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Abstract

Relative survival analysis measures the survival of individuals sub-

ject to a specific disease, relative to the expected survival of these indi-

viduals had they not been subjects to the disease. Variance of relative

survival estimates is commonly calculated based on an assumption of

negligible variance in the expected survival estimates, i.e. uncertainty

in the population mortality rates is ignored. In this thesis we examine

the impact of including this uncertainty for three estimators of rela-

tive survival. From bootstrap simulations we find that the confidence

interval width for the 10 year Pohar Perme estimate increases with

16 % after including population mortality uncertainty. For age stan-

dardized Ederer II and Flexible Parametric Models, the changes in

confidence interval width were found to be small. The uncertainty of

population mortality is related to the size of the population, and we

also investigate the impact of decreasing the original 5 million pop-

ulation to a size of 2.5 and 0.5 million. The results indicate that

confidence interval widths for the smaller population sizes does not

differ much compared to the original one.
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1 Introduction

1.1 Overview

When evaluating healthcare a common question is how large the survival of
patients with a specific disease is for some given time. To answer this seemingly
simple question is not straightforward. For the medical doctor, it is not always a
simple task to determine the cause of death, when a deceased patient had several
potentially life ending diseases. And how should accidents, related to the specific
disease be classified? Relative survival estimates compare all observed deaths of
the diseased subpopulation, to what we would have expected had the patients
not been subject to the disease. The expected survival is based on the overall
population mortality, and by including this in the estimation, relative survival
avoids the difficulties with determining the cause of death.

Once the estimate has been calculated, other questions might be of interest.
How sure are we of the actual estimate? The uncertainty is usually measured by
constructing confidence intervals. As relative survival is often calculated using
the entire diseased population of a country, the need for confidence intervals has
been discussed in Läkartidningen. There, Dal & Andersson (2004) argue for not
constructing confidence intervals, as the entire target population is observed.
Dickman, Palmgren & Pawitan (2004) suggest that although this is true, the
observed outcomes should be thought of as an observation of an underlying
random process. They illustrate their reasoning with the incidence of breast
cancer cases in Sweden 2002, which was found to be 6623 cases. If year 2002
could be observed repeatedly, the authors argue that the counts would not be
exactly the same due to underlying randomness in the causes of cancer. Taking
the sample average of these repeated observations would instead estimate the
true underlying process. In this thesis we will proceed from an underlying
random process point of view.

To provide accurate confidence intervals of relative survival estimates is im-
portant. When deciding whether the relative survival of two subgroups differ, or
assessing whether cancer survival has changed with new cancer treatment, con-
fidence intervals play an important in distinguishing random fluctuations from
statistically significant differences. The aim of this thesis is to investigate the
impact of not making a common assumption when creating confidence intervals,
i.e. whether uncertainty in the population mortality rates is negligible.

1.2 Outline

We will begin with introducing some basic concepts of survival analysis in section
2, before moving on to relative survival analysis in section 3 where we introduce
the three estimators that we are to compare and some theory on the relationship
between them. In section 4 we introduce an approximation for estimating the
variance of ratios and illustrate the difficulties of this approach, before discussing
resampling techniques. In section 5 we introduce a dataset of colon cancer
patients, and smooth population mortality rates. In section 6 we present and
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discuss variance and confidence interval estimates with and without including
uncertainty from population mortality rates.

2 Survival Analysis

Survival analysis is a large subfield of statistics. The focus lies on the probability
or hazard of events which could be for instance malfunction of a machine, death,
pregnancy and many other things.

Survival data is often subject to censoring - that is, we do not observe the
event of interest for all individuals. In a healthcare research context, depending
on the aims of the study, causes of censoring could be death from other causes,
drop-out of studies or end of study period, i.e. we do not have time to wait until
all participants experience the event.

A similar complication is caused by late entries in a study. This is referred
to as truncation, but will not be treated in any detail here as the data we will
analyze was collected in such a way that all individuals are monitored starting
from date of diagnosis, as compared to initiating the monitoring, e.g. a few years
after diagnosis.

Even though survival analysis is applied in many settings, relative survival
analysis is typically used for analysis of cancer survival. Because of this we will
for convenience sometimes write cancer and death throughout the text, rather
than disease and event of interest. That being said, we stress that estimates of
relative survival typically concerns specific types of cancer, and not all types of
cancer at once.

As our focus in this thesis is in relative survival, we settle for a minimal pre-
sentation of basic survival analysis concepts, needed for introducing the relative
survival framework. For a more complete introuction, we direct the reader to
introductory texts in survival analysis, such as Klein & Moeschberger (2003).

2.1 Hazard rates and Survival Functions

Let T ≥ 0 denote a random survival time. Two quantities of fundamental
interest in survival analysis are the survival function and the hazard rate. The
following definitions of these quantities and related estimators can be found in
Aalen et al (2008). The survival function is defined as

S(t) = P(T > t),

while the hazard rate, under an assumption of T being absolutely continuous,
is defined as

α(t) = lim
∆t→0

1

∆t
P(t ≤ T < t+ ∆t|T ≥ t).

The most well known estimators of the survival function and the cumulative
hazard rate are non-parametric. The Kaplan-Meier-estimator of the survival
function is defined as

S̃(t) =
∏
Tj<t

(
1− 1

r(Tj)

)
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where r(Tj) denotes the number at risk “just before” time t. The Nelson-Aalen
estimator of cumulative hazard rate is defined as

Ã(t) =
∑
Tj≤t

1

r(Tj)
.

3 Relative Survival Analysis

The relative survival ratio was introduced by Berkson (1942) as a ratio of one
observed and one expected survival function. It is defined in Dickman & Coviello
(2015) as

RS(t) =

∑n
i=1 Si(t)∑n
i=1 S

∗
i (t)

where n is the sample size of the cancer cohort and Si(t) denotes the individual
survival function of an invidual i subject to cancer, while S∗i (t) is the expected
survival of the same individual had he or she not had cancer.

The interpretation of the relative survival ratio relates to a fictional world,
where the only possible way of dying is from cancer. That is, a relative survival
of 1 does not mean that a group of patients will survive, but that they will be
subject to the same mortality as the overall population. The relative survival
ratio could also indicate a large relative difference in survival for a rare cancer
type, while the majority of the mortality in a population could be related to
other, more common diseases.

Although it is not clear from the original papers, several authors (Dickman &
Coviello (2015), Esteve et al (1990) and Pohar Perme et al(2012)) have suggested
that the intention of the relative survival ratio was to estimate a quantity known
as net survival. We give some background before defining net survival.

For the hazard rate, one could base relative survival on both multiplicative
and additive hazard models. For a comparison of the two, see Buckley (1984).
Dickman et al (2003, p. 61) claims that additive models are generally consid-
ered “most appropriate for population-based cancer survival”. Thus we will not
discuss multiplicative hazard models further here. Instead we assume that the
individual observed hazard rate αi(t) follow an additive hazard model, defined
in Andersen & Vaeth (1989) as

αi(t) = αPi(t) + αEi(t),

where αPi(t) is the overall population hazard for individual i, while αEi(t) is
the excess hazard due to cancer for the same individual. We define net survival
for individual i, as the survival function constructed from the individual excess
hazard. The definition is given in Pohar Perme et al (2012) as

SEi(t) = exp

(
−
∫ t

0

αEi(s)ds

)
.

These individual survival functions are then averaged into the overall net sur-
vival as SE(t) = 1/n

∑n
i=1 SEi. The terminology “net” and later on “excess”, is
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due to the extra risk from having cancer. After this introduction of the central
concepts in relative survival analysis, we will now discuss different estimators of
the relative survival components.

3.1 Estimating Observed Survival

When working with large scale registry data, both events and censorings are
typically recorded at discrete timepoints, typically on yearly or monthly basis.
This produces ties, of both censored and event survival times. The tie corrected
version of the Kaplan-Meier-estimator is defined in Aalen et al (2008) as

S̃TC(t) =
∏
Tj≤t

(1− d(Tj)

r(Tj)
) (1)

where superscript TC denotes tie corrected, and d(Tj) the number of events
occuring at Tj . Here, tie corrected version is to be understood as with respect
to tied events, rather than ties between events and censorings. For the latter
kind, ties are solved by placing the censored times just after the time of the tied
observed events. As this inferred order is unlikely to hold in reality, another
estimator is commonly used for discrete timepoints data.

Cutler & Ederer (1958) describe the so called actuarial estimator or life-table
method. It is defined in Kalbfleisch & Prentice (2002) as

Ŝ(t) =
∏
Tj≤t

(1− dj
rj − cj/2

) (2)

where quantities with subscript j denotes number of individuals censored (cj),
deceased (dj) or at risk (rj) during time interval Ij = (Tj−1, Tj ]. Note that it is
sufficient to be at risk during the beginning of the interval to be counted in rj .
This estimator differs from (1), as it is defined for discrete time, but also as it
attributes only half of the at risk-time for censored individuals. The intuition
is that the censorings occur uniformly within the interval. If one agrees that
this is a better way way of handling ties of censorings and events, the actuarial
estimator is a reasonable estimator.

The following derivation of the actuarial estimator is from Cox & Oakes
(1984), but as we will see, more or less arbitrary approximations are used to
end up with the actuarial estimator. First, assume that data are recorded at
discrete, prespecified time-points Tj , e.g. at the end of each year. Let times of
censoring and events in interval j follow two separate hazard rates αDj and αCj ,
with corresponding survival times TD and TC denoting death and censoring,
with T = min(TD, TC). The hazard rates are assumed piecewisely constant on
each interval, and each interval is of length `j . We consider the contribution to
the joint likelihood L(αDj , αCj) for each interval Ij , from the following three
outcomes

1. rj − dj − cj individuals survive beyond Ij
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2. cj individuals are censored during Ij

3. dj individuals die during Ij .

In respective order, we give the probabilities of each outcome, conditioned on
being at risk just before interval Ij as

1. P(T > Tj |T > Tj−1) = exp(−
∫ `j

0
αDj + αCjdu) = exp(−`j(αDj + αCj))

2. P(TC ≤ Tj |T > Tj−1) = (1− exp(−`j(αDj + αCj)))× αCj

αDj+αCj

3. P(TD ≤ Tj |T > Tj−1) = (1− exp(−`j(αDj + αCj)))× αDj

αDj+αCj

where the first probability follows from the standard relationship between hazard
rates and survival functions, i.e. S(t) = exp(−

∫ t
0
α(u)du). The second and third

conditional probabilities are derived as complements of the first probability,
weighted according to each hazard rate. Writing up the complete likelihood and
taking derivatives with respect to the two hazard rates in each interval, followed
by substitution yields the following maximum likelihood estimator

α̂Dj = − dj
`(dj + cj)

log

(
rj − dj −mj

rj

)
.

If the number of censorings and deaths in one interval is small relative to the
number at risk, we can use Taylor expansion of log(1 − x) on the logarithm-
factor, which gives

`jα̂Dj =
dj
rj

+
dj(dj + cj)

2r2
j

+O

[(
dj + cj
rj

)3
]

=

dj

rj − 1
2 (dj + cj)

(
1 +O

[(
dj + cj
rj

)2
])

where O[xk] denotes a kth order term which goes to zero as quickly as xk when
x → 0. Omitting the second order term gives an approximation of the hazard
rate. Integrating this over Ij for the cumulative hazard, cancels the `j . From
the standard relation between survival function and hazard rate, the conditional
probability of failure becomes 1 − exp(−α̂Dj). We approximate this using the
Taylor expansion of 1− exp(−x) ≈ x, as

1− exp(−α̂Dj) ≈ α̂Dj =
dj

rj − cj
2

.

Note that apart from the Taylor approximation, −dj/2 is removed from the
denumerator in this step. Cox and Oakes (1984) claim that the approximating
step is still of order O(n2), as the first approximation, without providing any
further details. Finally we take the complement for the conditional probability of
surviving the jth interval, and combine these for the actuarial estimator of S(t).
Keeping −dj/2 might seem more straightforward, and produces a version of the
actuarial estimator where both deaths and censorings occur uniformly within
each interval. However, due to tradition we will use the actuarial estimator here.
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3.2 Estimating Expected Survival

When estimating the expected survival, S∗, the quantity we want to estimate
is the expected survival of the cancer cohort, had they not been subject to
the disease of interest. Thus, each individual in the cohort is matched with a
population mortality rate based on their covariates, typically calendar year, age
and sex.

We note that the population mortality rates are typically not corrected for
including individuals with the disease of interest. This is based on an assumption
of the disease of interest being rare in the overall population. The idea of
correcting the population mortality rates is discussed in Ederer et al (1961) who
from previous studies concluded that such adjustments seemed to have negligible
effect. More recently, Talbäck & Dickman (2011) do explore the impact of
removing individuals with cancer diagnosis from the population mortality, but
find that the differences are small as long as the disease is relatively rare. As
an illustration they suggest that if one was to estimate relative survival for all
cancer types combined as a single disease, this would require adjustment.

Given a cohort and matching population mortality rates, there are several
suggestions on how to proceed to estimate relative survival. To our knowledge,
four nonparametric estimators have been suggested: Ederer I, Ederer II, Haku-
linen and Pohar Perme. Ederer I is not widely used according to Dickman et al
(2013), while the proposer of the Hakulinen estimator suggested that Ederer II
should be preferred in Hakulinen et al (2011). Thus, we will focus on Ederer II
and Pohar Perme.

Remontet et al (2006) criticize nonparametric procedures for not being clin-
ically probable, as they produce stepwise constant estimates. A parametric
suggestion from Royston & Parmar (2002) is the so called Flexible Parametric
Models, which incorporate splines and maximum likelihood estimation, which
produce smooth estimates. There are numerous other parametric suggestions,
but even though Lambert et al (2015, p. 4) claims that there is a “growing use of
statistical models for excess mortality”, nonparametric estimators are typically
used, see e.g. Roche et al (2013). Here we will consider Flexible Parametric
Models as a complement to the nonparametric estimators.

We continue with presenting our three selected estimators, Ederer II, Pohar
Perme and Flexible Parametric Models in closer detail.

3.3 Ederer II-estimator

Ederer II provides an estimate of S∗(t), which combined with the estimate of
S(t) from the actuarial estimator provides an estimator of net survival. For
a yearly recorded time scale, the estimate of S∗(t) is defined as the product
of annual averaged conditional probabilities of surviving a time interval Tj for
those still at risk in the cohort. It is defined in Ederer & Heise (1959) as

S∗EdII(t) =

Y∏
t=1

(
1

rj

rj∑
i=1

P(Ti > t|Ti > t− 1)

)
(3)
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where t is the time from 1 to Y years, sum up to rj denotes that we are sum-
ming over individuals at risk in the beginning of the jth year, and Ti the time
when individual i is either deceased or censored. Matching population mortal-
ity probabilities on covariates for individual i gives the individual conditional
probabilities. If population mortality rates θ are assumed to be known for the
demographic covariates calendar year, age and sex found in the cohort, we match
these to the conditional probabilities for individual i at specific calendar years
and ages as

P(Ti > t|Ti > t− 1) = exp

(
−
∫ 1

0

θi(u)du

)
.

The raw Ederer II estimator is not commonly used, due to differences in expected
survival between different age groups, i.e. older people have lower overall survival
than younger. This causes bias, see e.g. Lambert et al (2015) and Pohar Perme
et al (2012). To adjust for this, the so called internal age standardization is
used, which corresponds to a weighted mean of G stratified Ederer II relative
survival estimates RSEdIIa, where a is for age groups a = 1, . . . , G.

RSSt.(t) =

G∑
a=1

waRSEdIIa(t),

where wa equals the size of each age group in the population divided with the
overall population size, thus

∑G
a=1 wa = 1. The intuition for this approach is

that bias in each age group will be smaller in the more similar age groups, com-
pared to the overall population. The benefit of internal age standardization is
supported from simulations, e.g. in Lambert et al (2015). The term internal is
understood as opposed to external age standardization, which is a similar tech-
nique to correct for differences in age distribution, for instance when comparing
two different countries.

Pohar Perme et al (2012) showed that continuous time versions of the Ed-
erer I, II and Hakulinen-estimators are biased when it comes to estimating net
survival. We follow Pohar Perme et al (2012) and present the proof for Ederer
II being biased, and prepare for the proof of the Pohar Perme estimator being
unbiased.

Let TEi, TPi and TCi be random variables for time of death due to cancer,
general population mortality and censoring in respective order. Next, let TDi,
time of death, be defined as TDi = min(TEi, TPi) and Ti = min(TDi, TCi). We
also let Xi be covariates for the individual, with a subset X ′i of demographic
covariates. Demographic variables are typically sex, ages and calendar years for
which the individual was observed.

Next we assume noninformative censoring, that is SCi(t) = SC(t) for all
individuals i, where SCi is the survival function of TCi. We also let TEi and TPi
be conditionally independent given X ′i, that is

P(TEi ≤ t, TPi ≤ t|X ′i) = P(TEi ≤ t|X ′i)P(TPi ≤ t|X ′i).
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We continue with defining the individual excess hazard rate αEi,

αEi(t) = lim
∆t→0

1

∆t
P(t ≤ TEi < t+ ∆t|TEi ≥ t),

with corresponding survival function SEi = exp(−
∫ t

0
αEi(u)du). The overall

excess survival function is defined as SE(t) = 1
n

∑n
i=1 SEi(t), which we use to

define the overall excess hazard rate αE as

SE(t) = exp

(
−
∫ t

0

αE(u)du

)
.

From this we derive another expression for the excess hazard αE(t). After taking
log and differentiating both sides with respect to t we find that

αE(t) =

∑n
i=1 SEi(t)αEi(t)∑n

i=1 SEi(t)
(4)

Later we will show that this is the quantity estimated by the Pohar Perme
estimator. Next, we define the cause specific hazard α̃E(t)

α̃E(t) = lim
∆t→0

1

∆t
P(t ≤ TE < t+ ∆t|T ≥ t),

where we note the difference in conditioning compared to the excess hazard. The
same conditioning is found in the definition of the so called population hazard

α̃P (t) = lim
∆t→0

1

∆t
P(t ≤ TP < t+ ∆t|T ≥ t).

As an observed death must correspond to one of these two possible causes, these
two quantities sum up to the observed hazard,

αO(t) = α̃E(t) + α̃D(t). (5)

We note that this also holds for the individual hazards.
When considering individual hazards, and thus conditioning on the demo-

graphic covariates X ′, one could show that

α̃Ei(t) = lim
∆t→0

P(t ≤ TEi < t+ ∆t|min(TEi, TPi) ≥ t,X ′)
∆t

= lim
∆t→0

P(t ≤ TEi < t+ ∆t, TPi > t|X ′)
P(TEi ≥ t, TPi ≥ t|X ′)∆t

= lim
∆t→0

P(t ≤ TEi < t+ ∆t|X ′)P(TPi ≥ t|X ′)
P(TEi ≥ t|X ′)P(TPi ≥ t|X ′)∆t

= lim
∆t→0

P(t ≤ TEi < t+ ∆t|X ′)
P(TEi ≥ t|X ′)∆t

= αEi(t)
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from the conditional independence of TEi and TPi under X ′. Thus there is no
need in distinguishing α̃Ei(t) from αEi(t).

Next, it follows from the definition of α̃E(t) that

α̃E(t) =

∑n
i=1 SOi(t)αEi(t)∑n

i=1 SOi(t)
= αO −

∑n
i=1 SOi(t)αPi(u)∑n

i=1 SOi(t)
(6)

where the second equality is due to (5) and

αO(t) =

∑n
i=1 SOi(u)αOi(u)∑n

i=1 SOi(u)
du.

From this, we define observable net survival as

S̃E(t) = exp

(
−
∫ t

0

α̃E(u)du

)
From the expression for α̃E(t), we note that unless αEi is constant across i, the
observable net survival depends on SOi, which includes the population mortality.
From this Pohar Perme et al (2012, p. 115) argues that observable net survival
“cannot be used as a measure of cancer burden” as it depends on the population
mortality from SOi. Written as in (6) we also note that observable net survival
then differs from (4), i.e. net survival.

We will now show how a continuous time version of the Ederer II estimator is
consistent for observable net survival. Let N(t) =

∑n
i=1 1(TDi ≤ t, TDi ≤ TCi),

i.e. the counting process of the number of observed deaths up to time t, and
similarly, let the at risk-process be denoted R(t) =

∑n
i=1Ri(t) where Ri(t) =

1(Ti ≥ t). Pohar Perme et al (2012) then refers to Andersen & Vaeth (1989)
for the following estimator of cumulative excess hazard, under the assumption
of equal individual excess hazards αEi

ÂE(t) =

∫ t

0

dN(u)

R(u)
−
∫ t

0

∑n
i=1Ri(u)dAPi(u)

R(u)
, (7)

where dAPi is the average change in cumulative population hazard. The first
term of the estimator corresponds to the Nelson-Aalen estimator of observed
hazard. Rewriting the estimator on the survival scale gives

exp(−ÂE(t)) =
exp(−

∫ t
0
dN(u)
R(u) ))

exp(−
∫ t

0

∑n
i=1 Ri(u)dAPi(u)

R(u) )
,

where the numerator corresponds to an all-cause survival function estimate,
while the denominator is a sum of indicators for being at risk, multiplied with
the average change in cumulative population hazard over that interval, for indi-
viduals at risk. Thus, this is a continuous time-version of the Ederer II estimator.

The Nelson-Aalen estimator is consistent for the observed hazard, while

E(Ri(t)) = P(Ri(t) = 1) = SOi(t)SCi(t)

12



as you must be alive and uncensored to be at risk. Next, we assume SCi(t) =
SC(t), i.e. noninformative censoring, which gives that the numerator of the last
term of (7)

(1/n)

n∑
i=1

Ri(t)dAPi(t)

is consistent for SC(t)/n
∑n
i=1 SOi(t)dAPi(t), while the denominator of the last

term of (7)

(1/n)

n∑
i=1

Ri(t)

is consistent for SC(t)/n
∑n
i=1 SOi(t). Combining the parts shows that ÂE(t),

after cancelling SC(t), is consistent for∫ t

0

αO(u)−
∑n
i=1 SOi(u)αPi(u)∑n

i=1 SOi(u)
du

which is a cumulative version of (6). This proves that Ederer II estimator
is consistent for observable net survival. As we noted earlier, observable net
survival is not the same as net survival, and hence Ederer II does provide an
unbiased estimate of net survival.

Simulations in Lambert et al (2015) do however suggest that the bias of the
Ederer II estimator is small, and that the larger variance of the Pohar Perme
estimator compared to internally age standardized Ederer II is a reason to prefer
internally age standardized Ederer II.

3.4 Pohar Perme-estimator

The Pohar Perme estimator was first suggested for continuous time by Pohar
Perme et al (2012), as a reweighted version of the Ederer II estimator. We will
begin with defining a discrete version, to illustrate the reweighting.

Let 1ij = 1(TDi ∈ Ij), i.e. an indicator of death for individual i in interval Ij .
Next, let D∗ij be the expected number of deaths for individual i during Ij , had he
or she not had cancer. D∗ij is derived from matching population mortality rates
of individual i during calendar year and age matching Ij , as D∗ij = − log(θi)rij ,
where θi is the conditional probability of surviving interval Ij given that you
survived interval Ij−1, for an individual without cancer. Using this notation,
a discrete time version of the Pohar Perme estimator, for time interval Ij , is
defined in Lambert et al (2015) as

αPP
j =

∑rj
i=1 wij1ij −

∑rj
i=1 wijD

∗
ij∑rj

i=1 wijrij
,

where rij is the time at risk for individual i during Ij , and wij the inverse of
the expected survival of individual i in time interval Ij , that is wij = 1/SPij(t)
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evaluated at the midpoint of the jth interval. The estimate is transformed to
the cumulative hazard scale by summing over Ij as

APP
j (t) =

∑
Ij

`jα
PP
j

where `j is the length of Ij and to the probability scale by using S(t) =
exp(−A(t)). If all weights wij were set to 1, the numerator of αPPj is an aver-
aged difference of mortality in the cohort and the overall population, over the
individuals at risk, while the denominator is the at risk-time for those at risk.
Lambert et al (2015) argues that setting weights wij equal to one gives a hazard
scale version of the Ederer II estimator. Hence the Pohar Perme estimator is a
reweighted version of the Ederer II estimator.

Next, we give a proof of the so called Pohar Perme-estimator being consistent
for (4), which after transformation to the probability scale corresponds to net
survival. We follow Pohar Perme et al (2012) and define the continuous time
definition of the Pohar Perme estimator on the cumulative hazard scale.

ÂPP(t) =

∫ t

0

dNw(u)

Yw(u)
−
∫ t

0

∑n
i=1Riw(u)dAPi(u)

Rw(u)
(8)

where subscript w denotes a reweighting of the counting process with the inverse
population survival function, i.e. Rw(t) = 1/n

∑n
i=1Riw(t) where Riw(t) =

Ri(t)/SPi(t) and Nw(t) = 1/n
∑n
i=1Niw(t) where Niw(t) = Ni(t)/SPi(t).

Next we take the expectation of Riw(t)

E(Riw(t)) = SC(t)SOi(t)/SPi(t) = SC(t)SEi(t),

since SOi(t) = SPi(t)SEi(t). The expectation of dNiw is found as

E(dNiw(t)|Ft) = E(dNi(t)|Ft)/SPi(t) = Ri(t)dAOi(t)/SPi(t)

where F represents the history up to time t, see Aalen et al (2008). After
assuming noninformative censoring, i.e. SCi(t) = SC(t), we note that

1

n

n∑
i=1

Ri(t)dAOi(t)

SPi(t)

is consistent for

SC(t)

n

n∑
i=1

SOi(t)dAOi(t)

SPi(t)
=
SC(t)

n

n∑
i=1

SEi(t)dAOi(t).

From this it follows that the two terms in (8) is consistent for

SC(t)
∑n
i=1 SEi(t)dAOi(t)

SC(t)
∑n
i=1 SEi(t)

−
SC(t)

∑n
i=1 SEi(t)dAPi(t)

SC(t)
∑n
i=1 SEi(t)

.
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After removing SC(t), we note that αOi(t) − αPi(t) = αEi(t). Thus, this is a
consistent estimator of excess hazard, i.e. (4) and the proof is complete. As a
summarizing remark we note that the reweighting of the Ederer II estimator
changes SOi(t) in (6), into SEi(t), from which the unbiasedness follows.

In practical work, for instance in the STATA implementation strs used for
the Pohar Perme estimation in this thesis, the following version of the Pohar
Perme estimator is used. To emphasize that this estimator is unbiased for net
survival, we write NSj rather than RSj for the estimate in the jth interval.
The following definition can be found in Dickman & Coviello (2015).

NSj =
1− djw

rjw−cjw/2

exp

(
−

∑rj
i=1 θijw−

∑cj
i=1 θijw/2−

∑dj
i=1 θijw/2

rjw−(djw+cjw)/2

)
where subscript w as before denotes a reweighting with the inverse popula-
tion mortality, and θijw denotes a population hazard rate for individual i, in
the specific jth interval. The numerator illustrates how the actuarial estima-
tor is reweighted for an estimate of observed survival. The numerator of the
denominator estimates the expected number of deaths by subtracting half of
the mortality rates from deceased and censored individuals from the population
mortality rates from those at risk, and divides with a similarly adjusted at risk-
time. Dickman & Coviello (2015, p. 191) claim that estimates are ”essentially
identical” to a continuous time implementation of the Pohar Perme estimator.
The product of NSj over j yields the cumulative net survival estimate.

3.5 Flexible Parametric Models

Royston & Parmar (2002) generalize well known parametric models such as
Weibull and LogNormal distribution, by using a spline as baseline to make
the traditional models more flexible. The resulting models are called Flexible
Parametric Models. We follow Royston & Lambert (2011) in our introduction
of splines and the general Flexible Parametric Model framework. We end by
presenting these models in the relative survival setting.

3.5.1 Splines

Splines are piecewise polynomial functions on which overall smoothness is im-
posed by restrictions on derivatives in certain positions, known as knots, as these
positions ties the piecewise functions together into the overall fit. Depending
on the number of knots, splines are typically divided into regression splines and
smoothing splines, where the former uses a relatively small number of knots and
the latter typically has a knot for each data point. We will focus on regression
splines, and the subclass where both number and locations of knots are decided
before fitting the actual splines to data.

In our setup this is achieved by first manually specifying k degrees of freedom,
which results in k+1 knots. These knots are then evenly positioned according to
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the percentiles of the uncensored log survival times, with two so called boundary
knots, kmax and kmin, at each outmost survival time. From k knots, we can define
a spline, without continuity restrictions, of order n for covariate x as follows.
The definition is found in Royston & Lambert (2011).

s(x) =

n∑
j=0

β0jx
j +

k∑
i=1

n∑
j=0

βij(x− ki)j+

where“+”-subscript of an expression a denotes the product of a with an indicator
function 1(a > 0). Order n = 3 is a common choice of spline order, yieldingK+4
parameters for a cubic regression spline. Smoothness across knots is imposed
by demanding continuity and equality of first and second order derivatives at
knots for piecewise functions sharing knots. To avoid variability in the fit for
outer regions, the cubic splines are forced to be linear outside the external knots
as well. This produces so called restricted cubic splines. To include a covariate
x, one does not use the raw x-values, but transform x into z by the following
relations

z1(x) = x

zj(x) = (x− kj)3
+ − λj(x− kmin)3

+ − (1− λj)(x− kmax)3
+

where

λj =
kmax − kj
kmax − kmin

for j ∈ {2, . . . ,m+1}. The complete, covariate dependent spline is then written
as

s(x) = γ0 +

m+1∑
i=1

γizi (9)

where γi, for i ∈ {0, . . . ,m+ 1} are the coefficients of the spline.

3.5.2 Generalizing the Weibull distribution

We proceed with illustrating how flexible parametric models generalize para-
metric models, here the Weibull distribution, into a Flexible Parametric Model.
The cumulative hazard of the Weibull distribution can be written as

A(t) = λtγ
∗
,

where γ∗ > 0 is a shape parameter, and superscript ∗ distinguishes γ∗ from γ
in the preceding splines section. We write this on the log scale as

logA(t) = log λ+ γ∗ log t.

From here, we think of the two terms on the right hand side as the first two
terms of the right hand side of (9), if z1 equals log(t). For m + 1 number of
knots, the generalization becomes

logA(t) = s(log(t), γ) = γ0 +

m+1∑
i=1

γizi(log(t)).
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We write log(t) to emphasise that it is common to work on the log of time scale,
rather than the time scale. We also note that in relative survival analysis, the
log cumulative hazard is not neccesarily a monotonically increasing fuction, thus
we do not need to impose any further restrictions on s(log(t), γ). From here,
one could go on and include other covariates than survival time, but here we
will only use survival time as covariate thus we move on to the relative survival
setting.

3.5.3 Flexible Parametric Models in Relative Survival

We conclude this section following Nelson et al (2007) and present Flexible
Parametric Models in a relative survival framework.

A well known result in survival analysis, see e.g. Klein & Moeschberger (2003)
is that the contribution of individual i to the log likelihood, without truncation,
is

logLi = Oi log(α(t)) + log(S(t))

where Oi is an indicator of death and t is the survival time for an individual.
Inserting an individual additive hazard function, and adding and subtracting
log(S∗(t)) produces

logLi = Oi log(αPi(t) + αEi(t)) + log(S∗(t)) + log(R(t)) (10)

where R(t) is the relative survival of individual i. Under the assumption of S∗(t)
being known, we can remove it from the likelihood under proportionality. This
corresponds to treating the population mortality estimates as constants. Note
that R(t) is the relative survival, rather than an estimate from e.g. the relative
survival ratio, and hence the population mortality only enters the likelihood
through αPi(t). Next, we model the log cumulative excess hazard with a spline,
similar to the Weibull generalization as

log(AEi(t)) = s(log(t), γ)

where γ are the parameters of the spline. From this, we derive expressions for
R(t) and αEi(t) in (10) as

R(t) = exp(− exp(log(AEi(t))))

and

αEi(t) =
1

t

ds(log(t), γ)

d(log(t))
exp(log(AEi(t))),

and plug these into (10) for the likelihood contribution of a single individual,

logLi = Oi log

[
αPi(t) +

1

t

ds(log(t), γ)

d(log(t))
exp(s(log(t), γ))

]
− exp(s(log(t), γ)).

As before we are not interested in including other covariates than survival time,
and direct the interested reader to Nelson et al (2007).
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4 Variance of relative survival estimates

We will now discuss the variance of relative survival estimates. We will start with
the general case of estimating the variance of a ratio of two random variables.
That is, we consider

V ar

(
X

Y

)
If we make assumptions regarding the distribution of X and Y, some general
results hold. It is a well known fact that the ratio of two independent standard
gaussian variables produces a Cauchy distributed variable. The ratio of two
sample averages of normally distributed samples is discussed in Fieller (1954).
However, these results do not apply to our survival data situation.

Deriving an exact formula of the variance of a ratio of two arbitrary random
variables has been commented upon by Casella & Berger (2002, p. 245) as
“quite hopeless”. Instead they suggest using an approximation known as the
Delta method.

4.1 Delta method

We introduce the Delta method following Casella & Berger (2002) and begin
with defining univariate Taylor polynomials. Let f(x) be a function with deriva-
tives of order nT . For a constant c, the Taylor polynomial of order nT of f(x)
is

TnT
(x) =

nT∑
i=0

f (i)(c)

i!
(x− c)i.

The difference between f(x) and TnT
(x) is called the remainder, and when

omitted, the Taylor polynomial approximates f(x).
Next we present a multivariate version of the Taylor polynomials, in a ran-

dom variable setting. Let T = (T1, . . . , Tk) be statistics with expectations
µ = (µ1, . . . , µk), and let f(x) be a differentiable function, with

f ′i(µ) =
∂f(x)

∂xi
|x=µ

We can then, by omitting the remainder after the first order derivatives approx-
imate f(x) as

f(x) ≈ f(θ) +

k∑
i=1

f ′i(µ)(xi − µi) (11)

Taking expectation on both sides yields

E(f(T )) ≈ E(f(θ)) + 0 (12)

as the expectation of xi equals µi. From these two approximations, we can
derive an approximation of the variance of f(T ) as

V ar(f(T )) ≈ E
[
(f(T )− f(µ))2

]
≈ E

[
(

k∑
i=1

f ′i(µ)(Ti − µi))2

]
=
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k∑
i=1

(f ′i(µ))2V ar(Ti) + 2
∑
i>j

f ′i(µ)f ′j(µ)Cov(Ti, Tj)

where the first approximation is due to (12) and the second from rearranging
(11). A generalization to the covariance of two functions f1(x) and f2(x) of
random variables is found in Klein (1953) as

Cov(f1(T ), f2(T )) ≈
k∑
i=1

(
∂f1

∂xi

)(
∂f2

∂xi

)
V ar(Ti)+

+2
∑
i>j

(
∂f1

∂xi

)(
∂f2

∂xi

)
Cov(Ti, Tj)

We omit the derivation. These approximations, both univariate and multivari-
ate, will be referred to as the delta method.

For convenience we will omit time dependencies of S(t) and S∗(t) for now.
In the relative survival ratio setting, we are interested in T = (T1, T2) where
E(T1) = S and E(T2) = S∗ and f(x) = S/S∗, i.e. the relative survival ratio.
The partial derivatives are

∂f(S, S∗)

∂S
=

1

S∗
,
∂f(S, S∗)

∂S∗
=
−S
S∗2

which produces, after inserting estimates of the true quantities

V̂ ar(S/S∗) ≈ (
Ŝ

Ŝ∗
)2

(
V̂ ar(S)

Ŝ2
+
V̂ ar(S∗)

Ŝ∗2
− 2Ĉov(S, S∗)

ŜŜ∗

)
That is, to approximate the variance of the relative survival ratio, we need
estimates of S, S∗, as well as estimates of variances and covariance of these
quantities.

4.2 Delta method applied to V ar(S/S∗)

We will now discuss the Delta method applied to the components of the Ederer
II estimate, which is the simpler one of our three estimators. An estimate
of V ar(S), where S is estimated by the actuarial method, is provided from a
version of the so called Greenwoods formula. An asymptotic argument for the
Kaplan-Meier estimator can be found in Cox & Oakes (1984). First, assume
that event times are set before observing the data, e.g. montly or annual data,
and a regularity condition on the censoring mechanism (it should allow the
number of events to increase at the same rate as the sample size n). From
this the standard large sample-sample maximum likelihood theory holds. The
variance estimate from the inverse of the observed information matrix of the
Kaplan-Meier estimator is identical to diagonal elements of a covariance matrix
of several independent binomial distributions, and thus

V ar(dj/rj)) =
dj(rj − dj)

r3
j

,
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From taking log of the actuarial estimator, and applying the delta method twice,
we end up at Greenwood’s formula for the Kaplan-Meier estimator. The result
can be found in Cox & Oakes (1984).

V ar(S̃(t)) = S̃(t)2
∑
Tj≤t

dj
(rj)(rj − dj)

To adapt this for the actuarial estimator, the Kaplan-Meier estimate S̃(t) is
replaced with the actuarial estimate Ŝ, and the number at risk is adjusted as in
the actuarial estimator, that is

V ar(Ŝ(t)) = Ŝ(t)2
∑
Tj≤t

dj
(rj − 1/2cj)(rj − 1/2cj − dj)

.

Next, we want to estimate the variance of S∗. Recall that Ederer II uses a sample
average, where the number of terms depends on the at risk set in the cohort,
while each term consists of population mortality rates, which by themselves
include variance. Given population mortality predictions θ̂ = (θ̂1, . . . , θ̂i, . . . , θ̂n)
as earlier, matched to each individual i, with variance-covariance matrix entries
Cov(θi, θj) for i, j ∈ 1, . . . , n we can write up the variance as follows

V ar(S∗(t)) = V ar

 1

rj

n∑
j=1

1(Tj > t− 1) exp(−θ̂j)

 .

Here we use an indicator to stress the dependence on the cohort, while the
θ depend on the population mortality. Indicators equal 1 when an individual
in the cohort was at risk at the beginning of the time period for which we
are estimating the expected survival. That is, for the first year estimate, all
individuals are included as they were all at risk during the beginning of the
first year. For upcoming years, individual mortality rates are removed from the
sum as individuals are no longer at risk in the beginning of that certain year.
This implies that the first year estimates only contain stochasticity from the
population mortality rates. Thus,

V ar(S∗(1)) =

n∑
j=1

V ar(exp(−θ̂j)) + 2
∑
j>i

Cov(exp(θ̂i), exp(θ̂j))

≈
n∑
j=1

exp(−2θ̂j)V ar(θ̂j) + 2
∑
j>i

exp(−(θ̂i + θ̂j))Cov(θ̂i, θ̂j),

where the approximation is due to the delta method.
It is not trivial what covariance we are interested in estimating, in the sense

that the composition of the cohort could be thought of as either fixed or random.
Given the cohort, the covariance of S and S∗ is 0 for the one year estimate. To
see this, we imagine a cohort of one single person. Regardless of the outcome
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for this individual (survives, censored or deceased during the first year), the
individual was at risk in the beginning of the interval and thus the estimate of
S∗(1) is constant. The covariance of anything with a constant is 0.

Should we not consider the cohort as fixed, and instead consider variance
from taking new cohorts, the matching from cohort to population mortality
rates would produce a non-zero covariance, e.g. a single person cohort of a
twenty year old would give a different expected survival than that of a fifty year
old. We argue, from the derivation of Greenwood’s formula, that the cohort
should be considered as fixed as no alternative cohorts are considered in that
derivation, rather the variation from Greenwood’s formula is in the estimation
of V ar(dj/rj). When estimating variance of binomial probabilities, one does
not include variance from scenarios where the sampled had been replaced with
other, unobserved samples.

Thus, if we consider the cohort to be fixed, it holds for t = 1 that

V̂ ar(S/S∗) ≈ (Ŝ/Ŝ∗)2(V̂ ar(S)/Ŝ2 + V̂ ar(S∗)/Ŝ∗2),

where we know how to estimate each quantity in principle. However, beyond the
first year, the number of terms in the Ederer II estimate of S∗ will, apart from
the uncertainty in population mortality rates, also depend on survival times
of the cohort. We have not been successful in combining these two sources of
variation into estimates of the variance of S∗ or covariance of S and S∗, beyond
the first year.

Since we are interested in estimates of survival times beyond the first year,
the analytical approach is not very successful. As the at risk-individuals are
stochastic beyond the first year for Pohar Perme as well, we would expect similar
issues to arise for this estimator, but at a more involved level, as we weight each
term with an inverse of a survival function which is no longer considered as
known. Even if we were succesful, we would not expect this approach to be
applicable for the likelihood-based Flexible Parametric Models, which would
complicate comparisons between the three different estimates.

4.3 Current practice

What is done in practice, see e.g. Parkin & Hakulinen (1991) or Dickman &
Coviello (2015), is to estimate the variance of the relative survival ratio, as

V ar(S/S∗) = V ar(S)/Ŝ∗2,

That is ignore uncertainty in the population mortality rates. The variance
of the age standardized version of Ederer II is usually approximated using the
Greenwood’s formula-approach stratified over age groups. If we let RSa denote
the RS estimate in each age group a = 1, . . . , A, the variance is combined
under an assumption of independence between stratified estimates using the
delta method, as stated in Corazziari et al (2004)

V ar(R̂S(t)St.) =

A∑
a=1

w2
aV ar(RSEdIIa(t)).
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Under the assumption of constant population mortality rates, the only vari-
ability is due to the estimation of the observed survival through the actuarial
estimator. As this is (at least approximately) a likelihood estimator, asymptotic
normality is used to create confidence intervals. The standard approach is to use
the delta method to construct confidence intervals on the log cumulative hazard
scale, and then backtransform those to the probability scale, see e.g. Dickman &
Coviello (2015). This construction ensures a confidence interval on the survival
scale with endpoints within [0, 1]. The variance of the continuous time version
of the Pohar Perme estimator on the hazard scale, assuming known population
mortality rates, is derived by Pohar Perme et al (2012) to be

σ2
PP (t) =

∫ t

0

J(u)
∑n
i=1 dNi(u)/S2

Pi(u)

(
∑n
i=1Ri(u)/SPi(u))

2

where J(u) handles the case of the denumerator being 0, then the entire ratio
is interpreted as 0. Pohar Perme et al (2012) remarks that the variance of
the Pohar Perme estimator is usually larger than the variance of the Ederer II
estimator.

Finally, the variance of Flexible Parametric Model estimates are based on
asymptotic results of general likelihood theory, see Royston & Parmar (2002).
We omit the details.

4.4 Variance estimation using Rubin’s Rule

Before discussing confidence intervals, an estimate of variance might still be
useful as an indication of where to expect differences. When we describe our
data in chapter 5, we will model or smooth population mortality rates which
allows us to take resamples of them with slight variability in each resample.
But for now, we simply assume that resampled population mortality files are
available.

If we consider the situation with an underlying random process, our observed
population mortality rates are a single observation. If we could, we would prefer
having several such observations, and could then say that we are missing obser-
vations of population mortality rates. The resampled versions of the observed
population mortality could then be thought of as imputed data sets, and from
this, we could use the so called Rubin’s Rule to combine our resamples into a
combined variance estimate. An overview of Rubin’s Rule and the following
definition can be found in Marshall et al (2009).

V ar(RS) = W̄ + (1 + 1/nI)B,

where nI is the number of imputed data sets, W̄ is the sample average of the
estimated variances within each imputed data set, and B is the sample variance
calculated on the relative survival estimates from each resampled data set. Note
that the W̄ , the within variance, is a sample average of variance estimates
calculated under the assumption of no variance in the population mortality
rates, e.g. using Greenwoods formula for the Ederer II estimates. We note that
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this differs from the typical application of Rubin’s Rule, where the variance
on each imputed data set should be an estimate including the uncertainty of
population mortality, if the overall estimate is supposed to include population
mortality uncertainty as well. Hence this procedure will provide a lower bound
of the variance, the components of W̄ could be smaller than they should.

In estimating variance with resampling procedures, Efron & Tibshirani (1993)
suggests that more than 200 samples is rarely needed, which is a recommenda-
tion we will follow. However, when including variability in the denominator of
the relative survival ratio, e.g. in the Ederer II estimator, it is no longer clear
that the asymptotic normality is reasonable. As our interest lies in the confi-
dence intervals, rather than the standard errors, we might prefer to construct
confidence intervals without the normality assumption.

4.5 Bootstrap

A non-analytic way out of estimating confidence intervals is to use bootstrap
procedures. Efron (1981) discusses applying the bootstrap to censored data.
One suggestion is to create bootstrap samples, that is sample individuals from
a cohort with replacement until the original sample size is reached. The dis-
crepancy between standard errors from bootstrap procedures and Greenwood’s
formula, is found to be small for the Kaplan-Meier estimate, e.g. in Efron (1981).
As the actuarial estimate is a slightly modified version of the Kaplan-Meier es-
timate, this provides some basis for expecting similarities between the actuarial
estimator and estimates based on bootstrapping individuals.

In the relative survival context Brenner & Hakulinen (2005) compared stan-
dard errors of relative survival estimates calculated with analytical methods,
under assumption of known population mortality, with standard errors based
on bootstrap samples of cancer cohorts. Although they used the Hakulinen es-
timator, making comparisons less straightforward, the overall finding was that
Greenwood’s formula often overestimated standard errors for many cancer types,
i.e. the Greenwood estimate may differ from bootstrap estimates.

Even though the analytical methods assuming known population mortal-
ity are the common procedure, comparing these directly to a bootstrap which
includes population mortality uncertainty, mixes differences from population
uncertainty and analytical methods as compared to bootstrap. We would pre-
fer to assess the increase in variance due to included variance from uncertainty
in population mortality. That is, we suggest using one bootstrap where we
bootstrap the cohort and use a single, non-resampled population mortality, and
one bootstrap where we bootstrap both cohort and population mortality rates
independently.

Given the resamples of the population mortality and a cohort, we can de-
scribe the bootstrap sampling algorithm in list form as follows

Bootstrap of cohort and population mortality

1. Draw a bootstrap sample from the cancer cohort Ci
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2. Independently resample population mortality rates Pi

3. For each iteration of 1 and 2, apply the three selected estimators on Ci
and Pi.

4. Repeat steps 1-3 B times, to produce B bootstrap estimates which we
denote η̂∗

The independence in step 2 assumes that the covariance of cancer and pop-
ulation mortality is negligible, an assumption based on the rarity of cancer
compared to the overall population.

When using bootstrap to estimate the variance without including variance
from the population mortality rates, step 2 is replaced with 2′. Use non-resampled
population mortality rates.

As we will discuss in section 5, smoothing is introduced to create resamples
of population mortality rates. To make comparisons between non-resampled
and resampled population mortality rates more straightforward, we note that
smoothed, but non-resampled population mortality rates are used in step 2′.

4.5.1 Bootstrap confidence intervals

We will now discuss two methods for bootstrapping confidence intervals, fol-
lowing Efron & Tibshirani (1993). A simple confidence level approach is the so
called percentile method based on the sample quantiles of the bootstrap esti-
mates η̂∗, for a given significance level 2α

(ÎPer.
lo , ÎPer.

up ) = (η̂∗α, η̂
∗
1−α),

where the superscript Per. indicates that the Percentile method was used. How-
ever, the percentile method is only first-order accurate. That is, for an even,
two-sided confidence interval of significance level 1 − 2α, the estimated con-
fidence interval (ÎPer.

lo , ÎPer.
up ) , from B bootstrap estimates relates to the true

confidence intervals (Ilo, Iup) as

P(Ilo < ÎPer.lo ) = α+
clo√
B

and P(Iup > ÎPer.up ) = α+
cup√
B

where clo and cup are error constants. Thus, the error decreases as 1/
√
n as

n grows. Another bootstrap procedure for estimating confidence intervals with
faster convergence is the so called bias corrected and accelerated (BCa) boot-
strap. This approach is also based on the sample percentiles of the bootstrap
samples, but with different percentiles, defined in Efron & Tibshirani (1993) as

(ÎBCa

lo , ÎBCa
up ) = (η̂∗ζ1 , η̂

∗
ζ2)

where

ζ1 = Φ

(
b̂0 +

b̂0 + z(α)

1− â(b̂0 + zα)

)
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ζ2 = Φ

(
b̂0 +

b̂0 + z(1−α)

1− â(b̂0 + z1−α)

)
where zα is the 100α percentile of a standard gaussian distribution, while Φ()
is the standard gaussian cumulative distribution function. The two remaining
constants b̂0 and â are the estimated bias correction and acceleration. The bias
correction is defined in Efron & Tibshirani (1993) as

b̂0 = Φ−1

(∑B
i=1 1(η̂∗i < η)

B

)
where η is the original point estimate without any resampling or bootstrap
samples. Thus, b̂0 is the inverse of the standard gaussian cumulative distribution
function applied to the proportion of bootstrap estimates exceeding the original
estimate, relating b̂0 to the bias of η̂∗.

The acceleration â is based on jack-knife estimates of η̂, which requires some
notation. Let x(i) denote the original data set with observation i removed.
We have interpreted this as removing the ith individual in the cohort, and
calculating the relative survival estimate using the smoothed, non-resampled
population mortality rates. Denote the estimator t and let η̂(i) = t(x(i)), and
η̂(.) =

∑n
j=1 η̂(j) defined in Efron & Tibshirani (1993) as

â =

∑n
i=1(η̂(.) − η̂(i))

3

6(
∑n
i=1(η̂(.) − η̂(i))2)3/2

A confidence interval constructed with BCa can be shown to be second order
accurate, i.e. the error decreases as 1/n. Efron & Tibshirani (1993, p. 188) states
that“BCa intervals are recommended for general use”, but due to the difficulties
with accounting for the twofold dataset situation, i.e. one cohort and one for
resampled population mortality rates, we will also provide percentile confidence
intervals for comparisons. For further motivation of the bias and acceleration
constants, we direct the reader to Efron & Tibshirani (1993).

A final matter to discuss is how many bootstrap samples we should use, i.e.
the size of B. Efron & Tibshirani (1993) suggests 2000 bootstrap samples as
a rule of thumb for estimating confidence intervals. We compared two sets of
estimates, from 2500 bootstrap samples and found similar results, suggesting
that convergence was reached, but decided to use the full set of 5000 samples.

5 Data description and modelling

In our simulations we use a cohort from an European cancer registry, contain-
ing all patients diagnosed with colon cancer from 1975 to 1994 in one specific
country. The survival times, i.e. the dates of the data set have been permuted
to protect personal integrity of the individuals, and this is also why we do not
state the origins of the data set explicitly. Individuals of age higher than 99 or
lower than 15 have been excluded, as the number of such individuals were few.
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The resulting cohort is followed up to 1995 and consists of 15 563 individuals
in total, 6 339 males and 9 224 females. As this gives us at most 20 years of
follow up, we decided to estimate 1, 5 and 10 year relative survival. When age
stratification is used, we use age groups of 15-44, 45-59, 60-74 and 75-99 years
of age, in which we categorize individuals according to their age at entry, i.e.
cancer diagnosis. The distribution of individuals in age groups is presented in
table 1.

Table 1: Age distribution of the colon cancer cohort

Frequency Age group
734 15-44

2 368 45-59
6 593 60-74
5 868 75-99

15 563 Total

For population mortality, we have used data from the Human Mortality Database
matching the country of the cohort. The population mortality is not based on a
yearly comprehensive survey including each and every person in the specific con-
try, as this would be cumbersome. Nor do we expect exact dates of immigration,
deaths and births to be completely accurate on an individual level basis. This
contributes to treating population mortality as a random quantity, even though
the estimates are based on the entire population. For further details regarding
the population mortality data, we refer to http://www.mortality.org/.

5.1 Modelling population mortality rates

From here, we assume population mortality rates to follow a piecewise constant
hazard rate. This corresponds to survival times having an exponential distri-
bution, and the likelihood from this model is proportional to the likelihood of
a Generalized Linear Model for the Poisson family, see for instance Royston
& Lambert (2011). From this, we use that the fitted coefficients of the model
follow an asymptotical normal distribution and sample new resampled coeffi-
cients based on this normal distribution. Predictions based on these resampled
coefficients are then used as another realization of the underlying population
mortality process, i.e. we resample population mortality rates using the vari-
ance of the fitted coefficients.

We are interested in population mortality rates matching the cancer cohort.
But we still consider rates of years close to those present in the cohort data
useful for estimating the variance of rates at boundary years in the cohort, e.g.
1975 and 1995. Thus we include a five year margin, using years from 1970 to
2000 to fit our population mortality rate model.

As we expect a smooth underlying process, it is natural to use splines for
age and calendar year. The sex variable is included as a binary variable, and
consider which number of knots to use. Royston & Lambert suggest to inspect
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Akaike information criterion (AIC) and Bayes information criterion (BIC) as
a guideline for deciding the number of knots in spline models, i.e. the degrees
of freedom. We inspect these two measures of fit for 1-9 degrees of freedom in
tables 2 and 3.

Table 2: AIC for different degrees of freedom for year (vertical) and age (horizontal),
subtracted with minimum AIC: 14.58

Year/Age 1 2 3 4 5 6 7 8 9
1 4.28 1.33 0.72 0.57 0.55 0.53 0.52 0.51 0.51
2 4.28 1.33 0.72 0.57 0.55 0.53 0.52 0.51 0.51
3 3.83 0.90 0.29 0.14 0.12 0.10 0.09 0.08 0.08
4 3.87 0.93 0.33 0.17 0.15 0.13 0.12 0.11 0.11
5 3.77 0.84 0.24 0.08 0.06 0.04 0.03 0.03 0.02
6 3.78 0.85 0.24 0.09 0.07 0.05 0.04 0.03 0.03
7 3.76 0.83 0.22 0.07 0.05 0.03 0.02 0.01 0.01
8 3.77 0.84 0.24 0.08 0.06 0.04 0.03 0.02 0.02
9 3.75 0.82 0.21 0.06 0.04 0.02 0.01 0.00 0.00

Table 3: BIC for different degrees of freedom for year (vertical) and age (horizontal),
subtracted with minimum BIC: 10622

Year/Age 1 2 3 4 5 6 7 8 9
1 24063 7407 3983 3110 3011 2907 2863 2822 2815
2 24063 7407 3983 3110 3011 2907 2863 2822 2815
3 21517 4983 1574 700 602 498 454 414 406
4 21710 5167 1756 883 784 680 636 596 589
5 21195 4672 1268 395 297 192 148 108 101
6 21232 4707 1302 429 331 227 182 142 134
7 21126 4606 1202 330 232 127 83 46 36
8 21205 4681 1276 403 305 201 156 117 109
9 21083 4569 1166 294 196 92 47 8 0

Following the AIC or BIC-approach would have resulted in 8-9 degrees of free-
dom, which could have increased had we considered even higher options in our
grid search. However, such relatively high degrees of freedom result in rapidly
changing estimates of the population mortality rates, which we find unrealistic.
Instead, visual inspection was conducted to find a model with as many degrees
of freedom as possible, which still produced a visually smooth fit. This resulted
in 4 degrees of freedom for age, and 2 degrees of freedom for calendar year.
Some support for the choice of 4 degrees of freedom for age can be found in
these tables, as there seems to be a drop in the fourth column of both the AIC-
and BIC-table, but more than 2 degrees of freedom for year gives an implausibly
volatile curve.

Once the main effects of the population mortality rate are decided, pairwise
interactions of sex, age and calendar year were found to be significant using
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likelihood ratio tests. As sample sizes are large for the population data, we
have much power and these significances might be of small practical impor-
tance. However, after visual inspection, we decided to include the interactions
in the model with two degrees of freedom for each interaction spline. The de-
grees of freedom were decided on from visual inspection, one degree of freedom
for interactions introduced some bias and seemed unrealistically simple, while
three produced implausible effects in the outer regions of the fit. The use of
fewer degrees of freedom for interaction splines compared to the main effects
is suggested in Royston & Lambert (2011) to produce a smooth fit. The final
model is thus, in pseudo-code:

log(rate) = s4(age) + s2(year) + sex (13)

+s2(age∗year) + s2(age∗sex) + s2(year∗sex),

where sdf (x) denotes a spline of x, with df degrees of freedom, and star between
two variable denotes an interaction.

We inspect the fit in a level plot of the predicted rates from the population
mortality rate model in figure 1.

Figure 1: Level plot of the predicted rates from the population mortality rate model

In figure 1 we see that the males reach a higher mortality rate at younger ages
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compared to females. The impact of year in the resulting fit causes a lowering
of rates as year increases, but age seem to have a large effect as well.

To visualize the magnitude of variance we introduce when resampling the
coefficients of the population mortality rate model, we plot the fit for a subset
of years and ages, for females together with the raw rates and 200 resampled
predicted rates in figure 2. For corresponding plots for the male population,
we refer readers to the Appendix. Note that we use different scales for each
subplot, based on the dispersion of the raw rates, i.e. the dots.

Figure 2: Population mortality rates for females across age. The black lines are 200
resampled predictions, dots are the raw, unsmoothed rates.

From this plot, we note that the model, with resamples, sometimes overshoot
the raw rates slightly, e.g. in year 1982. We give the same plot across years in
figure 3.
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Figure 3: Population mortality rates for males across calendar year. The black lines
are 200 resampled predictions, dots are the raw, unsmoothed rates.

In figure 3 we also notice some bias, e.g. for the early years of age 15 and the
entire 99-year old fit is slightly higher than the observed rates, and especially so
for later years. However, as the purpose of this model is to introduce variance in
resampled mortality rates rather than finding an unbiased fit of the raw rates,
we do not find this bias problematic.

When it comes to assessing the variability in resampled rate predictions one
could argue that the resampled rates do not come close to covering the the raw
rates across years. Hence the variance is too small. On the other hand, one could
argue that each age-year-sex-combination should be modelled separetely, which
would give far less variance, as each pointwise estimate is based on relatively
large sample sizes. We argue that the first point of view ignores that observations
of the underlying random process will include more noise than the true mean of
the underlying process i.e. a prediction interval is not the same as a confidence
interval of the mean. The latter point of view ignores correlation between rates,
i.e. we expect rates close in time and age to be observations of a similar mean,
and thus we argue that they should be modelled jointly. The variance we want
to incorporate is the uncertainty in the estimates of the underlying random
process from the observed raw rates.

The population of the cancer registry country was approximately 5 million
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during observation time. As there are countries with smaller populations, it
would be interesting to see whether estimates in such countries are more un-
certain, as we will have less certain population mortality estimates there, due
to smaller sample sizes. One way to assess this is to scale down the original
population mortality data. We do this by dividing the number of observed
deaths and at risk with 2 and 10, for one 2.5 and one 0.5 million population.
The corresponding population mortality rate predictions will be identical up
to rounding, but we will increase the variance. One could argue both for and
against changing the cohort size accordingly. After repeating the simulations
using a random subsample of 10 % of the cohort and noting differences that were
hard to explain from an increased variance, we decided to keep the cohort ex-
actly the same during all three country-size scenarios. Although this is perhaps
not the most clinically reasonable scenario, i.e. the cohort is ten times too large,
the resulting comparison is restricted to the increase in variance of population
mortality rates and not from differences in the cohorts. This might also be of
interest if population mortality data is not available for more than a subset of
the entire population. We illustrate the magnitude of the introduced variance
for the three population scenarios, by plotting 200 resampled rates from ages
15, 42 and 99 for the three scenarios in figure 4.

Figure 4: Population mortality rates for females across ages 15, 42 and 99 years
from left to right. The black lines are 200 resampled predictions, dots are the raw,
unsmoothed rates. The first row is the 5 million scenario, second row is 2.5 million,
and third row is the 0.5 million scenario.

In figure 4 we note that there is an increase in variance, clearly visible for the
0.5 million scenario compared to the other two scenarios.
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6 Results & Discussion

We begin with standard errors in the Rubin’s Rule approach, and continue with
a bootstrap-approach for confidence intervals. As we expect Rubin’s rule to
underestimate the variance, we only use the three population-size-scenarios in
the bootstrap.

6.1 Variance estimates using Rubin’s Rule

We begin with plotting the variance estimates from Rubin’s Rule together with
the analytic, standard versions.

Figure 5: Plot of standard error estimates. AgeSt. Ed II, PP and FPM denotes
internally age standardized Ederer II, Pohar Perme and Flexible Parametric Models
in respective order, where star ∗ (and red colour) denotes Rubin’s Rule-estimate, and
no star (in green colour) denotes the analytic, assuming no variance in population
mortality, estimate. Estimates are on the survival scale, and Rubin’s Rule estimates
are based on 200 resamples.

We note that the only visible difference is for the 10 year Pohar Perme estimate.
We inspect the estimates in table 4.

32



Description Estimate
AgeSt. Ed II Year 1 0.00399

AgeSt. Ed II Year 1 * 0.00398
AgeSt. Ed II Year 5 0.00540

AgeSt. Ed II Year 5 * 0.00539
AgeSt. Ed II Year 10 0.00854

AgeSt. Ed II Year 10 * 0.00858
PP Year 1 0.00395

PP Year 1 * 0.00395
PP Year 5 0.00544

PP Year 5 * 0.00544
PP Year 10 0.01004

PP Year 10 * 0.01033
FPM Year 1 0.00383

FPM Year 1 * 0.00383
FPM Year 5 0.00482

FPM Year 5 * 0.00481
FPM Year 10 0.00568

FPM Year 10 * 0.00566

Table 4: Estimates of standard error using analytical results, assuming no variance in
population mortality compared to Rubin’s Rule (marked with star). AgeSt. Ed II, PP
and FPM denotes internally age standardized Ederer II, Pohar Perme and Flexible
Parametric Model estimates in respective order. Estimates are on the survival scale
and Rubin’s Rule estimates are based on 200 resamples.

In table 4 we find that the only increase of standard error in the fourth deci-
mal, when including uncertainty from population mortality, is for the 10 year
Pohar Perme estimate. The increase is 0.00029 (3 %). We consider the smaller
differences in the fifth decimal as artificial covariances in the resampling algo-
rithm, and as indicated by figure 5, the variability relative to the interval length
is small. To see an increase for the Pohar Perme estimate suggests that the
population mortality uncertainty might at least have some effect. We continue
to the bootstrap analysis.

6.2 Confidence interval estimates using Bootstrap

6.2.1 5 million - scenario

The results for the Ederer II estimator are seen in figure 6.
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Figure 6: Confidence intervals for 1, 5 and 10 year age standardized Ederer II esti-
mates. BS and BS∗ denote bootstrap with single population mortality rate and bootstrap
with resampled population rates, in respective order. Greenwood, BCa and Perc de-
notes which method was used for the confidence intervals, as indicated by the colours.
Center is either the Ederer II estimate, or the sample mean of the bootstrap samples.

From figure 6 we note that the estimates seem to be slightly shifted depending on
how we construct the confidence interval. The point estimates differs slightly
depending on whether we have used analytical results or bootstrap, and the
point estimates also differs between the bootstraps, with a shift towards lower
values when we include population mortality uncertainty. When it comes to the
confidence interval endpoints, it is not surprising to see that the BCa-intervals
are shifted compared with the percentile intervals, in the direction of the analytic
point estimate, as that is the effect of bias correction. We inspect the intervals
closer in table 5.
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Description Lower Center Upper Length
Year 1 Greenwood 0.6711 0.6789 0.6867 0.0156
Year 1 BS Perc 0.6713 0.6791 0.6869 0.0156
Year 1 BS* Perc 0.6712 0.6789 0.6868 0.0156
Year 1 BS BCa 0.6711 0.6791 0.6867 0.0156
Year 1 BS* BCa 0.6714 0.6789 0.6868 0.0155
Year 5 Greenwood 0.4617 0.4723 0.4828 0.0210
Year 5 BS Perc 0.4631 0.4738 0.4841 0.0210
Year 5 BS* Perc 0.4622 0.4728 0.4832 0.0210
Year 5 BS BCa 0.4601 0.4738 0.4812 0.0212
Year 5 BS* BCa 0.4610 0.4728 0.4821 0.0210
Year 10 Greenwood 0.4048 0.4214 0.4379 0.0332
Year 10 BS Perc 0.4095 0.4270 0.4442 0.0347
Year 10 BS* Perc 0.4061 0.4232 0.4402 0.0341
Year 10 BS BCa 0.3975 0.4270 0.4330 0.0356
Year 10 BS* BCa 0.4023 0.4232 0.4370 0.0347

Table 5: Confidence intervals for 1, 5 and 10 year age standardized Ederer II estimates.
BS and BS∗ denote bootstrap with single population rate and bootstrap with resampled
population rates, in respective order. Greenwood, BCa and Perc denotes which method
was used for the confidence intervals. Center is either the Ederer II estimate, or the
sample mean of the bootstrap samples.

From table 5 we note that the bootstrap confidence intervals are slightly shorter
in the 10 year estimate after including uncertainty from population mortality,
0.0006 (1.8 %) for the percentile interval, while the 1 and 5 year confidence in-
terval lengths are similar. If anything we had expected an increase in variance,
suggesting that the expected increase is dominated by random variation. We will
return to this in our discussion. We also note that the 10 year bootstrap point
estimates decrease by 0.0038 when including uncertainty from population mor-
tality, and that this shift corresponds to 11 % of the percentile confidence inter-
val length. Another observation is that the percentile and BCa-interval lengths
differ slightly, with longer confidence interval lengths for the BCa-intervals. We
move on to the Pohar Perme estimates in figure 7.
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Figure 7: Confidence intervals for 1, 5 and 10 year Pohar Perme estimates. BS and
BS∗ denote bootstrap with single population rate and bootstrap with resampled popu-
lation rates, in respective order. Analytic (under assumption of negligible population
mortality variance), BCa and Perc. denotes which method was used for the confidence
intervals, as indicated by the colours. Center is either the Pohar Perme estimate, or
the sample mean of the bootstrap samples.

From figure 7 we see that for the Pohar Perme estimator, estimates seem similar
apart from the 10 year estimate where we note an increasing confidence inter-
val length as we include population mortality uncertainty, for both bootstrap
confidence interval methods. We give the details in table 6.
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Description Lower Center Upper Length
Year 1 Analytic 0.6699 0.6777 0.6854 0.0155
Year 1 BS Perc 0.6701 0.6778 0.6857 0.0156
Year 1 BS* Perc 0.6700 0.6777 0.6855 0.0156
Year 1 BS BCa 0.6699 0.6778 0.6855 0.0156
Year 1 BS* BCa 0.6701 0.6777 0.6856 0.0155
Year 5 Analytic 0.4627 0.4734 0.4840 0.0213
Year 5 BS Perc 0.4640 0.4749 0.4855 0.0215
Year 5 BS* Perc 0.4628 0.4737 0.4843 0.0215
Year 5 BS BCa 0.4608 0.4749 0.4827 0.0220
Year 5 BS* BCa 0.4620 0.4737 0.4838 0.0218
Year 10 Analytic 0.4238 0.4452 0.4663 0.0425
Year 10 BS Perc 0.4146 0.4382 0.4656 0.0510
Year 10 BS* Perc 0.4121 0.4382 0.4712 0.0591
Year 10 BS BCa 0.4266 0.4382 0.4831 0.0565
Year 10 BS* BCa 0.4237 0.4382 0.4905 0.0669

Table 6: Confidence intervals for 1, 5 and 10 year Pohar Perme estimates. BS and
BS∗ denote bootstrap with single population rate and bootstrap with resampled popu-
lation rates, in respective order. Analytic (under assumption of negligible population
mortality variance), BCa and Perc denotes which method was used for the confidence
intervals. Center is either the Pohar Perme estimate, or the sample mean of the
bootstrap samples.

In table 6 we note that most estimates are similar regardless of estimation pro-
cedure, expect for the 10 year estimate. There we see an increase of confidence
interval length when including variance in population mortality rates of 0.0081
(16 %) for the percentile method and 0.0104 (18 %) for the BCa-method, which
could be considered quite similar. If we compare the percentile interval to the
analytical confidence interval we find an increase of 0.0166 (39 %). But as we
saw for the Ederer II estimates, the confidence interval lengths for the BCa-
intervals is often slightly larger compared to their percentile counterparts. We
move on to the Flexible Parametric Model confidence intervals, seen in figure 8.
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Figure 8: Confidence intervals for 1, 5 and 10 year Flexible Parametric Model esti-
mates. BS and BS∗ denote bootstrap with single population rate and bootstrap with
resampled population rates, in respective order. Analytic (under assumption of negli-
gible population mortality variance), BCa and Perc denotes the method used for the
confidence intervals. Center is either the Flexible Parametric Model estimate, or the
sample mean of the bootstrap samples.

In figure 8 we do not see any differences between the different estimation proce-
dures. We note that the confidence intervals does not seem to increase as much
in variance for the 5 and 10 year estimates, as the non-parametric estimators.
We present the confidence intervals in table format in table 7.
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Description Lower Center Upper Length
Year 1 Analytic 0.6768 0.6844 0.6918 0.0150
Year 1 BS Perc 0.6767 0.6844 0.6920 0.0153
Year 1 BS* Perc 0.6767 0.6844 0.6920 0.0152
Year 1 BS BCa 0.6769 0.6844 0.6921 0.0152
Year 1 BS* BCa 0.6769 0.6844 0.6921 0.0152
Year 5 Analytic 0.4626 0.4721 0.4815 0.0189
Year 5 BS Perc 0.4624 0.4719 0.4811 0.0188
Year 5 BS* Perc 0.4623 0.4719 0.4811 0.0188
Year 5 BS BCa 0.4627 0.4719 0.4815 0.0188
Year 5 BS* BCa 0.4627 0.4719 0.4815 0.0188
Year 10 Analytic 0.4147 0.4258 0.4369 0.0222
Year 10 BS Perc 0.4143 0.4256 0.4364 0.0221
Year 10 BS* Perc 0.4143 0.4255 0.4364 0.0221
Year 10 BS BCa 0.4146 0.4256 0.4367 0.0221
Year 10 BS* BCa 0.4146 0.4256 0.4367 0.0221

Table 7: Confidence intervals for 1, 5 and 10 year Flexible Parametric Model esti-
mates. BS and BS∗ denote bootstrap with single population rate and bootstrap with
resampled population rates, in respective order. Analytic (under assumption of negligi-
ble population mortality variance), BCa and Perc denotes which method was used for
the confidence intervals. Center is either the Flexible Parametric Model estimate, or
the sample mean of the bootstrap samples.

We note that the two bootstrap estimates seem to produce similar confidence
interval lengths here.

6.2.2 2.5 million - scenario

For the 2.5 million scenario we omit tables and figures, as they are very similar
to the 5 million estimates. However, we do pick out two small details that we
consider to be of interest. The width of the 2.5 million, 10 year Pohar Perme
bootstrap percentile confidence interval, including the population unertainty
increases with 0.0001 from 0.0591 in the 5 million scenario, to 0.0592 in the 2.5
million scenario. The corresponding BCa interval does also increase with 0.0006
from 0.0669 to 0.0675. We will return to this in the discussion.

6.2.3 0.5 million - scenario

We continue with the last scenario, a population size of 0.5 million.
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Figure 9: Confidence intervals for 1, 5 and 10 year age standardized Ederer II esti-
mates from a population of 0.5 million individuals. BS and BS∗ denote bootstrap with
single population rate and bootstrap with resampled population rates, in respective or-
der. Greenwood (under assumption of negligible population mortality variance), BCa
and Perc denotes the method used for the confidence intervals. Center is either the
Ederer II estimate, or the sample mean of the bootstrap samples.

From figure 9 we note that the impact of the smaller overall population seem
negligible, the overall impression is similar to the previous scenarios. From table
8 we once again note that the 10 year interval decrease slightly in length, after
including population mortality uncertainty.
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Description Lower Center Upper Length
Year 1 Greenwood 0.6711 0.6790 0.6867 0.0156
Year 1 BS Perc 0.6713 0.6791 0.6869 0.0156
Year 1 BS* Perc 0.6712 0.6790 0.6868 0.0156
Year 1 BS BCa 0.6711 0.6791 0.6867 0.0157
Year 1 BS* BCa 0.6714 0.6790 0.6869 0.0155
Year 5 Greenwood 0.4618 0.4723 0.4828 0.0210
Year 5 BS Perc 0.4631 0.4738 0.4841 0.0210
Year 5 BS* Perc 0.4622 0.4729 0.4832 0.0210
Year 5 BS BCa 0.4601 0.4738 0.4813 0.0212
Year 5 BS* BCa 0.4611 0.4729 0.4821 0.0210
Year 10 Greenwood 0.4048 0.4214 0.4380 0.0332
Year 10 BS Perc 0.4095 0.4270 0.4442 0.0347
Year 10 BS* Perc 0.4060 0.4233 0.4403 0.0343
Year 10 BS BCa 0.3975 0.4270 0.4331 0.0356
Year 10 BS* BCa 0.4023 0.4233 0.4370 0.0346

Table 8: Confidence intervals for 1, 5 and 10 year age standardized Ederer II estimates
from a population of 0.5 million individuals. BS and BS∗ denote bootstrap with sin-
gle population rate and bootstrap with resampled population rates, in respective order.
Greenwood (under assumption of negligible population mortality variance), BCa and
Perc denotes the method used for the confidence intervals. Center is either the Ederer
II estimate, or the sample mean of the bootstrap samples.

The decrease for the 10 year estimate, after including uncertainty from popu-
lation mortality is 0.001(2.9 %). We move on to the Pohar Perme estimator in
figure 10.

Figure 10: Confidence intervals for 1, 5 and 10 year Pohar Perme estimates from a
population of 0.5 million individuals. BS and BS∗ denote bootstrap with single popula-
tion rate and bootstrap with resampled population rates, in respective order. Analytic
(under assumption of negligible population mortality variance), BCa and Perc denotes
the method used for the confidence intervals. Center is either the Pohar Perme esti-
mate, or the sample mean of the bootstrap samples.
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From figure 10 we once again note an increased variance of the 10 year estimate
after including variance of the population mortality rates. We inspect table 9
for more details.

Description Lower Center Upper Length
Year 1 Analytic 0.6699 0.6777 0.6854 0.0155
Year 1 BS Perc 0.6701 0.6778 0.6857 0.0156
Year 1 BS* Perc 0.6700 0.6777 0.6855 0.0156
Year 1 BS BCa 0.6699 0.6778 0.6856 0.0156
Year 1 BS* BCa 0.6701 0.6777 0.6856 0.0155
Year 5 Analytic 0.4627 0.4734 0.4840 0.0213
Year 5 BS Perc 0.4640 0.4749 0.4855 0.0215
Year 5 BS* Perc 0.4628 0.4738 0.4844 0.0216
Year 5 BS BCa 0.4608 0.4749 0.4828 0.0220
Year 5 BS* BCa 0.4621 0.4738 0.4837 0.0217
Year 10 Analytic 0.4239 0.4453 0.4665 0.0425
Year 10 BS Perc 0.4146 0.4382 0.4656 0.0510
Year 10 BS* Perc 0.4121 0.4384 0.4716 0.0595
Year 10 BS BCa 0.4268 0.4382 0.4839 0.0571
Year 10 BS* BCa 0.4236 0.4384 0.4905 0.0668

Table 9: Confidence intervals for 1, 5 and 10 year Pohar Perme estimates from a pop-
ulation of 0.5 million individuals. BS and BS∗ denote bootstrap with single population
rate and bootstrap with resampled population rates, in respective order. Analytic (un-
der assumption of negligible population mortality variance), Perc and BCa denote the
method used for the confidence intervals. Center is either the Pohar Perme estimate,
or the sample mean of the bootstrap samples.

From table 9, we find that the 10 year estimate increase is 0.0097 (17 %) for the
BCa-interval, which is slightly less compared to the other scenarios, but well
within the variability of the fourth decimal which we have seen throughout the
different scenarios. For the 10 year percentile interval we note that the BS∗-
interval has increased with 0.0003 from 0.0592 to 0.0595 compared to the 2.5
million scenario, while corresponding BCa interval has decreased from 0.0675 in
the 2.5 million scenario to 0.0668. We note that for the 10 year estimates, the
increase in confidence interval length when comparing with and without popu-
lation mortality uncertainty is 0.0085 (17 %) for the percentile interval which
is slightly more than for the previous scenarios. We finish with the Flexible
Parametric Model estimates in figure 11.
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Figure 11: Confidence intervals for 1, 5 and 10 year Flexible Parametric Model es-
timates from a population of 0.5 million individuals. BS and BS∗ denote bootstrap
with single population rate and bootstrap with resampled population rates, in respective
order. Analytic (under assumption of negligible population mortality variance), Perc
and BCa denote the method used for the confidence intervals. Center is either the
Flexible Parametric Model estimate, or the sample mean of the bootstrap samples.

In figure 11 we see, as earlier, that the Flexible Parametric Models seem stable
due to variability from population mortality rates. Once again we note that
the estimates does not seem to increase as time increases, giving smaller confi-
dence intervals for the 5 and 10 year estimates, compared to the non-parametric
estimators. We give the results in table 10.
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Description Lower Center Upper Length
Year 1 Analytic 0.6768 0.6844 0.6918 0.0150
Year 1 BS Perc 0.6767 0.6844 0.6920 0.0153
Year 1 BS* Perc 0.6767 0.6844 0.6919 0.0152
Year 1 BS BCa 0.6769 0.6844 0.6921 0.0152
Year 1 BS* BCa 0.6769 0.6844 0.6920 0.0152
Year 5 Analytic 0.4626 0.4721 0.4815 0.0189
Year 5 BS Perc 0.4624 0.4719 0.4811 0.0188
Year 5 BS* Perc 0.4624 0.4719 0.4812 0.0188
Year 5 BS BCa 0.4627 0.4719 0.4815 0.0188
Year 5 BS* BCa 0.4627 0.4719 0.4814 0.0187
Year 10 Analytic 0.4147 0.4258 0.4369 0.0222
Year 10 BS Perc 0.4143 0.4256 0.4365 0.0221
Year 10 BS* Perc 0.4142 0.4256 0.4365 0.0222
Year 10 BS BCa 0.4146 0.4256 0.4367 0.0221
Year 10 BS* BCa 0.4145 0.4256 0.4368 0.0223

Table 10: Confidence intervals for 1, 5 and 10 year Flexible Parametric Model esti-
mates from a population of 0.5 million individuals. BS and BS∗ denote bootstrap with
single population rate and bootstrap with resampled population rates, in respective or-
der. Analytic (under assumption of negligible population mortality variance), Perc and
BCa denote the method used for the confidence intervals. Center is either the Flexible
Parametric Model estimate, or the sample mean of the bootstrap samples.

We note that for the 10 year estimates, there is a slight increase when in-
cluding population mortality uncertainty, but comparing with the 1 and 5 year
estimates indicate that this could be due to random variation, as interval lengths
decrease slightly here, when including population mortality uncertainty.
For the upcoming discussion, we present a plot of a kernel density estimate
from the 5000 bootstrap samples for the 5 million, 10 year estimates of Age
Standardized Ederer II and Pohar Perme estimator.
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Figure 12: Kernel Density Estimates of bootstrap samples from Age Standardized Ed-
erer II and Pohar Perme estimates, for the 5 million scenario, 10 year relative survival.
Note that the dashed lines have been shifted onto the drawn curves in each subplot, to
facilitate comparison of the shapes.

In figure 12 we note that the difference between the two Ederer II curves is found
in the top of the density, where the bootstrap sample which included population
uncertainty (dashed) is slightly bimodal. We suggest that the observed decrease
in variance might be due to some artifact from the cohort, as we would have
expected an overall lowering of the dashed curve if the variance did really differ,
instead the shapes are rather similar apart from the bimodal peak. For the Pohar
Perme estimator, the dashed curve clearly has a larger variability compared to
the solid curve.

6.3 A shift in point estimates for Ederer II

We will now suggest an explanation to a shifting effect of point estimates in
bootstrap estimates for the Ederer II-estimator, when uncertainty from popu-
lation mortality is introduced. That is we try to explain results commented on
below table 5. First we note that the numerator, S(t), is simulated to be iden-
tical in both bootstrap procedures, hence the shift must be due to differences in
expected survival S∗(t). Since the ratio estimate in the results was found to be
smaller when including population uncertainty, the estimate of S∗(t) must in-
crease with the extra uncertainty. Recall that we have modelled the population
mortality rates as described in (13). If we for simplicity consider a single per-
son cohort, this individual will have the non-resampled rate θ̃∗ in the bootstrap
where only the cohort is resampled. If we let θ∗ be the random variable which
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we draw samples from when resampling, it holds that E(θ∗) = θ̃∗. However,
the denominator of the Ederer II estimator is used on the probability scale, i.e.
exp(−θ∗), where f(x) = exp(−x) is a convex function. According to Jensen’s
inequality, see Grimmett & Stirzaker (2001), it holds that

E(f(θ∗)) ≥ f(E(θ∗)) = f(θ̃∗),

with equality when θ∗ is deterministic. Thus estimates including variance could
be expected to have a downwards shift on the probability scale. We have not
been able to expand this line of reasoning for the other two, more complex
estimators, but on the other hand we don’t see a consistent shift for those
either.

6.4 Discussion

In this thesis we have investigated whether confidence interval length is in-
creased when including uncertainty from population mortality rates, for three
different estimators. What constitutes a substantial increase in confidence in-
terval length depends on the situation. In our first attempt, using Rubin’s Rule,
we saw that a small increase of interval length seemed present for the 10 year
Pohar Perme estimate. For corresponding bootstrap, we found the percentile
confidence interval of the Pohar Perme 10 year estimate to be 39 % longer when
taking population mortality uncertainty into account, compared to standard
procedures. The same estimate has a 16 % confidence interval increase when
comparing percentile bootstraps with and without uncertainty from population
mortality rates. Even though 39 % is larger, we prefer to stress the bootstrap
estimate of confidence interval increase of 16 %, as bootstrap and standard pro-
cedures are known to produce slightly different estimates. If one considers this
to be a substantial increase, it holds that at least for one estimator, there is
a non-negligible increase of confidence interval length when taking uncertainty
from population mortality into account.

We have calculated both percentile and BCa confidence intervals from our
bootstrap estimates. For the BCa procedure, we know that we are missing
the variation from population mortality in the calculation of the acceleration
constant. This suggests that percentile confidence intervals might be a better
choice. From our simulations, the main difference in confidence interval length
when the two procedures differ is that the BCa intervals are slightly wider than
the percentile counterparts. However, when it comes to assessing the effect of
including population mortality uncertainty, both procedures give similar results.

We argue that finding the increase for the Pohar Perme estimator at the 10
year estimate is not surprising. The Pohar Perme estimator has more variance
than Ederer II, and we have seen that both non-parametric estimators produce
longer confidence intervals than the Flexible Parametric Models, indicating more
variance in the nonparametric estimators. To find the increase at the 10 year
estimate rather than the first year is not surprising, as estimates of later years
are based on less data, as fewer survivors are present. This suggests that the
result for Pohar Perme is reasonable.
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However, we have also seen that some confidence intervals decrease after
inclusion of population mortality uncertainty, with the most extreme case for
the Age Standardized Ederer II estimate. The decrease was found to be 2.9 %
for the 0.5 million scenario. From a stochastic point of view, it can be hard to
draw the line between actual trend and random variation, but we suggest from
figure 12 to consider the decrease as due to random variation.

Another unexpected observation is the downwards shift on the probability
scale of Ederer II bootstrap point estimates when including uncertainty from
population mortality. This shifts the Ederer II 10 year confidence interval 11 %
of its length towards zero. Although we have given some support from Jensen’s
inequality for this not simply being random noise, we stress that it’s unclear
how large the theoretically supported shift is. Since we are not aware of any
other studies discussing such a shift, we simply note that it might be something
worth investigating closer in future research.

It is worthwhile to consider how the population mortality rates were resam-
pled. Here we have used a model which smooths before we can draw resamples.
Under the assumption of interchangability of rates close in age and calendar
year, other less parametric resampling algorithms could have been used. For
instance one could sample the rate of year x, age y and a specific gender from
the raw rates of years [x−a, x+a], years [y−a, y+a] for that gender, where the
sampling window range a would have been tuned by some criteria. However, we
consider the asymptotic normality of the GLM coefficients as a reasonable way
of modelling the uncertainty, under the assumption of an underlying smooth
population mortality process.

If we return to the length of the confidence intervals, a natural follow up
question is how the interval lengths increase with the uncertainty of the pop-
ulation mortality rates. This is a question of practical importance, as not all
countries have population of the 5 million size, considered in our original data
set. Thus, we have simulated populations of half and a tenth of the original
size of 5 millions. Although the extra variance introduced before estimation is
clearly visible, e.g. in figure 4 it is hard to claim that there is a visible effect after
estimation. The percentile bootstrap confidence interval for the Pohar Perme
10 year estimate increase slightly as we introduce more variance throughout the
three scenarios. However, the increases are too small (0.0001 and 0.0003) to be
more than a possible indication. The BCa confidence intervals shift as 0.0669 to
0.0675 to 0.0668 as population size is decreased. That is, the length is shortest
for the 0.5 scenario, which casts some doubts on the validity of BCa approach
in this setting. The overall interpretation is that a population of 5 or 0.5 million
does not seem to make a big difference.

However, we must stress that although we simulated population of decreased
size, we did not decrease cohort size, as we wanted a clean comparison of the
effect from decreasing population size. This does however complicate the inter-
pretation, as the 0.5 million scenario has a cohort of 10 times the size one would
expect from a country of that particular size. Thus some caution is required in
interpretations.

From a methodological point of view, the challenges of this thesis are mostly
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due to combining variance from two separate datasets into a single confidence
interval. We see it in our analytical delta method for ratios approach, in the un-
derestimation of variance in Rubin’s Rule and in the flawed acceleration constant
in the BCa bootstrap. We would not be surprised if the likelihood approach
in Flexible Parametric Models could allow cohort and population rates to be
estimated jointly. But as mentioned earlier, we were interested in comparing
non-parametric estimators as well, and have thus used the bootstrap procedure
for all three estimators.

For the broad perspective, we might ask what the implication of this thesis is.
Should estimation of relative survival continue to assume a negligible insecurity
when calculating confidence intervals in relative survival? The results presented
here suggest that for Pohar Perme estimates of 10 year survival, and naturally
beyond that point, the assumption is hard to support. For the other estimators,
our results suggest that this particular source of uncertainty is of small concern.
But we have only considered one single cancer site, one single cohort and one
single overall population. It is unclear whether these results will hold in other
settings, and we stress the need for more research.
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7 Appendix

7.1 Male population mortality rates

Figure 13: Population mortality rates for males across years. The black lines are 200
resampled predictions for the 5 million scenario, dots are the raw, unsmoothed rates.
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Figure 14: Population mortality rates for males across age. The black lines are 200
resampled predictions for the 5 million scenario, dots are the raw, unsmoothed rates.
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