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Abstract

DNA barcodes are short DNA sequences introduced into a popula-

tion to track the relative frequencies of lineages over time. These bar-

code sequences are unknown to the human observer upon insertion and

must be identified using next-generation sequencing technology. This

process is error prone and results in a large number of error sequences.

To estimate the relative frequencies of the barcodes accurately these

errors must be corrected for. This error correction task can be posed

as a clustering problem where the goal is to group similar sequences

together. Existing methods for this task have used the observed fre-

quency of the sequences but have disregarded the per nucleotide error

rate in the clustering process. Without an accurate estimate of this

error rate the distribution of error sequences cannot be inferred, lim-

iting the error correction accuracy of these methods. Furthermore,

these methods have delegated the task of parameter selection to the

user, leaving room for user errors resulting from unsuitable parameter

choices. In this work we set out to develop a clustering procedure that

addresses these shortcoming. We estimate the per nucleotide error

rate and devise a Bayesian hypothesis test for distinguishing between

true barcodes and error sequences. The proposed method considers

all nearby sequences before clustering a given sequence and achieves

higher accuracy than the current state-of-the-art method on simulated

datasets.
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Notation

l Barcode length including only the random nucleotide positions, i.e

excluding constant regions that are the same across all barcodes.

k Length of the substrings used to construct the k-mer index

p Number of partitions (p = l/k)

ε Maximum hamming distance considered for merging two sequences

ρ Estimated per nucleotide error rate

Sc Sequence under consideration - to be classi�ed as either a true barcode

or an error sequence originating from Sb

Sb Closest putative barcode in the ε-neighborhood of Sc

d Hamming distance between sequences Sc and Sb

τ Merging distance threshold for frequency 1 reads

f Frequency threshold for classifying reads as error sequences
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1 Introduction

DNA barcodes are short DNA sequences that are introduced into a population to identify indi-

viduals and their o�spring. These barcodes are passed on from generation to generation and can

be used to track the relative frequencies of di�erent lineages over time. This technology is useful

for analyzing the evolutionary dynamics of a population. For example, it has been used to infer

the presence of mutations in populations of Saccharomyces cerevisiae (baker’s yeast) and to track

the progression of breast cancer in humans [5, 6].

In general, the barcodes are unknown random DNA sequences. Once established in a popu-

lation the barcodes are copied using Polymerase Chain Reaction (PCR) in a process called PCR

ampli�cation. The PCR ampli�cation process generates millions of copies of each DNA barcode.

This is done to facilitate the next step of the process where next-generation sequencing is used to

identify the DNA sequences of the barcodes. The number of times a particular DNA sequence

was read by the sequencer gives us information about the frequency of the corresponding barcode

in the population. If we compare the number of times each distinct DNA sequence was found

by the sequencer we obtain an estimate of the relative frequency of each barcode in the popula-

tion. However, this ignores the fact that the sequencing process is error prone and assumes that

each identi�ed sequence corresponds to a barcode in the population. Both PCR ampli�cation

and sequencing can introduce errors in the identi�cation of the barcodes, typically in the form

of substitution errors, whereby one or more nucleotides in a barcode are exchanged for di�er-

ent nucleotides. To correctly determine the relative frequencies of the barcodes these errors must

be identi�ed and corrected for. Indel errors that change the length of the barcodes by inserting

and deleting nucleotides occur at a much lower rate and will not be accounted for in our error

correction scheme [9]. Consequently, sequences of di�erent lengths will be processed separately.

De�ne an error read as a sequencing read that introduced one or more substitution errors in

the identi�cation of a barcode. The original barcode is the source barcode of the error read. The

error correction task can be viewed as a clustering problem where we want to group similar reads

together. All error reads that have the same source barcode should belong to the same group

together with their source barcode.

The main challenge of this task is that the number of unique DNA sequences found by the se-

quencer (unique reads) can be in the millions and the number of barcodes can be in the hundreds
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1 Introduction

of thousands. Since clustering involves grouping similar items together a standard approach is to

compute all pairwise distances between the items, before applying some clustering scheme. How-

ever, with millions of unique reads this approach is too computationally expensive in our case. In

addition, the number of barcodes is unknown beforehand, making the task more di�cult since

the cluster count cannot be used as a guide to �nd correct clusters.

Bartender and Starcode are examples of existing methods for the speci�c task of clustering bar-

code reads that account for the distances between reads and the read frequencies [10, 11]. To make

the task of �nding sequence distances computationally tractable these methods use various pri-

oritisation schemes to avoid computing all pairwise distances.

Nevertheless, existing methods do not account for the error rates associated with PCR am-

pli�cation and sequencing. These are important factors to consider, allowing us to estimate the

probability distribution of the error reads. This distribution can help us to accurately determine

whether a given read is a barcode or an error read. It also enables a data-driven approach for auto-

matic parameter selection which eliminates the possibility of user errors arising from inappropri-

ate choices of parameters.

Here we propose a new method for the task of clustering barcode reads which seeks to improve

accuracy by addressing the aforementioned shortcomings of existing methods. Our approach is

based on the idea of partitioning the reads into non-overlapping substrings. These substrings are

used as keys in an indexing scheme to e�ciently �nd all reads that are similar to a given read. We use

a Bayesian hypothesis test to accurately determine if a given read is an error read or a barcode. The

main achievement of our approach is that it o�ers a substantial improvement in error correction

accuracy over previous methods.

The thesis will be organized as follows. Section 2 provides a mathematical description of the

data and presents the main challenges associated with the clustering problem. In section 3 we

provide a detailed description of our method. In section 4 we evaluate the method on simulated

datasets with comparisons to Bartender, the current state-of-the-art method. We discuss the re-

sults and the signi�cance of our new approach in section 5 and conclude our �ndings.
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2 Mathematical Description

In this section we will discuss the main challenges associated in clustering barcode reads. We will

start by analysing the proximity of the barcodes in sequence space in the absence of errors. Then

we will see how error reads from one barcode can get close to another barcode in some cases,

posing a challenge when clustering the reads. Finally, we will discuss the practical challenges of

the clustering problem.

Throughout this text we will assume that each row in the input dataset contains a unique read

and its observed frequency in the population. The observed frequency is simply the number of

times the sequence was read by the sequencer.

To analyse the proximity of the barcodes and to perform clustering of the reads we need to

start by de�ning a sensible distance between the DNA sequences. We will process sequences of

di�erent lengths separately and consider the cases when error reads arise as a result of substitutions,

whereby the nucleotide at one or more positions in the source barcode is exchanged for one of the

other 3 nucleotides.

In this context it is natural to use the Hamming distance as our distance metric since it counts

the number of substitutions needed to convert one sequence to another. Formally, let l denote

the sequence length and let Si denote the sequence of read i. Furthermore, let Si[j] denote the

nucleotide found at the jth position in Si, where j = 1, . . . , l. Then the Hamming distance

between sequences Sa and Sb is given by,

h(Sa, Sb) =
l∑

j=1

I(Sa[j] 6= Sb[j]). (2.1)

where I denotes the indicator function de�ned by,

I(Sa[j] 6= Sb[j]) =

1 if Sa[j] 6= Sb[j],

0 if Sa[j] = Sb[j].
(2.2)

Since we are considering the general case when the barcodes are randomized DNA sequences,

we can infer the structure of the data in the absence of errors. First we consider a pair of random

DNA barcodes and analyse their theoretical proximity in sequence space. A DNA barcode con-
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2 Mathematical Description

sists of l random nucleotides and there are 4 nucleotides, A, C, T and G, that are equally likely

to occur at each nucleotide position. It follows that if we have two barcodes, the probability that

they have di�erent nucleotides at a particular position is 3/4. This is because there are 42 = 16

combinations of nucleotide pairs and only 4 of these are matching pairs, corresponding to the

cases AA, CC, GG and TT. Let H denote the discrete random variable counting the number of

mismatches between two random barcodes (their Hamming distance). Assuming that the nu-

cleotides are generated independently for each nucleotide position, it follows that,

H ∼ Bin(l, 3/4). (2.3)

The distribution of H is shown in Figure 2.1a for barcode length l = 20. We can see that two

random barcodes are unlikely to be close in sequence space, with an expected Hamming distance

of 15.

Figure 2.1: (a) The probability mass function of the random variable H for l = 20. (b) The probability

mass function of Y form = 500 000 and l = 20.

It is tempting to conclude from this that all barcodes will be distant in sequence space and that

we do not have to worry about confusing the error reads from one with the error reads from an-

other. However, there is an important distinction to be made. In Figure 2.1a we considered the
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2 Mathematical Description

Hamming distance between two arbitrary barcodes from the population. It is more informative

to consider the distribution of the Hamming distance between a given barcode and its closest bar-

code in the population. If the sequence space is populated with a large number of barcodes, these

distributions will di�er greatly. The distribution of the hamming distance to the closest barcode

is more relevant for our purpose, since we are often dealing with large numbers of barcodes and

we want to know how likely it is for a given barcode to have another barcode in its close proximity.

Let m denote the number of barcodes in the population and consider a given barcode in the

population. We want to know the distribution of the minimum Hamming distance to another

barcode in the population. Let Xi denote the random variable counting the number of mis-

matches between the given barcode and the ith barcode. Note that Xi and H have the same

distribution. This is because if one barcode is given the probability that it does not match an-

other barcode at a speci�c nucleotide position is still 3/4, just like the case when both barcodes

are unknown.

The random variable Y := min(X1, . . . , Xm−1) corresponds to the minimum Hamming

distance between the given barcode and any other barcode. The random variablesX1, . . . , Xm−1

are independent and identically distributed with cumulative distribution function,

FX(x) =

x∑
k=0

(
l

k

)
(3/4)k(1/4)l−k. (2.4)

It follows that the CDF of Y is given by,

FY (y) = P (Y ≤ y) = P (min (X1, . . . , Xm−1) ≤ y)

= 1− P (X1 > y, . . . ,Xm−1 > y)

= 1−
m−1∏
i=1

P (Xi > y)

= 1− (1− FX(y))m−1.

(2.5)

Figure 2.1b shows the probability mass function of Y for m = 500 000 and l = 20. We see

that the most probable Hamming distance of a given barcode to its nearest barcode is 5. We also

see that for some barcodes the closest barcode can have Hamming distance as small as 3 or 4.

To understand the data, we also need to consider the error reads and where they might fall in

the sequence space in relation to their source barcodes. To do this we will use a simpli�ed error

model where we assume that errors occur with the same probability at each nucleotide position.

While error probabilities can vary at di�erent nucleotide positions in real sequencing data, this

assumption simpli�es the mathematical modelling of error reads greatly, and provides a reasonable
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2 Mathematical Description

approximation [9]. We will also assume that once an error has occurred in one position it does not

become more or less likely for an error to occur at another position (independence). We will set

the error probability per nucleotide to 0.24% in accordance with the experimentally determined

estimate provided by Pfei�er et al. in [8]. LetE denote the discrete random variable counting the

number of errors that occur when a barcode is read. Under our error model the distribution ofE

is given by,

E ∼ Bin(l, 0.0024). (2.6)

Since the error probability is low in this case, around 95% of the reads are error free under this

model. The probability that 1 error occurs in a barcode is 4.6% and the probability that 2 errors

occur is 0.1%. To understand what e�ect these errors might have, we need to account for the total

number of reads. We will assume that the average frequency of a barcode in the population is 100

and that the number of barcodes is 500 000 as before. Then the expected number of total reads

is 100× 500 000 = 5× 107. Since the probability that one error occurs is 4.6× 10−2, it follows

that the expected number of reads with 1 error is 4.6 × 10−2 × 5 × 107 = 2.3 × 106. Using

the same reasoning, the expected number of reads with 2 errors is 10−3 × 5 × 107 = 5 × 104.

This is assuming that each read is an independent Bernoulli trial with success probability 4.6%

and 0.1% respectively.

As we have already demonstrated the barcodes themselves can sometimes be close in sequence

space, within 3 or 4 substitution in some cases. If 1 or 2 errors occur in a barcode so that the error

read is brought closer to the closest neighboring barcode it can be di�cult to determine which

barcode it originated from. Some of these cases are almost impossible to resolve, even in theory.

Especially when the closest barcode to an error read is not its source barcode. More commonly,

the closest barcode is the source barcode but another barcode is also in close proximity to the error

read. To resolve these cases the clustering procedure needs to identify all nearby barcodes and as-

sign the sequence to the closest one. To understand why, consider a simple clustering procedure,

based on the idea of merging an error read with the �rst identi�ed barcode within some distance

threshold to it. Since there might be some other barcode that is even closer than the �rst one en-

countered this strategy would lead to errors in such cases. The procedure we propose in section 3

is able to resolve these cases by considering all putative barcodes within a distance threshold before

merging. In contrast, the most recent method proposed by Zhao et al. in [10] merges an error read

with the �rst viable barcode within a distance threshold. A statistical test is used to determine the

viability of the barcode as the source barcode of the error read based on the Hamming distance

between the reads and their frequencies.

In practice there are additional challenges. First we have to correctly identify each sequence as

either a true barcode or a potential error read. High frequency sequences (e.g. above frequency

7



2 Mathematical Description

20) are almost certainly true barcodes, since the probability that many error reads end up with

the same sequence is negligibly small. When the frequency of the sequence is low, it is harder to

determine and in those cases we need to consider its proximity to other sequences.
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3 Method

In this section we will explain each step performed by our method to �nd accurate barcode clus-

ters. In section 3.1 we introduce the k-mer index which forms the backbone of our algorithm and

enables us to e�ciently �nd a neighborhood for each sequence containing all nearby sequences.

In section 3.2 we introduce the main clustering procedure that utilizes the k-mer index. Section

3.3 details the Bayesian hypothesis test that we use in ambiguous cases to determine if a sequence

is a true barcode or an error read. Finally, the procedure used for automatic parameter selection is

described in section 3.4, where we also discuss performance optimization.

3.1 The k-mer index

The idea behind the k-mer index is that if we can e�ciently �nd neighborhoods for the reads, with-

out the need to compute the Hamming distances between all pairs of unique reads, we can start to

make decisions about which reads to group together. Given a read we de�ne its ε-neighborhood

as the set of all reads within Hamming distance ε to it. In section 3.4 we will detail how ε is deter-

mined. For now our task is to e�ciently �nd the ε-neighborhood of each read.

To do this we start by thinking of each read as a series of non-overlapping substrings of length k

called k-mers, a well known concept in bioinformatics. As before let l denote the barcode length.

Although it is not generally required, we will assume that k divides the read evenly to illustrate

the idea more clearly. Since the barcode length is �xed each choice of k partitions the read into a

number of k-mers, let p = l/k denote the number of partitions.

Given a distance threshold ε, we require that k is chosen so that p > ε. If a read is within

distance ε of a given read we claim that the number of k-mers shared by the reads is at least p− ε.
This follows from the pigeonhole principle exempli�ed in Figure 3.1. From the �gure we see that

all error reads are within distance ε = 3 of the true barcode. Consequently, each error read will

share two or more 4-mers with the true barcode. This is because we have a maximum of three

errors that can occur in �ve 4-mers. Placing one error in each 4-mer minimizes the number of

matching 4-mers, but will always leave two 4-mers error free.

It follows from this principle that for a given read the set of reads that share with it p − ε or

morek-mers is guaranteed to include all reads in its ε-neighborhood. We will call this set thek-mer
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3 Method

Pigeonhole Principle Example

Figure 3.1: Illustration of the pigeonhole principle for l = 20, k = 4 and ε = 3. Each error read is

within Hamming distance 3 of the true barcode. Consequently, it follows from the pigeonhole

principle that each error read will share 2 or more 4-mers with the true barcode.

neighborhood of the read. Note that reads outside of the ε-neighborhood might also be included

in the k-mer neighborhood. However, since p − ε k-mers match, the k-mer neighborhood will

not include any reads with Hamming distance more than l − k(p− ε) = l − l + kε = kε. An

illustration of the read neighborhoods is shown in Figure 3.2.

There are

(
p
p−ε
)

ways for two reads to share p− ε k-mers. Equivalently, there are

(
p
p−ε
)

ways to

choose p−ε k-mers of a read. The k-mer index is a lookup table that maps each one of thesek-mer

combinations, found in at least one of the unique reads in the data, to the set of all reads that share

it. To construct the index we iterate over the unique reads and in each iteration we perform the

following steps:

1. Find the

(
p
p−ε
)

combinations of k-mers for the read.

2. Convert each of these combinations to an identi�cation number (ID) that will serve as the

key for that combination. This process is illustrated in Figure 3.3.

3. Is the ID already in the k-mer index?

No: Add the key and map it to a set containing the current sequence.

Yes: Add the current sequence to the set of sequences sharing the key.

10



3 Method

Read Neighborhood Illustration

Figure 3.2: A given read (orange square) surrounded by its neighbors (dots) in sequence space. The orange

dots are the k-mer neighbors of the read, i.e. all sequences that share at least p− ε k-mers with

it. The blue dots are reads not included in the k-mer neighborhood. The dotted circle is the

ε-neighborhood of the read and the solid circle is the boundary for the k-mer neighbors, i.e. no

k-mer neighbor will appear outside of the solid circle. Note that all ε-neighbors of the read are

also k-mer neighbors, this is guaranteed by the pigeonhole principle.

k-mer Combination to ID Conversion

Figure 3.3: Illustration of how a pair of 4-mers are converted into a combination ID. First a pair of 4-mers

is selected. Each 4-mer has a location in the read speci�ed by the orange numbers. Then the

4-mer pair is transformed into an ID by mapping each of its nucleotides to a number speci�ed

by the conversion table in the bottom right of the �gure.

Once these steps have been performed for each sequence the k-mer index has been constructed.

Given a read we can now use the index to �nd its k-mer neighborhood. To do this we simply
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3 Method

access its combination IDs obtained from step 2 of constructing the index. Then we query the

index using these IDs to �nd all reads that share at least one ID, these reads are thek-mer neighbors

of the read.

So far we have seen how the k-mer index is constructed and how it can be used to �nd k-mer

neighborhoods. Once we have the k-mer neighborhood of a read we can �nd its ε-neighborhood

by computing the Hamming distances between the read and all of its k-mer neighbors, only keep-

ing the reads that are within distance ε gives us the ε-neighborhood. However, it is still unclear

how using our method for �nding ε-neighborhoods is more e�cient than computing all pairwise

Hamming distances between the reads to do so. The fundamental reason that our approach is

signi�cantly more e�cient is that constructing the k-mer index only requires one pass over the

reads. In contrast, using the naive approach of computing all pairwise distances requires iterating

over the reads, and in each iteration another pass over all reads is required (excluding the given

read). In essence, the work required to construct the k-mer index is roughly equivalent to com-

puting the distances between just one read and all other reads. However, once constructed, the

index enables us to e�ciently �nd k-mer neighborhoods, narrowing the search for ε-neighbors

considerably compared to searching all reads for ε-neighbors.

There are two parameters that need to be �xed before the k-mer index can be constructed, the

distance threshold ε and the substring length k. In section 3.4 we will detail the procedure used

for determining these parameters.
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3 Method

3.2 Clustering Procedure

In this section we will explain the simple clustering procedure used to identify true barcodes and

to group them with the error reads that originated from them. The procedure is based on the

observation that the high frequency reads are unambiguously true barcodes while low frequency

reads may be error reads. We assume that the k-mer index has already been constructed for some

distance threshold ε and substring length k. The procedure works as follows. We iterate through

the sequences in descending order of frequency and use the k-mer index to �nd the k-mer neigh-

borhood of each read. We start by classifying the �rst read as a true barcode since it is the highest

frequency read. Subsequent reads are also classi�ed as true barcodes as long as none of their ε-

neighbors are true barcodes. The rationale behind this is that if the read was an error read we

would expect its source barcode to have a higher frequency and to have been identi�ed as a true

barcode in a previous iteration. In that case we would expect it to appear in the ε-neighborhood

of the sequence.

On the other hand, if a true barcode is found in the ε-neighborhood of the read under consid-

eration the read could be an error read that originated from the true barcode. However, when the

barcode length is short (e.g. l = 20) true barcodes can be close to each other in sequence space

as demonstrated in section 2. Therefore, the naive strategy of classifying a read as an error read

whenever it has a true barcode as an ε-neighbor is subject to type II errors.

To resolve these cases statistically, we will use a Bayesian hypothesis test to determine if a read

is an error read or a true barcode. This test will be described in detail in the next section. For

now we will treat it as a step if the algorithm which takes as input the read to be examined and its

closest true barcode. It also accounts for the frequencies of both sequences and the estimated per

nucleotide error rate, from the processes of PCR ampli�cation and sequencing. The output is a

classi�cation of the read under consideration as either a true barcode or an error read originating

from its closest true barcode. If the read is classi�ed as an error read, it will be clustered with its

closest true barcode. In the rare cases when two or more true barcodes have the same Hamming

distance to the read under consideration, the one with the highest frequency will be considered.

The clustering procedure is summarized below in Algorithm 1.

13



3 Method

Algorithm 1 Sequence Clustering Procedure

Input: sequences (including their frequencies), k-mer index, ε, error rate estimate ρ

Output: clustered sequences

true_barcode_set = ∅
sorted_sequences = sort_by_frequency(sequences, order=descending)

for seq in sorted_sequences do
neighborhood = getNeighbors(seq, k-mer index)

true_barcode_neighbors = true_barcode_set∩ neighborhood

if true_barcode_neighbors 6= ∅ then
closest_true_barcode = getClosest(seq, true_barcode_neighbors)

if h(seq, closest_true_barcode)≤ ε then
class = hypothesis_test(seq, closest_true_barcode, ρ)

if class == error_sequence then:

cluster seq with closest_true_barcode

continue to next iteration

add seq to true_barcode_set

The clustering procedure we have described performs a statistical test every time a true barcode

is in the ε-neighborhood of the sequence under consideration. We want to avoid performing this

test many times for cases that are unambiguous to save computational time. In section 3.4 we will

describe how the statistical test can be used before iterating through the sequences to �nd simple

rules to identify such cases. It is important to note that these optimizations will only a�ect the

computational time of the procedure and do not a�ect the clustering result.

3.3 BayesianHypothesis Test

When a given read is within Hamming distance ε of a true barcode, we have to decide if it should

be classi�ed as an error read or a true barcode. The decision should account for the sequences of

both reads and their frequencies together with the estimated average per nucleotide error rate ρ.

The parameter ρ is the estimated probability that a substitution error occurs at a nucleotide in a

read. In section 3.4 we explain how this parameter is determined.

Let Sc denote the sequence being considered and let fc denote its frequency. Furthermore,

let Sb denote the sequence of the neighboring true barcode with frequency fb. The Hamming

distance between the sequences is given by d, such that d ≤ ε.
We will consider two competing models for the read. In the �rst model,M1, the read Sc origi-

nated from the nearby barcodeSb through substitution errors. In the second model,M2, the read

14



3 Method

Sc is itself a true barcode generated independently of the nearby true barcode Sb. The marginal

likelihood of each modelMi takes the form,

P (fc, Sc | Sb, fb, ρ,Mi). (3.1)

Naturally this marginal likelihood will depend greatly on the model we are considering.

3.3.1 Marginal Likelihood ofModelM1

Let us start by considering modelM1. To �nd a computable expression for the marginal likelihood

of this model we will use the probability chain rule to obtain,

P (fc, Sc | Sb, fb, ρ,M1) = P (fc | Sc, Sb, fb, ρ,M1)P (Sc | Sb, ρ,M1), (3.2)

where we have used P (Sc | Sb, fb, ρ,M1) = P (Sc | Sb, ρ,M1), i.e. the probability of observ-

ing the read Sc only depends on the sequence of the nearby barcode Sb, but not on its frequency

fb. We can think of P (Sc | Sb, ρ,M1) as the probability of converting the sequence Sb to Sc

in one trial/reading. From this point of view it is clear that while fb is directly related to the to-

tal number of trials, given by the true frequency of Sb in the population, it does not a�ect the

probability that Sb is converted to Sc in one of these trials.

Given this interpretation we can also �nd a computatable expression for P (Sc | Sb, ρ,M1).

Each time an error occurs at a nucleotide position, there are 3 nucleotides to replace the correct

one. We will assume that each one of these 3 possibilities is equally likely. Since the distance

between Sb and Sc is given by d it follows that the probability of converting Sb to Sc in one trial

is estimated by,

P (Sc | Sb, ρ,M1) = p̂bc = (ρ/3)d(1− ρ)l−d, (3.3)

where we have assumed that the error rate is the same at each nucleotide position, and that

errors occur independently at each nucleotide position. We will elaborate on the validity of our

assumptions in section 5.

We can see that p̂bc is normalized by summing over all possible sequences Sc to obtain,

∑
Sc

P (Sc | Sb, ρ,M1) =

l∑
k=0

(
l

k

)
3k(ρ/3)k(1− ρ)l−k

=

l∑
k=0

(
l

k

)
ρk(1− ρ)l−k = 1.

(3.4)

15



3 Method

The term 3k appears in the �rst equality since there are 3 possible nucleotides at each of the k

positions where the two sequences di�er.

An expression forP (fc | Sc, Sb, fb, ρ,M1) is also needed so that we can compute the marginal

likelihood of modelM1. It is the probability of observing the frequency fc for the read Sc given

that it originated from the neighboring true barcode Sb with the observed frequency fb. We as-

sume that Sb has some unobserved true frequency in the population that we will denote n. We

can think about the process of sequencing Sb as n independent Bernoulli trials, each one has a

probability p̂bc (Eq. 3.3) of converting Sb to Sc. From this point of view fc follows a binomial

distribution with parameters n and p̂bc, and we want to evaluate the probability of observing fc

under this model. To proceed, the unobserved parameter n needs to be estimated.

Let us consider the distribution of fb. Since we are assuming thatSb is a true barcode, it follows

that fb is its observed frequency in the population. In particular, it is the number of times Sb was

read without errors. The probability of no error occurring in one reading of Sb is estimated by

p̂ne = (1−ρ)l. We can now think of fb as a sample from a binomial distribution with parameters

n and p̂ne. Consequently, we can obtain the maximum likelihood estimate of n given by,

n̂mle =

⌊
fb
p̂ne

⌋
. (3.5)

where b·c denotes the �oor function. A proof that this is the maximum likelihood estimate is

presented in Appendix A. For a more thorough discussion on the estimation of this parameter we

refer to [2]. Under the current model, M1, both reads originated from the same source barcode

and so we need to ensure that our estimate of n is not less than fb + fc. Therefore, our estimate

of n is given by,

n̂ = max (n̂mle, fb + fc). (3.6)

Using this estimate we obtain the following expression for the desired probability,

P (fc | Sc, Sb, fb, ρ,M1) = p(fc; n̂, p̂bc) =

(
n̂

fc

)
p̂fcbc(1− p̂bc)

n̂−fc ,

where p(k;n, p) denotes the probability mass function of a binomial distribution with param-

eters n and p evaluated at k. The marginal likelihood of our �rst model M1 (Eq. 3.2) is now

estimated by,

P (fc, Sc | Sb, fb, ρ,M1) = P (fc | Sc, Sb, fb, ρ,M1)P (Sc | Sb, ρ,M1)

= p(fc; n̂, p̂bc)p̂bc.
(3.7)
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3.3.2 Marginal Likelihood ofModelM2

In a similar way we can also �nd an expression for the marginal likelihood of model M2. Like

before we use the chain rule to obtain,

P (fc, Sc | Sb, fb, ρ,M2) = P (fc | ρ,M2)P (Sc | Sb,M2). (3.8)

In Eq. 3.8, we use the property that the frequency of the read under consideration,Sc, is indepen-

dent of the nearby barcode Sb and its frequency fb. However, since we know that Sc and Sb are

distinct sequences, the probability of observing Sc will not be independent of Sb. Furthermore,

the probability of observing Sc does not depend on the error rate ρ, since it is a randomized se-

quence under model M2. On the other hand, the probability of observing fc will depend on ρ.

This becomes clear if we think about fc as the number of times Sc was read without errors.

Since Sc is a random DNA sequence under M2 with 4 possible nucleotides at each of the l

positions it follows that,

P (Sc | Sb,M2) =
1

4l − 1
≈ 1

4l
. (3.9)

The probabilityP (fc | ρ,M2) is more di�cult to determine. It is the probability of observing the

frequency fc for a true barcodeSc in the population, given the error rate ρ. Since the observed fre-

quency distribution of the reads includes error reads, the distribution of the observed true barcode

frequencies is unknown. What we do know is the maximum observed frequency fmax. Given

this maximum, we have a range for the possible frequency values between 1 and fmax. With no

additional information we want to assume as little as possible about the frequency distribution.

This is achieved by choosing the maximum entropy distribution, given by the discrete uniform

distribution in our case. It follows that for fc ∈ [1, fmax],

P (fc | ρ,M2) =
1

fmax
. (3.10)

The marginal likelihood of modelM2 is now given by,

P (fc, Sc | Sb, fb, ρ,M2) = P (fc | ρ,M2)P (Sc |M2) =
1

4lfmax
. (3.11)
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3.3.3 Read Classification using Bayes Factor

We are now able to compute the marginal likelihood of each model. To compare the models and

to determine which model describes a given read better we will use the log Bayes factor, lnK , the

logarithm of the ratio between the marginal likelihoods ofM1 andM2 given by,

lnK = lnP (fc, Sc | Sb, fb, ρ,M1)− lnP (fc, Sc | Sb, fb, ρ,M2)

= ln p(fc; n̂, p̂bc) + ln p̂bc + l ln 4 + ln fmax.
(3.12)

To make a decision about whether the current read is an error read or a true barcode we will

consider M1 as our null model. We only want to reject this model if its marginal likelihood is

signi�cantly lower than the marginal likelihood of the alternative model M2. By default, we will

reject the null model if lnK ≤ −4, i.e if the marginal likelihood of modelM2 is approximately 55

times greater than the marginal likelihood of modelM1. This threshold was chosen in accordance

with the guidelines provided in section 3.2 in [4]. The threshold can be adjusted by the user to

control the trade-o� between type I and type II errors. Increasing the threshold will increase the

number of type I errors while reducing the number of type II errors.

3.4 Parameter Selection andOptimization

In this section we will discuss how we can determine the parameters of our procedure automati-

cally based on the observed data. We will also discuss how our clustering procedure can be opti-

mized to improve performance. Our algorithm relies primarily on three parameters, the maximum

distance ε for merging reads, the substring length k used for k-mer indexing and the total error

rate per nucleotide ρ.

3.4.1 Determining ε

We will start by �xing ε appropriately. We want to choose ε so that the vast majority of error reads

are within the ε-neighborhoods of their source barcodes. However, we do not want to choose

a larger ε than necessary. Firstly, the memory and time complexity of the algorithm increase for

larger values of ε. This is because a larger ε necessitates that the sequence is divided into more

partitions with smaller k, since we require that the number of partitions p > ε. In general, this

will increase the number of k-mer combinations and consequently the number of entries in the

k-mer index. As a result, the index will take up more space in memory and will take longer to

construct. Another reason that we want to avoid choosing a larger ε than necessary is that the

k-mer neighborhoods become larger as ε increases. Since we search the k-mer neighborhoods

for true barcodes this leads to an increase in search time. If the distance between Sc and Sb is
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large enough our statistical test will classify Sc as a true barcode regardless of the frequencies of

the reads. Therefore a reasonable choice for ε is the largest distance such that Sc could still be

classi�ed as an error read for some frequency setting. To �nd this distance we start by considering

the frequency setting that will clearly favour model M1 for a given distance d between Sc and

Sb. We set fb = fmax to favour model M1. It remains to �nd the value of fc that maximizes

the marginal likelihood of modelM1. From Equation (3.7) we see that maximizing the marginal

likelihood of model M1, with respect to fc, is equivalent to �nding the mode of the binomial

distribution with parameters n̂ and p̂bc. However, since n̂ is a function of fc we will replace it with

n̂mle to determine the mode. We can do this since we know that the value of fc that maximizes

the marginal likelihood of model M1 will be much smaller than fb = fmax, since it represents

the most likely frequency of an error read originating from sequence Sb. Consequently, it is safe

to assume that n̂mle > fb + fc, which implies n̂ = n̂mle. Since fc > 0 it follows that given

fb = fmax and a distance d between Sc and Sb, the value of fc that maximizes the marginal

likelihood of modelM1 is given by,

fc = max
(
b(n̂mle + 1)p̂bcc, 1

)
. (3.13)

To �nd ε we apply our statistical test using the frequency combination fc (as de�ned in 3.13)

and fb = fmax, for increasing values of d. The largest value of d for which Sc is classi�ed as an

error read will be chosen as the value for ε.

3.4.2 Determining k

When choosing k we need to make sure that p > ε. However, in most cases there are several

choices of k that satisfy this constraint. On the one hand, we want to choose a small k so that

kε − ε is small, this corresponds to the distance between the dashed circle and the solid circle

being small in Figure 3.2. Since we only consider ε-neighbors for merging, this ensures that the

number of irrelevant reads in each neighborhood with distance greater than ε are minimized. This

will decrease the size of each neighborhood resulting in shorter search times. However, as we

mentioned previously a smallerkwill also increase the number ofk-mer combinations, increasing

the memory use and running time of the algorithm.

To �nd a reasonable value for kwe will only consider the true barcodes in the absence of errors.

The reason for this is that error reads will be close to their source barcodes in sequence space.

Consequently, if we focus on excluding true barcodes, that are not associated with a given true

barcode, we are simultaneously excluding many of the error reads of those distinct barcodes as

well. We will also assume that ε has already been �xed. It should be noted that the optimal value

for k depends on the hardware used for running the algorithm. However, our approach here does
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not consider the hardware and only attempts to �nd a reasonable choice based on the theoretical

distribution of Hamming distances for random barcodes.

For a given barcode we want to ensure that the number of distinct barcodes in the region be-

tween the dashed circle and the solid circle in Figure 3.2 is small. As discussed in section 2 the

Hamming distance from a given barcode to a random barcode follows a binomial distribution

with l trials and success probability 3/4. Given this distribution we will require that,

P (ε < d ≤ kε) =
kε∑

d=ε+1

(
l

d

)(3
4

)d(1
4

)l−d
<

1

2
. (3.14)

This constraint ensures that for a given barcode the majority of distinct barcodes are expected to

be either within distance ε or beyond distance kε. This ensures that we do not pick a k that is too

large. Given (3.14) and the constraint p > εwe will now pick the largest integer that satis�es both

as our value for k. The constraint (3.14) is somewhat arbitrary since there is no inherent reason to

choose 1/2 as our threshold. Nevertheless, we have chosen it here since it resulted in appropriate

choices for k in practice. For example, our parameter selection scheme found k = 4 to be the

optimal value for both datasets considered in section 4. For both datasets the barcode length was

l = 20 and ε = 3 was chosen. By considering the other two possible values for k, 2 and 5, we can

see why this choice is optimal. If k = 2, the k-mer index will take up too much space in memory.

If k = 5, the index takes up slightly less space in memory compared to k = 4. However, this

choice increases the k-mer neighborhood size signi�cantly, since kε = 5 × 3 = 15 for k = 5

compared to kε = 4×3 = 12 for k = 4. This might seem like a small di�erence at �rst but if we

consider the hamming distance distribution for true barcodes (see �gure 2.1a) we see that many

of the distinct barcodes will be within hamming distance 12 to 15.

It is important to note that the parameter k only a�ects the memory usage and running time of

the algorithm and has no e�ect on the clustering results. In fact the only parameters that impact

the clustering results are ε and ρ. Speci�cally, the ε parameter dictates which sequences are con-

sidered for merging and ρ is used in the statistical test to determine if a sequence is an error read

or a true barcode.

3.4.3 Determining ρ

To determine ρ we need to consider the design of the barcode sequences. So far we have consid-

ered the case when each nucleotide in a barcode is random. In general, real barcode designs include

constant regions that separate the random regions of the barcodes. These constant regions have

nucleotides that are shared by all barcodes. An example of a typical barcode design is one with 20

random nucleotides separated by 3 constant regions with 2 consecutive nucleotides each. In this
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design the �rst 5 nucleotides are random followed by 2 constant nucleotides and then 5 random

nucleotides again. This pattern repeats until the number of random nucleotides is 20. The �nal

con�guration of the barcode is described by the numeric string 5-2-5-2-5-2-5. This design was

used in [5] and we will use it in the next section for our simulated datasets. Some barcode designs,

such as the one used in [7], do not include constant regions between the random regions. How-

ever, regardless of design there will always be constant regions that �ank the barcodes on either

end. These constant regions are present so that the barcodes can be located for PCR ampli�cation

and sequencing.

For the purpose of clustering we are only interested in the random regions, since the constant

regions do not provide information to distinguish two barcodes. However, we can use these con-

stant regions to obtain an estimate of ρ. Since we know what nucleotides should be present in

these regions, we can identify any error that occurs due to PCR ampli�cation or sequencing. Con-

sequently, we can �nd the fraction of errors in each of the constant nucleotide positions. While

the error rate might di�er at di�erent nucleotide positions, we simply assume that the average per

nucleotide error rate can provide a good approximation. To estimate ρwe average the fraction of

errors at each constant nucleotide position. Averaging is performed since some nucleotide posi-

tions have higher error rates than others, particularly the ones closer to the end of the sequences.

Due to phasing e�ects that we will discuss further in section 5. As a result of these e�ects, it is

important to choose constant regions that are spread out across the sequences to obtain a good

estimate of ρ.

3.4.4 Performance Optimization

The statistical test described in section 3.3 is important for classifying a sequence in cases when it is

unclear whether it is a true barcode or an error read. However, a simple threshold for the distance

d or the frequency fc will su�ce to classify the read accurately in many of the cases encountered.

By introducing appropriate thresholds to identify these cases we can avoid performing the statis-

tical test repeatedly, which leads to a reduction in computational time. There are primarily two

common classes of reads that we want to focus on for performance optimization.

The �rst common case is that the read has a high enough frequency that regardless of how close

it is to a neighboring barcode, it will still be very likely to be a true barcode. For these cases we want

to �nd a high frequency threshold f , such that any read with frequency fc ≥ f is more likely to

be a true barcode than an error read. To do this we consider the case when we have a readSc, with

the smallest nonzero Hamming distance d = 1 to the true barcodeSb. Furthermore, we consider

the case when fb = fmax. The idea is to maximize the marginal likelihood of modelM1. To �nd

f we perform our statistical test for increasing values of fc, starting from the value of fc given

in equation (3.13). We are looking for the smallest value of fc for which the marginal likelihood
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of model M2 is greater than the marginal likelihood of M1. Consequently, the �rst value of fc

such that the statistical test classi�es the read Sc as a true barcode will be chosen as the frequency

threshold f . Once we have obtained f we can classify all reads with frequency fc ≥ f as true

barcodes, without having to perform the test again for each of these cases.

There is also another case that we want to deal with separately to decrease the running time of

our algorithm. Many of the error reads will have frequency 1. This is because most errors that

originate from the same barcode are unique under reasonable assumptions on the error rate, the

barcode length and the barcode frequency distribution. To save time we want to �nd a distance

threshold, τ , such that any sequence with frequency fc = 1 that is within Hamming distance τ

to a barcodeSb is more likely to be an error read than a true barcode, regardless of the frequency of

Sb. As fb increases, the likelihood that the current read is a true barcode decreases. Because of this

we will now consider the case when fb = 1, which is when Sc has the highest likelihood of being

a true barcode for a given distance d fromSb. We will now start with distance d = 1 and perform

our statistical test for increasing values of d. The largest value of d for which Sc is classi�ed as an

error read will be chosen as the value for τ . Any read with frequency 1 within distance τ of its

barcode neighbor can now be classi�ed as an error read.

Finally, we can save some computational time when computing the Hamming distances be-

tween a read and its nearby true barcodes. Since we are not interested in barcodes beyond distance

εwe will use the truncated Hamming distance. For sequencesSa andSb with Hamming distance

d, their truncated Hamming distance is given by,

ht(Sa, Sb) =

d if d ≤ ε,

l otherwise.

(3.15)

Using the truncated Hamming distance allows us to save time by stopping the computation of

the Hamming distance once it has exceeded ε.
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In this section we will evaluate the accuracy and performance of our approach on simulated datasets.

We will compare it to the state-of-the-art method for barcode read clustering, Bartender, which

was detailed in [10]. To simulate the datasets we will follow the procedure used in [10] with some

modi�cations to the simulation parameters.

4.1 Simulated Datasets

The methods will be compared on two simulated datasets. Both of them will have 500 000 true

barcodes, each with 20 random nucleotides and 3 constant spacers with 2 nucleotides each in the

con�guration 5-2-5-2-5-2-5. These choices were made to imitate the real dataset produced in [5].

Once the 500 000 barcode sequences have been generated, each one is assigned a frequency

by drawing a sample from an exponential distribution with mean 100 and set the frequency of

the barcode to be the least integer greater than or equal to the sample (the ceiling function). To

simulate errors we consider the process of reading each barcode as many times as it appears in the

population. Furthermore, we will assume a constant per nucleotide error rate.

Each time a barcode is read, we perform a Bernoulli trial at each of its nucleotide positions with

the chosen error rate as the probability of success. When one of these trials is successful, an error

has occurred and the nucleotide at that position is replaced with one of the other 3 nucleotides

with equal probability. Once the errors have been introduced, the simulated datasets consist of

a set of unique reads and their frequencies. If a barcode was destroyed in the error generating

process, i.e., if every time it was read an error was introduced, all reads associated with that barcode

were removed from the dataset. This was done to simplify the evaluation since destroyed barcodes

that have been clustered correctly are di�cult to distinguish from false positives.

The chosen error rate for dataset A is 0.33% per nucleotide and the error rate for dataset B is

0.66%. The error rate for dataset A was chosen to be close to the estimated error rate found in

[8]. This estimation was based on the Illumina sequencing platform [1]. A sequencing platform is

a protocol for performing DNA sequencing and the Illumina platform is one of the most widely

used protocols. Since di�erent sequencing platforms have di�erent error rates the error rate for
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dataset B was set to be twice the error rate of dataset A to account for this variation. The two

simulated datasets are summarized in Table 4.1.

Dataset A B

Unique Read Count 3 433 217 5 773 822

True Barcode Count 499 640 499 320

Total Barcode length 26 26

Random Barcode length (l) 20 20

Error rate 0.33% 0.66%

Table 4.1: Summary of each simulated dataset

4.2 Evaluation

Both methods were tested using their default settings when possible. This was done to mimic

the results a user would obtain without rerunning the algorithms and adjusting the parameters.

For our method the parameters were automatically determined as described in section 3.4 with

the default threshold for log Bayes factor (−4). For Bartender, the maximum Hamming distance

considered for merging two sequences is a user de�ned parameter with no default. We set this

parameter to match the ε parameter determined by our method on the same dataset. The moti-

vation for this is that both parameters control the maximum Hamming distance considered for

merging. By setting the same value for both methods, we ensure that none of the methods are at

a disadvantage from being more restricted in the merging process.

For both datasets our method automatically set ε = 3 and k = 4. The parameter ρ was

estimated from the constant regions of the barcodes and matched the chosen error rate for each

dataset with less than 0.02% error in both cases. The auxiliary parameter τ was set to 2 for both

datasets. Finally, the frequency threshold f was set to 17 for dataset A and 22 for dataset B.

We will focus on three accuracy measures to compare the clustering results of each method: the

false positives, the false negatives and the percentage error of the estimated barcode frequencies.

We will de�ne a false positive as any detected cluster that does not contain a true barcode. Similarly,

we de�ne a false negative as a true barcode that was clustered together with a higher frequency true

barcode. To compare the percentage error in the estimated frequencies, we will only consider the

true barcodes correctly identi�ed by both methods.

A comparison of the number of false positives and false negatives for each method on each

dataset is shown in Figure 4.1. We can see that our method has substantially lower counts for

both measures on dataset A. In particular, the false positive counts for Bartender is almost 2 orders

of magnitude higher when compared to our method on this dataset. Higher false positive counts
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result in more distortion of the relative barcode frequencies. Speci�cally, it leads to a large number

of spurious low frequency lineages, since most false positives are small groups of error reads from

a common source barcode. We see that the results are similar for dataset B but the di�erence in

the false positive counts between the methods are less dramatic.

False negatives correspond to lineages that were missed and false positives are spurious lineages.

As a consequence of these errors, the estimated frequencies of the barcodes that have been cor-

rectly identi�ed will also have errors in some cases. To evaluate these errors, we consider all true

positives identi�ed by both methods, i.e., all clusters that contain a true barcode found by both

methods. If more than one true barcode belongs to the same cluster, the one with the highest

frequency represents the cluster. The frequency sum of a cluster estimates the frequency of the

true barcode that represents it.

Accuracy Metrics Count Comparison

Figure 4.1: Count comparison of false positives and false negatives for each method on datasets A and B.
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To determine the extent to which each method distorts the true barcode frequencies, we eval-

uate the empirical cumulative distribution function (eCDF) of the percentage error in their fre-

quency estimates. Formally, let N denote the number of true positives shared by both methods.

Furthermore, letZi denote the random variable corresponding to the percentage error in barcode

i. Assuming that Z1, Z2, ..., ZN are independent and identically distributed (i.i.d.) the eCDF is

given by,

F̂N (z) =
1

N

N∑
i=1

I(Zi ≤ z). (4.1)

The i.i.d. assumption does not strictly hold in our case. For example, error reads from one barcode

can be incorrectly merged with another barcode and so the percentage errors are not independent.

However, since we are not trying to make inference about the true CDF or quantities that depend

on it, we will allow this contravention. Figure 4.2 shows the eCDF for each method on datasets

A and B. For dataset A the number of shared true positives isN = 498 867 and for dataset B we

haveN = 498 474. For both datasets we see that Bartender is considerably more error prone than

our method. In particular, we are concerned about high percentage errors that cause substantial

distortion of the true frequencies. We see that Bartender has at least 3% error for 1 in 200 lineages

on dataset A and for 1 in 100 lineages on dataset B. Since we have roughly 500 000 shared true

positives in each dataset this corresponds to approximately 2500 barcodes in dataset A and 5000

barcodes in dataset B. In contrast, we see that the number of barcodes with a higher percentage

error than 1% is negligibly small for our method on both datasets.

Empirical Distribution of Errors

Figure 4.2: Empirical cumulative distribution of percentage errors in frequency for each method on

datasets A and B.
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In summary, the method presented here for the task of barcode read clustering exploits the pi-

geonhole principle to e�ciently �nd neighborhoods for each sequence. By estimating the per

nucleotide error rate for PCR ampli�cation and sequencing, we developed a Bayesian hypothesis

test that accurately classi�es each sequence as either a true barcode or an error read. The method

was shown to be signi�cantly more accurate on simulated datasets than Bartender, the most recent

method proposed for the task of barcode read clustering.

To interpret the results shown in the last section and to understand how our method makes a

signi�cant contribution to the �eld, we need to consider how barcodes are used in practice. Note

that we are only considering a single time point here. In practice, barcodes are used to track the

relative frequencies of lineages over time. This is done by performing PCR ampli�cation and se-

quencing at di�erent time points. In [10] Bartender was used to cluster each time point indepen-

dently and a merging procedure was used to connect clusters at subsequent time points. Because

each time point is clustered independently in Bartender the single time point results shown here

can shed light on the multiple time point accuracy as well.

Speci�cally, the frequency errors shown in Figure 4.2 for Bartender are introduced at each time

point. Meaning that a series of errors could occur at di�erent time points in the same lineage.

This might cause the frequencies of the lineages to increase or decrease if errors in subsequent time

points act in the same direction. This variance in the frequencies of some lineages induced by error

could present di�culties for understanding the evolutionary dynamics of a population. In par-

ticular, it could make it di�cult to distinguish between frequency �uctuations due to errors and

frequency changes due to natural selection or genetic drift. Future work will focus on extending

the single time point procedure presented here to multiple time points, where the higher accuracy

of our approach can o�er higher resolution lineage tracking than what is currently possible.

To enable the estimation of error rates using constant regions or �anking regions, a few sim-

plifying assumptions were made that we will address here. Firstly, we estimate the per nucleotide

error rate with the scalar ρ. The implicit assumption behind this is that the average error rate

is the same at each nucleotide position in a barcode. In general, this assumption does not hold

since phasing e�ects are a common issue with next-generation sequencing. These e�ects occur

when some sequences among the PCR copies of each barcode to fall out of sync with the other
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copies during the PCR ampli�cation process. There will be more sequences out of sync once the

sequencer has reached the end of the sequence and therefore we often observe higher error rates

at the end. For a more thorough review of phasing e�ects and error rates in next-generation se-

quencing, we refer the reader to [8]. Since we use constant regions and �anking regions for error

rate estimation, we can only estimate the error rate directly at those selected constant nucleotide

positions. Consequently, it is not possible to use the constant regions to directly estimate the error

rate at each nucleotide position of the barcode.

Many sequencing platforms include quality scores for each read that estimate the sequencing

error probability separately at each nucleotide position [3]. It is important to note that these qual-

ity scores do not account for the error rate associated with PCR ampli�cation. We considered the

possibility of using these quality scores to obtain separate error rate estimates for each nucleotide

position. However, this idea was abandoned since it would limit the applicability of the method

to those sequencing platforms that provide quality scores. Nevertheless, using quality scores as

a way of estimating the error rate at each nucleotide position is a promising direction for future

work that seeks to increase the resolution of lineage tracking further.

Another assumption made is that the errors at di�erent nucleotide positions are independent

i.e., the occurrence of an error in one nucleotide position does not a�ect the probability of an

error in another. To the best of our knowledge, there is no evidence that such interaction e�ects

exist.

To make the idea behind our method more clear, we assumed that the substring lengthk divides

the barcode length l evenly. This assumption can be relaxed by allowing the division of a barcode

into substrings of di�erent lengths. A natural generalization is obtained by only requiring that

l = kq + r instead of l = kq as before. For a given k that does not divide l evenly, the �rst q

substrings can have length k and the last substring can have length r. Note that r is the remainder

obtained from dividing l by k and so r < k. In this scheme, the largest Hamming distance

that excludes a sequence from the neighborhood of another is no longer kε. It is now given by

k(ε − 1) + r. This corresponds to the case when one error occurs in the length r substring and

each of the other ε−1 errors occur in di�erent substrings of length k. The reason that we want to

consider this generalization is that in some cases a choice ofk that does not divide l evenly provides

a better trade-o� between k-mer index size and the number of irrelevant reads included in each

k-mer neighborhood. Consequently, we are sacri�cing performance if we limit ourselves to k for

which k divides l evenly in such cases.

Because our method considers every putative barcode in the neighborhood of a read before

merging, it can be naturally extended to incorporate the concept of fuzzy clustering. In fuzzy

clustering every data point is assigned a membership probability to each identi�ed cluster. This is

in contrast to hard clustering, where each data point is assigned unanimously to a single cluster. As
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5 Discussion

we showed in section 2 the ε-neighborhoods of nearby barcodes can overlap. Meaning that error

reads from one of the barcodes can be close to the other barcode in sequence space. If a read is

equally close to two di�erent barcodes a fuzzy clustering would highlight our uncertainty about

its membership. We could use this information to obtain con�dence intervals for the barcode

frequencies as oppose to just point estimates.

Finally, in this work we have only evaluated the accuracy of our approach on simulated datasets.

In future work we aim to extend the evaluation to datasets that have been generated from real

barcode experiments.
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A Appendix

Here we will prove that the maximum likelihood estimate in equation (3.5) is correct by following

a similar approach to the ones outlined in [2].

Theorem. Let X be a random variable with a binomial distribution for which the trial success

probability p ∈ (0, 1] is known and the number of trials n is unknown. Given a single sample x

from this distribution the maximum likelihood estimate of n is given by,

n̂mle =

⌊
x

p

⌋
. (A.1)

Proof. The likelihood function is given by,

L(n; p, x) =
(
n

x

)
px(1− p)n−x.

We will consider the ratio of the likelihood functions for successive trial counts given by,

r(n) =
L(n+ 1; p, x)

L(n; p, x)
=
n+ 1− p(n+ 1)

n+ 1− x
.

This ratio is non-increasing as a function of n since,

r′(n) =
(1− p)(n+ 1− x)− (n+ 1− p(n+ 1))

(n+ 1− x)2
=

x(p− 1)

(n+ 1− x)2
≤ 0.

The inequality follows since x(p− 1) ≤ 0 for all p ∈ (0, 1] and the denominator is positive for

all valid values of n and x satisfying n ≥ x. Since r(n) is non-increasing the smallest integer n

for which r(n) < 1 maximizes the likelihood function. Note that r(n) < 1 is equivalent to,

p(n+ 1) > x ⇐⇒ n+ 1 >
x

p
.

It follows that the maximum likelihood estimate of n is the smallest integer satisfying
x
p < n+1

which proves that the estimate in (A.1) is indeed the maximum likelihood estimate.
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