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Abstract

In this thesis we solve the problem of optimal portfolio selection

from the Bayesian perspective. We consider four priors: the diffuse,

the conjugate, the hierarchical, and the objective-based prior. For the

diffuse and the conjugate prior we use the stochastic representation

in order to draw samples from the posterior predictive distribution.

For the hierarchical and the objective-based prior we derive the con-

ditional posterior distributions, of the parameters of the asset returns,

in order to draw samples from the posterior predictive distribution.

An extensive comparison study is performed via Monte Carlo sim-

ulation in order to assess the performance based on the suggested

performance measures. The Bayesian efficient frontier, the set of op-

timal portfolios, is constructed and compared to the sample efficient

frontier, which is known to be overoptimistic, and the population ef-

ficient frontier. Theoretically and using real data from the Stockholm

market we show that most of the Bayesian approaches outperform the

frequentist approach.
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Chapter 1

Introduction

The field of optimal portfolio theory began with the research done by Markowitz
(1952)[26]. In this paper he stresses the importance of diversification and the
procedure of finding reasonable values for parameters of the asset returns. He
believed that this procedure should combine statistical methods and practi-
cal judgement. Merton (1972)[27] showed that the set of all optimal portfo-
lios, known as the efficient frontier, creates a parabola in the mean-variance
space. As further research was conducted, the efficient frontier has become
well known and its properties well examined. However, the practical prob-
lem of estimating the parameters, of the efficient frontier, still remains. The
estimated efficient frontier, based on frequentist statistics, is known to be op-
timistic. This was shown by Broadie (1993)[15], who, using small amounts of
historical data in the parameter estimation, exposed his model to estimation
errors and suggested a method for adjusting the optimistic bias.

While these studies contribute to the research of optimal portfolio selection
and the efficient frontier from the frequentist point of view, Bayesian statis-
tics grew popular over the last few years for a number of reasons. Bayesian
theory is regarded to resemble the way humans use information. Most impor-
tantly, the Bayesian framework allows the incorporation of subjective beliefs
on the outcome of future events, this violates the fundamental principles
of frequentist statistics (see, e.g., Avramov and Zhou (2010)[2]). Anderson
and Cheng (2016)[1] proposed a Bayesian-averaging portfolio choice strategy
with excellent out-of-sample performance. Brandt (2010)[14] gives an excel-
lent review of modern approaches to portfolio selection, including Bayesian
approaches.
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In this thesis we will focus on four different priors: the diffuse prior; the con-
jugate prior; the hierarchical prior; and the objective-based prior. The diffuse
and conjugate prior are regarded as well established in the Bayesian literature
and in research applying Bayesian methods to portfolio selection (see, e.g.,
Frost and Savarino (1986)[17]; Gelman, Carlin, Stern, and Rubin (2004)[18];
Klein and Bawa (1976)[25]; Rachev et al. (2008)[29]; Sekerke (2015)[30]; Zell-
ner (1971)[34]). The hierarchical prior was suggested by Greyserman et al.
(2006)[20]. They showed that a fully hierarchical model produced promising
results warranting more study. The objective-based prior was suggested by
Tu and Zhou (2010)[33]. Bodnar, Mazur, and Okhrin, (2017)[10] derived
explicit formulas for the posterior distribution of linear combinations of the
global minimum variance portfolio weights for the diffuse, conjugate, and
hierarchical prior.

This thesis will be structured as follows. In chapter 2 we describe the basics
of optimal portfolio selection, derive the expression for the minimum variance
portfolio, and describe necessary theory regarding the efficient frontier. In
chapter 3 we discuss the priors considered and derive ways to draw samples
from the posterior predictive distribution. In chapter 4 the results of the
simulation study as well as the empirical illustration are discussed.
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Chapter 2

Optimal portfolio selection

2.1 Portfolio definition and weights

A portfolio is a collection of financial investments, which may contain a wide
range of assets. Let Si denote the price of the i -th security at time t, and mi

denote the number of shares in the i -th security at time t. Then, the value
of this portfolio, consisting of k -securities, is the number of shares in each
security multiplied by their price, giving the value of this portfolio at time t
as

V = m1S1 +m2S2 + · · ·+mkSk.

The portfolio weight of a particular security is measured in the percentage
that the security makes up, that is

wi =
miSi
V

, i = 1, 2, ..., k,

where wi is the weight of the i -th security. The portfolio weights for the
whole portfolio is calculated using equation (2.1) and (2.2),

w1 + w2 + · · ·+ wk =
miSi
V

+
m2S2

V
+ · · ·+ mkSk

V
=
V

V
= 1,

which sum to one by definition. In matrix form, this can be written as
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wT1 = 1,

where 1 = (1, 1, ..., 1)T and w = (w1, w2, ..., wk)
T . Throughout the remainder

of this thesis all vectors are column vectors by default.

2.2 Expected return

The simple return of security i at time t is denoted xt,i. The return of a
portfolio, with weights w, is given by

xt,p =
k∑
i=1

wi · xt,i.

It follows from (2.5) by the additivity of mathematical expectation that the
expected return of this portfolio is given by

µp = E[xt,p] = E[
k∑
i=1

wi · xt,i] =
k∑
i=1

wi · E[xt,i]

=
k∑
i=1

wiµi = µTw,

where µi = E[xt,i] is the expected return of security i that is assumed to
be constant over time. The vector containing the expected returns of the k
securities at time t is expressed as µ = (µ1 µ2 . . . µk)

T .

2.3 Risk

In the portfolio theory, the risk of a particular portfolio refers to the variance
of the portfolio return, xt,p. The variance of a portfolio, consisting of k
securities, is given by
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σ2
p = V ar(xt,p) = V ar

(
k∑
i=1

wi · xt,i

)

= Cov

(
k∑
i=1

wi · xt,i,
k∑
j=1

wj · xt,j

)

=
k∑
i=1

k∑
j=1

wiwjCov (xt,i, xt,j)

= wTΣw,

where Σ is the covariance matrix with elements σij = Cov(xt,i, xt,j). The
matrix Σ has the structure

Σ =


σ11 σ12 . . . σ1k
σ21 σ22 . . . σ2k
...

...
. . .

...
σk1 σk2 . . . σkk

 ,
where the diagonal elements are the variances of the securities.

2.4 Global minimum variance portfolio

In optimal portfolio theory one of the goals is to minimize the risk of a port-
folio. The global minimum variance portfolio is unique in that it estimates
the lowest possible variance. The weights of the global minimum variance
portfolio are derived by solving the following minimization problem,

min
w
wTΣw such that wT1 = 1.

The minimization problem can be solved using the method of Lagrange mul-
tipliers which is a strategy for finding the local maxima and minima of a
function subject to equality constraints. The solution to the minimization
problem is
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wGMV =
Σ−11

1TΣ−11
.

The proof is left in appendix A.1 for the interested reader. The expected
return of the global minimum variance portfolio is given by

µGMV = µTwGMV =
µTΣ−11

1TΣ−11
.

The variance of the global minimum variance portfolio is given by

σ2
GMV = wT

GMV ΣwGMV =

(
Σ−11

1TΣ−11

)T
ΣΣ−11

1TΣ−11

=
1

1TΣ−11
,

where we use that ΣΣ−1 = Ik, the k-dimensional identity matrix, by defini-
tion of the covariance matrix.

2.5 Efficient frontier

The efficient frontier is the set of optimal portfolios that offer the highest
expected return, for a certain level of variance. This results in a parabola in
the mean-variance space. We do consider short sales, which means that the
weights may be smaller than 0 and larger than 1. We only consider portfolio
allocations without a riskless security. This means that the efficient frontier
is fully determined by maximizing the mean-variance utility, i.e.

wTµ− γ

2
wTΣw subject to wT1 = 1, (2.1)

where γ represents the risk aversion of the investor. By varying the risk aver-
sion coefficient γ > 0, all portfolios on the efficient frontier can be obtained.
The solution to (2.1) is given by

wMV,γ =
Σ−11

1TΣ−11
+ γ−1Rµ with R = Σ−1 − Σ−111TΣ−1

1TΣ−11
.
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The expected return and variance of the MV portfolio is given by

RMV,γ =
µTΣ−11

1TΣ−11
+ γ−1µTRµ and VMV,γ =

1

1TΣ−11
+ γ−2µTRµ. (2.2)

Note that (2.2) is a parametric equation in our case where we only consider
portfolio allocations without a riskless asset. Solving (2.2) with respect to γ
we obtain the parabola

(R−RGMV )2 = µTRµ(V − VGMV ),

where RGMV is the expected return and VGMV is the variance, of the global
minimum variance portfolio. The global minimum variance portfolio can be
obtained from the expected quadratic utility by letting γ tend to infinity.

2.6 Sample efficient frontier

In reality µ and Σ are unknown and need to be estimated. The common
approach, based on frequentist statistics, estimates parameters of the asset
returns with their sample estimates. The sample estimates of the mean vector
and the covariance matrix are given by

µ̂ = x(t−1) and Σ̂ = dnS(t−1)

where

x(t−1) =
1

n

t−1∑
i=t−n

xi,

dn =
1

n− 1
and

S(t−1) =
t−1∑
i=t−n

(xi − x(t−1))(xi − x(t−1))
T .

Using the sample estimates we obtain the sample portfolio weights
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wS,γ =
S−1(t−1)1

1TS−1(t−1)1
+γ−1Q(t−1)x(t−1) with Q(t−1) = S−1(t−1)−

S−1(t−1)11TS−1(t−1)

1TS−1(t−1)1
,

with the sample expected return and variance given by

RS,γ =
1TS−1(t−1)x(t−1)

1TS−1(t−1)1
+ γ−1d−1n x

T
(t−1)Q(t−1)x(t−1)

and

VS,γ =
dn

1TS−1(t−1)1
+ γ−2d−1n x

T
(t−1)Q(t−1)x(t−1).

The sample efficient frontier, which was derived by Bodnar and Schmid
(2008)[12], (2009)[13], Kan and Smith (2008)[24], is expressed as

(R−RGMV,S)2 =
xT(t−1)Q(t−1)x(t−1)

dn
(V − VGMV,S),

where

RGMV,S =
1TS−1(t−1)x(t−1)

1TS−1(t−1)1
and VGMV,S =

dn

1TS−1(t−1)1

are the sample expected return and variance of the global minimum variance
portfolio.
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Chapter 3

Bayesian portfolio selection

When we consider the problem of optimal portfolio selection from the Bayesian
perspective we are interested in the posterior predictive distribution. We con-
sider the parameters of the asset returns to be random variables. The goal is
to assign probabilities to the possible values of the parameters. This is done
by deriving the posterior distribution of the parameters. In order to derive
the posterior distribution we consider Bayes’ Theorem:

P (θ|x(t−1)) =
P (x(t−1)|θ) · P (θ)

P (x(t−1))
(3.1)

where P (θ|x(t−1)) is the posterior distribution of θ given the observed data
x(t−1). The likelihood function P (x(t−1)|θ) = L(θ|x(t−1)) is the measure of
support provided by data for each possible value of the parameter θ. The
prior distribution P (θ) represents the prior knowledge of the parameter θ,
this reflects our subjective beliefs about the parameter θ before any data are
observed. Lastly, P (x(t−1)) is the marginal probability of the observed data
x(t−1). We can rewrite equation (3.1) as

P (θ|x(t−1)) =
L(θ|x(t−1)) · P (θ)∫
L(θ|x(t−1)) · P (θ)dθ

∝ L(θ|x(t−1)) · P (θ). (3.2)

Since we integrate over θ in the denominator, this expression is proportional
to the posterior distribution. From the posterior distribution (3.2) we derive
the posterior predictive distribution as follows:
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P (x(t)|x(t−1)) =

∫
θ∈Θ

P (x(t)|θ)P (θ|x(t−1))dθ. (3.3)

Throughout this thesis we assume that the vectors of asset returns are inde-
pendent and identically distributed conditional on the mean vector and the
covariance matrix. In this chapter we provide details on the priors for the
parameters of the asset returns and ways to draw samples from the posterior
predictive distribution for all considered priors.

3.1 Considered priors

3.1.1 Diffuse prior

The first prior we consider is the diffuse prior, also known as the non-
informative Jeffreys prior, on µ and Σ. The diffuse prior has been applied in
theory by Barry (1974)[3]; Brown (1976)[16]; and Klein and Bawa (1976)[25].
This prior infers no initial information regarding the distribution of the char-
acteristics of the assets. It is given by

pd(µ,Σ) ∝ |Σ|−
(k+1)

2 .

When measuring the performance of methods based on the diffuse prior rela-
tive to methods based on frequentist statistics, the Bayesian approach tends
to perform equal to or better than the frequentist approach. Stambaugh
(1997)[32] showed that when the assets have varying histories the Bayesian
approach may use this information which leads to different results.

3.1.2 Conjugate prior

The second prior we consider is the conjugate prior. This prior is based on
the (extended) Black-Litterman model (cf. Black and Litterman (1992)[7]).
In order to incorporate expert knowledge, Black and Litterman (1992)[7]
suggested to employ the normal prior for the vector of expected returns
µ. This approach is known in financial literature as the Black-Litterman
model. We consider an extension of this model by also including a prior
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on the covariance Σ. This leads to an informative prior which considers a
normal distributed prior for µ and an inverse Wishart distributed prior for
the covariance matrix Σ.

Formally, the conjugate prior can be expressed as

pc(µ|Σ) ∝ |Σ|−1/2exp
{
−mc

2
(µ− rc)Σ−1(µ− rc)

}
,

and

pc(Σ) ∝ |Σ|−dc/2exp
{
−1

2
tr
[
ScΣ

−1]} ,
where the additional model parameters rc,mc, dc,Sc are known as hyperpa-
rameters. The normal prior for µ is k-dimensional normal distribution with
mean vector rc and covariance matrix Σ/mc, while the inverse Wishart prior
for Σ is parametrised with dc degrees of freedom and parameter matrix Sc.
The prior mean vector rc reflects the prior beliefs about µ and the matrix Sc
reflects the prior beliefs about the covariance Σ. The other hyperparameters
mc and dc are known as precision parameters for rc and Sc, respectively.
The joint prior for both parameters µ and Σ is given by

pc(µ,Σ) ∝ |Σ|−(dc+1)/2exp

{
− mc

2
(µ− rc)Σ−1(µ− rc)

− 1

2
tr
[
ScΣ

−1]}.
The conjugate prior has been researched extensively, most notably by Frost
and Savarino (1986)[17], Rachev et al. (2009)[29], Avramov and Zhou (2010)[2],
Bodnar et al. (2017)[10]. An interesting application was proposed by Frost
and Savarino (1986)[17] who considered identical expected return, variance
and covariance for all assets. This method showed promising results.

3.1.3 Hierarchical prior

The third prior we consider is the hierarchical prior which was suggested by
Greyserman et al. (2006)[20]. The hierarchical prior is given by

17



ph(µ|ξ, η,Σ) ∝ |Σ|−1/2exp
{
−κh

2
(µ− ξ1)Σ−1(µ− ξ1)

}
,

ph(Σ) ∝ η−k(dh−k−1)/2

|Σ|dh/2
exp

{
− 1

2η
tr
[
ShΣ

−1]} ,
ph(ξ) ∝ 1,

ph(η) ∝ η−(ε1+1)exp

{
−ε2
η

}
,

where κh is a prior precision parameter on µ; dh is a similar prior precision
parameter on Σ; Sh is a known prior matrix of Σ; ε1 and ε2 are prior
constants. The joint prior of µ, Σ, ξ, and η is expressed as

ph(µ,Σ, ξ, η) ∝ |Σ|−1/2exp
{
−κh

2
(µ− ξ1)Σ−1(µ− ξ1)

}
× η−k(dh−k−1)/2

|Σ|dh/2
exp

{
− 1

2η
tr
[
ShΣ

−1]}
× η−(ε1+1)exp

{
−ε2
η

}
∝ |Σ|−(dh+1)/2exp

{
− 1

2η
tr
[
ShΣ

−1]}
× η−k(dh−k−1)/2−ε1−1exp

{
− κh

2
(µ

− ξ1)Σ−1(µ− ξ1)− ε2
η

}
.

Most notably the hierarchical prior, in contrast to the conjugate and objective-
based prior, shrinks all elements of the mean vector by an equal amount.

3.1.4 Objective-based prior

The fourth prior we consider is the objective-based prior suggested by Tu
and Zhou (2010)[33]. The objective-based prior is given by
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pob(µ|Σ) ∝ |Σ|−1/2exp
{
− s2

2σ2
ob

(µ− γΣwob)Σ
−1(µ− γΣwob)

}
pob(Σ) ∝ |Σ|−dob/2exp

{
−1

2
tr
[
SobΣ

−1]} ,
where s2 = 1

k
tr(Σ) is the average of the diagonal elements of Σ; σ2

ob indicates
the uncertainty about µ; γ represents the investor’s risk aversion; wob, dob,
and Sob are prior constants. The joint prior distribution of (µ,Σ) is given
by

pob(µ,Σ) ∝ |Σ|−(dob+1)/2exp

{
−1

2
tr
[
SobΣ

−1]}
× exp

{
− s2

2σ2
ob

(µ− γΣwob)Σ
−1(µ− γΣwob)

}
.

3.2 Stochastic representation and

efficient frontier

3.2.1 Diffuse prior

The following theorem gives us a way to draw samples from the posterior
predictive distribution of the diffuse prior. The theorem was derived and
proved by Bauder et al. (2020)[5].

Theorem 1. Let X1,X2, ... be infinitely exchangeable and multivariate cen-
tred spherically symmetric. Let P (θ) = |F |1/2 be Jeffreys’ prior where |A|
denotes the determinant of a squared matrix A and F = −E(∂2log(f(x(t−1)|
θ))/∂θ∂θT ) is the Fisher information matrix. Assume n > k. Then the
stochastic representation of the random variable X̂p,t whose density is the
posterior predictive distribution (3.3) is given by
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X̂p,t
d
=wTx(t−1) +

√
wTS(t−1)w

×

(
τ1√

n(n− k)
+

√
1 +

τ 21
n− k

τ2√
n− k + 1

)
,

where

x(t−1) =
1

n

t−1∑
i=t−n

xi and

S(t−1) =
t−1∑
i=t−n

(xi − x(t−1))(xi − x(t−1))
T ,

and τ1 and τ2 are independent with τ1 ∼ tn−k and τ2 ∼ tn−k+1.

From this expression we can generate the sample X̂
(1)
p,t , . . . , X̂

(B)
p,t which can

be used to calculate important characteristics of the posterior predicitve dis-
tribution. Theorem 1 also provides us with an analytical expression of the
expected value and variance of the posterior predictive distribution, this is
formulated in the following corollary:

Corollary 1. Under the conditions of Theorem 1, let n− k > 2. Then:

E(wTX t|x(t−1)) = wTx(t−1)

and

V ar(wTX t|x(t−1)) = ck,nw
TS(t−1)w with

ck,n =
1

n− k − 1
+

2n− k − 1

n(n− k − 1)(n− k − 2)
.

The proof to Corollary 1 is given by Bauder et al. (2020)[5]. Based on the
results of Corollary 1 we can construct an optimal portfolio by maximizing
the mean-variance utility function given by equation (2.1):
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U(w) = E(wTX t|x(t−1))−
γ

2
V ar(wTX t|x(t−1))

= wTx(t−1) −
ck,nγ

2
wTS(t−1)w. (3.4)

The quantity γ > 0 represents the investor’s risk aversion. Maximizing the
mean-variance utility closely resembles the optimization problem studied by
Ingersoll (1987)[22] and Okhrin and Schmid (2006)[28]). The only difference
is that the risk aversion coefficient γ is multiplied with the constant ck,n. The
solution to the optimization problem (3.4) is given by

wMV,γ =
S−1(t−1)1

1TS−1(t−1)1
+ γ−1c−1k,nQ(t−1)x(t−1) with

Q(t−1) = S−1(t−1) −
S−1(t−1)11TS−1(t−1)

1TS−1(t−1)1

together with the expected return and the variance expressed as

RMV,γ =
1TS−1(t−1)x(t−1)

1TS−1(t−1)1
+ γ−1c−1k,nx

T
(t−1)Q(t−1)x(t−1) (3.5)

and

VMV,γ =
ck,n

1TS−1(t−1)1
+ γ−2c−1k,nx

T
(t−1)Q(t−1)x(t−1), (3.6)

respectively, where we use that Q(t−1)1 = 0 and Q(t−1)S(t−1)Q(t−1) = Q(t−1)
in (3.6). Equation (3.5) and (3.6) determines the set of all optimal portfo-
lios obtained as solutions to the optimization problem (3.4). Solving these
equations with respect to γ leads to a set of optimal portfolios in the mean-
variance space, called the efficient frontier. This set of optimal portfolios for
the diffuse prior is given by

(R−RGMV )2 =
xT(t−1)Q(t−1)x(t−1)

ck,n
(V − VGMV ), (3.7)

where
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RGMV =
1TS−1(t−1)x(t−1)

1TS−1(t−1)1
and VGMV =

ck,n

1TS−1(t−1)1

are the expected return and variance of the global minimum variance port-
folio. The slope parameter of the efficient frontier is given by

s =
xT(t−1)Q(t−1)x(t−1)

ck,n
.

Equation (3.7) specifies a parabola in the mean-variance space.

3.2.2 Conjugate prior

The following theorem gives us a way, similarly to that of Theorem 1, to draw
samples from the posterior predictive distribution of the conjugate prior.
This theorem was also derived and proved by Bauder et al. (2020)[5].

Theorem 2. Let X1,X2, ... be infinitely exchangeable and multivariate cen-
tred spherically symmetric. Assume n + dc − 2k > 0. Then, under the
application of the conjugate prior, the stochastic representation of the ran-
dom variable X̂p,t whose density is the posterior predictive distribution (3.3)
is given by

X̂p,t
d
=wTx(t−1),c +

√
wTS(t−1),cw

(
η1√

(n+mc)(n+ dc − 2k)

+

√
1 +

η21
n+ dc − 2k

η2√
n+ dc − 2k + 1

)
,

where

x(t−1),c =
nx(t−1) +mcrc

n+mc

and

S(t−1),c = S(t−1) + Sc + nmc

(rc − x(t−1),c)(rc − x(t−1),c)
T

n+mc

, (3.8)

and η1 and η2 are independent with η1 ∼ tn+dc−2k and η2 ∼ tn+dc−2k+1.

22



Theorem 2 also provides us with an analytical expression of the expected
value and variance of the posterior predictive distribution, this is formulated
in the following corollary:

Corollary 2. Under the conditions of Theorem 2, let n+ dc − 2k > 2. Then:

E(wTX t|x(t−1)) = wTx(t−1),c (3.9)

and

V ar(wTX t|x(t−1)) = qk,nw
TS(t−1),cw (3.10)

with

qk,n =
1

n+ dc − 2k − 1

+
2n+mc + dc − 2k − 1

(n+mc)(n+ dc − 2k − 1)(n+ dc − 2k − 2)
.

The proof to Corollary 2 is given by Bauder et al. (2020)[5]. Substituting
equation (3.9) and (3.10) in (3.4) we solve the optimization problem for the
conjugate prior. The solution to the optimization problem is given by

wMV,γ =
S−1(t−1),c1

1TS−1(t−1),c1
+ γ−1q−1k,nQ(t−1),cx(t−1),c with

Q(t−1),c = S−1(t−1),c −
S−1(t−1),c11TS−1(t−1),c

1TS−1(t−1),c1

together with the expected return and the variance expressed as

RMV,γ =
1TS−1(t−1),cx(t−1),c

1TS−1(t−1),c1
+ γ−1q−1k,nx

T
(t−1),cQ(t−1),cx(t−1),c (3.11)

and

VMV,γ =
qk,n

1TS−1(t−1),c1
+ γ−2q−1k,nx

T
(t−1),cQ(t−1),cx(t−1),c. (3.12)
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Although the solution looks similar to that of the diffuse prior they are in fact
very different due to the definition of x(t−1),c and S(t−1),c in (3.8). Solving
equation (3.11) and (3.12) with respect to γ leads to the set of optimal
portfolios, in the mean-variance space, called the efficient frontier. This set
of optimal portfolios, for the conjugate prior, is given by

(R−RGMV )2 =
xT(t−1),cQ(t−1),cx(t−1),c

qk,n
(V − VGMV ), (3.13)

where

RGMV =
1TS−1(t−1),cx(t−1),c

1TS−1(t−1),c1
and VGMV =

qk,n

1TS−1(t−1),c1

are the expected return and variance of the global minimum variance port-
folio. The slope parameter of the efficient frontier is given by

s =
xT(t−1),cQ(t−1),cx(t−1),c

qk,n
.

Equation (3.13) specifies a parabola in the mean-variance space.

3.3 Conditional posterior distribution

3.3.1 Hierarchical prior

In order to draw inference from the posterior predictive distribution of the
hierarchical prior, we derive the conditional posterior distributions for µ and
Σ. The posterior distribution of the hierarchical prior is expressed as
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ph(µ,Σ, ξ,η|X1, . . . ,Xn) ∝ L(X1, . . . ,Xn|µ,Σ)ph(µ,Σ, ξ, η)

∝ |Σ|−(dh+n+1)/2exp

{
−1

2
tr
[
(η−1Sh + (n− 1)S)Σ−1

]}
× η−k(dh−k−1)/(2−ε1−1)exp

{
−ε2
η

}
× exp

{
− κh

2
(µ− ξ1)TΣ−1(µ− ξ1)

− n

2
(µ−X)TΣ−1(µ−X)

}
, (3.14)

where

L(X1, . . . ,Xn|µ,Σ) ∝ |Σ|−n/2

× exp
{
−n

2
(µ−X)TΣ−1(µ−X)− n− 1

2
tr
[
SΣ−1

]}
.

From equation (3.14) we derive the conditional posterior distribution for µ
given Σ, ξ and η, and the conditional posterior distribution for Σ given ξ
and η (see appendix A.2.1). The conditional posterior distribution of µ is
expressed as

ph(µ|Σ, ξ, η,X1, . . . ,Xn) ∝ |Σ|−1/2

× exp
{
− κh + n

2
(µ− rh)T Σ−1 (µ− rh)

}
,

(3.15)

where

rh =
κhξ1 + nX

κh + n
.

This is the kernel of a multivariate normal distribution, that is
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µ|Σ, ξ, η,X1, . . . ,Xn ∼ N(rh,
1

κh + n
Σ). (3.16)

Integrating out µ from (3.14) we get conditional posterior distribution of Σ
expressed as

ph(Σ|ξ, η,X1, . . . ,Xn) ∝ |Σ|−(dh+n)/2exp
{
− 1

2
tr

[(
η−1Sh + (n− 1)S

+
κnn

κn + n
(X − ξ1)(X − ξ1)T

)
Σ−1

]}
, (3.17)

which is the kernel of a inverse-Wishart distribution (see Gupta and Nagar
(2000)[21]), that is

Σ|ξ, η,X1, . . . ,Xn ∼ IWk(dh + n,Ψh) (3.18)

where

Ψh = η−1Sh + (n− 1)S +
κnn

κn + n
(X − ξ1)(X − ξ1)T .

The marginal posterior distributions of ξ is given by

ph(ξ|X1, . . . ,Xn) ∝ 1,

which we choose to be uniformly distributed on the interval (−0.01, 0.01).
Finally, the marginal posterior distribution of η is given by

ph(η|X1, . . . ,Xn) ∝ η−k(dh−k−1)/2−ε1−1exp

{
−ε2
η

}
.

which is the kernel of a inverse-Gamma distribution, that is

η ∼ Inverse−Gamma(ε1, ε2).

The following process, were we assume the asset returns to follow a normal
distribution, allows us to draw samples from the posterior predictive distri-
bution:
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1. Draw µ̃h and Σ̃h from the conditional posterior distributions (3.16)
and (3.18), respectively.

2. Then, draw Y h,t from Nk(µ̃h, Σ̃h).

We repeat these two steps Nh times to obtain the sample Y
(1)
h,t , . . . ,Y

(Nh)
h,t ,

which is a sample from the posterior predictive distribution. The sample
Y

(1)
h,t , . . . ,Y

(Nh)
h,t allows us to estimate the efficient frontier, see section 2.6.

Sample efficient frontier.

3.3.2 Objective-based prior

Similarly to the derivations in the case of the hierarchical prior we derive the
conditional posterior distributions for µ and the marginal posterior distribu-
tion for Σ in order to draw inference from the posterior predictive distribution
of the objective-based prior. The posterior distribution of the objective-based
prior is expressed as

pob(µ,Σ|X1, . . . ,Xn) ∝ L(X1, . . . ,Xn|µ,Σ)pob(µ,Σ)

∝ |Σ|−(dob+n+1)/2exp

{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}
× exp

{
− s2

2σ2
ob

(µ− γΣwob)
TΣ−1(µ− γΣwob)

− n

2
(µ−X)TΣ−1(µ−X)

}
. (3.19)

From equation (3.19) we derive the conditional posterior distribution for µ
and marginal posterior for Σ (see appendix A.2.2). The conditional posterior
distribution of µ is expressed as

pob(µ|Σ,X1, . . . ,Xn) ∝ |Σ|−1/2exp
{
− mob

2
(µ− rob)T Σ−1 (µ− rob)

}
(3.20)

where
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mob =
s2

σ2
ob

+ n

rob =

s2

σ2
ob
γΣwob + nX

s2

σ2
ob

+ n
.

This is the kernel of a multivariate normal distribution, that is

µ|Σ,X1, . . . ,Xn ∼ N(rob,
1

mob

Σ). (3.21)

Integrating out µ from (3.19) we get marginal posterior distribution of Σ
expressed as

pob(Σ|X1, . . . ,Xn) ∝ |Σ|−(dob+n)/2exp
{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}

× exp
{
− 1

2

n · s2σ2
ob

mob

(
X − γΣwob

)T
Σ−1

(
X − γΣwob

)}. (3.22)

The following process, were we assume the asset returns to follow a normal
distribution, allows us to draw samples from the posterior predictive distri-
bution:

1. Draw µ̃ob from the conditional posterior distributions (3.21) and Σ̃ob

by implementing the rejection sampling algorithm (see appendix A.3).

2. Then, draw Y ob,t from Nk(µ̃ob, Σ̃ob).

We repeat these two steps Nob times to obtain the sample Y
(1)
ob,t, . . . ,Y

(Nob)
ob,t ,

which is a sample from the posterior predictive distribution. The sample
Y

(1)
ob,t, . . . ,Y

(Nob)
ob,t allows us to estimate the efficient frontier, see section 2.6.

Sample efficient frontier.
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Chapter 4

Numerical study

In this chapter we assess the performance of the different priors as well as the
method based on the frequentist statistics within a numerical study (see, e.g.
Jobson and Korkie (1981)[23], Okhrin and Schmid (2006)[28], Bodnar et al.
(2017b)[11], (2019)[9]). The overestimation of the sample efficient frontier
is well known (c.f., Basak et al. (2005)[4], Siegel and Woodgate (2007)[31],
Bodnar and Bodnar (2010)[8]) and therefore we expect the sample efficient
frontier to be optimistic.

4.1 Simulation study

In this section, we provide a detailed analysis of the prior impact on opti-
mal portfolio selection based on an extensive Monte-Carlo simulation study.
The results of Proposition 4.6 of Bernard and Smith (2000)[6] ensure that
the conditional multivariate normal distribution satisfies the assumptions of
infinitely exchangeability and of multivariate centred spherical symmetry.
Using this result, we assume that asset returns independent and identically
distributed asX t|µ,Σ ∼ Nk(µ,Σ). That is, X t is conditionally multivariate
normal distributed given the mean vector µ = (µ1, . . . , µk)

T and covariance
matrix Σ. In each repetition we generate the elements of µ from the uniform
distribution on the interval [−0.01, 0.01], that is µi ∼ Unif(−0.01, 0.01). For
the covariance matrix we consider the decomposition Σ = DRD, where R
is the correlation matrix and D = diag(δ1, . . . , δk) is the diagonal matrix of
standard deviations.
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Table 4.1: Average absolute deviation (AD) of the estimated portfolio ex-
pected return and of the estimated portfolio variance from their population
values for low volatility.

AD portfolio expected return AD portfolio variance
n=50 n=75 n=100 n=130 n=50 n=75 n=100 n=130

k = 5 Sample 0.1209 0.0883 0.0790 0.0640 0.0024 0.0018 0.0016 0.0013
k = 5 Diffuse 0.1008 0.0811 0.0711 0.0605 0.0020 0.0016 0.0014 0.0012
k = 5 Conjugate 0.3333 0.2206 0.1765 0.1408 0.0067 0.0044 0.0035 0.0028
k = 5 Hierarchical 0.5774 0.5472 0.5658 0.5425 0.0115 0.0109 0.0113 0.0108
k = 5 Objective-based 0.6016 0.3705 0.2966 0.2171 0.0120 0.0074 0.0059 0.0043

k = 10 Sample 0.4018 0.2831 0.2241 0.1748 0.0080 0.0057 0.0045 0.0035
k = 10 Diffuse 0.2407 0.2028 0.1699 0.1379 0.0048 0.0041 0.0034 0.0028
k = 10 Conjugate 0.8376 0.5309 0.3910 0.2995 0.0167 0.0106 0.0078 0.0060
k = 10 Hierarchical 1.3452 1.3599 1.3573 1.3085 0.0269 0.0272 0.0271 0.0262
k = 10 Objective-based 1.5212 0.9915 0.7329 0.5398 0.0304 0.0198 0.0147 0.0108
k = 25 Sample 4.0719 1.9430 1.2754 0.9442 0.0814 0.0389 0.0255 0.0189
k = 25 Diffuse 0.8712 0.6229 0.4935 0.4272 0.0174 0.0125 0.0099 0.0085
k = 25 Conjugate 2.1114 1.1508 0.8259 0.6371 0.0422 0.0230 0.0165 0.0127
k = 25 Hierarchical 3.7844 3.7926 3.7410 3.7703 0.0757 0.0758 0.0748 0.0754
k = 25 Objective-based 6.5587 3.5531 2.4233 1.8079 0.1312 0.0711 0.0485 0.0362
k = 40 Sample 26.7445 7.3245 4.1978 2.7878 0.5349 0.1465 0.0840 0.0558
k = 40 Diffuse 2.2564 1.1963 0.8822 0.7189 0.0451 0.0239 0.0176 0.0144
k = 40 Conjugate 1.3652 1.0978 0.8668 0.7149 0.0273 0.0220 0.0173 0.0143
k = 40 Hierarchical 6.2525 6.2715 6.2433 6.2205 0.1250 0.1254 0.1249 0.1244
k = 40 Objective-based 17.6229 8.1610 5.0860 3.5604 0.3525 0.1632 0.1017 0.0712

Notes: The smallest values are depicted in bold. The risk aversion coefficient
is set to γ = 50. For the population covariance matrix we consider low
volatility, i.e. δi ∼ Unif(0.002, 0.005).

The correlation matrix is set toR = (1−ρ)Ik+ρJk with ρ = 0.6, Ik is the k-
dimensional identity matrix, and Jk is the k-dimensional matrix of ones. We
consider two choices of volatility; low volatility with δi ∼ Unif(0.002 , 0.005)
and high volatility with δi ∼ Unif(0.005, 0.02). In each repetition we gener-

ate a sample X
(1)
t , ...,X

(n)
t . We put k ∈ {5, 10, 25, 40}, n ∈ {50, 75, 10, 130},

and γ = 50.

In the case of the conjugate prior the precision parameters are mc = dc = 50,
while the prior mean rc = µ+0.5ε and the prior on Σ is Sc = Σ+0.5∆ with
ε = (ε1, . . . , εk)

T and ∆ = diag(δ21, . . . , δ
2
k) where εi ∼ Unif(−0.01, 0.01) and

δi ∼ Unif(0.001, 0.005). For the hierarchical prior the precision parameter
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Table 4.2: Average absolute deviation (AD) of the estimated portfolio ex-
pected return and of the estimated portfolio variance from their population
values for high volatility.

AD portfolio expected return AD portfolio variance
n=50 n=75 n=100 n=130 n=50 n=75 n=100 n=130

k = 5 Sample 0.0140 0.0103 0.0085 0.0076 0.0003 0.0002 0.0002 0.0002
k = 5 Diffuse 0.0115 0.0090 0.0079 0.0071 0.0002 0.0002 0.0002 0.0001
k = 5 Conjugate 0.0453 0.0298 0.0212 0.0173 0.0009 0.0006 0.0004 0.0003
k = 5 Hierarchical 0.0430 0.0382 0.0349 0.0344 0.0009 0.0008 0.0007 0.0007
k = 5 Objective-based 0.0587 0.0371 0.0262 0.0216 0.0011 0.0007 0.0005 0.0004

k = 10 Sample 0.0428 0.0305 0.0222 0.0181 0.0009 0.0006 0.0004 0.0004
k = 10 Diffuse 0.0254 0.0215 0.0165 0.0148 0.0005 0.0004 0.0003 0.0003
k = 10 Conjugate 0.1059 0.0678 0.0472 0.0352 0.0021 0.0014 0.0009 0.0007
k = 10 Hierarchical 0.1154 0.1104 0.1010 0.0967 0.0023 0.0022 0.0020 0.0019
k = 10 Objective-based 0.1572 0.1005 0.0699 0.0517 0.0031 0.0020 0.0014 0.0010
k = 25 Sample 0.4138 0.1973 0.1377 0.0930 0.0083 0.0039 0.0028 0.0019
k = 25 Diffuse 0.0878 0.0625 0.0501 0.0411 0.0018 0.0012 0.0010 0.0008
k = 25 Conjugate 0.2755 0.1428 0.1019 0.0710 0.0055 0.0029 0.0020 0.0014
k = 25 Hierarchical 0.3603 0.3477 0.3440 0.3207 0.0072 0.0069 0.0069 0.0064
k = 25 Objective-based 0.6991 0.3561 0.2483 0.1688 0.0140 0.0071 0.0050 0.0034
k = 40 Sample 2.8357 0.7337 0.4399 0.2966 0.0567 0.0147 0.0088 0.0059
k = 40 Diffuse 0.2214 0.1169 0.0900 0.0741 0.0044 0.0023 0.0018 0.0015
k = 40 Conjugate 0.2074 0.1300 0.1012 0.0825 0.0041 0.0026 0.0020 0.0017
k = 40 Hierarchical 0.5993 0.6045 0.5951 0.5808 0.0120 0.0121 0.0119 0.0116
k = 40 Objective-based 2.1010 0.8130 0.5108 0.3501 0.0420 0.0163 0.0102 0.0070

Notes: The smallest values are depicted in bold. The risk aversion coefficient
is set to γ = 50. For the population covariance matrix we consider high
volatility, i.e. δi ∼ Unif(0.005, 0.02).

dh = κh = 50 and Sh = Sc = Σ+0.5∆. The parameter ξ ∼ Unif(−0.01, 0.01)
and η ∼ Inverse − Gamma(ε1, ε2) with ε1 = 0.0001 and ε2 = 0.0001. For
the objective-based prior s2 is the average of the diagonal elements of Σ,
σ2
ob = 50, and dob = 50. The prior matrix Sob = Sc = Σ + 0.5∆ and
wob = 1k/k which equates to a equally weighted portfolio.

The results of Theorem 1 and Theorem 2 give us an analytical expression of
the expected value and variance of the posterior predictive distribution for
the diffuse and conjugate prior, respectively. For the hierarchical prior we
need to estimate the expected portfolio return and portfolio variance.
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Figure 4.1: The efficient frontier for all considered methods, were n = 130
and k ∈ {5, 10, 25, 40} for low volatility.

This is done by first drawing µ̃h and Σ̃h from the conditional posterior dis-
tributions (3.15) and (3.17), respectively. Then, draw Y h,t from Nk(µ̃h, Σ̃h).
We repeat these two steps Nh times and estimate the sample mean and vari-
ance using the sample Y

(1)
h,t , . . . ,Y

(Nh)
h,t . This procedure is performed for each

repetition.

The process for the objective-based prior is similar to that of the hierarchical
prior. The only difference is that we need to draw Σ̃ob by implementing
the rejection sampling algorithm (see appendix A.3). The draws from this
rejection algorithm are in fact a sample from the target density f(X), there
is no approximation involved (see Givens and Hoeting(2012)[19]).
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Figure 4.2: The efficient frontier for all considered methods, were k = 40 and
n ∈ {50, 75, 100, 130} for low volatility.

Then, given µ̃ob and Σ̃ob from the marginal posterior distributions (3.20)
and (3.22), respectively, we draw Y ob,t from Nk(µ̃ob, Σ̃ob). We repeat these
two steps Nob times and estimate the sample mean and variance using the
sample Y

(1)
ob,t, . . . ,Y

(Nh)
ob,t . The results are based on B = 1000 independent

repetitions and Nh = Nob = 10000 for each repetition.

As a measure of performance, the average absolute deviance from the estima-
tor to the true population value was computed for portfolio expected return
and variance. The values are summarised in Table 4.1 for low volatility, and
Table 4.2 for high volatility. In the case of low volatility we observe that,
when k ∈ {5, 10, 25}, the diffuse estimator leads to the best performance in
terms of point estimation of the expected return and variance.
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Figure 4.3: The efficient frontier for all considered methods, were k = 40 and
n ∈ {50, 75, 100, 130} for high volatility.

However, as the portfolio dimension increases the conjugate estimator im-
proves considerably. For k = 40, the conjugate estimator leads to the best
point estimation of the expected return and variance, for all considered sam-
ple sizes. The objective-based estimator performs worst out of the five es-
timator when the sample size is n ∈ {50, 75}, as the sample size increases
beyond 75 the objective-based estimator only outperforms the hierarchical
estimator. For a given portfolio dimension, the hierarchical estimator devi-
ate by a similar amount regardless of the sample size. For high volatility,
varying k and n, similar observations are made about the deviations of the
hierarchical estimator.
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Figure 4.4: The efficient frontier for all considered methods, were n = 130
and k ∈ {5, 10, 25, 40} for high volatility.

For k = 5 and n ∈ {75, 100} the sample estimator performs as good as the
diffuse estimator, in terms of point estimation of the portfolio variance. While
the conjugate estimator outperformed the diffuse estimator when k = 40 for
low volatility, this is only the case when n = 50 in the case of high volatility.

Regarding the efficient frontier for low volatility, varying k with fixed n = 130
in Figure 4.1 and varying n with fixed k = 40 in Figure 4.2, the following is
observed. The objective-based estimator shows the most overestimation of
the population efficient frontier for all considered portfolio dimensions and
sample sizes, the only exception is when the portfolio dimension is large and
the sample size n = 50. In this case the sample estimator exhibits even larger
overestimation, compared to the objective-based estimator. The diffuse es-
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timator tends to underestimate the population efficient frontier, if only by
a negligible amount. The underestimation of the diffuse estimator tends to
decrease as the sample size increases. As the portfolio dimension increases or
the sample size decreases, the sample estimator performs worse as its overesti-
mation, of the population efficient frontier, increases. In contrast, increasing
the portfolio dimension or the sample size, the conjugate estimator performs
better, showing less overestimation. For all considered portfolio dimensions
and sample sizes, the hierarchical estimator, in contrast to most estimators,
underestimates the population efficient frontier tremendously. And as the
portfolio dimension increases, so does the underestimation of the hierarchi-
cal estimator. The reason for this large underestimation may be that we
shrink all elements of the mean vector by the same amount. As such, the
slope coefficient of the efficient frontier will be shrunk to zero. This is exactly
what is observed in the figures.

4.2 Empirical illustration

4.2.1 Data

The data are comprised of stocks from OMX Stockholm 30 combined with
a number of stocks from the Stockholm market, thus allowing for portfolios
consisting of more than 30 assets. The stocks from the Stockholm market are
selected by most traded. We consider portfolio dimensions k ∈ {5, 10, 25, 40}
for daily and weekly returns. For given sample size n, we use two samples.
For daily returns, the first sample ends on the 29th of March 2021 and begins
n-days earlier. For weekly returns, the first sample ends on the 29th of March
2021 and begins n-weeks earlier. For daily returns, the second sample ends
right before the first sample begins, and starts n-days earlier. For weekly
returns, the second sample ends right before the first sample begins, and
starts n-weeks earlier. The first sample is used to asses the performance of the
considered priors and the second sample is used to determine the value of the
hyperparameters µc, Sc, Sh, and Sob. Letting x̂ denote the sample mean and
Ŝ denote the sample covariance of the second sample, the hyperparameters
previously mentioned are, rc = x̂+0.5ε and Sc = Sh = Sob = Ŝ+0.5∆, with
ε = (ε1, . . . , εk)

T and ∆ = diag(δ21, . . . , δ
2
k) where εi ∼ Unif(−0.01, 0.01) and

δi ∼ Unif(0.001, 0.005). We consider samples of
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Figure 4.5: The expected portfolio return and portfolio variance for all con-
sidered methods, were n = 130, γ ∈ {10, 25, 50, 100}, and k ∈ {5, 10, 25, 40}
for daily data.

size n ∈ {52, 78, 104, 130}, corresponding to two and a half months up to six
and a half months of daily returns, and one year up to two and a half years
of weekly returns.

4.2.2 Results for daily data

In Figure 4.5, fixing n = 130, considering different portfolio dimensions k ∈
{5, 10, 25, 40}, and different levels of risk aversion γ ∈ {10, 25, 50, 100}, we
observe the following.
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Figure 4.6: The efficient frontier for all considered methods, were n = 130
and k ∈ {5, 10, 25, 40} for daily data.

For all portfolio dimensions and levels of risk aversion, the conjugate esti-
mator estimates the highest expected return and the hierarchical estimator
estimates the lowest expected return. For low levels of risk aversion, i.e.
γ ∈ {10, 25}, the same can be observed in terms of the portfolio variance,
the conjugate estimator estimates the highest variance while the hierarchical
estimator estimates the lowest variance. When the levels of risk aversion is
low, i.e. γ ∈ {10, 25}, the objective-based estimator estimates the second
highest expected return and variance among all estimators. However, when
the levels of risk aversion is high, i.e. γ ∈ {50, 100}, and the portfolio dimen-
sion small, i.e. k ∈ {5, 10}, the objective-based estimator estimates of the
expected return is among the highest and the variance is the among the
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Figure 4.7: The efficient frontier for all considered methods, were k = 40 and
n ∈ {52, 78, 104, 130} for daily data.

lowest. That is, for the investor who is risk averse and considers small port-
folio dimensions, the objective-based estimator promises high expected port-
folio return combined with low portfolio variance. For a given level of risk
aversion, the diffuse estimator is closely related to the sample estimator, the
difference being that the diffuse estimator tends to estimate lower expected
return and higher variance, compared to the sample estimator.

Regarding the efficient frontier, Figure 4.6 shows the estimated efficient
frontier for a fixed n = 130 and considering different portfolio dimensions
k ∈ {5, 10, 25, 40}. The diffuse efficient frontier always lies below the sam-
ple and the objective-based efficient frontier, and deviate stronger when the
portfolio dimension gets larger. The conjugate efficient frontier also tends to
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lie above the diffuse efficient frontier, the only exception being when k = 5.
For a given portfolio dimension, the objective-based estimator estimates the
highest, or second highest, expected return for a given level of variance. It
is remarkable that, for all considered portfolio dimensions, the hierarchical
efficient frontier estimates the lowest expected return for a given level of
variance.

Figure 4.7 shows the estimated efficient frontier for a fixed k = 40 and con-
sidering different length of historical daily returns n ∈ {52, 78, 104, 130}.
For longer histories, i.e. n ∈ {78, 104, 130}, the order of the efficient fron-
tiers, from highest to lowest, is as follows: objective-based, sample, conju-
gate, diffuse, and hierarchical. When n = 52 the sample efficient frontier
lie slightly above the objective-based efficient frontier. For all n the sample
and objective-based efficient frontier lie close to each other and exhibit the
strongest overestimation. However, the sample and objective-based efficient
frontier show weaker overestimation with growing sample size.
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Figure 4.8: The expected portfolio return and portfolio variance for all con-
sidered methods, were n = 130, γ ∈ {10, 25, 50, 100}, and k ∈ {5, 10, 25, 40}
for weekly data.

4.2.3 Results for weekly data

In Figure 4.8, fixing n = 130, considering different portfolio dimensions k ∈
{5, 10, 25, 40}, and different levels of risk aversion γ ∈ {10, 25, 50, 100}, we
observe the following.

The hierarchical estimator estimates the lowest, or second lowest, expected
return and variance for all considered portfolio dimensions and levels of risk
aversion. The objective-based estimator estimates the highest, or second
highest, expected return and the lowest, or second lowest, variance among
all estimators. The diffuse estimator estimates the highest variance for most
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Figure 4.9: The efficient frontier for all considered methods, were n = 130
and k ∈ {5, 10, 25, 40} for weekly data.

portfolio dimensions and levels of risk aversion. For small portfolio dimen-
sions, i.e. k ∈ {5, 10}, and risk aversion γ ∈ {25, , 50, 100} the estimated
variance for the sample estimator and the diffuse estimator is significantly
higher than the other estimators. Similarly to the results for daily returns
the diffuse estimator estimates lower expected return and higher variance,
compared to the sample estimator.

Regarding the efficient frontier, Figure 4.9 shows the estimated efficient
frontier for a fixed n = 130 and considering different portfolio dimensions
k ∈ {5, 10, 25, 40}. Similarly to the results from daily return, the diffuse
efficient frontier lies below the sample efficient frontier, and the hierarchical
efficient frontier estimates the lowest return for a given variance. As the
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Figure 4.10: The efficient frontier for all considered methods, were k = 40
and n ∈ {52, 78, 104, 130} for weekly data.

portfolio dimension increases the diffuse and the hierarchical efficient fron-
tier deviate from the other efficient frontiers, estimating the lowest expected
returns for a given level of variance. The objective-based estimator tends to
estimate the highest expected return for a given level of variance, and the
conjugate estimator tends to lie close to the sample estimator. However, this
is not the case for k = 10, in this case the conjugate estimator stands out by
estimating significantly higher expected return for a given level of variance,
compared to all other methods.

In Figure 4.10, fixing k = 40 and consider different length of historical weekly
returns n ∈ {52, 78, 104, 130} for the efficient frontier. For smaller samples,
i.e. n ∈ {52, 78}, the conjugate efficient frontier lies close to the hierarchical
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efficient frontier. As the sample size increases the diffuse efficient frontier lies
closer to the hierarchical efficient frontier. When n ∈ {104, 130} the diffuse
estimator estimates the second lowest expected return for a given level of
variance. Regardless of portfolio dimension or sample size, the hierarchical
efficient frontier lies below all other efficient frontiers. For all n the sample
and objective-based efficient frontier lies close to each other and exhibit the
strongest overestimation. This is especially prominent when the length of
historical weekly returns is short.
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Chapter 5

Conclusion

In this thesis we consider the problem of optimal portfolio choice from the
Bayesian perspective. We consider four different estimators; the diffuse, the
conjugate, the hierarchical, and the objective-based prior. For the diffuse and
conjugate estimators we use the stochastic representation in order to draw
samples from the posterior predictive distribution. While, for the hierarchical
and the objective-based estimator we derive the conditional posterior distri-
butions, for the parameters of the asset returns, in order to draw samples
from the posterior predictive distribution. These are compared to each other
and to an estimator based on frequentist statistics. In order to compare the
different estimators we perform an extensive comparison study via Monte
Carlo simulation. Also, an empirical illustration, based on stocks from the
Stockholm market, is performed.

In the simulation study the aim was to assess the performance of the consid-
ered estimators. This is done by measuring the average absolute deviation of
the point estimates, of the expected portfolio return and the portfolio vari-
ance, from the true population values. Also, we derive the efficient frontier,
the set of optimal portfolios, for varying portfolio dimensions and sample
sizes. For most portfolio dimensions and sample sizes the diffuse estimator
deviated the least. However, in some cases, when the portfolio dimension
is large, the conjugate estimator outperformed the diffuse estimator. The
objective-based estimator showed the most overestimation of the popula-
tion efficient frontier. On the other hand, the hierarchical estimator showed
tremendous underestimation of the population efficient frontier. The rea-
son for this large underestimation may be that we shrink all elements of the
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mean vector by the same amount. As such, the slope coefficient of the effi-
cient frontier will be shrunk to zero. This is exactly what is observed in the
figures.

In addition to the simulation study an empirical illustration was done based
on stocks from the Stockholm market. In the empirical illustration we ob-
served that, in most cases, the estimators perform as expected based on the
observations from the simulation study. However, the hierarchical estimator
performed much better, in that it seems to show much less underestimation,
relative to the other estimators. Based on the simulation study, depend-
ing on the portfolio dimension, either the diffuse or the conjugate estimator
showed the best performance. It is possible that the hierarchical estimator,
when applied to real data, is favourable due to its modest estimation of the
expected return for a given level of variance.

Conclusively, we found that the diffuse, the conjugate, and the hierarchical
estimator showed less overestimation, compared to sample estimator. In the
simulation study, the hierarchical estimator showed immense underestima-
tion while the objective-based estimator showed great overestimation, of the
population efficient frontier. For future studies it could be of interest to in-
vestigate how the hierarchical estimator would perform for different values of
the prior parameters, both in a simulation setting but primarily when applied
to real data.
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Appendix A

Derivations

A.1 Global minimum variance portfolio

Proof. Global minimum variance portfolio

In order to find the weights, wGMV , of the minimum variance portfolio such
that wT

GMV 1 = 1 we use the method of Lagrange multipliers. The minimiza-
tion problem to be solved can be expressed as the following

min
w
wTΣw subject to wT1 = 1

The Lagrangian function that corresponds to this minimization problem,
subject to the equality constraint, is given by

L(w, λ) = wTΣw − λ(w1− 1).

The solution to this minimization problem is obtained by solving the first
order conditions with respect to w. The first order conditions are

∂L(w, λ)

∂wT
= 2 ·Σw + λ · 1 = 0 (A.1)

∂L(w, λ)

∂λ
= wT1− 1 = 0. (A.2)
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Solving (A.1) with respect to w we get

w = −λ ·Σ
−11

2
.

Using this expression of w we solve (A.2) with respect to λ and get

λ = − 2

1TΣ−11
.

Substituting this expression of lambda in (A.1) we get desired weights of the
minimum variance portfolio

2 ·Σw =
2

1TΣ−11
· 1 =⇒

wGMV =
Σ−11

1TΣ−11
.

A.2 Conditional posterior distribution

A.2.1 Hierarchical prior

Derivations of the conditional posterior predictive distributions, of the pa-
rameters of the asset returns, for hierarchical prior. The posterior distribu-
tion is given by
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ph(µ,Σ, ξ,η|X1, . . . ,Xn) ∝ L(X1, . . . ,Xn|µ,Σ)ph(µ,Σ, ξ, η)

∝ |Σ|−(dh+n+1)/2exp

{
−1

2
tr
[
(η−1Sh + (n− 1)S)Σ−1

]}
× η−k(dh−k−1)/2−ε1−1exp

{
−ε2
η

}
× exp

{
− κh

2
(µ− ξ1)TΣ−1(µ− ξ1)

− n

2
(µ−X)TΣ−1(µ−X)

}
, (A.3)

where 1 is the k-dimensional vector of ones and

L(X1, . . . ,Xn|µ,Σ) ∝ |Σ|−n/2

× exp
{
−n

2
(µ−X)TΣ−1(µ−X)− n− 1

2
tr
[
SΣ−1

]}
.

To derive the conditional posterior of µ we focus on the third exponential
term of (A.3) since that is the only term that depends on µ. We can rewrite
the third exponential term of (A.3) as

exp

{
− κh

2
(µ− ξ1)TΣ−1(µ− ξ1)− n

2
(µ−X)TΣ−1(µ−X)

}
= exp

{
− κh

2

(
µTΣ−1µ− 2µTΣ−1ξ1 + ξ1TΣ−1ξ1

)
− n

2

(
µTΣ−1µ− 2µTΣ−1X +X

T
Σ−1X

)}
= exp

{
− 1

2

[
(κh + n)µTΣ−1µ− 2µTΣ−1

(
κhξ1 + nX

)
+ κhξ1

TΣ−1ξ1 + nX
T
Σ−1X

]}
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= exp

{
− κh + n

2

(
µTΣ−1µ− 2µTΣ−1rh + rThΣ−1rh

)
− 1

2

[
nX

T
Σ−1X + κhξ1

TΣ−1ξ1

− (κh + n)

(
κhξ1 + nX

κh + n

)T
Σ−1

(
κhξ1 + nX

κh + n

)]}
= exp

{
− κh + n

2
(µ− rh)T Σ−1 (µ− rh)

− 1

2

(
1

κh + n

)[
(κh + n)nX

T
Σ−1X

+ (κh + n)κh(ξ1)TΣ−1(ξ1)− (κhξ1)T Σ−1 (κhξ1)

− 2nX
T
Σ−1 (κhξ1)− nXT

Σ−1nX

]}
= exp

{
− κh + n

2
(µ− rh)T Σ−1 (µ− rh)

− 1

2

(
κhn

κh + n

)[
X

T
Σ−1X

+ (ξ1)TΣ−1(ξ1)− 2X
T
Σ−1 (ξ1)

]}
= exp

{
− κh + n

2
(µ− rh)T Σ−1 (µ− rh)

− 1

2

(
κnn

κn + n
(X − ξ1)TΣ−1(X − ξ1)

)}
where

rh =
κhξ1 + nX

κh + n
.

Using this, the posterior distribution can be expressed as
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ph(µ,Σ, ξ, η|X1, . . . ,Xn) ∝ |Σ|−(dh+n+1)/2

× exp
{
−1

2
tr
[
(η−1Sh + (n− 1)S)Σ−1

]}
× η−k(dh−k−1)/2−ε1−1exp

{
−ε2
η

}
× exp

{
− κh + n

2
(µ− rh)T Σ−1 (µ− rh)

− 1

2

(
κnn

κn + n
(X − ξ1)TΣ−1(X − ξ1)

)}
. (A.4)

Rearranging the terms of (A.4) we get the following expression

ph(µ,Σ, ξ,η|X1, . . . ,Xn) ∝ |Σ|−(dh+n)/2

× exp
{
−1

2
tr
[
(η−1Sh + (n− 1)S)Σ−1

]}
× exp

{
− 1

2

(
κnn

κn + n
(X − ξ1)TΣ−1(X − ξ1)

)}
× |Σ|−1/2exp

{
− κh + n

2
(µ− rh)T Σ−1 (µ− rh)

}
× η−k(dh−k−1)/2−ε1−1exp

{
−ε2
η

}
(A.5)

Hence, the conditional posterior distribution of µ is given by

ph(µ|Σ, ξ, η,X1, . . . ,Xn) ∝ |Σ|−1/2exp
{
−κh + n

2
(µ− rh)T Σ−1 (µ− rh)

}
which is the kernel of a multivariate normal distribution, that is

µ|Σ, ξ, η,X1, . . . ,Xn ∼ N(rh,
1

κh + n
Σ).
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Integrating out µ from (A.5) we get conditional posterior distribution of Σ
expressed as

ph(Σ|ξ,η,X1, . . . ,Xn) ∝ |Σ|−(dh+n)/2

× exp
{
−1

2
tr
[
(η−1Sh + (n− 1)S)Σ−1

]}
× exp

{
− 1

2

(
κnn

κn + n
(X − ξ1)TΣ−1(X − ξ1)

)}
× η−k(dh−k−1)/2−ε1−1exp

{
−ε2
η

}

∝ |Σ|−(dh+n)/2exp
{
−1

2
tr
[
(η−1Sh + (n− 1)S)Σ−1

]}
× exp

{
− 1

2
tr

(
κnn

κn + n
(X − ξ1)(X − ξ1)TΣ−1

)}
× η−k(dh−k−1)/2−ε1−1exp

{
−ε2
η

}
.

Hence, the conditional posterior distribution of Σ is given by

ph(Σ|ξ, η,X1, . . . ,Xn) ∝ |Σ|−(dh+n)/2exp
{
− 1

2
tr

[(
η−1Sh + (n− 1)S

+
κnn

κn + n
(X − ξ1)(X − ξ1)T

)
Σ−1

]}
,

which is the kernel of inverse Wishart, that is

Σ|ξ, η,X1, . . . ,Xn ∼ IWk(dh + n,Ψh)

where

Ψh = η−1Sh + (n− 1)S +
κnn

κn + n
(X − ξ1)(X − ξ1)T .
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Finally, the marginal posterior distributions of ξ and η are given by

ph(ξ|X1, . . . ,Xn) ∝ 1

ph(η|X1, . . . ,Xn) ∝ η−k(dh−k−1)/2−ε1−1exp

{
−ε2
η

}
.

A.2.2 Objective-based prior

Derivations of the conditional posterior distribution of µ and the marginal
posterior predictive distribution of Σ, for objective-based prior. The poste-
rior distribution is given by

pob(µ,Σ|X1, . . . ,Xn) ∝ L(X1, . . . ,Xn|µ,Σ)pob(µ,Σ)

∝ |Σ|−(dob+n+1)/2exp

{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}
× exp

{
− s2

2σ2
ob

(µ− γΣwob)
TΣ−1(µ− γΣwob)

− n

2
(µ−X)TΣ−1(µ−X)

}
, (A.6)

where

L(X1, . . . ,Xn|µ,Σ) ∝ |Σ|−n/2

× exp
{
−n

2
(µ−X)TΣ−1(µ−X)− n− 1

2
tr
[
SΣ−1

]}
.

To derive the conditional posterior of µ we focus on the second exponential
term of (A.6) since that is the only term that depends on µ. We can rewrite
the second exponential term of (A.6) as
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exp

{
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2σ2
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(µ− γΣwob)
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= exp

{
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TΣ−1(γΣwob)− 2X

T
Σ−1 (γΣwob)

]}
= exp

{
− mob

2
(µ− rob)T Σ−1 (µ− rob)

− 1

2

 n s2

σ2
ob

s2

σ2
ob

+ n

[(X − γΣwob)
TΣ−1(XγΣwob)

]}

where

mob =
s2

σ2
ob

+ n

rob =

s2

σ2
ob
γΣwob + nX

s2

σ2
ob

+ n
.

Using this, the posterior distribution can be expressed as
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pob(µ,Σ|X1, . . . ,Xn) ∝ |Σ|−(dob+n+1)/2exp

{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}
× exp

{
− mob

2
(µ− rob)T Σ−1 (µ− rob)

− 1

2

n · s2σ2
ob

mob

(
X − γΣwob

)T
Σ−1

(
X − γΣwob

)}. (A.7)

Rearranging the terms of (A.7) we get the following expression

pob(µ,Σ|X1, . . . ,Xn) ∝ |Σ|−(dob+n)/2exp
{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}

× exp
{
− 1

2

n · s2σ2
ob

mob

(
X − γΣwob

)T
Σ−1

(
X − γΣwob

)}

× |Σ|−1/2exp
{
− mob

2
(µ− rob)T Σ−1 (µ− rob)

}
(A.8)

Hence, the conditional posterior distribution of µ is given by

pob(µ|Σ,X1, . . . ,Xn) ∝ |Σ|−1/2exp
{
− mob

2
(µ− rob)T Σ−1 (µ− rob)

}
which is the kernel of a multivariate normal distribution, that is

µ|Σ,X1, . . . ,Xn ∼ N(rob,
1

mob

Σ).

Integrating out µ from (A.8) we get that the marginal posterior distribution
of Σ is expressed as

pob(Σ|X1, . . . ,Xn) ∝ |Σ|−(dob+n)/2exp
{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}

× exp
{
− 1

2

n · s2σ2
ob

mob

(
X − γΣwob

)T
Σ−1

(
X − γΣwob

)}.
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A.3 Rejection sampling algorithm

The objective of the rejection sampling algorithm is to obtain a random draw
from a distribution f(X), which can be calculated up to a proportionality
constant. This is done by sampling candidates from a distribution which we
are able to obtain a random sample from, and then correcting the sampling
probabilities through random rejection of some candidates. The distribution
we want to draw random samples from is the marginal posterior distribution
of Σ, for the objective-based prior, which is expressed in equation (3.22),
that is

f(X) =pob(Σ|X1, . . . ,Xn) ∝ |Σ|−(dob+n)/2

× exp
{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}

× exp
{
− 1

2

n · s2σ2
ob

mob

(
X − γΣwob

)T
Σ−1

(
X − γΣwob

)}.
Using that

|Σ|−(dob+n)/2exp
{
−1

2
tr
[
(Sob + (n− 1)S)Σ−1

]}
is the kernel of an inverse-Wishart distribution, and that

exp

{
− 1

2

n · s2σ2
ob

mob

(
X − γΣwob

)T
Σ−1

(
X − γΣwob

)}

only takes on values between 0 and 1, we can draw a random sample from
f(X) as follows.

1. Sample Y ∼ IW (dob + n,Sob + (n− 1)S).

2. Sample U ∼ Unif(0, 1).
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3. Reject Y if

U > exp

{
− 1

2

n · s2(Y)

σ2
ob

mob

(
X − γY wob

)T
Y −1

(
X − γY wob

)},
where s2(Y) = 1

k
tr(Y ). In this case, we reject Y and return to step 1.

4. Otherwise keep Y and consider this a an element of the target random
sample drawn from f(X).
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