a fraction fv of the population is vaccinated with a perfect vaccine, so that
an attempted transmission to a vaccinated individual succeeds with probability 0 and an
attempted transmission to an unvaccinated individual succeeds with probability 1. To
incorporate immunity from vaccination, let the susceptibility weights {Si}i be Bernoulli
distributed with success probability 1 − fv. We assume that the susceptibility weights
{Si}i are independent of the transmission weights {Ti}i.

The probability of transmission from vi to its neighbour vj is then distributed as

θ̃(Ti, Sj) = 1− e−SjTi .

We refer to this model as M4. It was investigated further in section 6.

In a slightly di�erent model, which we call M5, the entire population is vaccinated with
a so called leaky vaccine with vaccine e�cacy fv. A leaky vaccine with e�cay fv reduces
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the per-contact infection probability by a (multiplicative) factor 1−fv, so that, for model
M5, the probability of transmission per infectious contact is 1 − fv. The probability of
transmission from vi to its neighbour vj is distributed as

θ̃(Ti, 1− fv) = 1− e(1−fv)Ti .

Now assume that the entire population is vaccinated with a non-perfect vaccine, as
in model M5. The di�erence between M5 and the present model, which we call M6,
is that the vaccine in M6 provides a random multiplicative reduction in susceptibility
distributed as the random variable S̃, E(S̃) = 1− fv, with support in [0, 1]. Let {S̃i}i be
the susceptibility weights ofM6, where S̃i ∼ S̃. We assume that the susceptibility weights
{S̃i}i are independent of the transmission weights {Ti}i. The (conditional) probability of
transmission per infectious contact with the individual vj is S̃j . That is, the probability
of transmission from vi to its neighbour vj is distributed as

θ̃(Ti, S̃j) = 1− e−S̃jTi .

To summarize, we consider the following three models:

M4) A fraction fv of the population is vaccinated with a perfect vaccine.

M5) The entire population is vaccinated with a leaky vaccine with e�cacy fv. That
is, the vaccine reduces the susceptibility of every vaccinated individual by a multi-
plicative factor 1− fv.

M6) The entire population is vaccinated with a non-perfect vaccine, and the individual
immune response to vaccination is random and independent between individuals.
The expected multiplicative reduction of the susceptibility is by a factor 1− fv.

�

Let u be any node of GN and let N→ be a subset of the nodes from which an edge with
head u emanate. Similarly, let N← be a subset of the heads of the edges with tail u. We
assume that N→ and N← are disjoint. Let further t̄ and s̄ denote the realizations of the
transmission weights of the nodes of N→ and the susceptibility weights of the nodes of
N←, respectively.

Following Meester and Trapman (2011) we de�ne the zero function

P0(u, t̄,N→, s̄,N←) (B.1)

as the probability that the disease is not transmitted from any node of N→ to any node
of N← via u, conditioned on the transmission weights t̄ of the nodes of N→ and the
susceptibility weights s̄ of the nodes of N←.

If N→ is the empty set ∅ then we de�ne (B.1) as the probability that u would not infect
any member of N←, if u is the initial case. Similarly, if N← is the empty set then (B.1)
is the probability that u escapes infection from the nodes in N→. That is

P0(u, t̄,N→, s̄,N←) = E

1−

(
1−

∏
vi∈N→

(1− θ(ti, Su))

)1−
∏

vj∈N←

(1− θ(Tu, sj))



P0(u, t̄,N→,∅,∅) = E

( ∏
vi∈N→

(1− θ(ti, Su))

)
(B.2)

P0(u,∅,∅, s̄,N←) = E

 ∏
vj∈N←

(1− θ(Tu, sj))


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P0(u,∅,∅,∅,∅) = 1

where Su denotes the susceptibility weight of u and Tu is the transmission weight of u. We
sometimes write P0(u, t̄,N→, s̄,N←,M) to make the underlying modelM explicit.

If for two models M(1) and M(2)

P0(u, t̄,N→, s̄,N←,M(1)) ≤ P0(u, t̄,N→, s̄,N←,M(2))

holds for every N→ and N← and corresponding weights s̄ and t̄ we write

P0(M(1)) ≤ P0(M(2)).

For a node u of GN and a positive integer a, let Ea(u) be the set of nodes of GN that can
only be reached from u following a path consisting of at least a edges. That is, v ∈ Ea(u)
if and only if any path with starting point u and end point v consists of at least a edges,
and at least one path from u to v exists. Let further

Ξa(u)

be the collection of paths starting in u and ending in some node of Ea(u).

We denote the event that at least one path of Ξa(u) is of �nite length (that is, that
the disease is transmitted along some path of Ξa(u)) by DΞa(u). For a given model M ,
let

PM (DΞa(u))

be the probability that DΞa(u) occurs.

If, for two models M(1) = (θ1, {(Si, T (1)
i )}i) and M(2) = (θ2, {(Si, T (2)

i )}i) with indepen-
dent transmission and susceptibility weights it holds that

E(θk(T
(k)
i , sj)) = sj

for k = 1, 2, then we say that the susceptibility distributions of M(1) and M(2) are
consistent.

The following theorem was presented by Miller (2008, Lemma 2), see also Kuulasmaa
(1982) for related results.

Theorem B.1. Consider the two modelsM(1) = (θ1, {(Si, T (1)
i )}i) andM(2) = (θ2, {(Si, T (2)

i )}i),
where the Si are independent of the T

(1)
i and the T

(2)
i , and the susceptibility distributions

of M(1) and M(2) are consistent.

If, for each node u of G and all sets N← of neighbours of u with susceptibility weights s̄

P0(u,∅,∅, s̄,N←,M(1)) ≤ P0(u,∅,∅, s̄,N←,M(2)) (B.3)

then

PM(2)

(
DΞa(u)

)
≤ PM(1)

(
DΞa(u)

)
. (B.4)

The proof given below is due to Miller (2008). We present it here since it is instruc-
tive.

Proof. Assume without loss of generality that {T (1)
i }i and {T

(2)
i }i are independent. To

each node vi of GN assign the three numbers Si, T
(1)
i and T

(2)
i . Partition the nodes

of GN into two subsets U1 and U2. A node ui transmits the disease to a neighbour

uj with probability θ1(T
(1)
i , Sj) if ui ∈ U1 and with probability θ2(T

(2)
i , Sj) if ui ∈ U2,

conditioned on the weights.

Choose some w ∈ U1, and consider the impact of moving w from U1 to U2. There are
two possibilities:
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1. The occurrence of the event DΞa(u) is not determined by which of its neighbours
w infects.

2. Alternative 1 does not hold

If alternative 1 holds then moving w from U1 to U2 have no impact on the occurrence of
the event DΞa(u).

If alternative 2 holds then there is a setN← of neighbours of w such that if w transmits the
disease to any of the members of N← then DΞa(u) occurs. Let s̄ denote the susceptibility
weights of the nodes in N←. By (B.3) P

(
DΞa(u)

)
cannot increase by moving w from

U1 to U2. Note that there exists a �nite subset Πa(u) of Ξa(u) of �nite paths such
that DΞa(u) occurs if and only if DΠa(u) occurs. The assertion (B.4) now follows from
induction.

Miller (2008) showed that increased homogeneity of the infectivity of the nodes increase
the probability P

(
DΞ
a (u)

)
that some path of Ξa(u) is of �nite length and vice versa.

Theorem B.2 (Maximal homogeneity maximizes P
(
DΞa(u)

)
). Consider the modelM =

(θ, {(Si, Ti)}i), where the Si and the Ti are independent, and let θhom(ti, sj) = E(θ(Ti, sj)).
Let Mhom = (θhom, {(Si, Ti)}i). Then

PM
(
DΞ
a (u)

)
≤ PMhom

(
DΞa(u)

)
Theorem B.3 (Maximal heterogeneity minimizes P

(
DΞa(u)

)
). Consider the modelM =

(θ, {(Si, Ti)}i), where the Si and the Ti are independent, and let {Ui}i be a sequence of
independent uniform (0, 1) random variables, independent of the Si. Let the function θhet
be such that

θhet(u, s) = 1(u < E(θ(T1, s)))

and let Mhet = (θhet, {(Si, Ui)}i). Then

PMhet

(
DΞa(u)

)
≤ PM

(
DΞa(u)

)
Furthermore, Miller (2008) showed that, for a given marginal probability of transmission,
P
(
DΞa(u)

)
is maximized for homogeneous susceptibility and infectitivity of the nodes,

provided that the transmission weights and susceptibility weights are independent.

Recall that a real function ϕ de�ned on the interval (a, b), where −∞ ≤ a < b ≤ ∞ is
said to be concave if

ϕ((1− t)x+ ty) ≥ (1− t)ϕ(x) + tϕ(y)

whenever a < x, y < b and 0 ≤ t ≤ 1. If ϕ is concave then −ϕ is said to be convex.

The following theorem is due to Meester and Trapman (2011). Note that no assump-
tions on independence between the transmission weights and susceptibility weights are
made.

Theorem B.4. Consider the two modelsM(1) = (θ, {(S(1)
i , T

(1)
i )}i) andM(2) = (θ, {(S(2)

i , T
(2)
i )}i),

where θ(x, y) = θ(xy) is concave.
If, for each node u of G

P0(M(1)) ≤ P0(M(2))

then

PM(2)

(
DΞa(u)

)
≤ PM(1)

(
DΞa(u)

)
.
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We now have the tools to compare the models of Example B.1.

Example B.1 (Continued). By Theorem B.2 and Theorem B.3 we have

PM3

(
DΞa(u)

)
≤ PM1

(
DΞa(u)

)
≤ PM2

(
DΞa(u)

)
for each node u of GN and each positive integer a. �

To compare the models of Example B.2, we use Jensen's inequality (Rudin 1987, Theorem
3.3, page 62).

Theorem B.5 (Jensen's inequality). Let µ be a positive measure on a σ-algebra A on
a set Ω, so that µ(Ω) = 1. If f is a real function in L1(µ), a < f(ω) < b for all ω ∈ Ω,
and if ϕ is convex on (a, b) then

ϕ

(∫
Ω

fdµ

)
≤
∫

Ω

(ϕ ◦ f)dµ.

Example B.2 (Continued). To compare the models M4, M5 and M6 we only need to
compare zero functions on the form (B.2), since the three models have common trans-
mission function θ̃ and transmission weights {Ti}i, which are independent of the sus-
ceptibility weights. Since ϕ(s) = e−sc is a convex function on [0, 1] for every c > 0, we
have

e−cs = e−c(s·1+(1−s)·0) ≤ se−c + (1− s).

Thus (with T̄ = {Tij}kj=1)

E(e−S̃l(Ti1+...+Tik
)|T̄ ) ≤ E(S̃le

−(Ti1+...+Tik
) + (1− S̃l)|T̄ )

= (1− fv)e−(Ti1
+...+Tik

) + fv

= E(e−Sl(Ti1
+...+Tik

)|T̄ )

for each set of distinct indices {ij}kj=1 such that l 6∈ {ij}kj=1. Furthermore, by Jensen's
inequality (Theorem B.5)

e−(1−fv)(Ti1+...+Tik
) ≤ E(e−S̃l(Ti1+...+Tik

)|T̄ ).

By Theorem B.4 it follows that

PM4

(
DΞa(u)

)
≤ PM6

(
DΞa(u)

)
≤ PM5

(
DΞa(u)

)
for each node u of GN and each positive integer a. �

We now discuss brie�y how the above described results relate to the branching process
approximations employed in this thesis (see section 3 and Appendix D). To this end, we
introduce some additional notation. Let G∞(u∗) be a graph obtained in the approximat-
ing branching process where the transmission probability is T = 1 almost surely. That
is, G∞(u∗) is obtained as follows. Let the joint degree of u∗ be that of the initial case of
the epidemic. If the initial case is chosen uniformly at random, then we draw the degree
of u∗ from p. We then construct the graph by exploring the neighbourhood of the part
of the graph already explored, as described in section 2.5. The degrees of the nodes are

sampled from the size biased degree distributions p
(s)
◦ and p

(∆)
◦ . Note that, apart from

the triangles formed by triangle edges, the in�nite graph G∞(u∗) is a tree.
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We assume that the order in which half-edges are paired is such that for each positive
integer a, eventually each half-edge attached to a node that can be reached from u∗ by
traversing at most a (undirected) edges is paired.

Let B(a)(u∗) be the ball centered at the node u∗ with radius a. That is, B(a)(u∗) is the
part of G∞(u∗) that can be reached from u∗ by traversing at most a edges, starting in
u∗. Let further Ξ∞a (u∗) be the collection of paths from u∗ to some node in B(a)(u∗) \
B(a−1)(u∗). In other words, Ξ∞a (u∗) is the collection of paths to nodes that can be reached
from u∗ by traversing a half-edges but not by traversing less than a half-edges.

As we will see in Appendix D, if the spread of the disease is well approximated by a
branching process in the early phase for a model M , the probability of a large outbreak
equals (in the limit as N →∞)

lim
a→∞

PM (DΞ∞a (u∗)). (B.5)

Thus, for models M1-M5, the results presented in this section can be used to compare
the probability of and �nal size of a major outbreak. As pointed out in section 3, if the
direction of the edges of the graph representing the epidemic is reversed, the �nal size and
the probability of an outbreak are interchanged (see for instance Miller (2008)). Thus,
the results presented in the present section can be used to compare the expected �nal
size for di�erent models, provided that the backward epidemic process can be described
as a branching process.

Because of the dependencies that arise from the presence of triangles, it is not as straight-
forward to describe the spread of the disease of model M6 as a branching process as for
models M1-M5. We conjecture that (B.5) is the limiting probability of a major outbreak
also for this model. One possible approach to show this is to describe the spread of the
disease of model M6 as an in�nite-type branching process, where the type of an individ-
ual is determined by its susceptibility and transmission weights, see for instance Bollobás
et al. (2007). This is, however, beyond the scope of this project, but would be a nice
future work.
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C Coupling

We now introduce the concept of coupling. In Appendix D we use these results to prove
the limiting results described in section 3. All results presented in this section can be
found in the book by Thorisson (2000, Chapter 3).

Thorisson (2000) describes coupling as "the joint construction of two or more random
elements (variables, processes), usually in order to deduce properties of the individual
elements". Before giving a formal treatment of the concept of coupling, we remind the
reader of the following two well-known de�nitions.

De�nition C.1. A measurable space is a pair (A,A ), where A is a set and A is a
σ-algebra of subsets of A.

Let (A1,A1) and (A2,A2) be two measurable spaces. A function f : A1 → A2 is said to
be measurable if for every B ∈ A2

f−1(B) ∈ A1,

where f−1(B) denotes the pre-image of B under f .

De�nition C.2 (Random elements). A random element Y in a measurable space (A,A )
de�ned on the probability space (Ω,F , P ) is a measurable mapping from (Ω,F , P ) to
(A,A ). That is, Y −1B ∈ F for every B ∈ A .

Let {Yi}i∈I be a collection of random elements (Yi may be a random variable, a process
etc.), where I is an index set. A coupling of the Yi is a family {Ŷi}i∈I of random elements,
de�ned on the same probability space, that satis�es

Yi
D
= Ŷi

for every i ∈ I. That is, a coupling of {Yi}i∈I is any family of random elements {Ŷi}i∈I
such that the marginal distribution of the random element Yi coincides with the marginal
distribution of the random element Ŷi for each i ∈ I. Note that a coupling of the Yi is
not unique in general.

De�nition C.3 (Coupling). For each index i ∈ I, let Yi be a random element in the
measurable space (Ai,Ai) de�ned on a probability space (Ωi,Fi, Pi). A family of random

elements {Ŷi}i∈I de�ned on a common probability space (Ω̂, F̂ , P̂ ) is a coupling of {Yi}i∈I
if

Ŷi
D
= Yi

for each index i ∈ I.

Consider a measurable space (A,A ), and two measures µ and ν on (A,A ). The measure
ν is a component of µ if

ν(E) ≤ µ(E)

for each E ∈ A , and we write ν ≤ µ. Let {µi}i∈I be a collection of measures on (A,A ).
We say that ν is a common component of the µi if ν is a component of µi for each i ∈ I.
If, in addition, every common component of the µi is a component of ν, then ν is said
to be the greatest common component of the µi.

Theorem C.1 (cf. Thorisson (2000), Theorem 7.1, Chapter 3). Let (A,A ) be a mea-
surable space, and {µi}i∈I a collection of measures on (A,A ). Then there exists a unique
greatest component

∧
i∈I µi of the µi, given by(∧
i∈I

µi

)
(E) = sup{ν(E) : ν ≤ µi for all i ∈ I}
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where the supremum runs over all common components ν of the µi.

Now consider the collection {Yi}i∈N∞ of random elements in the measurable space (A,A ).
Note that the index set is given by N∞ = N ∪ {∞}. A coupling index K of a coupling
{Ŷi}i∈N∞ is any random variable in N∞ de�ned on the same probability space (Ω̂,F , P̂ )
as the Ŷi that satis�es

Ŷn = Ŷ∞ whenever n ≥ K. (C.1)

For any measure µ on a measurable space (A,A ) we denote the total mass µ(A) of µ by
‖µ‖.

Theorem C.2 (cf. Thorisson (2000), Theorem 9.1 Chapter 3). Let K be the coupling
index in (C.1). Then∥∥∥∥∥∥

∧
n≤k≤∞

P (Yk ∈ ·)

∥∥∥∥∥∥ ≥ P̂ (K ≤ n) (C.2)

for any n ∈ N∞.

That is, it is not possible to �nd a coupling {Ŷi}i∈N∞ of {Yi}i∈N∞ such that the probability
that Ŷi coincide for i = n, . . . ,∞ exceeds the total mass of

∧
i≥n P (Yi ∈ ·). The coupling

{Ŷi}i of Theorem C.2 with the coupling index K is said to be maximal at each index if
equality holds in (C.2) for each n ∈ N∞. It can be shown that there exists a coupling
that is maximal at each index for any sequence {Yi}i∈N∞ of random elements in (A,A )
(Thorisson 2000, Theorem 9.3 Chapter 3).
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D Proof of limiting results

In this appendix, we prove that the branching process approximation is exact in the limit
as the population sizeN tends to in�nity. The proof draws heavily on ideas used by Ball et
al. (2009, 2014), who proved similar results for two related models, the households model
and epidemics on random intersection graphs. The main di�erence between our proof and
the proofs presented by Ball et al. (2009, 2014) is that we use maximal coupling, which
enables us to obtain almost sure convergence for the approximating forward branching
process and convergence in probability for the approximating backward process as the
population size N →∞.

For ease of presentation, we prove the results for the standard con�guration model with
no triangle edges, under the assumption of heterogeneous infectivity and homogeneous
susceptibility. We use a framework that is straightforward to extend to the models consid-
ered in this report (with the exception of model M6, Appendix B) and the con�guration
model with clustering.

We will need some notation. Let p be a probability measure with support in N0 and let
K be a random variable with distribution p. We assume that E(K2 logK <∞). Let p◦
be the size biased degree distribution, that is

p◦(k) =
kp(k)

E(K)
,

and let G◦ be the cumulative distribution function of the size biased degree distribu-
tion

G◦(k) =
∑
j≤k

p◦(j)

Let further the ordered sequence d̄ = (d1, d2, . . .) be a given degree sequence in N0 and
let d̄N be the sequence d̄ truncated after the Nth element, that is

d̄N = (d1, . . . , dN )

and let GN be a standard con�guration model graph based on d̄N . Let further p
(N) be

the distribution of d̄N ,

p(N)(k) = 1
N

N∑
i=1

1(di = k)

and let p
(N)
◦ be the size biased distribution corresponding to p(N)

p
(N)
◦ (k) = k

D(N)

N∑
i=1

1(di = k)

where

D(N) =

N∑
i=1

di

is the total degree of GN . We make the following assumptions on d̄.

A4) p(N)(k)→ p(k) as N →∞ for each k ∈ N0.

A5) p
(N)
◦ (k)→ p◦(k) as N →∞ for each k ∈ N0.

We will need two classical results (Grimmett and Stirzaker 1992, sections 7.3, 7.5 and
7.9) later, which we include for completeness.
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Proposition D.1 (Strong Law of Large Numbers). Let {Xi}∞i=1 be a sequence of iid
random variables. Then

1

n

n∑
i=1

Xi
a.s.→ µ (D.1)

for some constant µ as n → ∞ if and only if E(|X|) < ∞. In this case E(X1) = µ. If,
in addition, E(X2) <∞, then the convergence (D.1) holds in mean square.

Proposition D.2 (Borel Cantelli Lemma). Let {Am}m be a sequence of events and let

A =

∞⋂
n=1

∞⋃
m=n

Am

be the event that in�nitely many of the Am occur. Then

P (A) = 0 if

∞∑
m=1

P (Am) <∞.

If, in addition, the Am are independent then

P (A) = 1 if

∞∑
m=1

P (Am) =∞.

Note that if d̄ is a sequence of independent copies of K then by the Strong Law of Large
Numbers, the assumptions A4 and A5 are almost surely satis�ed.

The following theorem (Meyer 2000, page 666) will be useful in later sections.

Theorem D.3 (Collatz-Wielandt formula). Let the s×s matrix M be positively regular.
The Perron root r of M is then given by

r = max
x̄∈N

 min
1≤i≤d
xi 6=0

(Mx̄)i
xi

 ,

where N = {x̄ ∈ Rd : x̄ ≥ 0̄, x̄ 6= 0̄}.

Here and in what follows, inequalities of vectors and matrices are to be interpreted
element-wise.

Remark D.1. Meyer (2000) states Theorem D.3 for matrices with strictly positive en-
tries. Following the proof presented by Meyer (2000), it is straightforward to verify that
Theorem D.3 holds for positively regular matrices.

D.1 Branching process framework

Since we perform the proof for the standard con�guration model under the assumption
of heterogeneous infectivity and homogeneous susceptibility, the approximating forward
and backward branching processes are single-type processes. We present a more extensive
multi-type branching process framework, although we perform the proof for the single
type case s = 1, since this enables straightforward extension of the proof to the con�gu-
ration model with clustering. The framework presented in this section is based on results
described in the book by Jagers (1975, Chapter 4).
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We consider branching processes with the common �nite type space {1, 2, . . . , s}. Denote
the space of all individuals (including the ancestor) by X . We denote the ancestor by
(a, τa), where τa denotes the type of the ancestor. We typically consider branching
processes where the type of the ancestor is unique. That is, the ancestor is the only
individual of its type. If this is the case we write τa = 0, and call the branching process
an s-type branching process although there are s+ 1 types; 0, 1, . . . , s.

Individuals x ∈ X are vectors of the form

x = (a, τa; j1, τ1; j2, τ2; . . . ; τn, jn) (D.2)

where the lineage of x is fully speci�ed by {ji}ni=1 ⊂ N, {τi}ni=1 ⊂ N and (a, τa); the
individual x is the jnth child of type τn of the individual

xp = (a, τa; j1, τ1; j2, τ2; . . . ; τn−1, jn−1) ∈ X . (D.3)

We refer to the individual xp in (D.3) as the parent of x, and we write (xp; τn, jj) for x.
Any individual with lineage

(a, τa; j1, τ1; j2, τ2; . . . ; τn, jn, . . . , τm, jm) (D.4)

where m ≥ n is said to be a descendant of x. If y is a descendant of x then we call x
a ascendant of y. Note that X is countable and that "most" individuals of X are not
realized (de�ned below). In the sequel, we consider several branching process, and each
individual of X may be realized in none, some, or several of the branching processes
under consideration. Given a branching process B, we sometimes write x(B) to make
the underlying branching process B explicit. We refer to x(B) as the individual x of B.

For a given branching process B with type space {1, . . . , s} (or {0, . . . , s} if the type of
the ancestor is unique), the o�spring vector of an individual x(B)

ξ̄x(B) = (ξ
x(B)
1 , . . . , ξx(B)

s )T

is a random variable in Ns0. An individual (x; j, τ) of B is said to be realized if its parent

x(B) is realized and if j ≤ ξx(B)
τ . The ancestor (a, τa) is always realized.

Given the branching process B, we de�ne

Rx(B) =

{
1 if x of B is realized

0 otherwise

for each individual x ∈ X . We de�ne the generation |x| of the individual

x = (a, τa; j1, τ1; j2, τ2; . . . ; τn, jn) ∈ X

as
|x| := n.

If |x| = n then x is said to belong to the nth generation. Given a branching process B,
de�ne

B(n) := {x ∈ X : |x| ≤ n,Rx(B) = 1}.

That is, B(n) is the set of individuals that are realized in generations 1, . . . , n of the
branching process B.
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D.2 Limit of the approximating branching process

To analyse the spread of the disease on GN , we employ a branching process approxima-
tion. To this end, for each population size N we construct an epidemic process Ê(N).

The epidemic process Ê(N) can be coupled with a branching process Ẑ(N) in such a way
that they coincide in the early phase of the epidemic. In this section, we show that in
the limit as the population size N tends to in�nity, the branching process Ẑ(N) coincides

almost surely with a limiting branching process Ẑ = Ẑ(∞).

Let
ZN :=

⋃
N≤N ′≤∞

{Ẑ(N ′)}

be the collection of branching processes Ẑ(N ′) corresponding to populations of size at

least N (including Ẑ = Ẑ(∞)), and let

Z := Z1.

The o�spring distribution of Ẑ(N) is governed by the mechanisms of transmission of Ê(N)

and by the size biased empirical degree distribution p
(N)
◦ of GN . Similarly, the o�spring

distribution of Ẑ is governed by the mechanisms of transmission and by the size biased
degree distribution p◦. In other words, for each branching process Ẑ(N) ∈ Z, the o�spring
distribution of Ẑ(N) is identical to the distribution of the number of cases caused by an
infected node, if the degree of the node is drawn from the size biased degree distribution

p
(N)
◦ (with p

(∞)
◦ = p◦). We construct the branching process B of Z by assigning degrees

to the individuals of B. If B = Ẑ(N), then the degree Dx(B) of x(B) is drawn from p
(N)
◦ .

Given the degree Dx(B), the o�spring distribution of the individual x of B is governed
by the probability law of transmission, speci�ed in the epidemic model.

More speci�cally, we construct the branching processes of Z as follows. Let {Ux}x∈X be
a sequence of independent random variables, uniformly distributed on the interval [0, 1].
We use Ux to draw the degree of the individual x(B), B ∈ Z. Unless the individual x is

the ancestor (a, τa), the degree Dx(B) of x(̂Z) is drawn as follows.

If

G◦(k − 1) ≤ Ux < G◦(k) (D.5)

then the individual x(Ẑ) is assigned the degree k.

If

G◦(k − 1) ≤ Ux < min(p
(N)
◦ (k), p◦(k)) +G◦(k − 1) (D.6)

then the individual x(Ẑ(N)) is assigned the degree k. If this does not hold for any k

then the degree of the individual x(Ẑ(N)) is drawn according to some rule (which we
do not specify yet since the details are not important for this stage of the proof) so
that the marginal degree distribution of this individual agrees with the empirical size
biased degree distribution. The procedure of assigning degrees is illustrated in Figure
D.1.
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p◦(2)
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p
(N)
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G
(N)
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(N)
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p
(N)
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(N)
◦ (3)

0 1UyUx

Figure D.1: Schematic illustration of the procedure of assigning degrees. Top: Size
biased degree distribution. The individuals x(Ẑ) and y(Ẑ) both have degree 3. Center:
Empirical size biased degree distribution of GN . Bottom: The degrees of x(Ẑ) and
x(Ẑ(N)) coincide since Ux belongs to the intervals [G◦(2), G◦(3)) and [G◦(2), G◦(2) +

p
(N)
◦ (3)). The degrees of y(Ẑ) and y(Ẑ(N)) do not coincide since y(Ẑ(N)) is assigned the
degree 2.

The degrees of the ancestor are drawn analogously, with the size biased degree distribu-
tion p◦ replaced by the underlying degree distribution p, and the empirical size biased

degree distribution p
(N)
◦ replaced by the empirical degree distribution p(N), since the

initial case is assumed to be chosen uniformly at random.

Not making details explicit, the mechanism of transmission of the disease is assumed to
satisfy:

A6) The mechanism of transmission is such that if we have Dx(B1) = Dx(B2) and
RB1(x) = RB2(x) for two branching processes B1, B2 ∈ Z, then almost surely
RB1(y) = RB2(y) for each child y of x. That is, if the individuals x(B1) and x(B2)
are both realized (or both not realized) and if their degrees coincide, then almost
surely y(B1) is realized if and only y(B2) is realized for each child y of x.3

A7) The transmission mechanism is assumed to be independent of d̄ and {Ux}x∈X .

We say that two branching processes B1, B2 of Z coincide up to generation n if Rx(B1) =
Rx(B2) and Dx(B1) = Dx(B2) for each individual x of generation |x| ≤ n. We also say

that B
(n)
1 and B

(n)
1 coincide. That is, B

(n)
1 and B

(n)
1 coincide if the realized individuals

of generation 1, . . . , n and their degrees coincide for the two branching processes.

We now show that there exists some event H1 and some generation function κ : N→ N
that satis�es

1. P̂ (H1) = 1

2. For each ω ∈ H1 there exists N1(ω) such that whenever N ≥ N1, it holds that
B(κ(N)) coincide for all B ∈ ZN

3. κ is non-decreasing and κ(N)→∞ as N →∞
3We may, for instance, construct the mechanism of transmission as follows. Suppose that, on the

current probability space there exists a supply of independent random variables {U(i)
x }i,x, uniformly

distributed on [0, 1], and a collection {Tx}x of independent transmission weights, distributed as T (T
plays the same role as in section 4) and independent of the Ux. For a branching process B ∈ Z, the
number of children of x(B) (provided that x(B) is realized) is the number of indices i, 1 ≤ i ≤ Dx(B)−1

for which U
(i)
x ≤ Tx. This construction satis�es the assumption A6.
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That is, we show that we may choose the generation function κ so that with probability
one, the branching processes of ZN coincide up to generation κ(N) for all but �nitely
many values of the population size N .

To this end, de�ne

A
(n)
N := {B(n) coincides for every B ∈ ZN}.

In words, A
(n)
N is the event that Ẑ and Ẑ(N ′) coincide up to generation n whenever the

population size N ′ is at least N . Note that the event A
(n)
N is non-decreasing in N .

For each �xed generation n,

P̂

(⋃
N

A
(n)
N

)
= 1 (D.7)

Indeed, for each individual x ∈ X the event that Dx(Z(N′))
= Dx(Z) for all N

′ ≥ N is the
event that

G◦(k − 1) ≤ Ux < inf
N ′≥N

min
(
p

(N ′)
◦ (k), p◦(k)

)
+G◦(k − 1) (D.8)

for some k ∈ N.

By assumption A5

inf
N ′≥N

min(p
(N ′)
◦ (k), p◦(k))↗ p◦(k)

as N →∞ for each k ∈ N. Since (we may ignore the null event {Ux = 1})

G◦(Dx(Ẑ) − 1) ≤ Ux < G◦(Dx(Z))

the event in (D.8) happens for some population size N ∈ N almost surely. In other
words, for each individual x ∈ X there exists with probability one some N ∈ N such that
Dx(Ẑ(N′))

= Dx(Ẑ) for all N
′ ≥ N .

Thus, it is readily checked that the assertion in (D.7) holds for n = 0 (recall that
generation 0 consists of the ancestor). The assertion in (D.7) now follows by induction
over n and assumption A6.

Since
P̂
(
A

(n)
N

)
→ 1

as N → ∞ for each n ∈ N there exists a strictly increasing (non-random) sequence
{κ−1(n)}n∈N in N such that ∑

n∈N

(
1− P̂

(
A

(n)
κ−1(n)

))
<∞.

By the Borel Cantelli Lemma (Theorem D.2) the event(
A

(n)
κ−1(n)

)c
(D.9)

happens only for �nitely many n ∈ N almost surely. That is, with probability one Ẑ and
Ẑ(N) coincide up to generation κ(N) for all but �nitely many values of the population
size N ∈ N, where κ : N→ N is the function that satis�es

κ(N) = sup{n ∈ N;κ−1(n) ≤ N}

for all n ∈ N.

Thus, there exists some event H1, P̂ (H1) = 1, such that for each ω ∈ H1 there exists
N1(ω) such that Ẑ and Ẑ(N) coincide up to generation κ(N) for each population of size
at least N1. Note that κ(N)→∞ as N →∞.
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Remark D.2. If d̄ is a sequence of independent copies of K ∼ p then the results presented
in this section holds for almost every realization of d̄ by the Strong Law of Large Numbers.
By following the steps performed above, it is straightforward to show that we may choose
a common non-random generation function κ for almost every realization of d̄.

D.2.1 Approximation of the epidemic process

In this section, we construct the epidemic process Ê(N) and show that in the early phase

of the epidemic Ê(N) coincides with the branching process Ẑ in the limit as the population
size N tends to in�nity. The cornerstone of the proof is the result described in section
2.5; we may construct the graph GN as the epidemic propagates, by pairing the half-
edges of infected nodes. In other words, we explore GN along with the spread of the
disease, pairing the infectious half-edges along which the disease is transmitted. Since
we pair each infectious half-edge with a half-edge chosen uniformly at random among
the free (not yet paired) half-edges, the probability that the node vi of GN is chosen is
proportional to the number of free half-edges attached to vi.

We say that a node v is involved at a certain stage of this pairing procedure if some
half-edge attached to v is already paired. The branching process coupling breaks down
if a collision occurs, that is if a half-edge attached to an already involved node is chosen
in the pairing procedure. We show that the generation function κ may be chosen so
that almost surely the branching coupling breaks down before generation κ(N) only for
�nitely many values N of the population size.

E(N)
i1

E(N)
i2

E(N)
i3

E(N)
i4

Ux Uy0 1

x

y

Figure D.2: The individuals x(Ẑ(N)) and y(Ẑ(N)) are both assigned the degree di2 of the

node vi2 . The coupling of the epidemic process Ê(N) with the approximating branching

process Ẑ(N) breaks down when the individual y of Ẑ(N) is realized, since x(Ẑ(N)) and

y(Ẑ(N)) collide. That is, vi2 is chosen for the second time in the pairing procedure when

y of Ẑ(N) is assigned the degree di2 .

We now describe how the epidemic processes Ê(N), N ∈ N, are constructed. To this end,
we give some additional details on the procedure of assigning degrees to the individuals
of the branching processes of Z. See Figure D.2 for an illustration of this procedure. We
partition the interval [0, 1] into D(N) disjoint Borel sets of the form

E(N)
i,j , (D.10)

1 ≤ i ≤ N, 1 ≤ j ≤ di, each of measure 1
D(N) , independently of {Ux}x∈X . For some given

enumeration of the di half-edges attached to the node vi of GN , we assign the set E(N)
i,j

to the jth half-edge of vi. If

Ux ∈ E(N)
i,j (D.11)
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then the individual x of Ẑ(N) is assigned the degree di of the node vi. The construction
given in (D.6) translates to[

G◦(k − 1), G◦(k − 1) + min(p
(N)
◦ (k), p◦(k))

)
⊂

⋃
vi∈V(N)

k

E(N)
i (D.12)

for each k ∈ N, where V(N)
k is the set of nodes, vi say, of GN such that the degree di of

vi equals k, and

E(N)
i :=

 ⋃
1≤j≤di

E(N)
i,j

 . (D.13)

To construct the epidemic process Ê(N), we let Ẑ(N) and Ê(N) coincide. If the individual

x of Ẑ(N) is realized, then the event in (D.11) corresponds to chosing the jth half-edge
of the node vi in the pairing procedure. The coupling breaks down if a node is chosen
for the second time in the pairing procedure. This happens if

Ux, Uy ∈ E(N)
i

for some node vi and two distinct realized individuals x and y of Ẑ(N), and we say that

x(Ẑ(N)) and y(Ẑ(N)) collide. In the example of Figure D.2, x and y of Ẑ(N) collide.

This construction ensures that Ẑ, Ẑ(N) and Ê(N) coincide until a collision occurs or until

the degrees of a realized individual of Ẑ and Ẑ(N) do not coincide, whichever occurs
�rst.

The following requirement is a convenient way to ensure that two speci�c individuals can
only collide for a �nite number of values of the population size N . We include it since
it is instructive, although it is not strictly needed for the proof. For �xed N and each
k ∈ N, let jk = jk(N) be the largest integer that satis�es

jk
k

D(N)
≤ min

(
p◦(k), p

(N)
◦ (k)

)
.

In addition to the constraint given in (D.12), we assume that for each degree k, there is

a collection consisting of jk sets E(N)
i that are intervals and that form a partition of the

interval [
G◦(k − 1), G◦(k − 1) + jk

k

D(N)

)
,

as shown in Figure D.3. A collision occurs if Ux ∈ E(N)
i and Uy ∈ E(N)

i for two distinct
realized individuals x, y ∈ X of Z(N) and some node vi of GN . Loosely speaking, this
requirement ensures that collisions happens if the distance between Ux and Uy is small
for two distinct individuals x and y. Note that

jk
k

D(N)
→ p◦(k)

as N →∞.

G◦(k − 1) G◦(k)

E(N)
i1

E(N)
i2

E(N)
i3

E(N)
i4

Figure D.3: The sets E(N)
i1

, . . . , E(N)
i4

are intervals. Here jk = 4.
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Let the random variable τ(N) be the smallest value of n such that two distinct realized
individuals x(Z(N)) and y(Z(N)) collide and |x| = n. That is, n is the �rst generation in
which a collision occurs. To show that we may choose the generation function κ so that
almost surely

τ(N) > κ(N)

for all but �nitely many values of the population size N , we note that if

G◦(k − 1) ≤ Ux < G◦(k − 1) + jk
k

D(N)

for some k, then the individual x of Z(N) can only collide with the realized individual

y of Z(N) if Ux is within Euclidean distance k
D(N) of Uy. It is now straightforward to

employ the technique in section D.2 to show that we may choose the generation function
κ such that almost surely τ(N) > κ(N) for all but �nitely many values of the population
size N and κ(N)→∞ as N →∞.

Remark D.3. Remark D.2 applies here as well. That is to say, if the degree sequence
d̄ consists of independent copies of K ∼ p we may choose the generation function κ so
that for almost every realization of d̄ it holds almost surely that τ(N) > κ(N) for all but
�nitely many values of the population size N

D.2.2 Asymptotic growth rate

In the previous sections we have seen that there exists a non-decreasing function κ such
that κ(N) → ∞ as N → ∞, and there exists almost surely some (random) number N ′

such that for each population of size N ≥ N ′ the three processes Ẑ, Ẑ(N) and Ê(N)

coincide up to generation κ(N). We construct the epidemic forward process Ê(N) up to
generation κ(N), and refer to the epidemic process so obtained as a stopped epidemic
process.

If Ẑ is supercritical, by Theorem (2.3) the asymptotic growth rate of Ẑ is almost surely
exponential provided that Ẑ does not go extinct, i.e

|Ẑn|
rn

a.s→ W

as n→∞ where Ẑn is the number of realized individuals of generation n and the random
variable W is as in (2.12) up to multiplication by a positive constant.

Thus

Ψ(N)

rκ(N)

a.s→ W (D.14)

as N →∞, where Ψ(N) is the number of individuals realized in generation κ(N) of Ẑ(N).
Note that we may choose κ(N) such that

|Ẑ(κ(N))
(N) |
N

a.s.→ 0 (D.15)

as N → ∞, where |Ẑ(κ(N))
(N) | is the number of realized individuals of Ẑ(N) belonging to

a generation ≤ κ(N). Indeed, as pointed out in the last paragraph of section 3.1, the
coupling breaks down when the epidemic reaches a size of order

√
N . Thus, (D.15) is a

necessary condition on the generation function κ.
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D.3 Backward processes and the size of a major outbreak

In this section, we show that a backward process can be used to approximate the expected
�nal size of the epidemic, as described in section 3.2. In the limit as the population size
N →∞, the expected �nal size of a major outbreak conditioned on that the approximat-
ing forward branching process Ẑ avoids extinction is given by the probability of survival
of a backward approximating process Ŷ .

Let v be some node of GN . Denote the backward epidemic process (on some probability
space) corresponding to v by S(N)(v). In the remainder of this section, we suppress the
dependence on v and simply write S(N) for S(N)(v). Let the parameter space

Θ = N∞ × N∞ × [0, 1)

have elements of the form
θ = (N,m, ε).

Let further {Ŷθ}θ∈Θ be a collection of single-type branching processes with common type
space (the Ŷθ are actually two-type branching processes, since the ancestor a is of the
unique type 0). The space of individuals of these branching processes is denoted by
Xb. We use the branching process terminology and notation of section D.1 also for the
branching processes considered in this section.

The main idea is as follows. We assume that v is chosen uniformly at random. For each
parameter vector θ = (N,m, ε) ∈ Θ we construct a copy Ŝθ of the epidemic process
S(N). Note that the the population sizes are consistent. In other words, N is the �rst
component of the parameter vector θ. For each θ, we couple the epidemic process with
a backward branching process Ŷθ. This results in a collection {Ŝθ}θ of copies of the
backward epidemic processes of {S(N)}N . Recall that v contracts the disease if and only
if some initial case is a member of the susceptibility set S(v) of v, as described in section
3.2. If a half-edge of some node of the coupled backward epidemic process Ŝθ is paired
with an infectious half-edge attached to a node of generation κ(N) of the stopped forward
epidemic process Ê(N) then the initial case belongs to the susceptibility set of v for the
speci�c coupling. We then �nd a sequence {Θb}b of subsets of the parameter space Θ
that satis�es

inf
Θb

{N : (N,m, ε) ∈ Θb} → ∞

and

{Ẑ → 0, v∗ 6∈ Sθb(v)} P̂→ {Ẑ → 0}

{Ẑ 6→ 0, v∗ 6∈ Sθb(v)} P̂→ {Ẑ 6→ 0, Ŷ → 0}

{Ẑ 6→ 0, v∗ ∈ Sθb(v)} P̂→ {Ẑ 6→ 0, Ŷ 6→ 0}

(D.16)

as b→∞ for any parameter sequence {θb}b, θb ∈ Θb, where Sθb(v) is the susceptibility

set of v corresponding to the epidemic backward process Ŝθb , v∗ is the initial case and P̂
is the probability measure governing the couplings.

D.3.1 Construction of the coupling

We write Ŷ for the branching process Ŷ(∞,∞,0) and Ŷ(N) for the branching process

Ŷ(N,∞,0). Note that Ŷ = Ŷ(∞). The branching processes of the form Ŷ(N) plays a similar

role for S(N) as Ẑ(N) for Ê(N). More speci�cly, the branching process Ŷ plays a similar

role as Ẑ in the sense that it is the limiting branching process of the approximating
branching processes as the population size N →∞.
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We construct the Ŷ(N) in a similar manner as the forward branching processes Ẑ(N),

N ∈ N∞. To this end, let {U (y)}y∈Xb
be a collection of independent random variables,

uniformly distributed on [0, 1] and independent of the forward epidemic process and
the forward branching processes constructed in the previous section. Each individual
y ∈ Xb is assigned the random variable U (y). The individual y of Ŷ is then assigned a
degree Dy(Ŷ ) according to (D.5), with Ux replaced by U (y). Similarly, the individual y

of B̂ = Ŷ(N), N < ∞, is assigned a degree Dy(B̂) according to (D.6), with Ux replaced

by U (y).

Analogously to the forward processes, the number of o�spring of a realized individual
x ∈ Xb of Ŷ(N) = B̂ with degree Dx(B̂) is distributed as the number of neighbours that
would attempt to infect a node of degree Dx(B̂) − 1. For the branching processes of

{Ŷ(N)}N∈N∞ the equivalents of assumptions A6-A7 are assumed to hold. That is, for any

two branching processes B1, B2 ∈ {Ŷ(N)}N∞ , if the individuals x(B1) and x(B2) are both
realized (or both not realized) and if their degrees coincide, then almost surely y(B1) is
realized if and only y(B2) is realized for each child y of x.

Analogously to the forward processes, we couple the branching process Ŷ(N) with the

epidemic processes Ŝ(N,∞,0) by letting them coincide. As before, the coupling breaks

down if a realized individual of Ŷ(N) collides with another realized individual of Ŷ(N) or

Ẑ(N). That is, the coupling breaks down if for some realized individual x of Ŷ(N) and
node vi of GN

U (x), U (y1) ∈ E(N)
i

for some realized individual y1 of Ŷ(N) or

U (x), Uy2
∈ E(N)

i

for some realized individual y1(Z(N)) of generation |z2| ≤ κ(N).

As pointed out in the last paragraph of section 3.1, by a birthday problem type of ar-
gument collision occurs when the epidemic reaches a size of order

√
N . For this reason,

in the limit as N → ∞, the coupling breaks down before the backward process gets
connected with the forward process. To address the possibility that the coupling breaks
down at a too early stage, we approximate the epidemic backward process by the branch-
ing process Ŷ(N,m,ε), rather than Ŷ(N), where ε > 0 is some small positive number and
m is some large positive integer.

D.3.2 Trimmed branching processes

To address the possibility that the coupling breaks down at a too early stage, we ap-
proximate the epidemic backward process by trimmed branching processes of the form
Ŷ(N,m,ε) where m < ∞. To this end, we introduce the trimmed empirical degree distri-

bution p
(N,m)
◦

p
(N,m)
◦ (k) =

p
(N)
◦ (k) if 2 ≤ k < m

p
(N)
◦ (1) +

∑
h≥m p

(N)
◦ (h) if k = 1.

(D.17)

Note that p
(N,∞)
◦ = p

(N)
◦ and p

(N,m)
◦ → p

(∞,m)
◦ as N →∞. The o�spring distribution of

the branching process Ŷ(N,m,0) is identical to the o�spring distribution of Ŷ(N) = Ŷ(N,∞,0)

except that the size biased empirical degree distribution p
(N)
◦ is replaced by its trimmed

counterpart p
(N,m)
◦ in the construction of Ŷ(N,m,0).

More speci�cally, the branching process Ŷ(N,m,0) is constructed by altering the degrees

assigned to the individuals of Ŷ(N) = Ŷ(N,∞,0); if an individual x of Ŷ(N) is assigned

63



the degree Dx(Ŷ(N))
≥ m then x of Ŷ(N,m,0) is assigned the degree 1. Note that if this

happens then the individual x of Ŷ(N,m,0) have 0 children. Apart from this, the realized

individuals of the two coupled branching processes Ŷ(N,m,0) and Ŷ(N) and their degrees
coincide. The construction of the trimmed branching processes is illustrated in Figure
D.4.

y

Figure D.4: Construction of the trimmed branching process Ŷ(N,m,0) for m = 5. The

individual y of Ŷ(N) is realized and is assigned the degree Dx(Ŷ(N))
= 5. The descendants

of the individual y of Ŷ(N,5,0) are not realized since Dx(Ŷ(N))
≥ m.

We now consider the construction of the copy Ŝ(N,m,0) of the backward epidemic process
S(N). As we saw in section 2.5, the order in which the half-edges are paired does not
a�ect the distribution of the topology of GN , as long as the pairing is uniform. Similar
to the case m = ∞, we construct a coupling of the epidemic process Ŝ(N,m,0) and the

approximating branching process Ŷ(N,m,0) by letting them coincide. As before, the cou-
pling breaks down if a collision occurs. This coupling has the following interpretation.
If a node v of degree k ≥ m is chosen in the pairing procedure, then we postpone the
pairing of the half-edges attached to v until the coupling breaks down.

D.3.3 Erased branching processes

If ε > 0 we refer to Ŷ(N,m,ε) as an erased branching process. To address the possibility
that the coupling with the backward epidemic process breaks down before the backward
epidemic process and the forward epidemic process has become connected or gone extinct,
we consider erased branching processes. The idea of erased backward processes was used
by Ball et al. (2009, 2014).

Take some trimmed branching process Ŷθ0 , where θ0 = (N,m, 0) and let θε = (N,m, ε).
The number ε ∈ (0, 1) is the sum of two strictly positive terms ε = ε1 + ε2(m, ε1) (to
be speci�ed later in this section). That is, ε = ε(m, ε1) is a function of m and ε1. The
coupling of Ŝθ0 with Ŷθ0 breaks down if a node vi is chosen for the second time in the
pairing procedure. This might occur for three reasons. First, an already paired half-
edge of the forward process might be chosen in the pairing procedure of the backward
process. Second, an already paired half-edge of the backward process might be chosen in
the pairing procedure of the backward process. Third, an unpaired half-edge attached to
a node that is involved in the backward epidemic process might be chosen in the pairing
procedure.

By erasing realized individuals of the approximating branching process Ŷθ0 , we ensure
that in the limit N → ∞, a collision does not occur until a certain proportion of the
nodes of GN are involved. As we will see later in this section, this allows us to connect
the forward and backward epidemic processes on the set {Ẑ 6→ 0, Ŷ 6→ 0} in the limit as
N →∞.

The o�spring distribution νθε of Ŷθε = Ŷ(N,m,ε) and the o�spring distribution νθ0 of
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Ŷθ0 = Y(N,m,0) are related as follows

νθε(k) =
∑
j≥k

νθ0(j)

(
j

k

)
(1− ε)kεj−k. (D.18)

That is, erasing each realized individual of Ŷθ0 independently with probability ε results
in a branching process with the same reproduction law as Ŷθε .

The coupling of the erased branching processes is constructed a follows. Pick some
arbitrary (but small) ε1 > 0. As mentioned above, ε = ε1 +ε2(ε1,m), where the function
ε2 is yet to be speci�ed. The two branching processes Ŷθ0 and Ŷθε coincide, except
that some realized individuals are erased from Ŷθ0 with marginal probability ε, which
results in Ŷθε . This happens independently of the degree and other characteristics of the
individuals of Ŷθ0 . More speci�cally, we construct Ŷθε from Ŷθ0 by erasing the individuals
of Ŷθ0 that collide. We erase some additional individuals (according to some rule which
we do not specify since the details are not important here) so that that the marginal
probability of being erased is ε, independently of the degree and other characteristics of
the individual. The construction of the coupling of the erased processes is illustrated in
Figure D.5.

x

y

E(N)
i

U(x) U(y)0 1

Figure D.5: Construction of the erased branching process Ŷθε . The individual y(Ŷθε) and
its descendants are erased since x(Ŷθ0) and y(Ŷθ0) collide.

The construction of Ŷθε breaks down if the marginal probability of erasing an individual
is larger than ε, or if the event that an individual x of Ŷθε is erased is not independent of
its degree. The latter happens if the proportion of involved nodes of (trimmed) degree k
is large enough for some degree k. There are two ways in which an node v can take part in
a collision in the construction of the backward epidemic process Êθε . First, a (paired or
unpaired) half-edge attached to an already involved node u might be chosen when some
of the half-edges attached to v is paired. If this happens, the individual corresponding to
the half-edge attached to v is erased. Second, a (paired or unpaired) half-edge attached
to v might be chosen in the pairing procedure after v has become involved. If the chosen
half-edge is unpaired, then the corresponding individual of Ŷθε is erased.

The idea is as follows. We run the backward processes as long as the proportion of
involved nodes of trimmed degree k is at most ε1 for each k, and the probability that
some unpaired half-edge attached to a node involved in the backward process is chosen
in the pairing procedure is at most ε2(m, ε2) (the function ε2(m, ε2) is speci�ed below).
This ensures that the event that an individual x of Ŷθε is erased is independent of its
degree. Since the degrees are assigned from the trimmed empirical degree distribution

p
(N,m)
◦ we are guaranteed that the proportion of involved nodes of trimmed degree k is
at most ε1 for each k until at least
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ε1 inf
{∣∣∣V(N,m)

k

∣∣∣ : V(N,m)
k 6= ∅, 1 ≤ k ≤ m

}
−
∣∣∣Z(κ(N))

(N)

∣∣∣ (D.19)

nodes of GN are involved. Here |Z(κ(N))
(N) | is the number of realized individuals x of the

forward approximating branching process Z(N) stopped in generation κ(N), and V(N,m)
k

is the set of the nodes of GN that are assigned the trimmed degree k. That is

V(N,m)
k =



V(N)
1 ∪

( ⋃
j≥k
V(N)
j

)
if k = 1.

V(N)
k if 2 ≤ k ≤ m− 1

∅ otherwise.

Dividing by N in (D.19) and using |Z(κ(N))|/N → 0 as N → ∞ yields that in the limit
as N →∞, a lower bound on the proportion of the nodes of GN that are involved when
for some degree k an individual of degree k is realized and the proportion of involved
nodes of degree k is larger than ε1 is given by

ε1δm > 0, (D.20)

where

δm := min
{
p

(∞,m)
◦ (k) : p

(∞,m)
◦ (k) > 0

}
. (D.21)

It can be shown (Ball et al. 2009) that for �xed m and ε1 > 0 small enough, there
exists a strictly positive function ε2(ε1,m) such that in the limit as the population size
N →∞, the (marginal) probability that an unpaired half-edge attached to a node that is
involved in the backward epidemic process is chosen in the pairing procedure is bounded
from above by ε2(ε1,m) until the backward process reaches a size of at least bNε1δmc.
Moreover, ε2(ε1,m) → 0 as ε1 → 0 for �xed m. That is, ε → 0 as ε1 → 0 for �xed
m. The proof, which is to be found in Ball et al. (2009), is omitted. That is, in the
limit N →∞, we may pair at least a fraction ε1δm of the half-edges, before the coupling
breaks down. Note that the coupling might not break down, since Ŷθε might become
extinct.

The coupling of the erased processes has an important interpretation, similar to the
interpretation for the trimmed processes. Recall that the order in which the half-edges
are paired does not a�ect the distribution of the topology of the network, provided
uniform pairing. The coupling of Ŝθε and the epidemic process S(N) corresponding to

the erased backward process Ŷθε has the following interpretation: In the pairing procedure
we choose half-edges (paired or unpaired) uniformly at random among all half-edges of
GN . If we choose an already paired half-edge, then the pairing of the associated half-edge
is postponed until after the coupling breaks down. If we choose an unpaired half-edge
attached to an already involved node, then the half-edges are paired, and both of the
corresponding individuals are erased from Ŷθε .

D.3.4 Connecting the processes

Let {Θb}b∈N be a sequence of subsets of the parameter space Θ such that

inf
Θb

{N : (N,m, ε) ∈ Θb} → ∞

inf
Θb

{m : (N,m, ε) ∈ Θb} → ∞

sup
Θb

{ε : (N,m, ε) ∈ Θb} → 0

(D.22)
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as b→∞.

We write lim infΘb
for limb→∞ infθ∈Θb

. Repeating the analysis performed in section D.2.1
gives

{Ŷ → 0 }
P̂
⊂ lim inf

N
{Ŷ(N) → 0} ⊂ lim inf

Θb

{Ŷθ → 0} (D.23)

where
P̂
⊂ denotes inclusion up to a set of P̂ -measure zero. That is, if A

P̂
⊂ B then

P̂ (A \B) = 0. Note that (Friedman 1982, Theorem 1.2.1-1.2.2)

lim sup
Θb

P ({Ŷ → 0} \ {Ŷθ → 0}) ≤ lim
b
P ({Ŷ → 0} \ inf

Θb

{Ŷθ → 0})

= P ({Ŷ → 0} \ lim inf
Θb

{Ŷθ → 0})

= 0

(D.24)

and

lim sup
Θb

P ({Ŷθ → 0} \ {Ŷ → 0})

= lim sup
Θb

(P ({Ŷθ → 0})− P ({Ŷ → 0} ∩ {Ŷθ → 0}))

≤ lim sup
Θb

P ({Ŷθ → 0})− lim inf
Θb

P ({Ŷ → 0} ∩ {Ŷθ → 0̄})

≤ lim sup
Θb

P ({Ŷθ → 0})− P ({Ŷ → 0} ∩ lim inf
Θb

{Ŷθ → 0})

= lim sup
Θb

P ({Ŷθ → 0})− P ({Ŷ → 0}})

= 0,

(D.25)

where the second last step follows from (D.23) and the last step follows from Theorem
D.4 below. For proofs of the special case s = 1 of Theorem D.4, see Britton et al. (2007,
Lemma 4.1) or Leskelä and Ngo (2017, Lemma 2.6).

In view of (D.24) and (D.25)

{Ŷθb → 0} P̂→ {Ŷ → 0}

{Ŷθb 6→ 0} P̂→ {Ŷ 6→ 0}
(D.26)

for any sequence {θb}b such that θb ∈ Θb.

Theorem D.4. Let Z be a non-singular positively regular s-type Galton-Watson branch-
ing process with extinction probabilities q̄ and o�spring distribution ν. For each n ∈ N,
let Z(n) be an s-type Galton-Watson branching processes with extinction probabilities q̄(n)

and o�spring distribution ν(n). If

ν
d→ ν(n) as n→∞,

where
d→ denotes convergence in distribution, then

q̄(n) → q̄ as n→∞

Proof. By Fatous lemma (Friedman 1982, Theorem 2.10.5)

lim inf
n

lim
k
P (Z(n) has gone extinct before generation k) ≥ q̄,
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where the inequality holds element-wise, and lim inf is taken element-wise. If q̄ = 1̄, the
assertion follows.

Assume that |q̄| < 1. We proceed by contradiction. Assume that q̄(n) 6→ q̄ as n → ∞.
That is, there exists a subsequence {q̄(nk)}k of {q̄(n)}n such that q̄ is not an accumulation
point of {q̄(nk)}k. Assume without loss of generality that {q̄(nk)}k is the whole sequence
{q̄(n)}n.

We have that {q̄(n)}n is a sequence in [0, 1]s, and since [0, 1]s is compact, closed and
bounded it is sequentially compact (Rudin 1976, Theorem 2.40-2.41). That is, there
exists some subsequence of {q̄(n)}n that converge to some point q̄∗ of [0, 1]s. Assume
without loss of generality that

q̄(n) → q̄∗. (D.27)

Let fZ and fZ(n)
be the probability generating functions of the o�spring distributions of

Z and Z(n), respectively. For two vectors z̄ = (z1, . . . , zs) and k̄ = (k1, . . . , ks), we de�ne

z̄ k̄ = zk1
1 · . . . · zkss . By the triangle inequality, for any z̄ ∈ [0, 1]s and ȳ ∈ [0, 1]s

|(fZ(z̄))i − (fZ(n)
(x̄))i| ≤

∑
k∈Ns

0

|νi(k)z̄k − ν(n)
i (k)x̄k|

≤
∑
k∈Ns

0

|νi(k)z̄k − νi(k)x̄k|+
∑
k∈Ns

0

|νi(k)x̄k − ν(n)
i (k)x̄k|

≤
∑
k∈Ns

0

νi(k)|z̄k − x̄k|+
∑
k∈Ns

0

|νi(k)− ν(n)
i (k)|

(D.28)

for 1 ≤ i ≤ s, where ν = (ν1, . . . , νs) and ν
(n) = (ν

(n)
1 , . . . , ν

(n)
s ).

Note that convergence in distribution implies convergence in total variation norm for
discrete random variables, that is∑

k

|νi(k)− ν(n)
i (k)| → 0 (D.29)

as n→∞.

Indeed, let K be some subset of Ns0 of �nite cardinality. Then∑
k∈Ns

0

|νi(k)− ν(n)
i (k)| ≤

∑
k∈K

|νi(k)− ν(n)
i (k)|+

∑
k∈Kc

νi(k) +
∑
k∈Kc

ν
(n)
i (k)

=
∑
k∈K

|νi(k)− ν(n)
i (k)|+ 2−

∑
k∈K

νi(k)−
∑
k∈K

ν
(n)
i (k).

(D.30)

We see that for any ε > 0, we may choose K such that for n large enough, the right hand
side of (D.30) is smaller than ε. Hence the assertion (D.29) holds.

Combining (D.27), (D.28) and (D.29) gives q̄(n) = fZ(n)
(q̄(n)) → fZ(q̄∗). Hence f(q̄∗) =

q̄∗. Since Z is assumed to be positively regular and non-singular, the only �xed points
of fZ are 1̄ and q̄. Thus q̄∗ = 1̄ or q̄∗ = q̄. By assumption, q̄∗ = 1̄.

We now derive a contradiction by showing that q̄(n) is bounded away from 1̄ for large n.

By Theorem 2.2, the Perron root ρ(M) of the mean matrix M of Z satis�es ρ(M) > 1.
Let P be the collection of o�spring distributions of s-type Galton-Watson processes that
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have �nite support and are dominated by ν. That is, for each η = (η1, . . . , ηs) ∈ P we
have that ηi has �nite support and for each k ∈ Ns0, k 6= 0̄

ηi(k) < νi(k) if νi(k) > 0

ηi(k) = νi(k) if νi(k) = 0
(D.31)

for 1 ≤ i ≤ s. Note that ηi puts more probability mass on 0̄ than νi. For any η ∈ P,
let Zη be an s-type branching process with o�spring distribution η, and denote the
corresponding mean matrix by Mη.

By the Collatz-Wielandt formula (Theorem D.3) and monotone convergence (Friedman
1982, Theorem 2.10.4), we have

sup
η∈P

ρ(Mη) = ρ(M).

Take some η ∈ P such that ρ(Mη) > 1 and Zη is positively regular. It follows that
the extinction probabilities q̄η of Zη satis�es |q̄η| < 1. Since the o�spring distribution η
of Zη is dominated by the o�spring distribution ν of Z and η has �nite support, there
exists some n′ such that ν(n) dominates η for all n ≥ n′. By a simple coupling argument,
q̄(n) ≤ q̄η for all n ≥ n′, where the inequality holds element-wise. Thus, by contradiction,
q̄(n) → q̄ as n→∞.

Now consider the coupling {Ŝθ, Ŷθ} of the epidemic backward process S(N) and the

branching process Ŷθ. There are three possibilities.

P1) The coupling breaks down before Ŷθ goes extinct and before the forward and back-
ward processes become connected.

P2) The forward and backward process become connected before the coupling breaks
down and before Ŷθ goes extinct.

P3) Ŷθ goes extinct before the forward and backward process become connected and
before the coupling breaks down.

Take some �xed m′ and ε′ = ε′1 + ε′2(m′, ε′1), where ε′1 > 0 is "small enough". For any
population size N , denote the number of infectious unpaired half-edges attached to an
individual belonging to generation κ(N) of the limiting forward branching process Ẑ by
Ψ(N). For each θN = (N,m′, ε′), we introduce the following three stopping times in N∞,
each corresponding to one of the possibilities P1-P3.

1. T
(b)
θN

is the number of nodes involved in the backward process when the coupling of

ŶθN and S(N) breaks down.

2. T
(e)
θN

is the total number of realilized individuals of ŶθN when ŶθN becomes extinct.

3. T
(c)
θN

is the number of half-edges drawn when one of the Ψ(N) infectious half-edges
is drawn and the corresponding individual is realized.

That is, the forward and backward epidemic processes become connected if T
(c)
θN

<

min(T
(b)
θN
, T

(e)
θN

).

We �rst note that on the set {Ẑ → 0}, in the limit as N → ∞ we have that the initial
case v∗ can only (up to a set of P̂ -measure zero) be a member of the susceptibility set
SθN (v) of v if v is one of the limN Ψ(N) < ∞ nodes involved in the forward process Ẑ.

This follows from the fact that the forward epidemic process Ê(N) coincides with the

limiting forward process Ẑ for all but �nitely many values of N almost surely. If v is
chosen uniformly at random then the event {Ŷ → 0, v∗ ∈ SθN (v)} converges to zero in
P̂ -measure as N →∞.
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Recall that in the limit N → ∞ the coupling does not break down until the proportion
given in (D.20) is involved. Thus

lim inf
N

T
(b)
θN

N
≥ ε′1δm′ > 0 (D.32)

almost surely. Furthermore,

T
(c)
θN

P̂→∞ (D.33)

as N → ∞. Indeed, for �xed θN , we may view the pairing procedure as choosing ele-
ments (half-edges) uniformly at random with replacement from a set consisting of D(N)

elements, where D(N) is the total degree of GN . Some of these half-edges/elements cor-
respond to realized individuals, some correspond to erased individuals. Let the random

variable T (N) have a geometric distribution with parameter
Ψ(N)

N(1−ε′) ∧ 1, where ∧ de-

notes the minimum function. Note that the probability that a speci�c half-edge is one
of the Ψ(N) infectious half edges attached to a node belonging to generation κ(N) of

the epidemic forward process E(N) is bounded from above by
Ψ(N)

N(1−ε′) , provided that the

corresponding individual is not erased. Hence, conditioned on Ψ(N), T
(c)
θN

is stochastically

larger than T (N). Now(
1− 1 ∧

Ψ(N)

N(1− ε′)

)t
→ 1 (D.34)

almost surely as N → ∞ for each �xed t ∈ N. Since the left hand side in (D.34) is
bounded by 1, the convergence holds also in mean (Grimmett and Stirzaker 1992, p. 277
) and the assertion in (D.33) follows.

Since the o�spring distribution of ŶθN converge to the o�spring distribution of Ŷ(∞,m′,ε′)
as N →∞, by (D.32) and (D.33)

P̂
(
ŶθN → 0,max( T

(b)
θN
, T

(c)
θN

) < T
(e)
θN

)
→ 0 (D.35)

as N →∞.

Let the random variable T
(N)
ε′ have a geometric distribution with parameter

Ψ(N)

N ∧ 1.

Note that, conditioned on Ψ(N), it holds that T
(c)
θN
∧Nε′δm′ is stochastically smaller than

T
(N)
ε′ .

Now, by the standard limit limx→∞(1−1/x)x = e−1 we have for any constant c > 0(
1−

Ψ(N)

N
∧ 1

)bcNc
a.s→ 0 (D.36)

as N →∞ on {Z 6→ 0}.

Thus

P̂ (T
(c)
θN
≥ cN,Z 6→ 0)→ 0 (D.37)

as N →∞ for any constant c > 0.

In view of (D.32) and (D.37)

P̂ (ŶθN 6→ 0,max(T
(b)
θN
, T

(e)
θN

) < T
(c)
θN
, Ẑ 6→ 0)→ 0 (D.38)

as N →∞.
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Take some sequence {(mb, ε
(b))}b∈N in N × (0, 1) such that mb → ∞ and ε(b) = ε

(b)
1 +

ε
(b)
2 (mb, ε

(b)
1 ) → 0 as b → ∞. For each b, choose some Nb such that for any parameter

vector
θb ∈ Θb := {(N,mb, ε

(b)) : N ≥ Nb}

it holds that

P̂ (Ẑ 6→ 0, Ŷθb → 0,max( T
(b)
θb
, T

(c)
θb

) < T
(e)
θb

) ≤ 1

b

P̂ (Ẑ 6→ 0, Ŷθb 6→ 0,max(T
(b)
θb
, T

(e)
θb

) < T
(c)
θb

) ≤ 1

b
.

This implies

P̂ (Ẑ 6→ 0, Ŷθb → 0, v∗ ∈ Sθb(v)) ≤ 1

b

P̂ (Ẑ 6→ 0, Ŷθb 6→ 0, v∗ 6∈ Sθb(v))) ≤ 1

b
.

(D.39)

for every θb ∈ Θb, where v∗ is the initial case and Sθ(v) is the susceptibility set of v
corresponding to Ŝθb . Combining (D.39) with (D.26) gives (D.16). Since Ẑ and Ŷ are
independent, it holds that

P̂ (v∗ ∈ Sθb(v)|Ẑ → 0)→ 0

P̂ (v∗ ∈ Sθb(v)|Ẑ 6→ 0)→ P̂ (Ŷ 6→ 0)

P̂ (v∗ 6∈ Sθb(v)|Ẑ 6→ 0)→ P̂ (Ŷ → 0)

(D.40)

as b→∞.

Thus, in the limit as the population size N → ∞, the expected fraction of the popu-
lation ultimately infected is given by the probability P (Ŷ 6→ 0) that the limiting back-
ward branching process Ŷ avoids extinction, conditioned on that a major outbreak oc-
curs.

D.4 Maximal coupling of branching processes

In this section, we show that the coupling of the approximating branching processes of
Z = {ẐN}N∈N∞ is maximal at every index.

Recall that, for a �xed generation n, two branching processes B1 and B2 are said to
coincide up to generation n if Rx(B1) = Rx(B2) andDx(B1) = Dx(B2) whenever Rx(B1) = 1
for each individual such that |x| ≤ n. That is, B1 and B2 coincide up to generation n if
the realized individuals and their degrees coincide up to generation n.

We may characterize the fate of a branching process B up to generation n by the (random)
set

Σ
(n)
B := {(x,Dx(B)) : |x| ≤ n,Rx(B) = 1}

Note that the random element Σ
(n)
B has a countable support, S

(n)
Σ say, for each �xed

generation n, and that two processes B1 and B2 coincide up to generation n if and only
if

Σ
(n)
B1

= Σ
(n)
B2
.

We now consider any coupling ˆ̂Z = { ˆ̂Z(N)}N∈N∞ of Z and some coupling index K(n) of

{ ˆ̂Z
(n)
(N)}N∈N∞ . Let

ˆ̂ZN = { ˆ̂Z
(n)
(N)}N≤N ′≤∞ and let ˆ̂P be the probability measure governing

the coupling ˆ̂Z.
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We have for each population size N ′ ∈ N

ˆ̂P (K(n) ≤ N ′) = ˆ̂P
(

Σ
(n)
B coincide for each B ∈ ˆ̂ZN ′}

)
=

∑
σ∈S(n)

Σ

ˆ̂P
(

Σ
(n)
B = σ for each B ∈ ˆ̂ZN ′}

)

≤
∑

σ∈S(n)
Σ

inf
B∈ ˆ̂ZN′

ˆ̂P
(

Σ
(n)
B = σ

)
.

(D.41)

By construction, equality holds in (D.41) for the coupling constructed previously in this
section. We conclude that for each generation n, the coupling of the branching processes
of Z up to generation n constructed in this section is maximal at each index.
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