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Abstract

Clustering analysis is an important part of machine learning due
to the need of grouping data into segments. By handling the abun-
dant amount of data we have today, these analyses have created new
opportunities. Different fields such as social science and biology have
benefited from cluster analysis and machine learning in general. How-
ever, clustering methods usually limit us to certain types of similarity
measures and require to make assumptions on the structure of the data.
Affinity propagation (AP) is a method that addresses these inconve-
niences. The algorithm can take nonmetric similarity graphs as input
and do not require the number of clusters prespecified, which creates
great opportunities in a variety of fields. This study aims to scruti-
nize AP, using the negative squared Euclidean distance as similarity
measure, and its inputs. We will also compare it to one of the most
common clustering methods, k-means. By investigating the method’s
statistical properties with different test examples, we conclude that
the results from AP are similar to k -means. The results show simi-
lar clustering of imbalanced, noisy and arbitrarily shaped data. Both
methods try to cluster imbalanced and arbitrarily shaped data into
balanced spherically shaped clusters, and may find structure in noise
when clustering noisy data. Moreover, AP is computationally expen-
sive in computer time when dealing with large datasets, since it needs
to be run with multiple self-similarities to find a suitable value. To
find the right self-similarity the original authors of AP applied a root-
finding method called the bisection method, which is slow. For further
studies, we therefore suggest using a faster root-finding method than
the bisection method, to increase the efficiency when searching for the
right self-similarity.
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1 Introduction

1.1 Background

Current abundance of data is one of the main reasons why machine learning
(ML) has gained popularity lately. This requires methods that provide a possi-
bility to locate and assess the data, and to control information overload. Hence,
we avoid the problem of losing valuable data. ML is also used in great extent
due to its ability to handle high dimensional data, such as medical records and
financial transactions. Together with the increasing computer power and more
elegant methods, we are able to create models and methods that enhance compa-
nies’ productivity, such as face recognition in Apple and user recommendations
in Netflix or Spotify. ML can be defined as a collection of statistical meth-
ods used for regression, classification, dimensionality reduction or clustering.
ML approaches can be divided into two categories, namely, supervised learning
and unsupervised learning. The main difference between supervised and unsu-
pervised learning resides in how each method learns from the data. The data
decides what category we apply and can consist of only independent variables or
both independent and dependent variables. Hence, the data can be unlabeled
or labeled. Supervised learning is based on a dependent approach, where the
algorithms are trained on labeled data, while unsupervised learning is based on
finding patterns in unlabeled data. The two main topics in unsupervised learn-
ing are dimensionality reduction and clustering, which will be the main focus
of this thesis. Clustering analysis, together with a suitable similarity measure,
which is a function that quantifies the similarity between two data points, aims
to segment data points into groups that are more similar to each other than to
observations in other groups. Therefore, the groups should be meaningful to
capture the natural structure of the data, and useful for the study.

Clustering analysis has been used in a wide variety of fields, such as biology
and social sciences [18]. Some basic clustering methods are k -means, hierarchical
clustering and density-based clustering. K -means is a distance-based algorithm,
known to be one of the simplest and most common methods for identifying clus-
ters in unsupervised learning. Similarly to many other clustering methods, the
performance of the k -means algorithm is influenced by the choice of the param-
eter k. This aspect of the method is considered to be one of its main artifacts,
as a suitable choice of k will in most of the cases require some prior knowledge
of the data, and this is not always the case. The AP method, unlike k -means
and other simple clustering methods, does not need to make any assumption on
the number of clusters. This creates great opportunities for the user by letting
the algorithm decide a suitable number itself solely based on the information
of the similarity matrix as input. Moreover, the method can take metric and
nonmetric similarity measures which makes it applicable in many contexts.
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1.2 Objectives

The main objective of this thesis is to scrutinize AP and its performances by
explaining the intuition behind the algorithm. The shared preference is one of
the inputs of AP and is the self-similarity, i.e., the similarity of an observation
to itself, that is obtained from the information of the similarity matrix. This
thesis also aims to explain how to evaluate the similarity matrix and the shared
preference, and how AP differs from more common methods such as k -means.
We also aim to investigate the method statistically with different datasets and
evaluate possible limitations, artifacts, weaknesses and strengths. To complete
the study we validate the results with different validation indices, which are
methods used to validate the quality of the clustering results. The choice of
validation index depends on the type of data, e.g., if the data is lying on the
Euclidean or non-Euclidean space.

1.3 Outline of thesis

The structure of the thesis is as follows. Section 2 consists of the theory and
methods essential for the thesis. We provide the important concepts and steps
of the k -means algorithm and AP, where advantages and disadvantages of the
methods are discussed. The theory behind principal component analysis (PCA),
which is used for data visualization, is also presented in this section. Moreover,
we define and apply the silhouette coefficient, which is a validation method for
clusterings. We also present another validation method with a validation in-
dex based on nearest neighbours, which might also be used on clusterings of
data lying on the non-Euclidean space. In Section 3 the methods are applied
on different kind of test cases and the clustering results are analyzed and vali-
dated. Artifacts of AP are also presented in this section. Finally, discussions,
conclusions and outlooks for further studies are presented in Section 4.

2 Theory and method

2.1 The k-means clustering

Clustering is a method to categorize data into groups where the observations
with similar characteristics are grouped together. Their relation can be mea-
sured by a pairwise dissimilarity measure, and clustered into groups based on
the information obtained from the dissimilarities. The k -means clustering al-
gorithm is the oldest and most used clustering algorithm [18]. It is based on
clustering data where a cluster’s observations are closer to their centroid, which
is the mean of the observations in the cluster and the cluster center in k -means,
than to other clusters’ centroids. This indicates that the pairwise dissimilarities
between the observations in the same cluster tend to be smaller than to the
other clusters. The centroids are usually applied to observations in the contin-
uous D-dimensional space. Hence, the method is mostly used on quantitative
data using the squared Euclidean distance as the dissimilarity measure, where
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we sum over all the pairwise dissimilarities [8]. The pairwise dissimilarity is
given by

d(i, k) =

D∑
α=1

(xiα − xkα)2 = ||xi − xk||2 (1)

where xi and xk are D-dimensional data points in the dataset X = (x1, ..., xN ).

Generally, clustering methods assign every observation to one cluster only,
meaning that the assignments have the task to map the ith observation to the
lth cluster, based on the dissimilarity measure. The aim is to assign points
close to each other to the same cluster in order to minimize the within-point
scatter loss function, which tries to minimize the variance of the clusters. The
within-point scatter is the following

W (C) =
1

2

K∑
l=1

∑
xi∈cl

∑
xk∈cl

d(i, k) (2)

where cl is the lth cluster in the set C = (c1, ..., cK). The within-point scatter
measures how close observations within each cluster are to each other, which we
aim to minimize. On the other hand, the between-point scatter measures how
far apart observations in different clusters are from each other, which we aim to
maximize. The total-point scatter is constant given the data and is the sum of
the within-point and between-point scatter, and given by

T =
1

2

K∑
l=1

∑
xi∈cl

∑
xk∈cl

d(i, k) +
∑
xk /∈cl

d(i, k)

 = W (C) +B(C) (3)

where the between-point scatter is given by

B(C) =
1

2

K∑
l=1

∑
xi∈cl

∑
xk /∈cl

d(i, k) (4)

The within-point, between-point and total-point scatter give the following rela-
tion

W (C) = T −B(C) (5)

which reflects that minimizing W (C) is equivalent to maximizing B(C). In
k -means, the within-point scatter is given by

W (C) =

L∑
l=1

Nl
∑
xi∈cl

||xi − µl||2 (6)

where the mean vector µl = (µ1l, ..., µDl) is of the lth cluster for every dimension,

and Nl =
∑N
n=1 I(xi ∈ cl), which is the number of observations belonging to

cluster cl. How Equation 2 is equivalent to Equation 6 for k -means is proven
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in Appendix A. The algorithm aims to minimize the within-point scatter by
using the mean of the observations in each cluster as the centroid. The mean
is obtained from the derivative of W (C) with respect to the mean, which is set
equal to zero to solve out the mean µl and obtain µl = 1

Nl

∑
xi∈cl xi. Thus, the

average of each cluster’s data points should be used as the centroid to minimize
the loss function.

2.1.1 The algorithm

The k -means algorithm is described in Algorithm 1. With the data points and
the anticipated number of clusters as inputs, the cluster assignments can be
computed. Firstly, it randomly assigns initial values of the centroids. Secondly,
the within-point scatter is minimized by assigning each observation to its near-
est centroid according to the squared Euclidean dissimilarity measure. Thirdly,
the centroids are recomputed for each cluster as the mean of all the data points
belonging to that cluster. This is repeated until convergence and lastly, the
cluster assignments are obtained.

Algorithm 1: k -means algorithm

Input: Set of data points
Number of clusters K
Initialization: Randomly assign initial values for the centroids
{m1, ...,mK}

Repeat: Update the following until convergence:
The within-point scatter

K∑
l=1

Nl
∑
xi∈cl

||xi −ml||2

is minimized by assigning each data point to the nearest centroid.
Hence, this indicates that the cluster assignment of the point xi is
computed according to the following rule

argmin1≤l≤K ||xi −ml||2

Recompute the centroid for each cluster as the mean of all data points
in the respective cluster

ml =
1

Nl

∑
xi∈cl

xi

Output: Cluster assignments

Algorithm 1 does not guarantee to find a global minimum and there is risk
of convergence on a local minimum. The problem may occur from poorly cho-
sen centroids. The choice of the initial centroids is essential. In many cases the
initializations are randomly sampled, which could lead to poor results. One way
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to obtain a more reliable result is to perform multiple runs where the initial-
izations are sampled, and the clustering result with the lowest sum of squared
errors is chosen. The sum of squared errors evaluates the performance of clus-
tering methods on unlabeled data, and measures how much the clusters vary
by computing the sum of the squared differences between every observation in
a cluster and its cluster’s mean. However, this does not necessarily result in
a global minimum despite the many iterations. Moreover, the method is an
optimization greedy algorithm since it minimizes the within-point scatter and
repeatedly updates the centroids in each iteration, which may give results on a
local minimum.

The algorithm is a variant of the Expectation-maximization algorithm (EM)
[2]. Recall that the EM algorithm consists of two phases, where the first phase
is the E-step and the second phase is the M-step. The E-step in EM consists
of assigning a data point to a cluster using a certain probability weight, which
is from a chosen probability distribution. EM computes soft clustering, which
is when a data point can belong to more than one cluster, and is assigned to
the cluster with a certain probability weight. Moreover, in the M-step EM
recomputes the parameters of the probability distribution, by maximizing the
expected logarithm of the density function based on the current assignments.
For k -means, the E-step consists of assigning each observation to the closest
centroid. Hence, as opposed to EM, each data point in k -means can only belong
to one cluster. Furthermore, the M-step consists of recomputing the centroid of
each cluster by computing the mean of the observations in the cluster.

2.1.2 Advantages and disadvantages

The k -means is simple, easy to implement and a good choice of clustering
method when the data consists of equally sized spherical clusters. Other meth-
ods, such as DBSCAN [4] and hierarchical clustering [8], tend to be more expen-
sive in speed and memory which makes k -means a common choice. Nevertheless,
k -means has several well-known limitations. When using the method we restrict
ourselves to data with centroids that are randomly initialized in every run [18].
Therefore, every run could compute different results of both the centroids and
clusterings. Some initial centroids can be poorly chosen. Consequently, we
compute multiple runs to obtain the best result with the lowest sum of squared
errors. However, the reached optimum may still not be global and a poor ini-
tialization can result in, e.g., a true cluster being split.

Another disadvantage is that k -means is centroid-based and restricted to the
squared Euclidean distance, which prevents us from applying it to non-euclidean
features and non-spherically shaped data. The method also has problem to han-
dle imbalanced clusters, in both cases of imbalance in the number of data points
and spatial extension, mostly the latter, due to the same reasons. Furthermore,
the dissimilarity measure does not minimize the sum of squared distances of each
cluster separately. The measure minimizes the sum of squared distances for all
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clusters together by assigning observations belonging to clusters with more ob-
servations to clusters with fewer observations, meaning that the method tends to
form clusters of similar size. This is illustrated in Figure 1 which demonstrates
how the method gives rise to clusters with similar sizes. Moreover, k -means is
not efficient for data with outliers or noise since it may find structure in them.
Detecting and removing outliers can be essential for a good clustering result.

Figure 1: Example of k -means clustering of three Gaussian mixtures to illus-
trate unsuccessful clustering for data with imbalanced spatial extent. The three
clusters identified by k -means are colored in green, blue and red, respectively.
The means of the Gaussians are µgreen = (0, 2), µblue = (1, 1) and µred = (2, 2),
and the standard deviations are σgreen = σred = 0.1 and σblue = 0.5. (X, Y)
are the 2D features. The centers of the three Gaussians are indicated by the
star-symbols.

Furthermore, an issue common for most clustering methods, such as k -means
and EM, is the choice of the number of clusters. Some examples of clustering
methods that do not require the number of clusters prespecified are, e.g., DB-
SCAN [4] and hierarchical clustering [8]. DBSCAN and hierarchical clustering
do not need to prespecify the number of clusters since DBSCAN is based on
the data points’ density in a region, and hierarchical clustering considers every
observation as a cluster and groups similar observations together. AP is not as
common as the mentioned methods, so we will investigate it more thoroughly
in this thesis [5].

2.2 Affinity propagation

AP is a clustering method introduced in 2007 by Frey and Dueck [5]. The
authors aim to create a fast method that is easy to implement and can take
metric and nonmetric data, i.e., negative, asymmetric or violating the triangle
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inequality, as input. These are qualities that create broad opportunities for the
user. AP uses exemplars, i.e., centers of the clusters obtained in the last stage
of the algorithm, to identify clusters and considers all data points as potential
exemplars in a deterministic way without the need of sampling the initializa-
tions as in the case of k -means. The deterministic exemplars are actual data
points, which is a benefit dealing with data from, e.g., bioinformatics since the
exemplars of DNA segments would not be computed as hypothetical averages.
Furthermore, AP does not make assumptions on the structure of the data, but
relies on the information obtained from the similarity matrix to decide the num-
ber of clusters.

AP has been applied in different areas. The authors of AP have applied the
method to data of genes, images and airline travel times which demonstrates
its diversity. The method is suitable for image segmentation since it does not
require random selection of initial exemplars, which gives more stable clustering
results [22], and for pairs of stereo images to find their global optimum [14].
Moreover, socioeconomic research has recently used AP where they have used
zip-codes to cluster areas in the USA [9]. It has also been applied in identi-
fication of vulnerable lines in smart grid systems [6], i.e., electrical grids that
consist of diverse operation and energy measures.

The algorithm consists of two quantities that compute the message passing,
the responsibility and the availability, where messages are exchanged between
data points [5]. The definitions and the intuitions behind the quantities will be
described in the following sections.

2.2.1 The quantities of message-passing

2.2.1.1 The responsibility Considering other potential exemplars for data
point xi, the N × N responsibility matrix assesses how suitable data point xk
is to be an exemplar of data point xi. The responsibilities r(i, k) which are sent
from point xi to xk are illustrated in Figure 2 and computed with the rule:

r(i, k)← s(i, k)− max
k′:k′ 6=k

{
a(i, k′) + s(i, k′)

}
(7)

where the availability a(i, k′) assesses how available xk′ can serve as an exem-
plar for xi, considering the other data points’ support of having xk′ as their
exemplar. The responsibility can be interpreted as the relative similarity since
it reflects how similar xi is to xk relative to xk′ , considering its availability. Fur-
thermore, Equation 7 can be explained as the similarity between a data point
and its potential exemplar, which will decrease with the largest similarity and
availability the data point has to another potential exemplar. Thus, the similar-
ity will decrease with the largest similarity and availability that the data point
should choose another exemplar. The responsibility reflects how similar an ob-
servation and its potential exemplar are to each other, considering how that
observation is related to other competing candidate exemplars. By subtracting
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the similarity with the largest value of the availability and similarity the data
point has to another exemplar, the relation between the investigated points xi
and xk is weakened.

For k = i, the ”self-responsibility” r(k, k) is defined by

r(k, k)← s(k, k)− max
k′:k′ 6=k

{
s(k, k′)

}
(8)

which is the shared preference minus the largest similarity the data point xk
has to other potential exemplars. In this case, the availability is not taken into
consideration since we will not have the data point xi to consider when comput-
ing the availability. This means that we will not be able to assess how suitable
it would be for xi=k to choose xk as an exemplar, since they are the same.
Thus, the self-responsibility is deterministic that only depends on the similarity
matrix.

In every iteration of the AP algorithm the responsibilities and availabili-
ties are updated. The AP algorithm is initialized by setting all availabilities to
zero in the first iteration, meaning that the responsibility between xi and xk
in Equation 7 will only decrease depending on the largest similarity the data
point xi has to other potential exemplars, and therefore, xk will be less suited
as an exemplar of xi. The responsibility in later iterations will decrease as the
availabilities increase, which indicates that the exemplar’s fit to xi will decrease
when xi is more suitable to choose another exemplar. In the case that a data
point is assigned to another exemplar, the availability will be negative which will
give a larger responsibility than before. Hence, the availabilities will decrease
the similarities between data point xi and other exemplars xk′ , and therefore
remove the possible exemplars from competition, making data point xk more
suitable as an exemplar for data point xi.

2.2.1.2 The availability The availability is defined as the smaller value
between zero, and the sum of the self-responsibility of xk and the summation of
all positive responsibilities xk receives from the other data points. Considering
the support from other observations that xk should be their exemplar, the N ×
N availability matrix assesses how suitable it would be for data point xi to
choose xk as an exemplar. The off-diagonal availabilities, i.e., the availabilities
computed for i 6= k, that are sent from point xk to point xi, are illustrated in
Figure 3 and updated with the rule in the iteration:

a(i, k)← min
{

0, r(k, k) +
∑

i′:i′ /∈{i,k}

max{0, r(i′, k)}
}

(9)

The responsibilities we sum over in Equation 9 reflect how suitable it is for xk
to be an exemplar to xi, and how suitable xk is as an exemplar of other data
points. The responsibilities of xk in the summation over i′ are positive since a
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Figure 2: An illustration of sending responsibilities. The image reflects how
the responsibility, i.e., the evidence of how well-suited xk is as an exemplar of
data point xi, is sent from xi to xk considering other potential exemplars for xi.
Other potential exemplars send their availabilities to xi, which in combination
with the given information send its responsibility to xk.

good exemplar should reflect how similar it is to some data points, regardless of
how dissimilar it is to other data points. An exemplar’s dissimilarities to data
points are reflected by the negative responsibilities. As stated in the original
article, it is mainly relevant for a suitable exemplar to explain some observations
well regardless of how bad it explains other observations. The self-responsibility
in Equation 8 reflects how suitable xk is as an exemplar. By choosing the smaller
value between zero and the sum of the responsibilities in Equation 9, we limit
the impact positive responsibilities have on the availabilities and threshold it
so it does not rise above zero. An availability of zero indicates that xi should
choose xk as an exemplar since it is the highest possible availability value, and
xk would in general be fit as an exemplar. Note how the availability aims to
gather evidence that the potential exemplar is an appropriate choice, rather
than evaluating all possible exemplars of xi, as computed by the responsibility.

If the self-responsibility r(k, k) is negative, it can be noticed from Equation
8 that a candidate exemplar would be more suitable as a data point of another
cluster than being an exemplar. This could result in a negative or small value
of the availability since xk will not be suitable as an exemplar for other data
points either. In the case the self-responsibility r(k, k) is zero, the availability
will only depend on how suitable data point xk is as an exemplar of other data
points. The availability will then have the value zero, since we will only sum
over positive responsibilities. Having a positive self-responsibility indicates that
point xk is well-suited as an exemplar. Adding more positive responsibilities
would still give an availability of the value zero. Hence, it is suitable for xi
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to choose xk as an exemplar. The update rule for self-availability a(k, k) was
proposed to be

a(k, k)←
∑
i′:i′ 6=k

max
{

0, r(i′, k)
}

(10)

which reflects how suitable xk is to be an exemplar, depending on positive
responsibilities of xk and other data points. As mentioned earlier, positive re-
sponsibilities indicate that an exemplar is more suitable for some data points
regardless of how dissimilar it is to other data points. Only the positive respon-
sibilities are included since it is relevant that an exemplar explains some data
points well, no matter how bad it explains other data points. When this is the
case, the diagonal of the availability matrix will consist of zeroes and positive
values reflecting how suitable xk is as an exemplar from the information ob-
tained from the other observations.

Figure 3: An illustration of sending availabilities. The image reflects how the
availability, i.e., how suitable it is for data point xi to choose xk as an exemplar,
is sent from xk to xi considering the support of other data points that xk should
be their exemplar. The data points send their responsibilities to xk, which in
combination with the given information send its availability to xi.

2.2.2 Inputs and other quantities of message-passing

The message-passing algorithm involves several other quantities that will be
discussed as follows. The similarity graph which is the input of the message-
passing algorithm, the shared preference and the damping factor λ. The final
step of the algorithm is to compute the clusterings, which are obtained with the
criterion matrix presented in Section 2.2.2.4.

2.2.2.1 Similarity graphs The N × N similarity matrix represents the
similarity graph constructed by a function that expresses the similarity between
pairwise observations from the set X = (x1, ..., xN ) [13]. Data points together
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with their similarities can be represented by a weighted graph.

Generally, an undirected and weighted graph is defined as G = (V,E,W ),
where V is the set of vertices, E is the set of edges and W is the set of weights
obtained from the pairwise similarities, where each vertex vn represents an ob-
servation xn for n = 1, ..., N . Furthermore, the number of vertices is N = |V |,
where |.| is the cardinality. An undirected graph is characterized by having
edges where the order of the vertices is not relevant, meaning that the similar-
ity measure of two distinct vertices will be the same on both directions, i.e.,
s(i, k) = s(k, i). By having symmetric distances between vertices, the graph
will obtain symmetric edges. When the similarity s(i, k) between xi and xk is
positive or above some threshold, the vertices will be connected and the edge
weighted by the similarity. One of these thresholds can be the ε-distance be-
tween data points, which creates the ε-neighbourhood graph. The data points
with pairwise distances smaller than ε are connected by an edge. The edges are
not weighted since the pairwise distances are mostly of the same scale and would
therefore not give more information of the data. Hence, the graph does not re-
quire weighted edges, which makes the ε-neighbourhood graph an unweighted
graph.

Another threshold is the k -nearest neighbours where vertex vi is connected
to vk, if vk is one of the k -nearest neighbours of vi. This creates a directed graph
due to the asymmetric relationships. Nevertheless, the graph can be undirected
if we ignore the direction of the edges and follow the nearest neighbour concept
to obtain a k-nearest neighbour graph. Another way of making the graph undi-
rected is by having the requirement of both vertices being among each other’s
nearest neighbours, which will result in the mutual k-nearest neighbour graph.
The edges in both cases will be decided by a weight obtained from the similar-
ity of the investigated vertices. The weight can be obtained by, e.g., 1

||xi−xk||2
between xi and xk, and reflects how the connected data points or vertices that
are further away from each other, will obtain a smaller weight relative to the
other nearest neighbours. If a pair of vertices are not connected according to
the concept used, the edge will be given the value zero.

Lastly, the third kind of similarity graph to mention is the fully connected
graph, where all data points with positive similarities are connected with edges
weighted by the similarities. The edge’s weight between data point xi and xk
can be constructed by the Gaussian similarity function

s(i, k) = exp
(−||xi − xk||2

2σ2

)
(11)

where σ controls the width of the neighbourhoods. However, note that the simi-
larity only captures the relationship between different data points and not their
relationship to themselves. Thus, s(i, k) = 1 whenever i = k.
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Choosing the right type of similarity graph is challenging. For AP we will
construct a network with pairwise similarities. Hence, the graph will be repre-
sented by a N ×N similarity matrix that provides the similarity between every
two data points. As mentioned earlier, the similarity matrix can be nonmetric.
The chosen similarity measure for this thesis will be, to enable a comparison
between AP and k -means, the negative squared Euclidean distance given by

s(i, k) = −||xi − xk||2 (12)

This measure, which is used in the original article [5], denotes how the similar-
ity becomes smaller as the distance grows larger. The diagonal would consist
of zeroes in the first iteration, which would result in more clusters since every
data point would be mapped to itself. Using other similarity measures, such
as the inverse of the squared Euclidean distance 1

||xi−xk||2 , would give unde-

fined self-similarities and undefined similarities between data points with zero
squared Euclidean distance. Thus, the negative squared Euclidean distance is
an appropriate choice. To decide the values of the diagonal, we will use the
off-diagonal elements of the similarity matrix to obtain the shared preference
[5]. This subject is discussed in the following section.

2.2.2.2 Shared preference The shared preference is the similarity a data
point has to itself. The shared preference is zero when first computing the sim-
ilarity matrix, which can be easily understood from Equation 12. The shared
preference is obtained from the off-diagonal elements of the similarity matrix and
reflects the number of clusters, and such choice is a convention used by the orig-
inal authors [5]. From their results, they draw the conclusion that lower shared
preference values penalizes data points as exemplars and create fewer clusters,
while higher shared preference values obtain more exemplars. Therefore, Frey
and Dueck suggest the median or the first quantile of the input similarities to
obtain a moderate number of clusters, which could result in a small number of
clusters. Otherwise, it is suggested to use the smallest value of the similarities
to obtain one or two clusters. A small value of the shared preference will com-
pute fewer clusters and the data would be clustered into more distinct clusters.
Frey and Dueck assumes that,a priori, all data points are equally suitable to be
exemplars which means that the shared preference should be set to a common
value.

In practice, the median and the first quantile of the similarities can some-
times give too many clusters. To find the appropriate value of the shared prefer-
ence, the bisection method is a commonly used algorithm for root-finding, used
by the authors of AP. The method bisects the intervals of the shared preference
values and runs AP for each shared preference. Frey and Dueck used bisections,
and by running the algorithm multiple times with different values, they tried
to obtain the desired number of clusters. To investigate which shared prefer-
ence that results in the right number of clusters, a plot of the shared preference
against the number of clusters allows us to choose the number of clusters based
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on the range of the shared preference values. For instance, if three clusters have
the widest range of preference values then three is chosen as the right number
of clusters. Nevertheless, it also depends on the plotted preference values since
many smaller shared preference values can just result in one cluster. Further-
more, there is no linear relationship between the shared preference value and
the number of clusters.

2.2.2.3 Damped factor and noise According to Frey and Dueck [5], there
is a risk of numerical oscillations when updating the message-passing quanti-
ties, meaning that the data points alternate between being exemplars and non-
exemplars. Degenerate situations can occur when AP struggles with choosing
the right exemplar in a cluster, and lead to oscillations. For instance, when a
cluster consists of two data points that are isolated from the other data points,
AP may struggle with choosing the right data point as an exemplar. There-
fore, it is essential to damp the message-passing quantities and add noise to
facilitate and ensure convergence [5]. The dampening is computed by using the
damping factor λ ∈ (0, 1), which in each iteration is multiplied to the values of
message-passing steps. To compute a new responsibility or availability value,
the old value from the former iteration is multiplied by λ and the updated value
is multiplied by 1− λ, as the following:

rnew(i, k)← λrold(i, k) + (1− λ)rnew(i, k)

anew(i, k)← λaold(i, k) + (1− λ)anew(i, k)
(13)

The value of the dampening factor is chosen depending on if the clustering
oscillates. Consequently, we have to increase the dampening factor. According
to Dueck [3], λ = 0.9 is sufficient in most of his demonstrative examples, which is
also the value used in this thesis. Moreover, by adding noise to the similarities,
degenerate situations may be prevented. The noise added to a similarity should
be, according to Frey and Dueck [5], a percentage of the value of a standard
normal random variable multiplied with the difference between the largest and
smallest similarity value, and is presented in Algorithm 2.

2.2.2.4 Criterion matrix The AP algorithm reaches convergence after the
clustering remains the same after a number of iterations, or after a fixed number
of iterations. According to Dueck [3], the maximum number of iterations are
1000 and the number of iterations the clustering results may stay the same are
100, and are the quantities used in this thesis. When AP reaches convergence it
is time to determine the exemplars. The exemplars are obtained by firstly com-
puting the N×N criterion matrix, which is the sum of the pairwise availabilities
and responsibilities between data points such as the following:

c(i, k)← a(i, k) + r(i, k) (14)

Secondly, to identify the exemplars and assignments the largest values of the cri-
terion matrix are identified by computing argmaxk{c(i, k)}. Hence, the columns
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k with the largest matrix elements of the criterion matrix are the exemplars.
The rows i with the same exemplars will share cluster.

2.2.3 The algorithm

AP is described in Algorithm 2. By taking the similarity matrix, with added
noise, and the shared preference as input, the message-passing steps are com-
puted. The availability matrix will in the first iteration be initialized to zero,
which is with the responsibility matrix in later iterations updated according to
Equations 7-10. In each iteration, the message-passing steps are damped, to
avoid oscillations with λ = 0.9. Lastly, when the matrices have reached conver-
gence or until the number of iterations exceed a threshold, the assignments of
the exemplars are computed.

Algorithm 2: Affinity Propagation

Input: Similarities {s(i, k)}(i,k)∈{1,...,N}2,i6=k
Shared preferences s(k, k) = p ∀k ∈ {1, ..., N}
Noise1 to similarity matrix
Damping factor of λ = 0.9
Initialization: Availabilities are set to zero, i.e., ∀i, k a(i, k) = 0
Repeat: Update responsibility and availability until convergence or
until the number of iterations exceeds its threshold, which is given by

∀i, k : r(i, k) =

{
s(k, k)−maxk′:k′ 6=k

{
s(k, k′)

}
, for k = i

s(i, k)−maxk′:k′ 6=k
{
a(i, k′) + s(i, k′)

}
, for k 6= i

r(i, k) = λrold(i, k) + (1− λ)r(i, k)

∀i, k : a(i, k) =

{ ∑
i′:i′ 6=i max

{
0, r(i′, k)

}
, for k = i

min
{

0, r(k, k) +
∑
i′:i′ /∈{i,k}max{0, r(i′, k)}

}
, for k 6= i

a(i, k) = λaold(i, k) + (1− λ)a(i, k)

Output: Cluster assignments ĉ = (ĉ1, ..., ĉN ), where
ĉi = argmaxk{c(i, k)}

2.2.3.1 An illustrative example To exemplify AP this section will demon-
strate an example taken from reference [19]. This example is chosen due to its
great simplicity, and the data is obtained from an experiential exercise where
the participants are asked about their opinion of tax rate, a fee for services,
interest rate, quantity limit and price limit on a five-point scale. Therefore, the

1Adding noise to similarities as

s(i, k) + 1e−12 × Z ×
(
max({s(i, k)}(i,k)∈{1,...,N}2 )−min({s(i, k)}(i,k)∈{1,...,N}2 )

)
where Z ∼ N(0, 1).
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data variables are categorical of the ordinal type, since the participants rank
their opinions about the different subjects. The data does not require normal-
ization since the variables are of the same scale. The aim of this example is to
illustrate how people with the same opinions should be in the same group. The
data used is presented in Table 1.

Participant Tax rate Fee Interest rate Quantity limit Price limit

Alice 3 4 3 2 1
Bob 4 3 5 1 1
Cary 3 5 3 3 3
Doug 2 1 3 3 2
Edna 1 1 3 2 3

Table 1: Data to exemplify AP, which consists of five categorical variables
reflecting the participants opinions about each variable on a five-point scale.

Now, since the data consists of variables of the same scale it is possible to
compute the similarity matrix using the negative squared Euclidean distance as
similarity measure. The similarity between, e.g., Alice and Bob is

s(A,B) = −((3− 4)2 + (4− 3)2 + (3− 5)2 + (2− 1)2 + (1− 1)2) = −7

and between Alice and Cary is

s(A,C) = −((3− 3)2 + (4− 5)2 + (3− 3)2 + (2− 3)2 + (1− 3)2) = −6.

The same calculations are computed for all combinations and the smallest sim-
ilarity value among the off-diagonal elements of the similarity matrix is −22,
which will be used as the shared preference. The results are presented in Table 2.

Alice Bob Cary Doug Edna

Alice -22 -7 -6 -12 -17
Bob -7 -22 -17 -17 -22
Cary -6 -17 -22 -18 -21
Doug -12 -17 -18 -22 -3
Edna -17 -22 -21 -3 -22

Table 2: The similarity matrix of the data from Table 1.

The initial responsibility of, e.g., Alice and Bob using Equation 7 is

r(A,B) = −7−max(−6,−12,−17) = −7− (−6) = −1
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and, e.g., Alice and Cary is

r(A,C) = −6−max(−7,−12,−17) = −6− (−7) = 1.

After computing the responsibilities for the other combinations, the initial re-
sponsibility matrix in Table 3 is obtained.

Alice Bob Cary Doug Edna

Alice -16 -1 1 -6 -11
Bob 10 -15 -10 -10 -15
Cary 11 -11 -16 -12 -15
Doug -9 -14 -15 -19 9
Edna -14 -19 -18 14 -19

Table 3: The initial responsibility matrix of the data from Table 1.

The initial availability of, e.g., Alice and Bob using Equation 9 is

a(A,B) = min(0,−15 +
∑

(max(0,−11),max(0,−14),max(0,−19))) = −15

and, e.g., Alice and Cary is

a(A,C) = min(0,−16 +
∑

(max(0,−10),max(0,−15),max(0,−18))) = −16.

Moreover, the self-availabilities are computed by using Equation 10. For
instance, Alice’s self-similarity is obtained from the following calculations:

a(A,A) =
∑

(max(0, 10)+max(0, 11)+max(0,−9)+max(0,−14)) = 10+11 = 21

The initial availability matrix for all pairwise combinations is presented in Table
4.

Alice Bob Cary Doug Edna

Alice 21 -15 -16 -5 -10
Bob -5 0 -15 -5 -10
Cary -6 -15 1 -5 -10
Doug 0 -15 -15 14 -19
Edna 0 -15 -15 -19 9

Table 4: The initial availability matrix of the data from Table 1.

The initial criterion matrix is the sum of these two message-passing matrices
from Table 3 and 4, and presented in Table 5.
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Alice Bob Cary Doug Edna

Alice 5 -16 -15 -11 -21
Bob 5 -15 -25 -15 -25
Cary 5 -26 -15 -17 -25
Doug -9 -29 -30 -5 -10
Edna -14 -34 -33 -5 -10

Table 5: The initial criterion matrix of the responsibility matrix in Table 3 and
the availability matrix in Table 4. The bold numbers are the largest criterion
values.

The clustering result will not change with further iterations of the message-
passing quantities, meaning that the data converges in the first iteration and
the initial matrices obtained in Table 3-5 are also the converged matrices. The
largest criterion value of each row reflects which exemplar each participant be-
longs to and is presented as a bold number in Table 5. The rows with the
same criterion value of their exemplars are clustered together. The columns
with these criterion values are the exemplars, which in Table 5 are Alice and
Doug. Therefore, it is obtained that Alice, Bob and Cary are in one cluster
with Alice as the exemplar, and Doug and Edna are in one cluster with Doug
as the exemplar. The result can be explained from the original data in Table
1, where in the case of tax rate, Alice, Bob and Cary prefer higher tax rates in
comparison to Doug and Edna that prefer lower tax rates. The same pattern
can be observed in their opinions about a fee on services, where Alice’s cluster
prefers high fees and Doug’s cluster prefers low fees. The remaining variables
do not show a distinguishing pattern of the participants opinions. However,
the clusters’ opinions are more distinct in at least two variables which supports
the obtained clustering result. From Table 2 it can be observed that Alice and
Doug are the chosen exemplars since they have the most similar opinions to
the participants in their clusters. Alice is closer in opinion to Bob and Cary
but Bob and Cary are not close in opinion, which makes Alice the link between
these two participants. Doug is the second exemplar since he is closer in opinion
to Alice than Edna, which creates a possibility for communication between the
two teams. By this example it is illustrated how teams consisting of people with
similar opinions can be formed for, e.g., political parties.

2.2.4 Advantages and disadvantages

AP is a practical and versatile method, and is one of the few methods that can
take nonmetric similarity matrices. This is a great advantage since it makes AP
applicable to all kinds of similarity measures and creates great opportunities
in fields that obtain nonmetric data, such as data of images. Additionally, the
exemplars are actual data points and not hypothetical averages of the clusters’
observations. Hence, AP is suitable for bioinformatics such as biological network
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analyses where AP is used to decompose networks into connected modules [20].
Moreover, AP is deterministic and therefore not sensitive to initializations, in
contrast to the case of k -means. This is very convenient since it could be quite
time-consuming to run the same algorithm multiple times to obtain the best re-
sult. The authors of AP [5] mention this as a great advantage when comparing
to other methods, which also results in a lower sum of squared errors meaning
that AP obtains clusters with observations closer to their cluster’s mean. The
mentioned qualities make AP a fast algorithm easy to implement.

The disadvantages of AP are also relevant problems to consider. The similar-
ity matrix is computed by taking pairwise similarities of the data, which creates
a matrix with number of elements growing as O(N2). Therefore, a large dataset
can be very time and memory consuming. Another limitation is the choice of
shared preference. The problem of prespecifying the number of clusters has been
replaced by the problem of prespecifying the shared preference. For data with a
known number of clusters, the procedure can be time-consuming. From Figure
1 and 4 we can draw the conclusion that the clustering results could be very
similar for AP and k -means. However, for k -means we prespecified the number
of clusters, while AP required a bisection method since both the choices of the
median and the lowest quantile of the similarity values for the shared preference
may result in too many clusters.

Figure 4: Example of AP clustering of three clusters of Gaussian mixtures
to illustrate unsuccessful clustering for data with imbalanced spatial extent,
identical to k -means. The three clusters identified by AP are colored in green,
red and blue, respectively. The means of the Gaussians are µgreen = (0, 2),
µred = (1, 1) and µblue = (2, 2), and the standard deviations are σgreen = σblue =
0.1 and σred = 0.5. (X, Y) are the 2D features. The centers of the three
Gaussians are indicated by the star-symbols.
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2.3 Principal component analysis

Clustering multidimensional data can be challenging since it is difficult to obtain
prior knowledge about the underlying characteristics of the data. For further
evaluation of the characteristics of high dimensional data, a dimensionality re-
duction method is required. The PCA is a method first introduced by Pearson
in 1901 [15], and aims to transform multivariate data to a new coordinate sys-
tem. It is an orthogonal linear transformation that projects data into a new
basis, and is used for dimensionality reduction and data visualisation. When
projecting the data, most of its variance is reflected in the first coordinate axis,
i.e., the first principal component (PC), while the second largest variance is
reflected in the second coordinate axis, i.e., the second PC, etc. PCA is suitable
for multidimensional data since the sample variances along the coordinate axes
are maximized and carry most of the variance of the data in the first few PCs.
Hence, they can be used to visualize data, but the data is restricted on lying on
the linear manifold. If the underlying data is non-linear, PCA might be mislead-
ing. The PCs are computed by finding the eigenvectors and eigenvalues of the
covariance matrix, and projecting the data onto a subspace with eigenvectors
that contain the largest eigenvalues as basis.

The aim of PCA is to transform the N ×D data matrix X, where xn ∈ RD,
to the matrix Y of dimension d, where yn ∈ Rd. The data matrix X consists
of N row vectors with D columns, where row n consists of the vector xn =
(xn1, ..., xnD) and column α consists of the vector xα = (x1α, ..., xNα)T . PCA
computes the new representation Y where d < D, such that

Y = XT (15)

where the D × d matrix T consists of columns that represent the new basis’
vectors, where X is projected.

The data matrix X is, without loss of generality, assumed to be centered.
If it is not centered, the data matrix should be centered. Consequently, we
compute the sample covariance as

ĈX =
1

N − 1
XTX, (16)

which is a square D × D matrix. Since the sample covariance matrix is sym-
metric, i.e., ĈX = ĈTX, and has entries of real numbers (positive semidefinite),
it can be diagonalized as

ĈX = QΛQT , (17)

where Q is the D×D orthonormal matrix of the eigenvectors of the covariance
matrix, and Λ is the D ×D diagonal matrix with eigenvalues λα. Recall that
an orthonormal matrix is defined as a square matrix with rows and columns of
orthonormal vectors, which means that QTQ = QQT = I and QT = Q−1. To
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obtain the sample covariance of the new basis in the Rd space, the covariance
matrix of Y is

ĈY =
1

N − 1
YTY =

1

N − 1
(XT)T (XT) = TT XTX

N − 1
T = TT ĈXT (18)

where ĈY is a symmetric square d × d matrix. Furthermore, using the diago-
nalization of ĈX we obtain ĈY = TTQΛQTT. The PCs are obtained from the
eigenvectors and eigenvalues, which are computed from the sample covariance
matrix projected on the new space.

2.4 Validation

2.4.1 Background

The challenge in validating the results lies in choosing an appropriate index. The
validation indices we encounter can be categorized into three types, namely, un-
supervised, supervised and relative. Unsupervised evaluation measures do not
use external information as class labels and are divided into two kinds of mea-
sures, cluster cohesion and cluster separation, which are also called compactness
and isolation, respectively. The cohesion measures how close observations in a
cluster are to each other, and the separation measures how separated observa-
tions are from other clusters’ observations. Supervised evaluation compares the
clustering method’s results to its class labels, i.e., it computes external valida-
tion. Relative evaluation can be either a supervised or an unsupervised measure
that compares different clustering results. Since most of the data applied will
be unsupervised, the focus will be on internal validation.

An external validation method could be to plot the true positive rate (TPR)
against the false positive rate (FPR). The TPR is when the method correctly
clusters the data points, while the FPR is when the method clusters dissimi-
lar data points to the same cluster. The authors of AP validated the methods
mainly based on external validation methods by evaluating the TPR and the
FPR [5]. This thesis will mostly apply internal validation indices since unla-
beled data will be used in most cases, and aim to measure the goodness of
the clustering methods. It is essential to validate the clustering analyses since
the algorithms can compute clusters even though the data does not possess a
cluster structure [18]. The aim of cluster validation is to determine if there
exists a non-random structure in the data. It is important to evaluate if the
clustering results fit the data, decide the number of clusters, compare two types
of clusterings and compare the results to class labels for the external valida-
tion. Therefore, validating results from clustering methods is as important as
applying the actual methods. Most internal indices are based on either cohesion
or separation but the silhouette coefficient uses both to evaluate the clustering
performance, which motivates the choice of index in this thesis [17].
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2.4.2 The silhouette coefficient

The silhouette coefficient is a validation method that uses the cohesion and
separation to compute the coefficient. Hence, the silhouette coefficient measures
how similar a data point is to its own cluster and how dissimilar it is to the
other clusters. It is computed for each individual data point in three steps
and therefore measures how well each observation has been classified. For each
data point xi, we compute the cohesion, separation and lastly, the silhouette
value. The cohesion measures the investigated data point’s distance to the other
observations in its cluster. The cohesion for observation xi is

a(i) =
1

|cl| − 1

∑
xk∈cl;i6=k

d(i, k) (19)

where cl is the cluster of observation xi. It measures how well the data point
xi is assigned to its cluster. A small value indicates good results, which means
that data point xi is close to the data points in its own cluster.

The separation for observation xi is assessed by the minimum average dis-
tance to all data points in a cluster that xi does not belong to. The separation
is given by

b(i) = min
m 6=l

1

|cm|
∑
xk∈cm

d(i, k) (20)

where cm is a cluster not containing xi. The separation measure indicates
good results when it has large values, since it measures how well a data point
separates from other data points not in its cluster. By taking the minimum of
the average distances of xi to all the other points that are not in cluster cl, only
the closest cluster to xi is considered. The goal is to acquire a large separation
value, meaning that the clusters are well separated. The silhouette value of xi
is defined by

s(i) =


1− a(i)/b(i) if a(i) < b(i)

0 if a(i) = b(i)

b(i)/a(i)− 1 if a(i) > b(i)

(21)

and can take values between -1 and 1. A negative silhouette value indicates that
the cohesion is larger than the separation, meaning that the average distance to
the points in the same cluster is larger than the minimum average distance to
data points in other clusters, indicating a bad clustering result. It is desirable
to have a cohesion a(i) close to zero and a large separation b(i) value, which
indicates that the clusters are compact and well separated. A silhouette value
close to zero indicates that the data points could belong to any of the clusters,
consequently, the silhouette coefficient is computed by the average of silhouette
values over all data points. The clustering method aims to obtain a silhouette
coefficient close to one.
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The advantage of the silhouette coefficient is its ability to evaluate each
data point’s clustering, since it is computed for each data point it may help
evaluating which or how many data points are clustered badly. The desired
values of the cohesion and separation measures are determined by their relation
to each other. Their relationship follows the same notion as the within-point
scatter and between-point scatter from Equation 2 and 4. The cohesion and
separation measure consider all data points in the summation over distances,
and not only a single pair of data points, when computing the measures for
each individual data point, to represent entire clusters. Both, the cohesion and
separation measure are based on the average pairwise distance which uses the
Euclidean distance, meaning that they do not consider the geometrical shape of
the cluster but only the observation’s position in the cluster. Thus, the index
may not be beneficial for arbitrarily shaped clusters nor for clusters close to
each other, since the measures aim to find compact clusters that are relatively
separated, meaning that other similarity measure that is able to capture the
geometrical structure is needed.

2.4.3 Clustering validation index based on nearest neighbours

As a second option to a validation method, clustering validation index based
on nearest neighbours (CVNN) is used since the original authors claim that it
can handle non-spherically shaped clusters [11]. Experiments computed by the
founders of the index show that CVNN outperforms other methods, such as the
silhouette coefficient. However, as will be noticed later, we will discuss that
CVNN may still not be able to evaluate arbitrarily shaped data. Similar to
the silhouette coefficient, CVNN measures both the separation and cohesion.
The introduction of the CVNN index is motivated by its separation measure,
which is usually computed based on cluster centers that do not contain the
information about the shape of the cluster and results in a measurement only
suitable for well separated spherical clusters. On the other hand, CVNN uses
multiple data points to represent a cluster, since a cluster center alone cannot
reflect the cluster shape. The measure shares the same idea as the k -nearest
neighbours consistency [11], namely, an observation at the center of a cluster
does not contribute to the separation in contrast to an observation at the edge
of a cluster, since an observation at the edge is surrounded by other clusters
and connects to the observations in those clusters. The measure of separation
aims to use different observations of the same cluster in different situations to
reflect the geometrical shape. The separation measure is defined by

Sep(K, k) = max
l=1,...,K

( 1

Nl

∑
p=1,2,...,Nl

qp
k

)
(22)

where K is the number of clusters, k is the number of nearest neighbours, Nl is
the number of observations in cluster cl, xp is the p:th observation in cl, and qp
is the number of k -nearest neighbours of xp that are not in cluster cl. A lower
value of the measure reflects a better cluster separation. If the clusters are well
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separated, and all k -nearest neighbours belong to the cluster of the investigated
point, the separation measure will obtain the value zero. On the other hand, if
the clusters are close to each other, the separation measure will obtain a higher
value than zero. Note that the name of the measure is misleading since usually,
a high separation value might indicate a better cluster separation. Moreover,
the separation measure in the silhouette coefficient, given by Equation 20, is
the minimum of the average pairwise distances, while the separation measure
of CVNN in Equation 22 is the maximum of the average fraction of k -nearest
neighbours that are not in the same cluster as the point under consideration.
The separation measure of the silhouette coefficient will investigate every data
point’s distances to observations in other clusters, while the separation measure
of CVNN will only investigate data points on the surface of the cluster since
they may contribute the most to the shape of the cluster.

The second essential part of an internal validation index is the cohesion,
or compactness. Instead of only using the centers as representatives of entire
clusters, that lack of geometrical information, the compactness in CVNN is
computed by including all distances to obtain the information for all data points.
The cohesion measure of CVNN is given by [7]

Com(K) =

∑
l

∑
xi,xk∈cl d(i, k)∑
lNl(Nl − 1)

(23)

where xi and xk are two different observations in cluster cl. Note that the
original authors divided the sum of the within-cluster distances by Nl(Nl − 1)
within each cluster [11], which would not be suitable for data with different
sized clusters since the clusters would be weighted equally. Equation 23 repre-
sents the average pairwise distances between observations in the same cluster,
where a lower value reflects a better compactness, and the compactness usually
monotonically decreases for higher number of clusters. Comparing the cohesion
of CVNN in Equation 23 with the cohesion of the silhouette coefficient in Equa-
tion 19, it can be observed that both measure the average pairwise distances
between data points in each cluster. Furthermore, comparing the cohesion of
CVNN in Equation 23 with the loss function of k -means in Equation 6, it is
easy to see that Equation 6 also measures the average pairwise distance, or the
within-point scatter.

By combining the two measures the CVNN is given by

CVNN(K, k) = Sepnorm(K, k) + Comnorm(K) (24)

where
Sepnorm(K, k) = Sep(K, k)/( max

Kmin≤K≤Kmax

Sep(K, k))

and
Comnorm(K) = Com(K)/( max

Kmin≤K≤Kmax

Com(K))
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The separation and cohesion are normalized so they both have the same order of
magnitude. A lower value of CVNN usually means a better clustering result. To
obtain the minimum value of CVNN we have to compute the index for several
values of k -nearest neighbours and identify the optimal number of clusters. This
is, according to the authors of CVNN [11], possible since the relation between
the index and k is shaped like a parabola. As k increases, the value of CVNN de-
creases and reaches its minimum value. When k keeps increasing after reaching
its optimal value, the CVNN index will eventually increase and recommend the
wrong number of clusters. The CVNN index at the curve’s minimum will give
the right number of clusters. This procedure will be used in the analysis. The
reason why the relation between the CVNN index and k is shaped like a parabola
is beyond the scope of this thesis and the interested reader can see reference [11].

The advantage of CVNN’s separation measure is that it investigates near-
est neighbours of all observations in a cluster, which will both illustrate the
clusters and the observations’ relationships to other clusters. The limitation of
this method is in the choice of nearest neighbours since an assessment of k is
required, which might be problematic in the case of arbitrarily shaped clusters
where some data points with nearest neighbours can be further away from each
other, than other points in their cluster to their nearest neighbours. Another
disadvantage of CVNN concerns the cohesion measure, which is the average
pairwise distance between objects. The pairwise distances are measured with
the Euclidean distance, which again could not be sufficient dealing with arbi-
trarily shaped data. The consequence could be that CVNN is not suitable for
non-spherically symmetric clusters, which will be investigated in the analysis.

3 Results

In this section, various test cases will be used to compare AP with k -means
and validate their results. The data used is mostly simulated but a single case
of real data will be considered with the aim of illustrating AP’s properties
and artifacts. The similarity measure chosen for AP is the negative squared
Euclidean distance, for comparative reasons to the k -means method.

3.1 Test cases

3.1.1 Imbalanced data in number of data points

This simulated dataset consists of two clusters from Gaussian mixtures with
means µ1 = (0.3, 0.5) and µ2 = (0.5, 0.3), and standard deviations σ1 = σ2 =
0.06. The data is imbalanced in the number of data points where the larger
cluster has 1000 observations and the smaller cluster has 100 observations, which
makes the ratio 10:1. In all the simulated test cases a plot of number of clusters
versus shared preference for AP will be generated in order to illustrate the
number of clusters for a given shared preference. The shared preference can be
smaller than the smallest value of the similarity matrix. In order to find the right
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shared preference, it is important to run the algorithm for several values of the
shared preference to illustrate which number of clusters occurs more frequent
for what shared preferences. This is illustrated in Figure 5 where it can be
observed that the widest range of shared preferences occurs at two exemplars. As
mentioned before, these values are computed based on a shared preference range
where the smallest value is smaller than the smallest similarity. Subsequently,
this range is split into 200 intervals and for each shared preference the algorithm
is run, which makes the computation of this plot a computationally expensive
procedure. As a convention, the first shared preference that gives the wanted
number of clusters is used in AP. Figure 6a illustrates the identified clusters for
the Gaussian mixture data using AP. Note in Figure 5 how it oscillates between
three and four clusters despite the noise added to the similarity matrix and
the damped factor of λ = 0.9, which indicates that the algorithm struggles to
converge.

Figure 5: Shows effect of the shared preference on the number of exemplars of
the imbalanced data in number of data points.

Nevertheless, after obtaining the right shared preference the application of
AP is computationally fast in this case. Furthermore, the application of k -means
does not take long time either even though we test multiple initial centroids and
choose the one with the lowest sum of squared errors. As demonstrated in Fig-
ure 6, both methods give similar and reasonable results. Both methods apply
the squared Euclidean distance as dissimilarity measure and have centroids or
exemplars positioned in the middle of the clusters. Moreover, choosing the cen-
troid as the mean of the cluster’s data points or an actual data point does not
affect the results. The spatial extension for both clusters is similar, meaning
that the algorithms interpret the clusters as balanced in spatial size, which is
reasonable since the clusters have almost the same radius. Furthermore, when
overclustering, i.e., obtaining too many clusters such as three and four clusters,
both methods split the larger cluster. This is due to their tendency of creating
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(a) (b)

Figure 6: The two clusters of the imbalanced data in number of data points
identified in (a) and (b) by AP and k -means, respectively, are coloured in red
and blue. The means of the Gaussians are µ1 = (0.3, 0.5) and µ2 = (0.5, 0.3),
and the standard deviations are σ1 = σ2 = 0.06. (X, Y) are 2D features. The
centers of the two Gaussians are indicated by the star-symbols.

balanced clusters, which in this case will be in number of data points.

3.1.2 Imbalanced data in spatial extension

The imbalanced data in case of spatial extension consists of two clusters with
200 observations each from Gaussian mixtures with means µ1 = (1, 1) and
µ2 = (1.7, 1.7), and standard deviations σ1 = 0.5 and σ2 = 0.1. The standard
deviations give a spatial extension ratio of 5:1. The shared preference’s effect on
the number of clusters is illustrated in Figure 7, which shows that the suitable
number of clusters is two since it has the widest range of shared preferences.
This is not as computational expensive as with the previous case of imbalanced
data, since the number of observations are only 400 compared to 1100. Consider
the fact that oscillations seem to occur between four and five clusters, which
means that AP struggles to converge.

The computational time of both AP and k -means is relatively fast and the
methods compute very similar results. From Figure 8a and 8b it can be seen
that both methods seek to create balanced spherical clusters, which yields bad
clustering results, as the imbalance in spatial extent is not considered in the
loss function of k -means in Equation 6, and not in the updating rules Equa-
tion 7 and 9 in Algorithm 2 of AP. The only visible difference is the choice of
centroids and exemplars, where the centroid of the large cluster in Figure 8b is
more centralized, while the exemplar of the same cluster in Figure 8a is more to
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Figure 7: Shows effect of the shared preference on the number of exemplars of
the imbalanced data in spatial extension.

(a) (b)

Figure 8: The two clusters of the imbalanced data in spatial extension identified
in (a) and (b) by AP and k -means, respectively, are coloured in red and blue.
The means of the Gaussian are µ1 = (1, 1) and µ2 = (1.7, 1.7), and the standard
deviations are σ1 = 0.5 and σ2 = 0.1. (X, Y) are 2D features. The centers of
the two Gaussians are indicated by the star-symbols.
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the left aiming at a data point. This is a consequence of AP that uses real data
points as centers while k -means uses the mean of the cluster. However, it does
not create a great difference in the clustering. Despite the fact that AP is based
on networks and message-passing quantities, it works similarly as k -means due
to the similarity measure. The squared Euclidean distance in k -means does not
aim to minimize the sum of squared distances of each cluster separately, but for
all clusters together, meaning that it creates clusters of balanced sizes. There-
fore, the Euclidean distance cannot distinguish imbalanced clusters in spatial
extent and that is why the large cluster is almost splitted in half. In the case of
AP, the same applies when using Euclidean distances since the message-passing
quantities will as well choose the shortest distance between the data points to
send their information. This concept is illustrated in Figure 9 where it can be
observed that the shortest distance to the center of cluster B is not from its edge,
but from the red line in the half way. Consequently, this red line determines
the extent of cluster A since the splitting of the clusters is, according to the Eu-
clidean distance, beneficial for the entire sum of squared distances by creating
balanced clusters. In order to obtain better clustering results of the imbal-
anced data in spatial extent, we suggest using the mutual k -nearest neighbour
graph from Section 2.2.2.1 in AP, since the data is Euclidean but imbalanced.
The mutual k -nearest neighbours will connect data points that are each other
nearest neighbours and may cluster the data better than the Euclidean distance.

Figure 9: An illustrative figure of the Euclidean distance in case of imbalanced
data in spatial extent. The clusters are named A and B, where B is the larger
cluster in spatial extent. The centers of the clusters are indicated by the black
dots. The red line going through cluster B is located at the half way between the
two cluster centers. The distances from the red line to the centers are illustrated
by the black arrows.

In case of overclustering with, e.g., three or four clusters for both meth-
ods, the large cluster is split into multiple clusters with equally sized spherical
clusters. Depending on if k -means converges or not, it can sometimes split the
smaller cluster. Hence, the importance lies in computing multiple runs to sample
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different initial centroids and the global minimum of the loss function is reached.

3.1.3 Spherical data with noise

The dataset applied in this section consists of two spherical clusters with 70
observations each from Gaussian mixtures, with means µ1 = (0.3, 0.3) and µ2 =
(0.7, 0.7), and standard deviations σ1 = σ2 = 0.04. Additionally, the data
consists of 50 observations sampled from the uniform distribution, considered
as noise. The shared preference’s effect on the number of clusters is illustrated
in Figure 10, which shows that AP interprets the dataset as two clusters and
finds structure in the noise as illustrated in Figure 11a. On the other hand, as
expected, the k -means finds structure in the noise and creates two large clusters
that cut the data points in half as illustrated in Figure 11b, with the attempt
to identify spherically shaped clusters.

Figure 10: Shows effect of the shared preference on the number of exemplars of
the data with noise.

Both AP and k -means cannot distinguish outliers or noise from clusters
due to not having an outlier or noise identification procedure. However, we
already know that k -means is sensitive to noise and outliers since extreme values
influence the means. The influence is due to the centroid being the average of
the data points close to the centroid. Hence, by having noise, the centroid will
be pushed closer to the noise trying to create spherical clusters. AP considers
every data point as a potential exemplar and does not have a noise identification
procedure. Therefore, an introduction of density-based methods that take into
account density information would be more suitable for data with noise. In the
case of overclustering, the methods continue to find structure in the noise.
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(a) (b)

Figure 11: The two clusters of the data with noise identified in (a) and (b) by
AP and k -means, respectively, are coloured in blue and red. The means of the
Gaussian are µ1 = (0.3, 0.3) and µ2 = (0.7, 0.7), and standard deviations are
σ1 = σ2 = 0.04. The noise is from the standard uniform distribution. (X, Y) are
2D features. The centers of the two clusters are indicated by the star-symbols.

3.1.4 Flame-shaped data

The flame-shaped dataset is often used in clustering analyses to investigate how
good clustering methods handle non-spherical clusters. It consists of 240 obser-
vations in two dimensions and is shaped like a flame. The data has two clusters
and two outliers. Figure 12 shows that the appropriate number of clusters for
AP is two clusters, and it can also be noticed that oscillations occur between
two and three clusters, and also between three and four clusters. This means
that despite our noise and damped factor the algorithm still fails to converge
for some shared preferences.

Figure 13a and 13b show that AP and k -means again perform similarly.
With the attempt to identify spherical clusters due to the use of Euclidean
distances, they cannot cluster arbitrarily shaped data. This behaviour was ex-
pected from both algorithms since the similarity measure cannot distinguish
the actual short distances between data points. An illustrative example of this
problem is presented in Figure 14, where the Euclidean distance will not inter-
pret the U-shaped cluster and its distances correctly. The distance from point
C to A should be considered to be shorter than from C to B, which is not
the case when using the Euclidean distance. Therefore, the algorithm assigns
the points with shorter distance to the same cluster. The same applies to the
flame-shaped dataset where the spherical cluster should be one cluster, and the
moon-shaped cluster should be another. One suitable similarity measure could
be the commute time distance (CTD), which is based on the random walk [12].
The discussion about the CTD is beyond the scope of this thesis, and the inter-
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Figure 12: Shows effect of the shared preference on the number of exemplars of
the flame dataset.

(a) (b)

Figure 13: The clusters of the flame dataset identified in (a) and (b) by AP and
k -means, respectively, are coloured in blue and red. (X, Y) are 2D features.
The centers of the two clusters are indicated by the star-symbols.
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ested reader can see reference [12].

Figure 14: An illustrative figure of the problem of using the Euclidean distance
in case of arbitrarily shaped data. The clusters consist of an arbitrarily shaped
cluster and a spherical cluster. The black dots are named A and B. The distances
from the red dot C to A and B, are illustrated by the black arrows.

In the case of overclustering, the moon-shaped cluster is splitted since its
spatial extension is larger than the spherical cluster.

3.1.5 MNIST dataset

The MNIST dataset of handwritten digits will be used in this section and was
first introduced by Yann LeCun [10]. The MNIST data is used since it is mul-
tidimensional real data, which is a type of data not investigated before in this
thesis. The data consists of 60000 training images and 10000 test images with
pixel values between 0 and 255, and their corresponding training and test labels.
With the purpose of saving computational time, we only considered a sample of
the first 6000 observations of the training data, which is balanced in the number
of samples among the digits. Each image displays a digit, the label, between 0
and 9 with a 28 × 28 = 784 pixel resolution. From observing the data it can
be noticed that some images are rotated or flipped, which will require a pre-
processing of the images in order to rotate them in the correct orientation. The
adjustment is performed by computing the Euclidean distance between each im-
age and its corresponding label’s mean. The comparison is made in eight ways
where the mean to the rotated versions of the picture in 0, 90, 180, and 270
degrees, is first compared. Secondly, the image is flipped and for the same rota-
tions the Euclidean distances to the digit’s mean are computed. The orientation
with the smallest Euclidean distance to the mean is assumed to be the ”correct”
image orientation, i.e., presented in a digit’s natural form. Nevertheless, there
still exists some ambiguity since the image with the smallest Euclidean distance
to the mean is not always the correct orientation. In particular, since some
images are inclined or unclear as illustrated in Figure 15.
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Figure 15: Images of differently handwritten 5s from the MNIST dataset. The
axes show the pixel resolution of 28× 28 pixels.

The MNIST dataset will be normalized to bring the values of all dimensions
to a common scale, i.e., between 0 and 1. Furthermore, an exploratory analysis
as described by David Robinson [16] will be performed, starting by changing the
data representation. The aim is to create a data frame where each observation
represents one pixel for a particular image. Two new variables, x and y, will
be created to represent the frame of the images. These will be computed with
some arithmetic as presented by Robinson [16]. Most of the pixel data consists of
zeroes which represent the white background of each image, where only relatively
few pixels are considered as black, i.e., with the pixel value 1, and the few pixels
in between are in grey. Figure 16 shows how relatively few pixels are grey.

Figure 16: The frequency of pixel values of the MNIST data. The x-axis is the
pixel values and the y-axis is the number of pixels with a particular pixel value.

33



Next, the mean values of each digit in each dimension are computed. The
centroids are visualized in Figure 17 where the average value of each pixel is
illustrated for each digit. This figure gives an intuitive idea on which digits
will be harder to cluster. For instance, the digit zero and one might be easier
to cluster since they will on average consist of digits that are white or dark
in the middle, respectively, and the left and right edges will usually be dark
for the zeroes and white for the ones. It could also happen that some digits
can be confused by their similar appearance, which could be the case for the
digits three and eight, four and nine, and seven and nine. Moreover, as a direct
consequence of a wrong rotation or flipping of the digits six and nine, they could
also be confused. However, this is an issue even for the human eye.

Figure 17: The centroids of each digit of the MNIST data where each pixel is
the average pixel value of the particular digit. (X, Y) represent the frame of
each image and consist of 28 pixels each. The legend shows the grey-scale of
every average pixel value.

The problem in clustering is that all images with the same label do not look
similar. To investigate this variation of appearance, a boxplot of the Euclidean
distance of each image to its digit’s centroid was generated, which is illustrated
in Figure 18. It can be observed that digit one has relatively less variation to
the centroid while zero and two have more variability. All of the digits have
outliers far from their centroids. It can also be noticed from Figure 18 that the
distribution of the Euclidean distances from the digits’ centroids are skewed,
especially for digit nine, which might come from the fact that the clusters have
non-uniform density and arbitrarily shape. We illustrate this using the example
in Figure 14, it is evident that the centroid of the U-shaped cluster falls in
between point A and B in the figure and the Euclidean distance of a point in
the U-shaped cluster to this centroid does not have a symmetric distribution
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around its median. The most extreme case of outliers is the digit one, which
is usually written as a straight vertical line. It could also be drawn with a
inclined line on top of the vertical line, and a horizontal line under the vertical
line. Moreover, except for these different types of writing styles, there are some
abnormally written digits. This variation in writing could be the reason of the
many and extreme cases of outliers. Nevertheless, the distance from the smallest
value to the median of the boxplot is quite large in all cases, and the distance
might be caused from the great variability among the images, which could be
due to the variation in writing. There is also a great gap between the smallest
value of each digit’s boxplot and zero, which could happen when the centroid
is outside the cluster. For instance, if the U-shaped cluster in Figure 14 had
data point B as its centroid, it would obtain this gap from the distance between
the cluster’s closest point to the centroid and the centroid. This gap could
also be illustrated in Figure 19 when plotting the Euclidean distances of each
image from the centroid of the corresponding digit in histograms, where the first
bar is far from zero. Hence, the data could be non-spherical symmetric with a
misplaced centroid since the Euclidean distance is used. A misplaced centroid
means that it is outside its cluster and inside another cluster. Figure 14 could
illustrate this if we again consider the data point B as the U-shaped cluster’s
centroid. This centroid is misplaced since it is inside the spherical cluster, and
the Euclidean distance will consider it closer to the spherical cluster than to the
U-shaped cluster.

Figure 18: The Euclidean distance of each image of the MNIST data to its
label’s centroid presented in boxplots. The x-axis presents the digits and the
y-axis presents the Euclidean distance to each digit’s centroid.
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Figure 19: The Euclidean distance of each image of the MNIST data to its label’s
centroid presented in histograms. The x-axis presents the Euclidean distance
and the y-axis presents the number of images with that distance.

The reason for the large gap between the smallest values of the Euclidean
distances and zero could be investigated by dimensionality reduction. To inves-
tigate if the multidimensional dataset is non-spherical symmetric, PCA could
be used. In case of PCA, the first few eigenvalues carry most of the variance,
which means that they reflect the importance of the eigenvectors. The larger the
eigenvalue the more important is that dimension. From Figure 20 we decided to
look at the first three PCs since they capture a big portion of the variation, and
for the simplicity of displaying the results. Notice that there is a slight variation
in eigenvalues for each digit. Therefore, we will investigate the first three PCs
for each digit separately.

PCA is applied to images belonging to each digit separately since each digit
obtains differently shaped and varied PCs. For instance, Figure 32 of digit one
and Figure 38 of digit four in Appendix B illustrate that the variation of the
PCs of each digit is distributed differently, and the PCs try to capture the or-
ganisation of the clusters, making it more suitable to apply PCA to images of
each digit separately. In Appendix B, Figure 30-49 illustrate both, the spatial
extensions of the first three PCs of each digit and their distributions. Figure 30
illustrates how the PCs for digit zero could be spherical symmetric compared
to, e.g., digit one in Figure 32. Figure 31 of digit zero illustrates how the distri-
butions of the PCs are non-skewed. Furthermore, from the other figures it can
be clearly seen that the PCs for digit one, two, four, five, six, seven and nine are
non-spherical symmetric and their histograms show quite skewed results. Hence,
the spatial extension is not the same among the clusters. Figure 36-37 and 46-47
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Figure 20: The eigenvalues of each digit of the MNIST data in each dimension.
The x-axis presents the dimensions and the y-axis presents the eigenvalues of
the covariance matrix of each digit. The legend gives the colour of each digit’s
line.

show relatively spherical results for digit three and eight. However, the results
show outliers and have a higher density in some areas than others. Moreover,
take into account that in this example only three out of the 784 dimensions of
the dataset are considered, and that a cluster being spherical symmetric in three
dimensional projected PC space does not necessarily mean that it is spherical
symmetric. The histograms of Figure 37 and 47 also indicate skewed results to
some extent. To summarize, the PCA mostly shows that the digits’ PCs are
non-spherical symmetric. Generally, the Euclidean distance imply that the data
points fall into a linear manifold, which is usually good for local regions. For
data points separated by large distances, the Euclidean distance fails to capture
the global non-linearity in the data structure. Examples when the large pair-
wise distances appear are outliers and unevenly distributed data in large spatial
extent, which seems to appear in the MNIST dataset.

Next, focus will be put on investigating AP, with the negative squared Eu-
clidean distance as similarity measure, and k -means applied to the MNIST
data as well as the possible drawbacks of applying the methods. Both meth-
ods are applied to the fully normalized, and not standardized data. Figure
21 presents a contingency table produced using the k -means clustering on the
MNIST data, with the purpose of investigating if the method clusters correctly
with the squared Euclidean distance as dissimilarity measure. From the con-
tingency table it can be observed that the algorithm has split digit one and
nine into two clusters, respectively. Digit seven can also be interpreted as split
into two clusters. Thus, despite the comparisons of rotated and flipped images,
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k -means could not distinguish some images with the same label yielding the
conclusion that the method could be inappropriate. Figure 21 also shows that
there are ten clusters with centroids of almost all digits except for digit four and
seven. From the ninth cluster in Figure 21, also note that k -means has not been
able to cluster four, seven and nine. These are digits that could be confused with
each other due to their similar appearances. The previous results obtained by
applying PCA, suggested that the data is non-spherical in the projected space
which makes it harder to cluster with an Euclidean measure. Figure 21 high-
lights, when comparing to the rest of the clusters, that the method shows a poor
performance on the fourth and fifth cluster. We also notice that the fourth and
ninth clusters are mostly spread among four, seven and nine. However, most
of the observations in cluster four consist of fours. The fifth cluster has most
observations from digit one, but also a large amount of observations labeled as
a five. These are two digits very dissimilar both in appearance and in boxplots,
as visualized in Figure 18. Their bad clustering could be due to overlapping
data, which is a subject not covered in this thesis but discussed in later section
since it requires another kind of clustering.

The data used in this experiment consists of approximately 600 observations
per digit and 6000 observations in total. Notice in Figure 21 that the largest
cluster is given by the fourth cluster, while the smallest by the seventh, with
a number of observations of 966 and 365 respectively, which results in a large
difference from the expected cluster size of 600 data points. This is a problem
possibly caused by the data’s underlying characteristics, e.g., digits that are
similar in appearance, digits with non-spherical clusters and the imbalance of
spatial extent of the true clusters, making it difficult for k -means to cluster the
images.

The clustering result from AP on the MNIST dataset is presented in Figure
22. Since the AP algorithm has exemplars that are real data points, they can
be found by using the exemplars’ indices, where the found exemplars are the
digits one, zero, four, six, one, four, three, eight, zero and seven, respectively.
Alike k -means, AP has also split digits into two clusters, which are the digits
zero, one and four. In the case of digit seven, it is clear from Figure 22 that
almost all images corresponding to this class are split between cluster two and
nine, meaning that AP cannot distinguish this digit from others. From the pre-
vious results on the MNIST dataset, it can be concluded that AP performed as
bad as k -means in this aspect which is probably due to the fact that the same
similarity measure is used. The zeroth cluster has digit one as an exemplar but
digits such as eight also belong to it, which is counterintuitive to the reasoning
that the digits in the same cluster should be similar in appearance to each other.
Referring to cluster four, it also has digit one as exemplar but is clustered quite
bad considering the simplicity and uniqueness in the appearance of the digit.
The clusters with the exemplar four are the second and fifth cluster, where the
latter is slightly better clustered. The k -means also has problems with clus-
tering the digit nine, possibly caused by its similar appearance to digit four.
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Figure 21: The contingency table of the clusters and labels after applying k -
means on the MNIST data. The x-axis presents the distribution of each digit
and the y-axis presents the clustering results of ten clusters.

However, the problem remained between digit four, seven and nine as opposed
to cluster two with AP that cannot distinguish between almost any digit. This
may be caused by the processed dataset where every image has been compared
to its corresponding mean, which is the centroid of k -means. When the centroid
and exemplar is six, cluster three of AP in Figure 22 is clustered worse than
cluster two of k -means in Figure 21. By having three as centroid and exemplar,
the results show similarly bad clusters in the sixth cluster of AP and the first
cluster of k -means. Results show that the similarity between digits can yield to
confusion when clustering the data, e.g., digit three can be confused with digit
two and digit seven can be confused with digit nine, as shown in Figure 22.

Compared to k -means, the uneven cluster sizes resulted from AP are even
larger since the largest cluster consists of 1115 observations while the smallest
cluster consists of 302 observations, resulting in the largest difference from the
expected cluster size with 515 observations. Hence, AP does not seem to balance
the clusters which could be due to the data’s underlying characteristics, e.g.,
digits that are similar in appearance, digits with non-spherical clusters and the
imbalance of spatial extent of the true clusters. Another problem when using
both k -means and AP is the similarity measure. The relatively bad clustering
results could be due to the data being non-spherical symmetric as shown by the
PCA. Using the CTD as similarity measure in AP would probably improve the
results since it can learn about the shape of the clusters, making it work for
non-spherical symmetric data.
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Figure 22: The contingency table of the clusters and labels after applying AP
on the MNIST data. The x-axis presents the distribution of each digit and the
y-axis presents the clustering results of ten clusters.

The computation time AP and k -means require relative to each other de-
pends on how many runs the k -means method is computed. In this case, k -means
is run 20 times and each run gives slightly different results due to the trapping
in local minimum. AP requires to find the right shared preference to obtain ten
clusters, which from prior knowledge of the MNIST dataset is known to be ten.
Hence, it is computationally expensive to compute both the similarity matrix
and testing different shared preferences to obtain the right number of clusters.
However, this experiment compares the AP method with the k -means method
for only 20 iterations, if 1000 iterations were considered instead, the results of
the k -means algorithm will probably take much longer time. Finally, from the
exploratory analysis presented in Figure 30-49 in Appendix B, the MNIST data
is non-Euclidean and non-spherical which means that the squared Euclidean
distance is an unsuitable similarity measure. Therefore, the algorithms cannot
distinguish digits from each other and split the same digits into two clusters.

3.2 Validation

In this section the results of the test cases previously performed will be validated
by applying different validation methods depending on the simulated dataset.
In the case of the noisy and imbalanced data, in both the number of data point
and spatial extent, the results will be validated using the silhouette coefficient,
while in the case of the arbitrarily shaped data the CVNN validation will be
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applied instead, since CVNN is claimed to be able to validate non-spherical
data better. From Figure 6a and 6b it is clear that the methods have been
able to cluster the imbalanced data in number of data points quite well. This is
also reflected in the silhouette coefficients of both methods in Figure 23 where
it can be observed that the highest values are obtained for two clusters. The
silhouette coefficient for AP is 0.835 while k -means obtains the coefficient value
0.830. From the results in Figure 23 it can be concluded that AP performs
slightly better than k -means but the difference is so small that it is not relevant
considering the similar clustering results.

(a) (b)

Figure 23: The silhouette coefficients for different number of clusters in (a) and
(b) using AP and k -means clusterings, respectively, applied on the imbalanced
data in number of data points.

The imbalanced data in case of spatial extension is, as observed in Figure
8a and 8b and discussed before, not clustered well. From Figure 24 it can
be noticed that the highest silhouette coefficient for both methods is reached
in the case of four clusters, which is a sign of overclustering due to the bad
clustering results. Considering that the Euclidean distance is not suitable for
the data when clustering, the silhouette coefficient may not be suitable for
the data when validating since it works for spherically shaped clusters when
the Euclidean distance is used as the dissimilarity measure. Silhouette plots
are useful as a mean for evaluating the method’s performance as well as for
visualizing the amount of points that were incorrectly clustered, these plots are
presented for both methods in Figure 25. A value close to one indicates that the
data point is clustered well, and a negative value means that the data point is
wrongly clustered. Figure 25b illustrates the poor performance of the k -means
clustering method, as many data points are not clustered correctly, which is also
the case for AP illustrated in Figure 25a. The silhouette plots show that the
smaller cluster contains wrongly clustered data points, these either have a small
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silhouette value, or even worse, a negative value, which means that the within-
cluster distances are larger than the between-cluster distances. As previously
mentioned, the original clusters consist of 200 observations each, so the cluster
with wrongly clustered data points is actually the larger one (in quantity), which
according to Figure 25 has data points with small silhouette values. The reason
for the negative silhouette values in the smaller cluster (in quantity) in Figure
8, as shown in Figure 25, is due to it having data points that are further away
from the points within the cluster than to the points in the other cluster, which
may be caused by the bad clustering results and may also be the reason of the
wrongly suggested number of clusters from the index.

(a) (b)

Figure 24: The silhouette coefficients for different number of clusters in (a) and
(b) using AP and k -means clusterings, respectively, applied on the imbalanced
data in spatial extension.

Next, the noisy data with two spherical clusters is as presented in Figure
11 not clustered well, since the methods have found structure in random noise.
Figure 26 illustrates how the silhouette coefficient fails to identify the right
number of clusters in the data, where instead of four, the right number of
clusters is two. AP and k -means are, as mentioned, not density-based methods
so the methods fail to distinguish different densities, which is also reflected in
the results of the validation index. From Figure 27 it can be concluded that
both methods present similar clustering and validation results. The silhouette
plots also show that some of the data points seem to be close to zero, which
may indicate that they are noise, as it is uncertain which cluster these points
should belong to. The noise is evenly spread among the data, so according to
the methods that aim to create balanced spherical clusters, they can belong to
either one.
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(a)

(b)

Figure 25: The silhouette plots (a) and (b) for two clusters using AP and k -
means, respectively, applied on the imbalanced data in spatial extension. The
number of observations in the data is N and Nl is the number of observations
in cluster cl. The silhouette value of data point i is si. The x-axis presents the
silhouette values of each data point, obtained from Equation 21.
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(a) (b)

Figure 26: The silhouette coefficients for different number of clusters in (a) and
(b) using AP and k -means clusterings, respectively, applied on the noisy data
with two spherical clusters.

Referring to the flame-shaped dataset, the validation is done by applying the
CVNN method instead of the silhouette coefficient, motivated by its claimed
ability of handling non-spherical data. As mentioned in previous sections, one
of the main shortcomings of the CVNN method relates to choosing the ”cor-
rect” number of nearest neighbours. In [11] the authors of CVNN suggest that
a CVNN-index plot, i.e., plotting the CVNN-index for different number of near-
est neighbours, is a suitable approach for finding this value. According to the
authors’ findings, the CVNN-index plot creates a parabola where the correct
number of nearest neighbours corresponds to the smallest CVNN-index value.
As mentioned before, the reason is beyond the scope of this thesis. Figure
28 illustrates the CVNN-index plot corresponding to the flame-shaped dataset,
where the CVNN-indices are obtained for the clustering results of two clus-
ters. Notice that the results from the plots are more shaped like hooks than
parabolas, which could be due to the wrongly clustered data. Accordingly, the
correct number of nearest neighbours should be one for the AP method, and
22 for k -means. The resulting number of nearest neighbours for AP is not rea-
sonable, so we compute the nearest neighbours for the second smallest index,
which gives 8 nearest neighbours. Table 6 presents the indices of two, three,
four and five clusters for both methods, with their respective suitable number
of nearest neighbours, where the smallest index is obtained for four clusters for
both methods. Note that the chosen number of nearest neighbours is taken
for the right number of clusters, i.e., two clusters. However, according to the
approach suggested in [11] the right number of clusters should be four, which
could be due to the used similarity measure when clustering. The index has
chosen smaller clusters which could be due to the cohesion measure that aims
to minimize the distances between observations within the clusters. Both the
compactness and the separation of CVNN are measures based on the Euclidean
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(a)

(b)

Figure 27: The silhouette plots (a) and (b) for two clusters using AP and k -
means, respectively, applied on the noisy data with two spherical clusters. The
number of observations in the data is N and Nl is the number of observations
in cluster cl. The silhouette value of data point i is si. The x-axis presents the
silhouette values of each data point, obtained from Equation 21.
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distance. Therefore, this method is questionable but might obtain more reason-
able results if, e.g., AP is applied in terms of a non-Euclidean similarity measure
and computed a reasonable clustering.

(a) (b)

Figure 28: The CVNN index on the flame-shaped dataset obtained from two
clusters, for different number of nearest neighbours in (a) and (b) using AP and
k -means clusterings, respectively.

Two Three Four Five

CVNN AP (8 nn) 1.140 1.180 0.950 1.334
CVNN k -means (22 nn) 1.210 1.084 0.917 1.334

Table 6: The CVNN index on the flame-shaped dataset for four different clus-
terings for AP and k -means, respectively, with their chosen nearest neighbours.
The chosen numbers of nearest neighbours are presented in the parentheses.

3.3 Artifacts

The aim of this section is to discuss some artifacts that appeared in the test cases
when applying the AP method with the negative squared Euclidean distance as
similarity measure.

3.3.1 Confuses clusters for imbalance in spatial extension

The AP method with negative squared Euclidean distance as similarity measure
performs poorly when clustering imbalanced data in spatial extension, as using
the Euclidean distance as similarity measure forces the algorithm to search
for the shortest distance for message-passing, meaning that it minimizes the
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sum of squared distances for all clusters together creating balanced clusters as
illustrated in Figure 9.

3.3.2 Finds structure in noise

An additional artifact of the AP algorithm is that it may find structure in noise,
as the method cannot distinguish different densities, meaning that a density-
based clustering method would be better suited in this case.

3.3.3 Fails to cluster non-spherical clusters

Arbitrarily shaped data tends to be incorrectly clustered when using the nega-
tive squared Euclidean distance as similarity measure. AP with the Euclidean
distance as similarity measure may compute bad clustering results to data that
does not consist of spherically shaped clusters without noise. Figure 14 illus-
trates this issue where the distance from C to A should be considered shorter
than the distance from C to B. An alternative to circumvent this drawback is
to use the CTD as similarity measure instead.

3.3.4 Computationally expensive to find the shared preference

Finding the right shared preference can be a difficult task. Some of the al-
ternatives previously proposed in [5] are either using the smallest similarity or
using the bisection method. Although both approaches can lead to satisfactory
results, there are still some computational aspects that need to be considered.
For choosing the appropriate shared preference, the bisection method is applied,
which could lead to a missing of some shared preference values between the bi-
sected intervals. For the test case consisting of seven arbitrarily shaped clusters
shown in Figure 29, we cannot obtain the right number of clusters. The right
number of clusters is seven but we can only obtain, as closest, six or eight clus-
ters with the bisection method. However, this is computed with the negative
squared Euclidean similarity measure which is unsuitable for this kind of data,
but since the algorithm was able to obtain six and eight clusters, it should be
able to obtain seven clusters. Another aspect that makes the task of finding the
right shared preference computationally expensive in speed and time is large
datasets. By searching for the right shared preference value of, e.g., the data
with imbalance in data points, it is computationally expensive to compute the
plot of shared preference values versus the number of clusters, e.g., see Figure 5,
since we are dealing with 1100 observations. In case of the MNIST dataset with
almost six times more data, this kind of figure is not computed at all. Instead
we test different shared preference values based on the preference range and the
results we obtain.
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3.3.5 Large memory storage for the similarity matrix

Another limitation of the AP method arise from the size of the dataset. The
AP method is a network-based method containing pairwise distances depending
on the similarity measure. The similarity matrix of a dataset composed by N
observations will be of N × N dimension, meaning that for high values of N
it will be storing a lot of memory. This is an issue discussed already in the
theory section. However, by applying the test cases, experience is gained of this
problem as for, e.g., the MNIST dataset, where the computer could not store
the full similarity matrix being 60000× 60000, after hours of running.

Figure 29: AP with the negative squared Euclidean measure applied on data of
seven differently shaped clusters with 788 observations, and only acquiring six
clusters. The clusters identified have different colours with centers indicated by
the star-symbols. (X, Y) are 2D features.

4 Discussion and conclusions

This thesis is a statistical survey of the unsupervised learning method, AP, where
the main objective is to investigate the statistical properties of the method and
compare it with the widely used clustering method k -means. The AP method
is a network-based method, whose main differences with k -means are that AP
does not need to make any prior assumption about the number of clusters in
the data, produces exemplars that are real data points and can use nonmetric
similarity matrices as input.

In Section 2 the theory behind k -means, AP, PCA and the validation meth-
ods, the silhouette coefficient and CVNN, is presented. The methods are applied
on the data presented in Section 3. The datasets consist of imbalanced data
in number of data points and spatial extension, spherical data with noise, the
flame-shaped data and the well known MNIST dataset of handwritten digits.
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The results from the analysis show that the weaknesses and artifacts of AP,
when using the negative squared Euclidean distance as similarity measure, are
that it is unable to distinguish clusters with imbalanced spatial extent, finds
structure in noise and fails to cluster non-spherical clusters. Another limitation
of AP is that it is computationally expensive to find the right shared preference
as input. Lastly, AP requires a similarity matrix as input, which can consume
large memory storage when dealing with large datasets. However, we acknowl-
edge that the most remarkable advantage from the test cases when using AP
is that it is faster than k -means, when computing multiple runs for k -means to
obtain the optimal result.

4.1 Outlooks

Many applications of AP have been done during the years. A similarity graph
that has been applied to the method is, e.g., ISOMAP based metrics to handle
data with manifold structure [1]. Another application is the negative general-
ized likelihood ratio in combination with Gaussian models, to cluster speakers
from audio data [21].

For further studies, it would be valuable to implement AP using similar-
ity measures such as the geodesic distance used in ISOMAP and CTD, which
would be suitable for all datasets used in this thesis. By using CTD as similar-
ity measure, it is expected that AP can cluster imbalanced, arbitrarily shaped
and multidimensional data better, as these similarity measures learn about the
clusters shape, also called shape-aware metrics. Additionally, to evaluate the
statistical properties of the AP method using the CTD, it could be compared to
other methods that use the CTD, such as spectral clustering [8]. It would also
be interesting to use the mutual k -nearest neighbour graph and density-based
methods, for comparison. Furthermore, to deal with overlapping data, i.e., data
points belonging to more than one cluster with a membership weight between
zero and one, it would be valuable to apply fuzzy or soft clustering [18]. This
problem seems to appear in the MNIST dataset, and using fuzzy clustering
might improve the results.

However, finding a suitable shared preference is still a tedious issue. A
natural continuation of this thesis would be to investigate this more thoroughly.
Moreover, we suggest using a faster root-finding method than the bisection
method, to increase the efficiency when searching for the right shared preference.
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A Proof of the within-point scatter

The definition of the within-point scatter for the squared Euclidean distance is

W (C) =
1

2

K∑
l=1

∑
xi∈cl

∑
xk∈cl

||xi − xk||2

and the aim is to show that in the case of k -means, it is equivalent to

K∑
l=1

Nl
∑
xi∈cl

||xi − µl||2

To show this equivalence, ||xi − xk||2 is expanded to sum over the points xk
such that xk ∈ cl according to:∑

xk∈cl

||xi − xk||2 =
∑
xk∈cl

(xTi xi − 2xTi xk + xTk xk)

= Nlx
T
i xi − 2xTi (Nlµl) +

∑
xk∈cl

xTk xk
(25)

The resulting expression in Equation 25 is summed over the points xi such that
xi ∈ cl according to:∑

xi∈cl

(Nlx
T
i xi − 2xTi (Nlµl) +

∑
xk∈cl

xTk xk)

= Nl
∑
xi∈cl

xTi xi − 2(Nlµl)
T (Nlµl) +Nl

∑
xk∈cl

xTk xk

= 2Nl

(∑
xi∈cl

xTi xi −NlµTl µl

) (26)

Lastly, the expression within the parenthesis is proven to be equivalent to∑
xi∈cl ||xi − µl||

2 by using the following expansion:∑
xi∈cl

||xi − µl||2 =
∑
xi∈cl

(xTi xi − 2xTi µl + µTl µl)

=
∑
xi∈cl

(xTi xi)− 2(Nlµl)
Tµl +Nlµ

T
l µl

=
∑
xi∈cl

xTi xi −NlµTl µl

(27)

Hence, it is proven that
∑
xi∈cl ||xi − µl||

2 =
∑
xi∈cl x

T
i xi −NlµTl µl. By using

the obtained results it can be concluded that the within-point scatter for the
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k -means algorithm is

W (C) =
1

2

K∑
l=1

2Nl
∑
xi∈cl

||xi − µl||2

=

K∑
l=1

Nl
∑
xi∈cl

||xi − µl||2
(28)

B Additional figures

Figure 30: The first three PCs of digit zero from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 31: The distribution of the first three PCs of digit zero from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 32: The first three PCs of digit one from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 33: The distribution of the first three PCs of digit one from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 34: The first three PCs of digit two from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 35: The distribution of the first three PCs of digit two from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 36: The first three PCs of digit three from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 37: The distribution of the first three PCs of digit three from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 38: The first three PCs of digit four from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 39: The distribution of the first three PCs of digit four from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 40: The first three PCs of digit five from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 41: The distribution of the first three PCs of digit five from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 42: The first three PCs of digit six from the MNIST dataset. Each figure
presents a plotted combination of the PCs.
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Figure 43: The distribution of the first three PCs of digit six from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 44: The first three PCs of digit seven from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 45: The distribution of the first three PCs of digit seven from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 46: The first three PCs of digit eight from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 47: The distribution of the first three PCs of digit eight from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.

Figure 48: The first three PCs of digit nine from the MNIST dataset. Each
figure presents a plotted combination of the PCs.
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Figure 49: The distribution of the first three PCs of digit nine from the MNIST
dataset. The x-axis presents a particular PC and the y-axis its count.
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