
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

Joint Longitudinal and Survival Models to
Predict Survival Outcomes

Julia Eriksson



Matematiska institutionen

Masteruppsats 2021:2
Matematisk statistik
Februari 2021

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm



Mathematical Statistics
Stockholm University
Master Thesis 2021:2

http://www.math.su.se

Joint Longitudinal and Survival Models to Predict

Survival Outcomes

Julia Eriksson∗

February 2021

Abstract

Survival analysis is the common name of statistical methods where
the time until an event is analysed. These methods are used exten-
sively in medical research to analyse, for example, time until death or
the development of a disease over time. Longitudinal data consists of
repeated measurements taken over a period of time, for example blood
pressure. Combining the Cox regression model used to analyse survival
data with the linear mixed effect model for longitudinal data results in
the joint longitudinal and survival model. In this thesis, the joint model
is applied to a subset from the AMORIS (Apolipoprotein related mor-
tality risk) cohort. The AMORIS cohort contains observations from
subjects, collected between 1985 and 1996 in Stockholm, who provided
blood and urine samples which were analysed. The subset used in
this thesis includes all men aged 40-50 at observation who provided
measurements of the four longitudinal biomarkers: Apolipoprotein A,
Apolipoprotein B, total cholesterol and triglycerides. This resulted in
a dataset containing 33 930 observations from 23 768 subjects. The
joint model was applied to these data for each longitudinal biomarker
separately, where the time until event in the survival submodel was if
the subjects had died at the end of study. The Cox model and linear
mixed effect model were fitted separately and then applied to the joint
model following the adaptive Gauss-Hermite quadrature rule. The ap-
plication of the joint model on these data allowed to predict conditional
survival probabilities for the subjects who were still alive at the end of
the study, following a Monte Carlo simulation scheme. In addition to
the survival probabilities, subject specific dynamic survival probabili-
ties were predicted, that is, how the survival probability change over
time as more longitudinal observations are obtained. Martingale resid-
uals for the survival part and marginal and subject specific residuals
for the longitudinal part in the joint model were also computed and
illustrated. The result of the joint model fit to the data indicated that
a one unit increase of each of the four longitudinal biomarkers increase
the risk of death.
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1 Introduction

The desire to measure the time until a certain event goes back to as early as
the 17th century when in 1662, John Graunt made the first life table [5]. A
life table contains probabilities of survival before the next birthday for people
at each age [26]. The life table was later developed a century later by Daniel
Bernoulli in 1760 as he wanted to calculate and predict the life expectancy if
the disease smallpox became extinct [25]. Time-to-event analysis or survival
analysis has since been developed and used extensively in medical research
to calculate, for example, time until death or time until relapse of a disease.

Common in research is that repeated measurements are observed for the
same individual at different time points. In this thesis, these individuals that
are a part of the analyses are referred to as subjects. In medical research,
repeated measurements could for example be blood pressure or cholesterol
levels. These measurements are known as longitudinal biomarkers [54]. The
need to perform an analysis of change is essential in many research fields and
one of the first methods used to measure change was the analysis of variance
known as ANOVA. The original method for analysing longitudinal data was
a mixed effects ANOVA that included a single random subject effect which
resulted in a positive correlation between the repeated longitudinal measure-
ments for each subject [21]. The British astronomer George Biddel Airy was
the first to define a linear mixed model in 1861 [3], when he developed a
model for the errors from the astronomy observations. This model was later
defined theoretically by R. A. Fisher in 1918 [19] and 1925 [20] within the
ANOVA model.

The joint longitudinal and survival model combines the survival analysis
with the longitudinal observations allowing to make predictions of survival
based on the longitudinal observations, when these are related to one another
[54]. In a medical study with the aim to examine the treatment effect of a
particular disease, the joint model will provide estimates of the treatment
effects of the longitudinal markers, estimate the effects of the treatment on
the time to event as well as reducing the bias of the estimates on how the
treatment effects the survival and longitudinal markers [33]. Two early arti-
cles that are the basis of the development of joint longitudinal and survival
models are DeGruttola and Tu in 1994 [11] and Tsiatis et al. in 1995 [72]. In
these articles, the joint model was originally motivated by medical research
on human immunodeficiency virus (HIV) where the aim was to examine the
association between CD4 cell counts, which is an indicator of the wealth
in the immune system that decreases for people diagnosed with HIV [32],
and the time until the subjects were infected by Acquired immune deficiency
syndrome (AIDS) [54].
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1.1 Aim of thesis

The aim of this thesis is to learn about the statistical analysis method called
joint longitudinal and survival models and to be able to implement this model
on real data. The data are provided by Karolinska Institutet in Stockholm
from the AMORIS (Apolipoprotein related mortality risk) cohort. The co-
hort contains observations from 812 073 subjects, 51 % women and 49 %
men, collected between the years 1985 and 1996 [18]. The subjects provided
blood and urine samples which were analysed in a lab resulting in 35 million
values [16].

The intention is to apply the joint model on this data to predict the sur-
vival outcomes for a number of subjects based on the longitudinal biomarkers
Apolipoprotein A, Apolipoprotein B, total cholesterol and triglycerides.

1.2 Examples of applications using joint longitudinal and
survival models

Joint longitudinal and survival models are methods used for statistical anal-
yses in many fields. In this section, some empirical examples are presented.

1.2.1 Ecology

A study performed by Lee et al. [40] in 2011 used joint longitudinal and
time-to-event models to study tree growth and mortality where, for each
tree, a latent feature of the tree has an influence on the growth and mor-
tality. In this study, the trees are observed intermittently, meaning that the
observation can cease for a time such that the measurements are not ob-
served continuously [24]. This means that the exact time of events are not
known and in this study the time between longitudinal observations can be
more than a decade. The conclusion that was drawn from this study was
that in an intermittent observation process, there are advantages to trace a
longitudinal marker for imputation of lifetimes.

1.2.2 Insurance

In order to assess a reasonable insurance, the insurance companies collect
information about their policyholders, in particular, information about their
medical claims. A study by Piulachs et al. (2017) [49], used joint mod-
els as they explored the relationship between a policyholder’s, aged 65 or
older, demand of medical emergency claims per year, the longitudinal ob-
servation, and the time until death. The results obtained from this study
were that a relatively high cumulative need for hospitalisation, the number of
non-routine healthcare visits and the use of ambulance have a positive rela-
tionship with the health status for each subject as well as a higher mortality
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risk. They also observed that a subject’s most recent demand for critical
medical care has the strongest influence on the survival.

1.2.3 Medicine

A web-based calculator was implemented by Taylor et al. (2013) [68] using
joint longitudinal and survival models. The calculator was implemented to
predict the probability of recurrence of prostate cancer for a new patient.
Patients who have been treated for prostate cancer using radiation therapy
attend regular check ups where they performed a laboratory test named
Prostate Specific Antigen (PSA). An indication of a recurrence of prostate
cancer is detected through these tests as the value of PSA increases. A group
of these patients were used in this research to implement the calculator so
that it will be able to accurately estimate the probability of a recurrence of
prostate cancer.

1.2.4 Socio-economic status

A study about socio-economic inequalities was performed by Maharani (2019)
[42] where the aim was to investigate how the association between socio-
economic status and inflammation influence health in a population. Earlier
research had indicated that inflammation and socio-economic status are as-
sociated with the health status in high-income countries. The longitudinal
measurements in this study were the amount of C-reactive protein (CRP)
and the education and wealth status for each individual in England and In-
donesia. A C-reactive protein is produced in the liver and sent out to the
body when there is an inflammation. A high level of CRP indicates that
the body has an inflammation [78]. The results obtain was that in England,
higher education and wealth were associated with a lover CRP value. In In-
donesia, the socio-economic status had no significant relation with the CRP.
Both countries indicated that physical activity is associated with lower CRP
values.

1.3 Structure of the thesis

The structure of the thesis is as follows. In the first three sections, the theory
of the joint longitudinal and survival model is described. In particular, the
theory of survival analysis is introduced in Section 2 followed by the theory
of longitudinal analysis in Section 3 and in Section 4 the joint model is
defined. Section 5 presents the analysis of the data where the joint model is
implemented on the AMORIS data with the results illustrated in Section 6.
Final remarks and possibilities of future research are provided in Section 7.
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2 Survival Analysis

Survival data are a common measure when the aim is to study the time to
an event. In medical research this event could be the time from birth until
death, time until diagnosis of a disease to death or time from entry of a
study until relapse. Some other examples are time from marriage to divorce,
time from falling in love to the birth of first child, time from falling a sleep
to waking up or the time for a light bulb to break [1]. Survival analysis, or
time-to-event analysis measures the time until an event given a start time.
These events are denoted as the time of failure [38].

In this section we delve into the fundamentals of survival analysis where
we will get familiar with censoring and truncation, we define the four basic
functions and then regard some methods and models to analyse survival
data.

2.1 Censoring

This section follows Chapter 3 in Klein and Moeschberger’s book Survival
Analysis: Techniques for Censored and Truncated Data [38]. Analysing sur-
vival times are challenging and often not possible using linear regression or
other statistical methods for data analysis. This is due to the fact that col-
lecting data of survival times results in both complete and incomplete data.
The incomplete data are denoted as censored survival times. There are three
main types of censored times; right, left, and interval censoring. Censored
data must be included in the analysis, otherwise the study is not complete
which can lead to biased results.

In a study where the time to an event is observed, not all subjects will
have experienced the event at the end of the study. For example, assume
a medical study where the time until infection is observed for 8 subjects.
During this observation time, 5 subjects have been infected and hence expe-
rienced the event. The remaining 3 were not infected during this observation
time. However, they might become infected later, after the end of the study,
but this information will not be included in the study. These incomplete
survival time observations are right censored Cr survival times. A visual
example of right censoring is presented in Figure 1. In the left graph of the
figure the entry time of the 8 subjects are displayed and the dotted vertical
line indicates the end of the study. The right graph illustrates the individual
time in the study for each subject where time 0 is the entry time. A filled
circle is noted for 5 of the subject which indicates that they experienced the
event before the end of the study. The end time of the remaining subjects
are indicated with a white circle, which means that they did not experience
the event during the time of study. These subjects are right-censored

Left censoring, Cl occurs if for example a subject is infected prior to the
onset of the study and the time of infection is not noted.

4



When the study includes a follow-up after a certain time of an event, for
example after an operation the follow-up is one year after, and a recurrence
is detected a year after, the exact time point of the recurrence is not known.
The only information known is that the recurrence happened in the interval
of the left and right endpoint of the censored time (Li, Ri]. This is known
as interval censoring.

The censoring times described above are known as non-informative mean-
ing that they are not related to the survival times of the individuals. In-
formative censoring is when certain individuals are removed from the study
which could be due to a not wanted result of a treatment. Then the results
must be analysed with caution.

Figure 1: The left graphs illustrates the entry time of a study of 8 subjects.
The dotted vertical line indicates the end of the study. The right graph
illustrates the time each subject was in the study and time 0 is the entry time.
A filled circle indicates that the subject experienced the event before the end
of the study. A white circle indicates that the subject did not experience the
event during the time of study, these subjects are right-censored.

2.2 Truncation

For censored survival times, some information about the subject is known
even if the data of this individual are incomplete, however these data are
included in the observation. Truncated survival data are when only the
observations where the event has occurred in a specified time period (YL, YR)
are included. That is, all the subjects that did not experience the event in
the given time interval are excluded [38].

5



If the time T of an event occurred after YL, T > YL these individuals
are only observed but not included in the survival data, this is known as left
truncation. If time T of an event occurred before or at YR, T ≤ YR, it is
denoted right truncation [38].

2.3 Fundamental functions in survival analysis

Denote T as a nonnegative continuously distributed random variable that
represents the time until an event, for example the time until onset of a
disease, time until recovery or time until death. Then we can define four
basic relationships that characterise the distribution of the random variable
T . This section mainly follows Chapter 2 in Klein and Moeschberger (2003)
[38], if nothing else is stated.

2.3.1 Cumulative distribution function

Consider a study that consists of a number of patients where the time until
a possible event is observed. The start of the study is at time t = 0 and
continues until time t. The cumulative distribution function of a random
variable T is defined as the probability that the time of survival is less than
time t, that is, the probability that the event has happened at time t [6]. It
is given by

F (t) = P (T ≤ t) =

∫ t

0
f(v)dv, (2.1)

where f(v) is the probability density function of T.

2.3.2 The survival function

The survival function,

S(t) = P (T > t) = 1− F (t) (2.2)

describes the proportion of the subjects that have not experienced the event
at time t. These individuals have "survived" the event up until the time
point t.

The survival function can also be written as the integral of the probability
density function

S(t) =

∫ ∞
t

f(v)dv, (2.3)

which can further be expressed as

f(t) = −dS(t)

dt
. (2.4)
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This expression can be used to assess the probability that the event has
happened in a small interval around time t [38].

Usually, as we increase t, the survival function will go to zero as most of
the individuals will, after a certain time, experience the event. However, the
survival function of events that, for example, are gender-related will tend to
a positive value as we increase t as not every individual in the population
will experience the event [1].

An important aspect that was addressed by Crowther (2014) [8] is the
time of when a subject becomes at risk. The survival function assumes that
the subject is at risk at time 0, but this is not always the case. Often in
medical studies, a subject enters the study at time t0, and then age is used
as a timescale such that the age of when the subject is diagnosed correspond
to the time when the subject is at risk. Then the survival function (2.2)
must be conditioned on the survival of the event up to the entry time t0.
The probability of surviving up to time t, given survival up to time t0 is

P (T > t|T > t0) =
S(t)

S(t0)
. (2.5)

2.3.3 The hazard function

The hazard function h(t) is defined as the probability of experiencing an
event in the time interval [t, t+ ∆t) conditioned on the unconditional prob-
ability that an event has not happened at time t. The function is expressed
as [38]

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

, (2.6)

which can further be formulated as [38],

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t ∩ T ≥ t)
∆tP (T ≥ t)

= lim
∆t→0

P (t ≤ T < t+ ∆t)

∆tP (T ≥ t)

=
f(t)

S(t)
= −

d
dtS(t)

S(t)
= −d logS(t)

dt
.

(2.7)

The last equality is interpreted as the failure rate at time t.

2.3.4 The cumulative hazard function

The cumulative hazard function is the integral of the hazard function and
by (2.7) it can be written as [38]

H(t) =

∫ t

0
h(v)dv = − logS(t). (2.8)
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This means that we can rewrite the survival function in terms of the
hazard function as

S(t) = exp

{
−
∫ t

0
h(v)dv

}
. (2.9)

Then by Equation (2.7) we can present the probability density function
as

f(t) = h(t)S(t). (2.10)

2.4 Non-parametric models for survival analysis

There are two non-parametric estimators that are commonly used to fit sur-
vival data. From a sample of censored survival data, the Nelson-Aalen esti-
mator estimates the cumulative hazard rate and the Kaplan-Meier estimator
estimates the survival function. In this section these two estimators are de-
scribed and illustrated, following Aalen et al. (2008) [1].

2.4.1 The Nelson-Aalen estimator

To define the Nelson-Aalen estimator we first assume a sample n of censored
survival data with Q(t) as the number of individuals at risk at time point t
and the ordered event times are denoted by T1 < T2 < · · · < TJ . The hazard
function h(t) can be cumbersome to estimate if no parametric assumptions
are made, as it then can be any nonnegative function. However, in Equation
(2.8), the cumulative hazard function was calculated as the integral of the
hazard function, where no parametric assumptions about h(t) were made.
This is similar to estimate the cumulative distribution function rather than to
estimate the density function, which can be far more troublesome. This leads
us to the Nelson-Aalen estimator, which proposes to estimate the cumulative
hazard rate in the following way,

ĤNA(t) =
∑
Tj≤t

1

Q(Tj)
. (2.11)

The estimated variance for the estimator is

σ̂2
NA(t) =

∑
Tj≤t

1

Q(Tj)2
, (2.12)

with a 100(1− α)% confidence interval given by

ĤNA(t)± z1−α/2σ̂NA(t), (2.13)
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where z1−α/2 is the (1− α/2) quantile of the standard normal distribution.
The interval can also be written on the log scale to obtain a better approxi-
mation to the normal distribution,

ĤNA(t) exp{±z1−α/2σ̂NA(t)/ĤNA(t)}, (2.14)

which results in better approximations for small samples.
If two events occur at the same time point, these are called tied events.

If there are two or more events at a given time point Tj , the estimator must
be extended to include the total number of events oj at time Tj , where we
assume that the event times are discrete:

ĤNA(t) =
∑
Tj≤t

oj
Q(Tj)

, (2.15)

with the estimated variance

σ̂2
NA(t) =

∑
Tj≤t

(Q(Tj)− oj)oj
Q(Tj)3

. (2.16)

2.4.2 The Kaplan-Meier estimator

The Kaplan-Meier estimator is defined as

ŜKM (t) =
∏
Tj≤t

{
1− 1

Q(Tj)

}
. (2.17)

The estimator follows from the survival function S(t) by dividing the
time interval [0, t] into smaller parts 0 = t0 < t1 < · · · < tK = t such that
the survival function can be written as

S(t) =
K∏
k=1

S(tk|tk−1), (2.18)

where S(tk|tk−1) is the conditional probability of the event to occur at time
tk given that it has not occurred at time tk−1. The small intervals 0 =
t0 < t1 < · · · < tK = t contains no more than one event so the estimate of
S(tk|tk−1) will be the following,

S(tk|tk−1) =

{
1, if no event in (tk−1, tk]

1− 1
Q(tk−1) = 1− 1

Q(Tj)
, if an event at time Tj ∈ (tk−1, tk].

The estimated variance of the Kaplan-Meier estimator is given by

σ̂2
KM (t) = ŜKM (t)2

∑
Tj≤t

1

Q(Tj)2
. (2.19)
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A more common way to estimate the variance of the Kaplan-Meier estimator
is by Greenwood’s formula which is expressed as

σ̂2
KM (t) = ŜKM (t)2

∑
Tj≤t

1

Q(Tj){Q(Tj)− 1}
. (2.20)

The 100(1− α)% confidence interval is given by

ŜKM (t)± z1−α/2σ̂KM (t), (2.21)

The interval can also be written by using the log-minus-log transforma-
tion to obtain a better approximation to the normal distribution as

ŜKM (t)exp{±z1−α/2σ̂(t)/(ŜKM (t) log ŜKM (t))} (2.22)

For tied events, the Kaplan-Meier estimator is defined as

ŜKM (t) =
∏
Tj≤t

{
1− oj

Q(Tj)

}
(2.23)

with estimated variance, where we assume discrete event times,

σ̂2
KM (t) = ŜKM (t)2

∑
Tj≤t

oj
Q(Tj){Q(Tj)− 1}

. (2.24)

Figure 2 below illustrates the Kaplan-Meier and Nelson-Aalen estimators
from a random generated dataset with event indicator and time of event. The
estimations were calculated using the function survfit() from the package
survival [69] in R. From the left graph illustrating the Kaplan-Mier estima-
tor, we can observe that the y-axis is in the interval [0, 1] as it represents the
probability of survival. The probability is 1 at the beginning at time 0 and
then goes quite steep to 0 as time increases. The right graph illustrates the
Nelson-Aalen estimator for the cumulative hazard over time. The cumula-
tive hazard is 0 at the initial time point and then increases with time which
means that the risk of experiencing the event increases with time.
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Figure 2: The left graphs illustrates the Kaplan-Meier estimator of the sur-
vival probability over time. The right graph illustrates the Nelson-Aalen
estimator of the cumulative hazard over time.

2.5 Parametric models for survival analysis

The survival function can be modelled using different assumptions imposed
on the hazard function. In this section we are going to define some of the
models, namely, the exponential, Weibull and Gompertz distribution. The
section follows Chapter 2.5 of Moeschberger & Klein [38] and the selection
of distributions is based on Crowther (2014) [8].

2.5.1 Exponential distribution

The definitions of the survival and hazard functions of an exponential dis-
tribution are the following

S(t) = exp(−λt), h(t) = λ. (2.25)

Then it follows from Eq. (2.10) that the density function is given by
f(t) = λ exp(−λt). From the definitions we can state that the exponential
distribution assumes that the hazard rate is constant over time and also the
mean residual life E(T ) = 1/λ is constant. Another property is that the
exponential distribution is memoryless, that is

P (T ≥ t+ s|T ≥ t) = P (T ≥ s). (2.26)
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2.5.2 Weibull distribution

The survival and hazard functions of Weibull distribution are defined as,

S(t) = exp(−λtγ), h(t) = λγtγ−1, (2.27)

and it follows that the density function is given by f(t) = λγtγ−1 exp(−λtγ).
The Weibull distribution is introduced as a more flexible distribution than
the exponential distribution for survival data. In addition to the hazard rate
being constant over time, it can be both monotone increasing or decreasing.
Note that at a constant shape parameter, γ = 1, the Weibull distribution
will equal the exponential distribution.

2.5.3 Gompertz distribution

The last distribution that we define is the Gompertz distribution, which is
mainly used when describing mortality curves and when the hazard rate have
an exponential change over time.

The survival and hazard function are the following

S(t) = exp

(
λ

γ
(1− eγt)

)
, h(t) = λ exp(γt), (2.28)

with the corresponding density function f(t) = λ exp(γt) exp
(
λ
γ (1− eγt)

)
.

2.5.4 Maximum likelihood estimation

Estimating the parameters of the survival function S(t) when the function
is on a certain parametric form, is done using the maximum likelihood esti-
mator. This approach combines the probability density function of the given
distribution along with the survival function. Each survival dataset has a
number n of subjects with a corresponding time to event Ti. Following the
theory developed in Chapter 3 in the book Joint Models for Longitudinal and
Time-to-Event Data by Rizopoulos (2012b) [54], we define the log-likelihood
function for the ith subject under a parametric survival model, where the
parameter vector is denoted θ.

First, let T ∗ denote the true event time for subject i = 1, .., N and denote
the observed survival time by Ti such that Ti = min(T ∗, Ci), that is, the
minimum value of the event time T ∗ and the censoring time Ci. Introduce
an event indicator

di =

{
1, if T ∗ ≤ Ci
0, otherwise

.

such that the indicator is equal to 1 if the ith subject will experience the
event before the end of the study and 0 if the subject will not experience the
event at the end of study, that is, the subject is censored [54].
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The log-likelihood function is then defined as the following,

logL(θ) =

n∑
i=1

log{f(Ti;θ)diSi(Ti;θ)1−di} =

n∑
i=1

di log[f(Ti;θ)]+(1−di) log[Si(Ti;θ)].

(2.29)
The ith subject who experienced the event at time Ti will contribute the
probability density function f(Ti;θ) to the likelihood and the ith subject who
did not experience the event and are censored will contribute the survival
function Si(Ti; θ) as it is known that this subject has survived up to time
T ∗i > Ti = Ci.

The log-likelihood can also be expressed in terms of the hazard and the
survival function, as we have from Equation (2.10), that f(t) = h(t)S(t).

logL(θ) =
n∑
i=1

log{h(Ti;θ)diSi(ti;θ)} =
n∑
i=1

di log[h(Ti;θ)] + log[Si(Ti;θ)].

(2.30)
Alternatively, using Eq.(2.9) that S(t) = exp(−

∫ t
0 h(v)dv), the likelihood

can be written in terms of the hazard function,

logL(θ) =
n∑
i=1

di log[h(Ti;θ)]−
∫ Ti

0
h(v;θ)dv. (2.31)

This means that the maximum likelihood estimate can be obtain using
only the hazard function.

The maximum likelihood estimate has the following definitions [30]

Definition 2.1 The maximum likelihood MLE of a parameter vector θ given
data X is obtained by maximising the log-likelihood

θ̂ML = arg max logL(θ;X)

Definition 2.2 The score vector is defined as the vector of first-order deriva-
tives of the log-likelihood function

S(θ) =
d logL(θ;X)

dθ

The maximum likelihood estimation is computed by solving the score
function, S(θ) = 0.

2.5.5 Newton-Raphson algorithm

Maximising the likelihood analytically is not always possible. This is why
a numerical approach must be utilised in many practical applications. A
numerical method used to maximise the likelihood function is the Newton-
Raphson algorithm. The algorithm follows the following three steps [8]:
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1. Start with an assumption of initial values θi

2. Set a new approximation of θ as θi+1 = θi+{−H(θi)}−1S(θi), where
S(θi) is a vector of score values and H(θi) is the matrix containing
the second-order partial derivatives.

3. If pre-specified convergence level is reached, θi+1 is the final approxi-
mation of θ, if not repeat step 2 until convergence.

2.6 Cox regression model

The Cox regression model or the Cox proportional hazards model, is used on
survival data to, for instance, compare the hazard rate for two groups who
received different treatments. The Cox model was developed by Cox in 1972
[7] and has since then been the mostly used regression model for survival
data. The model is non-parametric which means that we do not have to
define the distribution of T . This section follows the theory developed in
Chapter 3 in Rizopoulos (2012b) [54].

For the ith subject, the hazard rate is defined as the following

hi(t|wi) = h0(t) exp (γTwi). (2.32)

The first term h0(t) is known as the the baseline hazard which is the
hazard rate when the other variables are equal to 0. The vector wi =
(wi1, ..., wip) is the number of p covariates that are related to the hazard of
the ith subject and the vector γ contains the regression coefficients.

To interpret the regression coefficients we can take the logarithm of (2.32)
which will then be

log hi(t|wi) = log h0(t) + γ1wi1 + γ2wi2 + ...+ γpwip. (2.33)

From this expression we can declare that the regression coefficient, γj ,
for the predictor wij , is the log hazard change at time point t when there is
a one unit increase of wij and the remaining predictors are held constant.
The coefficient exp(γj) is equal to the ratio of hazards, when there is a unit
change in wij at time t and the other predictors are constant.

If we observe the ith and the kth subjects, we can define the proportional
hazards ratio as

hi(t|wi)
hk(t|wk)

=
h0(t) exp (γTwi)

h0(t) exp (γTwk)
= exp{γT (wi − wk)}. (2.34)

This expression is the hazard ratio of the ith subject with covariate wi com-
pared to the kth subject with covariate wk.
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2.6.1 Partial likelihood

In the paper by Cox [7], he suggested to estimate the parameters using a
partial log-likelihood function. The function is a partial likelihood, as it
will not include the observed survival or censoring times. Here we write
the function for estimating the parameter γ and we begin by stating the
likelihood function.

Li(γ) =

[
exp(γTwi)∑

l∈R(ti)
exp(γTwl)

]di
, (2.35)

where we denote R(ti) as the set of subjects who are at risk at time t. The
log-likelihood function is then defined as [54],

logLi(γ) =

N∑
i=1

di

γTwi − log
∑

l∈R(ti)

exp(γTwl)

 (2.36)

2.7 Royston-Parmar survival model

The motivation for the development of the Royston-Parmar model arose
when modelling censored survival data with non-proportional hazards, which
can arise when the there is a progression of a disease with different rates [50],
became arduous using the Cox proportional hazards model. The Royston-
Parmar model [58] is a parametric model that can easily handle such data
and also better visualise the hazard function. The models proposes to use
restricted cubic splines to obtain a smooth and flexible model [58].

2.7.1 Restricted cubic splines

Cubic splines are used in statistical modelling to determine the relationship
between the outcome variable and the explanatory variable or variables,
when dealing with a nonlinear relationship. Splines can be described as
piecewise smooth polynomials, which means that the explanatory variable
is divided into a number of intervals with a polynomial function in between
that are joined together by knots.

We follow Durrleman and Simon (1989) [15] to define restricted cubic
splines. The cubic spline has a third polynomial degree, which are continuous
at the knots. The advantage of using cubic splines over splines with a higher
polynomial degree is that the cubic splines yield smoother results as the
cubic spline fit fewer constants compared to higher degrees polynomials.

The cubic spline function is defined as,

s3(x) =

3∑
j=0

β0jx
j +

K∑
i=1

βi3(x− ki)3
+. (2.37)
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where K is the number of knots with K + τ + 1 regression coefficients where
τ = 3 is the degree of the spline and

(u)+ =

{
u, if u > 0

0, if u ≤ 0.
Restricted cubic splines indicate that the splines must be linear at the

two end points, that is, it has to be linear before the first knot k1 and
after the last knot kK . To obtain this linearity, K − 2 new variables are
created for the explanatory variable x. The place of the K knots are at
k1 < k2 < · · · < kK−1 < kK and the new variables for x are created by,

vj(x) = (x−kj)3
+−(x−kK−1)3

+

kK − kj
kK − kK−1

+(x−kK)3
+

kK−1 − kj
kK − kK−1

, j = 1, ...,K−2

(2.38)
In addition to these new variables, we assume that in Equation (2.37), β02 =
β03 = 0 to obtain linearity for x < k1 and

∑K
i=0 βi3 =

∑K
i=1 βi3ki = 0 for

linearity of x > kK . Further, the restricted cubic spline function is defined
as,

s(x; γ) = β00 + β01x+

K−2∑
i=1

βi3vi+1. (2.39)

The position and the number of knots needs to be predetermined, but it
is not evident how to proceed in order to determine them. Durrleman and
Simon (1989) [15], suggests that the chosen number of knots should go to
infinity as the sample size goes to infinity so that the use of splines results
in a perfect fit of the function. However, 3-5 knots are sufficient to use to
obtain a good enough flexibility for an adequate polynomial degree and size
of data. For a larger data size, more knots can be used.

2.7.2 Defining the model

The article by Royston and Parmar (2002) [58] defines the flexible parametric
models, known as the Royston-Parmar model. The derivation of this model
was performed in Chapter 2 in Crowther (2014) [8], in which this section
follows.

First we assume that the survival curve follows a Weibull distribution,
that we defined in Section 2.5.2,

S(t) = exp(−λtγ). (2.40)

From Equation (2.8), we have that the cumulative hazard function is de-
fined as H(t) = − logS(t) so then we can transform onto the log cumulative
hazard scale by,

log[H(t)] = log[−[log(S(t))] = log(λ) + γ log(t). (2.41)
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The log cumulative hazard is a linear function in the log time, log(t).
The function is now extended to include a vector wi of covariates such that,

log[H(t|wi)] = log(λ) + γ log(t) +wTi β (2.42)

The next step is to relax the assumption of a linear function in the log
time and introduce restricted cubic splines on log(t). This to obtain a more
flexible model to detect the non-linear relationships.

The baseline function log(λ) + γ log(t) is interchanged to the restricted
cubic spline function in Equation (2.39) so the log cumulative hazard is then,

log[H(t|wi)] = ηi(t) = s(log(t)|γ,K) +wTi β, (2.43)

whereK is a vector ofK knots. By Equation (2.8) statingH(t) = − logS(t),
the survival scale is written as,

S(t|wi) = exp(− exp(ηi(t))). (2.44)

To define the hazard function, h(t) = −d logS(t)
dt , we first have to compute

the derivative of logS(t) = log{exp(− exp(ηi(t)))} = − exp(ηi(t)) which is
the following,

d exp(ηi(t))

dt
=
dηi(t)

dt
exp(ηi(t)) =

d[s(log(t)|γ,K)]

dt
exp(ηi(t))

Applying the chain rule to d[s(log(t)|γ,K)]
dt = 1

t
d[s(log(t)|γ,K)]

d log(t) , the hazard func-
tion is

h(t|wi) =
1

t

d[s(log(t)|γ,K)]

d log(t)
exp(ηi(t)). (2.45)

2.8 Time-varying covariates

It is common in survival analysis that the covariates vary over time. This
could be for example biomarkers that are measured a number of times for
each individual with a different result for each observation [8].

A biological marker or biomarker is a biological measure, such as blood
pressure or cholesterol level, that is used on individuals to predict and de-
termine the health states [43].

There are two types of time-varying covariates: exogenous and endoge-
nous covariates. An exogenous covariate is determined outside the model
but has an impact on the model. In a medical study an exogenous covariate
could for example be the time of day, which can have an affect on the results
of the study of a subject. An endogenous covariate is determined inside the
model and could for example be a biomarker or any other time-dependent
measurements from the subjects [8]. Due to these differences, the definitions
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of the two covariates must be distinguished. This section follows the theory
and notation from Chapter 3 in Rizopoulos (2012b) [54].

2.8.1 Exogenous covariates

An exogenous covariate needs the following condition to be fulfilled

Pr{s ≤ T ∗i < s+ ∆s|T ∗i ≥ s, Yi(s)} = Pr{s ≤ T ∗i < s+ ∆s|T ∗i ≥ s, Yi(t)}
(2.46)

As before, T ∗i denotes the time of an event and Yi(t) = {yi(s), 0 ≤ s < t}
is the resulting covariate history up to time t. This expression holds for all
s, t that satisfies 0 < s ≤ t and also ∆s→ 0.

Equation (2.46) can also be written in the following way, for s ≤ t.

Pr{Yi(t)|Yi(s), T ∗i ≥ s} = Pr{Yi(t)|Yi(s), T ∗i = s}. (2.47)

Based on this definition it can be stated that the covariate vector yi(·)
and the rate of events are connected and also, the events occurring at time
s is independent of the events at time point t > s.

2.8.2 Endogenous covariates

The main reason for the need to distinguish exogenous and endogenous co-
variates is that the endogenous covariate is dependent on survival of the
subject so the definition of failure in the model should not be death, that
is, the subject must be alive. The reason for this is that if the failure was
death, the trajectory of the covariate has information of the time of failure.
Thus, the survival function with endogenous covariates must fulfill

Si(t|Yi(t)) = Pr(T ∗i > t|Yi(t)) = 1. (2.48)

This definition states that the survival at time t given the covariate his-
tory up to time t is equal to the certain probability that there is an event at
time T ∗ > t which means that the subject is alive at time T ∗.

Equation (2.47) differs from (2.48) in a way that if the time of failure of
a subject is at time point s, as in (2.47), then the endogenous covariate can
not exist at time t > s.

2.8.3 Cox regression with exogenous covariates

Dealing with time-varying covariates requires an extension of the Cox regres-
sion model defined in Section 2.6, in particular using exogenous covariates.
In this model, the presence of events is to be thought of as a realisation of the
Poisson process {Ni(t), Ri(t)}, see Pickands III (1971) [47] for the definition
and properties. Ni(t) is the number of events for the ith subject at time t and
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Ri(t) is a binary variable with R(t) = 1 if the subject is at risk at time t and
R(t) = 0 if the subject is not at risk at time t. The model is extended such
that it is conditional on the covariate history Yi(t) which results in an added
term in the exponential function. The Cox regression model with exogenous
time-varying covariates is then defined as the following.

hi(t|Yi(t), wi) = ho(t)Ri(t) exp{γTwi + αyi(t)}, (2.49)

where yi(t) is a vector of time-varying covariate. The interpretation of α will
then be the following. We assume that there is one time-varying covariate
so a one unit increase of yi(t) at time t leads to that the term exp(α) will be
the relative increase of risk for an event. As yi varies over time, the hazard
ratio obtained from (2.49) will also vary over time.

3 Longitudinal data analysis

Longitudinal data are data retrieved from repeated measurements or samples
of the same measure at different time points. In medical research it could
be measurement of blood pressure or in economics, the unemployment level
[74].

In medical research, a longitudinal study can be made where the subjects
are given different treatments for the same type of disease. Then there are
two main effects that can be observed. The first one is the cross-sectional
effect which give information about the treatment at certain time points
and if there is a difference in treatments. The second effect is called the
longitudinal effect which tells us if the differences in treatments over a certain
period of time [54].

Longitudinal data observations, for example blood pressure, from a sub-
ject, are dependent. That is, the data observations have a relationship as
they are from the same subject and the same measurement. This means
that it is not suitable to use statistical methods that require independent
observations. Instead it is suggested to use the linear mixed effects model
which we will describe in the next section, following Chapter 2 in Rizopoulos
(2012b) [54].

3.1 Linear mixed effect models

Figure 3 illustrates hypothetical longitudinal outcomes for two subjects with
the dashed line to represent the linear mean for each of them. The solid line
in the middle of the graph represents the mean longitudinal outcome of the
population.
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Figure 3: Longitudinal outcomes for two subjects with corresponding subject
specific linear mean over time. The middle solid line represents the average
longitudinal evolution for the population.

This approach of analysing longitudinal data assumes that the subject
specific longitudinal data can be analysed by a simple linear regression model,
Yi = β0 + Xiβ1 + εi. The linear mixed effects model is an extension of this
model such that it is to be used on dependent observations and allows for
fixed effects and random effects, thereby the name, mixed effect models.
As the subjects have different slope and intercept parameters the model for
response yij is the following,

yij = β̃i0 + β̃i1tij + εij , (3.1)

where yij is the observed response for the ith subject, i = 1, ..., N at time
point tij where j = 1, .., ni and the error term is denoted εij ∼ N(0, σ2).
The subjects are a random sample from a population so the subject specific
regression coefficients β̃i0 and β̃i1 are assumed to be random samples from
the corresponding population of regression coefficients. The regression coef-
ficients are bivariate normally distributed as N(β,Σ), where β = (β0, β1)T .
The coefficients β̃i0 and β̃i1 can then be written as β̃i0 = β0 + bi0 and
β̃i1 = β1 + bi1 so the model for the response yij can be expressed as

yij = (β0 + bi0) + (β1 + bi1)tij + εij , (3.2)

where bi = (bi0, bi1) are the random effects with the bivariate normal distri-
bution N(0,Σ) and the fixed effects are the parameters β0 and β1.

If we allow for more random predictors and regression coefficients we
obtain the linear mixed effect model.
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Let p denote the number of covariates in the model, q number of random
effects and ni is the number of repeated measurements for the ith subject,
with a total ofN subjects. Let yij denote the response at time tij , j = 1, ..., ni
of subject i, i = 1, ..., N , then the linear mixed effect model is defined as

yi = Xiβ +Zibi + εi

bi ∼ N(0,Σ),

εi ∼ N(0, σ2Ini).

The first term Xiβ consists of the ni x p design matrix Xi, which is a
matrix of observed random variables of fixed effects with p columns repre-
senting each covariate and ni rows, one for each repeated measurement for
subject i. The first column of the design matrix is a vector of 1’s. The p x 1
vector β represents the fixed effects and is a vector of unknown constants. It
is interpreted as that when all other variables are held constant and there is
a one unit change in a covariate xj , j = 1...p then βj , j = 1...p is the change
of the average value in yi.

The second term Zibi consists of the ni x q design matrix Zi of ob-
served random variables of random effects with q columns representing each
covariate and ni rows, one for each repeated measurement for subject i.

The q x 1 vector bi is a vector of the random effects regression coefficients
that is normally distributed with mean parameter 0 and variance-covariance
matrix Σ.

The error term εi ∼ N(0, σ2Ini), is a standard normal distribution where
Ini is the identity matrix of order ni.

3.1.1 Estimation of parameters

The main advantages of using linear mixed models are that it is possible
to estimate both parameters that predicts the mean response change, yi as
described in previous section, and parameters that predicts the response tra-
jectory change over time for each individual. Another advantage is that the
number of observations need not be equal for each subject nor do they need
to be collected at the same occasion. As stated, the repeated observations of
a subject are dependent, we will capture this dependency by a random effect
bi. This random effect will represent the marginal correlation of the out-
comes for the ith subject. Then we can express the longitudinal responses
of the ith subject as independent if we condition on the random effect as
following

p(yi|bi; θ) =

ni∏
j=1

p(yij |bi; θ), (3.3)

where θ is the parameter vector.
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As for the estimation of parameters of the parametric survival models
(Section 2.5.4), the parameters of the linear mixed effects model can also be
estimated by the maximum likelihood. First we define the marginal density
for the ith subject of the observed response yi as

p(yi) =

∫
p(yi|bi)p(bi)dbi. (3.4)

Given that the conditional distribution p(yi|bi) and p(bi) are normally
distributed, as bi ∼ N(0,Σ), and we have that yi = Xiβ+Zibi + εi, where
εi ∼ N(0, σ2Ini), Eq. (3.4) will result in a multivariate normal distribution
with ni dimensions. The mean value will then be Xiβ and the covari-
ance matrix Vi = ZiΣZ

T
i + σ2Ini . Then we can define the log-likelihood

function, where we will introduce θ as a vector containing the parameters
θ = (β, σ2,θb), where θb = vech(Σ) is the vech operator applied to Σ, as

logLi(θ) =
n∑
i=1

log p(yi;θ) =
n∑
i=1

log

∫
p(yi|bi;β, σ2)p(bi; θb)dbi (3.5)

The likelihood function is given by the multivariate normal distribution
as,

Li(θ) = p(yi;θ) =
1√

(2π)ni |Vi|
exp

{
−

(yi −Xiβ)TV −1
i (yi −Xiβ)

2

}
.

(3.6)
The maximum likelihood estimate of β, when we assume that the variance-

covariance matrix Vi is known, is the following,

β̂ =

(
n∑
i=1

XT
i V
−1
i Xi

)−1 n∑
i=1

XT
i V
−1
i yi. (3.7)

This expression is also known as the generalised least squares estimation. For
the curious reader, the steps of calculating the maximum likelihood estimate
for β is found in Appendix A.1. If an estimate of the covariance-variance
matrix Vi is available but not the true Vi, Equation (3.7) can be utilised to
calculate an estimate for β, where we replace Vi by the estimate V̂i. The
estimate V̂i can be obtained by maximising the log-likelihood logLi(θb, σ

2),
when β is known. The maximum likelihood estimate of Vi will be unbiased,
but for small samples, the maximum likelihood estimate of Vi will be biased
[54].

3.2 Missing data

When collecting longitudinal data it happens that some subjects in the study
do not provide all the measurements which leads to missing observations. In
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this section, that follows Chapter 2 in Rizopoulos (2012b) [54], we are going
to distinguish between two types of missing longitudinal data based on the
pattern of the missing data.

Monotone missingness are patterns that are caused by a dropout, that
is, a subject who leaves the study before the completion, or a subject who
enters the study after the starting date and thereby has not provided the
initial measurements, but stays until the end of study.

Non-monotone missingness, or intermittent missingness, is when a sub-
ject provides measurements at first follow-up but then misses to come at
next follow up, then comes back to a follow-up and then might be missing
more follow ups.

Handle missing longitudinal data can be difficult and may result in inac-
curate estimates if the number of data observations are low or if the missing
data are poorly handled which can introduce bias leading to inaccurate es-
timates. Missing data leads to unbalanced data over time as the subjects
have provided different number of measurements, but according to Rizopou-
los (2012b) [54], unbalanced data are not a concern for linear mixed effects
models.

There are three main methods that can be used when handling missing
longitudinal data. To define these methods we must first introduce some
notation.

In a study, each subject is expected to leave j = 1, ..., ni measurements
such that a vector of measurements is obtained from each subject, so the
ith subject has the vector yi = (yi1, ..., yini) of measurements. A missing
data indicator is introduced to separate the observed measurements from
the planned observations, denoted

rij =

{
1, if yij is observed
0, otherwise

.

The response vector yi will then be divided into two subvectors. The vector
yoi contains the observed observations, that is when rij = 1, and the vector
ymi contains the missing data.

When we have monotone missing data, that is missing data due to a
dropout of the study, ri will be (1, ..., 1, 0, ..., 0) which we can write as

rdi = 1 +

ni∑
j=1

rij . (3.8)

That is, rdi is one plus the length of observations, in case of drop out, rdi
will represent the instance of dropout and if there is no drop out it equals
rdi = ni + 1.

Now we can define the three methods for handling missing data following
Chapter 2 in Rizopoulos (2012b) [54]. These are called missing data mech-
anisms, developed by Rubin (1976) [60] and Little and Rubin (2002) [41]
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who proposed a conditional probability model that relates the missing data
ri given the response yi = (yoi , y

m
i ) and the parameter vector θr,

p(ri|yoi , ymi ; θr). (3.9)

3.2.1 Missing completely at random (MCAR)

The first missing data mechanism is called missing completely at random
(MCAR), that assumes that the probability of missing data are independent
of the observations already collected and the measurement values that the
missing observations would have produced. Using Equation (3.9), the MCAR
longitudinal data are expressed as,

p(ri|yoi , ymi ; θr) = p(ri; θr). (3.10)

The observed data yoi are randomly sampled from the complete data,
consequently, they share the same distribution. This means that excluding
the missing data will still give valid results.

MCAR longitudinal data could for example be a health study where it
is decided beforehand the time and number of measurements which implies
that the probability to obtain a measurement is independent of the actual
measurement [22].

3.2.2 Missing at random (MAR)

The second missing data mechanism is called missing at random (MAR), that
assumes that the probability of missing data are dependent on the observed
data yoi but independent of ymi . From Equation (3.9), we can express the
MAR longitudinal as,

p(ri|yoi , ymi ; θr) = p(ri|yoi ; θr). (3.11)

An example of MAR longitudinal data are a medical study where re-
sponse values that are higher than a predetermined value are removed by
the researcher that constructed the study. Hence, the missing data are de-
pendent on the observed response yoi . This means that yoi is not a random
sample from the complete data and therefore they do not have the same dis-
tribution. However, if the missing values ymi are conditioned on the observed
value yoi , this will have the same distribution as that of the complete data so
predicting missing values can be done by the observed data that is defined
in the joint distribution of yoi and ymi .

3.2.3 Missing not at random (MNAR)

The third and last missing data mechanism is called missing not at random
(MNAR). This mechanism assumes that the probability of missing data are
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dependent on a subset of responses that would have been observed. Based
on Equation (3.9), the MNAR longitudinal data are defined as,

p(ri|yoi , ymi ; θr). (3.12)

This expression tells us that the distribution of ri is dependent on the
elements in the subvector ymi and yoi . The observed data yoi are not a random
sample from the complete data. Neither is the conditional distribution of ymi
given yoi a sample of the complete data, as was the case in MAR, but ymi
given yoi and p(ri|yi) proves to be a random sample of the complete data. An
example of MNAR longitudinal data in a medical research is when measuring
the pain of patients and some subjects experience such a pain that they need
medicine and hence must leave the study and the outcome of those subjects
are not recorded.

4 Joint modelling of longitudinal and survival data

Up until now, we have assumed that, as is most common, longitudinal out-
comes and survival data are analysed separately by for example using a
hazards model for the survival data and a linear mixed effect model for lon-
gitudinal outcomes [8]. In Section 2.8.3 we defined the Cox regression model
for exogenous covariates but when we have covariates that are endogenous
time-varying longitudinal biomarkers that are associated with the survival,
this model is no longer useful. This is when the joint model was introduced
and the need to utilise joint modelling in clinical trials arises when longitu-
dinal outcomes and survival data are associated to one another.

The advantages of using joint modelling in clinical trials are that the
estimates of the survival data and longitudinal outcomes are more efficient
when estimating the effects of treatments and additionally, the joint mod-
elling reduce bias of the estimates [33].

4.1 Joint model

The notation and theory in this section is that of Chapter 4 Rizopoulos
(2012b) [54]. In this section we define the joint model by stating the survival
and longitudinal submodels. As in Section 2.5.4, we introduce an event
indicator

di =

{
1, if T ∗ ≤ Ci
0, otherwise

,

where T ∗ is the true event time for subject i = 1, .., N and the observed
survival time Ti = min(T ∗, Ci). We continue to denote the longitudinal
response as yij = {yi(tij), j = 1, ..., ni}, where yi(tij) represents the jth

observation of longitudinal response, or endogenous time-varying covariate,
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for the ith subject at time point tij . There are ni observations for each
subject.

4.1.1 Survival submodel

The proportional hazard survival submodel is defined by

hi(t|Mi(t),wi) = h0(t) exp{γTwi + αmi(t)}. (4.1)

At first sight, the model appears to be similar to the extended Cox re-
gression model from Section 2.8.3, but there are a few differences. In the
survival submodel, we define Mi(t) = {mi(s), 0 ≤ s < t} as the history of
the true unobserved longitudinal process up to time t and mi(t) as the true
unobserved value of the longitudinal outcome at time point t. Further details
aboutmi(t) is defined in the next section for the longitudinal submodel. The
parameter h0(t) is, the same as before, the baseline risk or hazard function
and wi is the vector of baseline covariates related to the hazard of the ith

subject. The regression coefficients are found in parameter γ and are inter-
preted such that, for a one unit change in wij at time t, exp(γj) is the ratio
of hazards. The parameter α is defined as the effect that the longitudinal
outcome has on the risk of the event and is interpreted in the following way;
for a one unit increase in mi(t) at time t, exp(α) is the relative increase
in the risk for the event. The proportional hazard model (4.1) assumes a
dependency on mi(t), that the risk of an event at time t is dependent on the
present value of mi(t). We define the survival function, from equation (2.9),
such that it is dependent on Mi(t),

Si(t|Mi(t),wi) = exp

(
−
∫ t

0
h0(u) exp{γTwi + αmi(u)}du

)
. (4.2)

In the Cox regression model in Section 2.6, we did not specify any distri-
bution assumptions to model the baseline risk function h0(·) for the survival
times as that implies a risk of choosing the wrong distribution. In the joint
modelling framework this baseline needs to be specified as otherwise we might
obtain underestimations of the standard errors [54]. There are multiple ways
to specify this baseline. One approach is to use a parametric distribution
such as the Weibull distribution defined in Section 2.5.2, for the risk func-
tion. Other non-parametric approaches are the use of splines to estimate
the risk function, proposed methods are to use linear splines, a B-spline or
cubic splines. The approach that we will focus on in this thesis will be the
piecewise-constant approach, which is defined by Rizopoulos (2012b) [54] in
the following way,

h0(t) =

Q∑
q=1

ξqI(vq−1 < t ≤ vq). (4.3)
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Here 0 = v0 < v1 < · · · < vQ is the time scale divided into smaller
parts where the last part vQ is larger than the longest observation time. The
hazard value ξq is defined in the interval (vq−1, vq]. The more knots, the more
flexible baseline hazards. When there are no ties and each interval (vq−1, vq]
only contains one true event time, which is true in the limiting case, the
model will correspond to having h0(·) unspecified and then estimate it with
non-parametric maximum likelihood.

The last approach for specify the baseline risk function is the use of cubic
splines. This model is based on the spline coefficients κ = (κ0, κ1, ..., κm)
and the so-called B-spline function B(·) in the following way

log h0(t) = κ0 +

m∑
d=1

κdBd(t, q). (4.4)

The degree of the spline function is given by q and the number of interior
knots is defined by m∗, such that m = m∗ + q − 1. The number of knots
should to be chosen depending on the number of events, usually one chose
to include between 1/10 and 1/20 of the number of events. These knots are
then placed based on the percentile of the observed or true event times.

4.1.2 Longitudinal submodel

In Section 3.1 we defined the linear mixed effect model that estimates the
mean observed longitudinal response change denoted yij . The longitudinal
data are observed intermittently, with error, at a number of time points tij
for each subject. Our aim is to measure what the effect of longitudinal data
has on the risk of an event. To do this, we estimatemi(t) which we defined in
the previous section as the true unobserved value of the longitudinal outcome
at time point t. Then we can define the longitudinal submodel which is based
on the linear mixed effects model in Section 3.1, but we will now extend this
model, as given in Rizopoulos (2012b) [54] where we assume that yi(t) = yi.

yi(t) = mi(t) + εi(t), εi(t) ∼ N(0, σ2) (4.5)

mi(t) = xi
T (t)β + zi(t)

Tbi, bi ∼ N(0,Σ) (4.6)

As before, when we defined the linear mixed effects model, we have the
time-varying measurements, xi(t) which is the vector of the fixed effects
β and zi(t) that is the vector for the random effects bi. We also assume
that the normal distributed error terms εi(t) are independent of the random
effects and independent between each other, that is (εi(t), εi(u)) = 0, t 6= u.

The measurement errors are now accounted for as yi(t), the observed
longitudinal outcome, is equal to mi(t), the true unobserved value of the
longitudinal outcome plus an error term εi(t).
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4.2 Alternative associations within the joint model

Crowther (2014) [8] formulated, in his thesis on joint longitudinal and sur-
vival models, a few alternative association structures of the joint model. In
particular, he studies different ways of combining the survival and longitudi-
nal submodels. This section explores the different ways of defining the joint
model as given in Chapter 6 in Crowther (2014) [8].

4.2.1 Interaction effects

The joint model, as described in Section 4.1, assumes a current value param-
eterisation. This means that the model assumes an association between the
true unobserved longitudinal profile mi(t) and the risk of the event at time
point t, for all subjects in the data. Sometimes, this assumption does not
hold and we need to consider different associations for subgroups of subjects.
To allow this, we need to extend the model in Equation (4.1) by inserting in-
teraction terms between the baseline covariates win and the true unobserved
longitudinal profile mi(t). The model will then be the following,

h(t|Mi(t),wi1,wi2) = h0(t) exp{γTwi1 +αTwi2mi(t)}. (4.7)

The difference between this expression and Eq. (4.1) is that we have
added the vector wi2 containing the interaction covariates and which is linked
to mi(t).

4.2.2 Time-dependent slope

The second association structure Crowther introduced is the time-dependent
slope. This association can be used when we are interested in how the rate
of change of a biomarker affects the risk of an event. In particular, this
structure can be used when we want to know the effect of a biomarker over
time, if it is a decreasing or increasing trend with a certain level of biomarker.
The time-dependent slope, or equally, the rate of change is defined as,

h(t|Mi(t),wi) = h0(t) exp{γTwi + α1mi(t) + α2m
′
i(t)}, (4.8)

where

m′i(t) =
dmi(t)

dt
=
d{xiT (t)β + zi

T (t)bi}
dt

(4.9)

4.2.3 Random effects parameterisation

The last alternative structure is the random effects parameterisation. This
structure assumes a time-dependent association but only the random effects
of the survival submodel are included. The model is defined below as,

28



h(t|Mi(t),wi) = h0(t) exp{γTwi +αT (β + bi)}. (4.10)

In this model, β is the mean population average of the random effect and
b is the deviation of the slope for each subject. We can also choose to only
include b to obtain the following model,

h(t|Mi(t),wi) = h0(t) exp{γTwi +αTbi}. (4.11)

The vector α contains the association parameters between the random
effect and the hazard, or risk, of event. This model is useful when dealing
with a longitudinal submodel with a random intercept and a random slope,
such that the random effects will determine the deviations for each subject
based on the average intercept and slope. In particular, the model provides
information about subjects that have a longitudinal level that is lower/higher
at baseline or subjects that have an increase/decrease in the longitudinal
trajectories have a higher risk to undergo the event [54].

Important to note is that the association parameters α in models (4.10)
and (4.11) have different interpretations. Let

mi(t) = (β0 + b0i) + (β1 + b1i)t. (4.12)

be the longitudinal submodel with a random intercept and slope. Set t = 0
and insert mi(t) into model (4.10) to obtain

h(t|Mi(t),wi) = h0(t) exp{γTwi + α1(β0 + b0i)}. (4.13)

The association parameter exp(α1) represents the hazard ratio when there
is a one unit increase of the intercept. On the contrary, inserting mi(t) into
model (4.11) gives

h(t|Mi(t),wi) = h0(t) exp{γTwi + α2b0i}, (4.14)

where the association parameter exp(α2) is dependent on the average subject
specific deviation.

Alternatively, using the time-dependent slope in Equation (4.8), assum-
ing α1 = 0 will result in the following,

h(t|Mi(t),wi) = h0(t) exp

{
γTwi + α3

dmi(t)

dt

}
= h0(t) exp{γTwi + α3(β1 + b1i),

(4.15)

Now, the association parameter exp(α3) is the hazard ratio when there is a
one unit increase of the subject specific slope.
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4.3 Estimating the joint model

Through the years, joint models have been estimated in various ways. The es-
timation of the model parameters were originally done by a two-stage method
proposed by Self and Pawitan (1992) [64], where the first step was to esti-
mate the random effects by least-squares. In the second step, the obtained
estimates were used to assign values of mi(t) which were then used to cal-
culate the partial likelihood of the Cox model as in Section 2.6.1. In this
approach, Self and Pawitan (1992) [64] changed the term exp{αmi(t)} by
exp{1 + αmi(t)} in the survival submodel (4.1). This in order to obtain
linear random effects bi. However, Dafni and Tsiatis (1998) [10], Tsiatis
and Davidian (2001) [71] and Sweetening and Thompson (2011) [67] have all
proved by simulation that these approaches produce a high bias. Instead it
has been suggested to use the maximum likelihood approach that will remove
the bias.

4.4 Joint likelihood approach

In this section we define the maximum likelihood approach used for joint
models following Chapter 4 in Rizopoulos (2012b) [54]. The joint distribution
is defined as {Ti, di, yi} which represent the observed outcomes, survival
time Ti, the event indicator di and the longitudinal response yi. Define the
vector bi to contain the time-independent random effects that represents
the longitudinal process and the survival process. The parameter vector
θ = {θt,θy,θb} contains the parameter θt which is the event time outcome,
θy is the parameters for longitudinal outcomes and θb is the parameter vector
that are unique in the random effects covariance matrix.

In this model we will assume that the random effects describes the asso-
ciation between the longitudinal outcomes and the survival outcomes as well
as the correlation between the repeated measurements of the longitudinal
process.

The joint likelihood for the full joint model can then be defined as

p(Ti, di,yi|bi; θ) = p(Ti, di|bi; θ)p(yi|bi; θ), (4.16)

where

p(yi|bi; θ) =

ni∏
j=1

p{yi(tij)|bi; θ}. (4.17)

The ni x 1 vector yi contains the longitudinal responses for the ith sub-
ject and j is the index of the longitudinal measurements. Furthermore, we
assume that the censoring is independent of event time, given observed his-
tory, and also the process that decides the time points of the longitudinal
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measurements is independent of the time of event. This means that censoring
of a subject is dependent on the observed history up to time t.

Then the log-likelihood for the ith subject is the following by Rizopoulos
(2012b) [54],

log p(Ti, di,yi; θ) = log

∫
p(Ti, di,yi, bi; θ)dbi

= log

∫
p(Ti, di|bi; θt, β)

 ni∏
j=1

p{yi(tij)|bi; θy}

 p(bi; θb)dbi.
(4.18)

The conditional survival density p(Ti, di|bi; θt,β) is given by

p(Ti, di|bi; θt, β) = hi(Ti|Mi(Ti),θt, β)di x Si(Ti|Mi(Ti);θt, β)

= [h0(Ti) exp{γTwi + αmi(Ti)}]di

x exp

(
−
∫ Ti

0
h0(u) exp{γTwi + αmi(u)}du

)
,

(4.19)

The conditional normality density of the longitudinal response p{yi(tij)|bi; θy}
is given by

p{yi(tij)|bi; θy} =
1

(2πσ2)ni/2
exp

{
−||yi −Xiβ − Zibi||2

2σ2

}
. (4.20)

And, finally, the normal distribution of the random effects p(bi; θb) is

p(bi; θb) =
1

(2π)q/2
1√
|Σ|

exp

{
−bi

TΣ−1bi
2

}
, (4.21)

where q is the dimension of the vector with random effects, bi and ||x|| =
{
∑

i x
2
i }1/2 is the Euclidean vector norm.

Different approaches have been suggested in how to compute the like-
lihood function for joint models. The most common method has been to
estimate the maximum likelihood by using a method called the EM - algo-
rithm (Expectation-Maximisation) Rizopoulos (2012b) [54], where the idea
is that it is easier to maximise the log-likelihood that correspond to the
complete data. The basic procedure of the algorithm begins with the E-
step where missing data are added in order to obtain a complete data, then
the log-likelihood function is replaced by a substitute function. The algo-
rithm is then continued with the M-step where the substitute function is
maximised. Even though this method has been preferred to use, there is a
drawback, which is that the linear convergence rate of the algorithm give
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rise to a slow convergence near the maximum. Another method that is used
is the Newton-Raphson algorithm, defined in Section 2.5.5, to maximise the
log-likelihood. In this thesis, we will focus on the approach by Rizopoulos
(2012b) [54] which suggests to calculate the score vector that is to be solved
by numerical integration. Following the calculations in Rizopoulos (2012b)
[54], the score function of log p(Ti, di,yi; θ) is the following,

S(θ) =
∑
i

∂

∂θT
log

∫
p(Ti, di|bi;θ)p(yi|bi;θ)p(bi;θ)dbi

=
∑
i

1

p(Ti, di,yi;θ)

∂

∂θT

∫
p(Ti, di|bi;θ)p(yi|bi;θ)p(bi;θ)dbi

=
∑
i

1

p(Ti, di,yi;θ)

∫
∂

∂θT
{p(Ti, di|bi;θ)p(yi|bi;θ)p(bi;θ)}dbi

=
∑
i

∫ [
∂

∂θT
log{p(Ti, di|bi;θ)p(yi|bi;θ)p(bi;θ)}

]
x

p(Ti, di|bi;θ)p(yi|bi;θ)p(bi;θ)

p(Ti, di,yi;θ)
dbi

=
∑
i

∫
A(θ, bi)p(bi|Ti, di,yi;θ)dbi.

(4.22)

In the last equality we denote the complete data score vector, A(·) , as

A(θ, bi) =
∂{log p(Ti, di|bi;θ) + log p(yi|bi;θ) + log p(bi;θ)}

∂θT
. (4.23)

The integrals in Equation (4.2) and (4.22) are multidimensional and an-
alytically intractable to compute which means that numerical integration
techniques are needed in order to solve the integral. In the following sections
we are going to use the numerical integration technique called Gauss-Hermite
quadrature, in order to approximate the log-likelihood and score vector.

4.4.1 Numerical integration with Gauss-Hermite quadrature

The idea of this approach to solve the log-likelihood and score vector is to first
of all fit the longitudinal outcomes using the mixed effects model. The result
of this fit will yield information about the subject specific random effects
given the longitudinal response, in particular, the location and scale of the
conditional distribution of the random effects. Then, using this information,
the subject specific integrands of the log-likelihood and score vector can be
re-scaled. Following Rizopoulos (2012a) [53], this approach is motivated
using the standard and adaptive Gauss-Hermite quadrature rules.
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The integral in the score vector (4.22) can be approximated with the
standard Gauss-Hermite rule by a weighted sum of integrand evaluations.
The weighted sums are evaluated at the abscissas of the random effects. The
abscissas is defined as the number that determines the position of the random
effects [29]. A requirement in this approximation is that the abscissas needs
to be prespecified. Using the standard Gauss-Hermite rule, the integral in
the score vector (4.22) is approximated as follows [53],

E{A(θ, bi)|Ti, di,yi;θ} =

∫
A(θ, bi)p(bi|Ti, di,yi;θ)dbi

≈ 2q/2
∑
t1···tq

ϑtA(θ, bt
√

2)p(bt
√

2|Ti, di,yi;θ) exp(||bt||2),

(4.24)

where ||bt|| = {
∑

j b
2
tj}1/2 is the Euclidean vector norm, the sum

∑
t1···tq is

another way of writing
∑K

ti=1 · · ·
∑K

tq=1 where K is the number of quadra-
ture points. The vector btT = (bt1 , ..., btq) are the abscissas of the random
effects with corresponding weights ϑt. As the number of quadrature points,
K, increases, the approximation will be improved. This is true if the inte-
grand can be defined as exp(−bTb)l(b), where l(b) is a polynomial degree
of 2K − 1 or less, then the location of the weights and abscissas will re-
sults in an exact solution to the integrand. However, there are some draw-
backs of this approximation. First of all, the integrand is evaluated over
the product of the abscissas for each random effect so as q increases, the
computations will get heavy. Second, if the main mass of the integrand
g(b) = A(θ, b)p(b|Ti, di,yi;θ) has a different spread than the weight func-
tion exp(−b2) or far from zero, then the location of the quadrature points
with respect to the main mass g(b) can give a poor approximation as the
abscissas will then not coincide with g(b) when the Gauss-Hermite rule is
applied. To improve on these drawbacks, the adaptive Gauss-Hermite has
been developed. In each iteration, this approximation centers and scales the
integrand following Rizopoulos (2012b) [54],

E{A(θ, bi)|Ti, di,yi;θ}

≈ 2q/2|B̂i|−1
∑
t1···tq

ϑtA(θ, r̂t)p(r̂t|Ti, di,yi;θ) exp(||bt||2).

(4.25)

The expression r̂t = b̂i+
√

2B̂
−1
i bt, where b̂i = argmaxb{log p(Ti, di,yi, b; θ)}

and B̂i is the Choleski factor, decomposition of a matrix, of the matrix Ĥi,
where
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Ĥi =
−∂2 log p(Ti, di,yi, b; θ)

∂b∂bT
, (4.26)

evaluated in b = b̂i.
The adaptive Gauss-Hermite rule gives the optimal approximation as

now the integrand will have an approximate behaviour that of the density
of the normal distribution N(0, 2−1I). The weight function will also be
proportional to this normal density. However, the location of the mode b̂i
and the second-order derivative of Ĥi are computationally heavy. To decrease
this heavy computations, Rizopoulos (2012a) [53] suggests to investigate the
conditional distribution of the random effects p(bi|Ti, di,yi; θ), which is the
second expression of the score vector (4.22), on the log-scale. In particular,
determine the mode b̂i and the second-order derivative of Ĥi. The density
of the conditional distribution written on the log scale is proportional to the
following [53],

log p(bi|Ti, di,yi; θ)

∝
ni∑
j=1

log p({yi(tij)|bi; θy}) + log p(bi; θb) + log p(Ti, di|bi; θt, β). (4.27)

As ni increases, the first term will equal the log density of the liner mixed
model from Equation (4.17) such that log p(yi|bi; θy) =

∑
j log p{yi(tij)|bi; θy}

which will have a similar shape to that of the multivariate normal distribu-
tion. As ni →∞ [53]

p(bi|Ti, di,yi; θ)
P−→ N(b̃i, H̃

−1
i ), (4.28)

where b̃i = argmaxb{log p(yi|b; θy)} and the matrix,

H̃i =
−∂2 log p(yi|b; θy)

∂b∂bT
, (4.29)

evaluated in b = b̃i.
Thus, as ni increase, only the information form the mixed effects model

for the longitudinal outcome is enough to use to be able to re-center and re-
scale the subject specific integrands. Therefore the adaptive Gauss-Hermite
rule in Equation (4.25) where a standard transformation was used can be
further developed by fitting the linear mixed effects model with

b̃i = argmaxb{log p(yi, b; θ̃y)} and the matrix,

H̃i =
−∂2 log p(yi, b; θ̃y)

∂b∂bT
, (4.30)
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evaluated in b = b̃i.
Then the following transformation can be used [54],

E{A(θ, bi)|Ti, di,yi;θ}

≈ 2q/2|B̃i|−1
∑
t1···tq

ϑtA(θ, r̃t)p(r̃t|Ti, di,yi;θ) exp(||bt||2).

(4.31)

The expression r̃t = b̃i +
√

2B̃
−1
i bt, and B̃i is the Choleski factor of the

matrix H̃i, and the maximum likelihood estimates from the linear model
are denoted ỹ. The difference between the adaptive Gauss-Hermite (4.25)
and of this transformation (4.31) is that in the latter, the adaptive Gauss-
Hermite rule is only implemented one time in the start and the quadrature
points are not updated. This gives an advantage as the quadrature points
are fewer than in the standard Gauss-Hermite (4.24) and the relocation of
the quadrature points in the adaptive Gauss-Hermite (4.25) at each iteration
is eliminated.

4.4.2 Estimating the random effects

The estimates of the random effects bi are obtained using the ranef() func-
tion from the JM package [55]. Readers interested in the details of this
estimation are referred to read Chapter 4.5 in Rizopoulos (2012b) [54].

4.5 Predicted survival probabilities

In this section we will define the procedure on the ability to predict the
expected survival of a new entered subject or the survival probability of
a subject at a certain time point during follow up. To be able to predict
the survival probability, all information available for the subject such as
biomarker values and baseline information has to be used [54]. This estima-
tion is presented by Rizopoulos (2010) [52] which this section follows. The
estimation is based on the joint model that is fitted on a random sample
denoted Dn = {Ti, di,yi; i = 1, ..., n} and the newly arrived subject has a
set of longitudinal outcomes Yi(t) = {yi(s); 0 ≤ s ≤ t} where yi(t) is an
endogenous time-dependent covariate described in Section 2.8.2. We assume
that yi(t) is associated with the survival, that is, if a subject has longitudi-
nal observations up to time point t, it means that the subject has survived
up to time t. The following survival function calculates the probability of
surviving up to time u > t, given that the subject has survived at time t and
the true event time is denoted by T ∗. The conditional probability is then
given by the following [52]

πi(u|t) = P (T ∗i ≥ u|T ∗i > t, Yi(t), Dn;θ∗), (4.32)
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where Dn is the dataset that was used to fit the joint model and θ∗ is the
true parameter values. When we obtain new information from a subject at
time t′ < t the predictions can be updated so that we obtain πi(u|t′) for u > t
and continue in this way as more information is obtained. This procedure
follows a time dynamic manner which we will illustrate using real data in
Section 6.

A first-order estimate of πi(u|t) is presented in Rizopoulos (2012b) [54]
as

π̃i(u|t) =
Si{u|Mi(u, b̂i

(t)
, θ̂); θ̂}

Si{t|Mi(t, b̂i
(t)
, θ̂); θ̂}

+O([ni(t)]
−1). (4.33)

The maximum likelihood estimate is denoted by θ̂, which can be calculated
using procedure in Section 2.5.4, and b̂i

(t)
is the node of the conditional

distribution log p(bi|T ∗i > t, Yi(t); θ̂) and finally ni(t) is the number of lon-
gitudinal responses obtained from subject i up until time t.

Even though this estimator works in practice, as indicated in Rizopoulos
(2011) [51], it is difficult to calculate standard errors and confidence intervals
for πi(u|t). Therefore, Rizopoulos (2011) [51] suggested using Monte Carlo
sampling in order to take the variability of the maximum likelihood estimates
into account. The procedure and details of the Monte Carlo sampling scheme
is presented in Rizopoulos (2010) [52].

The simulated π(l)
i (u|t) is then used to derive the the median and mean

of πi(u|t), for l = 1,...,L, as the following,

π̂i(u|t) = median{π(l)
i (u|t)} (4.34)

and

π̂i(u|t) = L−1
L∑
l=1

π
(l)
i (u|t), (4.35)

as well as deriving standard errors from the sample standard deviation from
Monte Carlo samples and confidence intervals. Note that the estimates in
(4.34) give more accurate results compared to (4.33) as the estimates in (4.34)
approximate the integrals in a more accurate manner by the simulation [54].

4.6 Residuals

To examine the model assumptions, residual plots are created and analysed.
Residual plots of longitudinal data and survival data separately have been
widely studied, were residual examples of linear mixed models are presented
by Nobre and Singer (2007) [45] and Verbeke and Molenberghs (2000) [73]
and residuals based on survival outcomes are found in Therneau and Gramb-
sch (2000) [70] and Harrell (2001) [27]. Problems may arise using these
residuals to examine model assumptions based on joint models when the
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longitudinal data have nonrandom dropout [52] as then the observed data
does not correspond to a random sample of the population [56].

4.6.1 Residuals for longitudinal part

In this section we present two types of residuals that are commonly used in
the linear-effects model following the definitions from Chapter 6 in Rizopou-
los (2012b) [54]. The first type is the subject specific residual that confirm
the assumption of the linear mixed effects model from Section 3.1,

yi = Xiβ +Zibi + εi

bi ∼ N(0,Σ),

εi ∼ N(0, σ2).

The subject specific residuals are defined in the following way [54],

rysi (t) = {yi(t)− xTi (t)β̂ − zTi (t)b̂i} (4.36)

To obtain a standardised version of this residual, we divide the expression
by the standard deviation σ̂,

ryssi (t) = {yi(t)− xTi (t)β̂ − zTi (t)b̂i}/σ̂. (4.37)

The estimates β̂ and σ̂ are maximum likelihood estimates and the estimates
for the random effects is denoted by b̂i. The subject specific residuals pre-
dict the conditional error term εi(t) which is normally distributed, so these
residuals verify the normal distribution assumption.

The marginal residuals is calculated by the marginal model of yi which
is defined as the following,{

yi = Xiβ + ε∗i
ε∗i ∼ N(0,ZiΣZ

T
i + σ2Ini).

We can then define the marginal residuals as [54]

rymi = yi −Xiβ̂. (4.38)

For standard version of this residual we multiply by the term V̂ i = ZiΣ̂Zi+
σ2In which is the estimated covariance matrix of yi.

rysmi = V̂
−1/2
i (yi −Xiβ̂). (4.39)

The marginal residuals are utilised to verify that the covariance for each
subject is on the form V i and also to predict the marginal errors defined as
yi −Xiβ̂ = Zibi + εi.
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4.6.2 Residuals for the survival part

In this section we will explore a common residual for the survival part in the
joint model, called a martingale residual. The martingale residual is defined
for the ith subject as the following [54],

rtmi (t) = Ni(t)−
∫ t

0
Ri(s)hi(s|M̂i(s); θ̂)ds. (4.40)

As already defined in Section 2.8.3, Ni(t) is a process counting the number
of events that the ith subject has experienced at time t and Ri(t) is a binary
variable that is equal to 1 if the subject is at risk at time point t and 0
otherwise. Following the definition of the survival submodel in Equation
(4.1), we can write the expression as the following,

rtmi (t) = Ni(t)−
∫ t

0
Ri(s)ĥ0(s) exp{γ̂Twi + α̂m̂i(s)}ds, (4.41)

where m̂i(t) = xi
T (t)β̂ + zTi (t)b̂i and ĥ0(s) is the estimated baseline risk

function. This residual calculates for, the ith subject, the difference between
the number of observed events and the expected number of events estimated
from the fitted model. This means that based on this residual we can identify
if some subjects are poorly fitted by the model [54].

4.6.3 Residuals with nonrandom dropout

The computation of residuals for joint longitudinal and survival data with
nonrandom dropout is proposed by Rizopoulos, Verbeke, and Molenberghs
(2010) [56] which the theory in this section follows.

First of all, we present the joint model with nonrandom dropouts to
prove that the observed data will not correspond to a random sample of
the population. Denote the observed longitudinal measurements, in ac-
cordance with Section 3.2, for the ith subject before the event time by
yoi = {yi(tij) : tij < Ti, j = 1, ..., ni} and denote the missing values of lon-
gitudinal measurements, that is, the measurements that would have been
observed before the end of the study if the event had not occurred, by
ymi = {yi(tij) : tij < Ti, j = 1, ..., n′i}.

Based on these definitions, the dropout mechanism can be derived for the
joint model. The mechanism is a conditional distribution of the time until
dropout, T ∗, given the longitudinal outcomes (yoi , y

m
i ) and the parameter

vector θ, it is expressed as,

p(T ∗i |yoi , ymi ;θ) =

∫
p(T ∗i |bi; θ)p(bi|yoi , ymi ;θ)dbi. (4.42)

Note that the time until dropout, T ∗i is dependent on ymi by the second
term which represents the conditional distribution of the random effects,
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p(bi|yoi , ymi ;θ). Thus, the observed data which the residuals are calculated
from, are not a random sample of the population, hence the model assump-
tions obtained from calculations of residuals, such as constant variance and
a zero mean value, should not be expected to be fulfilled [52].

To obtain correct residuals for the joint models, Rizopoulos, Verbeke,
and Molenberghs (2010) [56] suggests a different approach. They propose
to increase the observed data by adding random longitudinal outcomes that
corresponds to longitudinal outcomes that would have been been observed
if the subject did not drop out of the study. That is, we assume that a joint
model has been fit to the data and the maximum likelihood estimates are
calculated so that we have an estimated parameter vector θ̂ and a covariance
matrix denoted ˆvar(θ̂). Denote the prespecified time points, of which the
longitudinal measurements are assumed to be observed, as t0, t1, ...., tmax,
where the last prespecified time is less than Ti for the ith subject. This
method assumes a conditional distribution of ymi from repeated samplings,
given the observed data. Assuming the joint model in Equation (4.18) and
the dropout mechanism (4.42), the density for the conditional distribution
of ymi can be written as [56],

p(ymi |yoi , Ti, di) =

∫
p(ymi |yoi , Ti, di;θ)p(θ|yoi , Ti, di)dθ. (4.43)

The conditional distribution in the first expression in Equation (4.43)
can be rewritten using Equations (4.16), (4.17) and (4.42) as [56]

p(ymi |yoi , Ti, di;θ) =

∫
p(ymi |bi, yoi , Ti, di;θ)p(bi|yoi , Ti, di, ;θ)dbi

=

∫
p(ymi |bi;θ)p(bi|yoi , Ti, di, ;θ)dbi.

(4.44)

The second expression in Equation (4.43) is the conditional distribution
of the parameters θ given the observed data. This distribution can be ap-
proximated, assuming n is large, by N{θ̂, ˆvar(θ̂)}, that is, {θ|yoi , Ti, di} ∼
N{θ̂, ˆvar(θ̂)}. Assuming this approximation together with (4.43) and (4.44)
gives a simulation scheme presented in Chapter 6.3 in Rizopoulos (2012b)
[54] that simulates missing longitudinal responses ym(l)

i (tij) that, together
with the observed responses yoi , are used to calculate the residuals. The
advantage of using the simulated missing responses is that the residuals will
contain the same properties as in the complete data which means that cor-
rect assumptions about the model can be made even though there are some
dropouts.
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4.7 Joint models with flexible parameters

When the survival data and baseline hazard functions are more complex,
a more flexible approach to formulate the survival submodel is needed in
order to detect hazards with complex functions. Crowther et al., (2012a) [9]
proposed to use the parametric Royston-Parmar model that uses restricted
cubic splines described in Section 2.7, as a survival submodel from Equation
(4.1), together with the longitudinal submodel in Section 4.1.2.

4.7.1 Defining the model

Following Chapter 7 in Crowther (2014) [8], we start by defining the Royston-
Parmar survival submodel as,

logHi(t|Mi(t),wi) = logH0(t) + γTwi + αmi(t), (4.45)

where logHi() is the log cumulative hazard scale,Mi(t) = {mi(s), 0 ≤ s < t}
is the history of the true unobserved longitudinal process up to time t and
mi(t) is the true unobserved value of the longitudinal outcome at time point
t. The parameter H0(t) is the cumulative baseline risk or hazard function,
wi is the vector of baseline covariates related to the hazard of the ith subject
and γ is the log cumulative hazard ratios.

The log baseline cumulative hazard H0 is now written in terms of a
restricted cubic spline function as in Equation (2.43), such that,

logHi(t|Mi(t),wi) = ηi(t) = s(log(t)|γ,K) + γTwi + αmi(t), (4.46)

with the survival scale written as

Si(t|Mi(t),wi) = exp(− exp(ηi(t))) (4.47)

and the hazard function

hi(t|Mi(t),wi) =
dηi(t)

dt
exp(ηi(t))

=
d[s(log(t)|γ,K) + γTwi + αmi(t)]

dt
exp(ηi(t))

=

{
1

t

d[s(log(t)|γ,K)]

d[log(t)]
+ α

dmi(t)

dt

}
exp(ηi(t)).

(4.48)

It is important to note that the association parameter α and mi(t) occur
both in the derivative and in ηi(t) which means that for a one-unit increase
in the longitudinal outcome mi(t) at time t, α is the log cumulative hazard
ratio. This interpretation is not the same as for a one-unit increase in mi(t)
at time t, α is the log hazard ratio. That is, the cumulative hazard ratio and
the hazard ratio must be distinguished.
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4.7.2 Joint likelihood function

The joint likelihood for the joint model with flexible parameters is similar to
the joint model, where the log-likelihood for the ith subject is presented in
Crowther (2014) [8] as ,

log p(Ti, di,yi; θ) = log

∫
p(Ti, di,yi, bi; θ)dbi

= log

∫
p(Ti, di|bi; θt)

 ni∏
j=1

p{yi(tij)|bi; θy}

 p(bi; θb)dbi.
(4.49)

The conditional normality density of the longitudinal response p{yi(tij)|bi; θy}
and the normal distribution of the random effects random effects p(bi; θb)
are defined the same as in Section 4.4 in Equations (4.64) and (4.65), but
the now the conditional survival density p(Ti, di|bi; θt) is given by [8]

p(Ti, di|bi; θ) =

[{
1

Ti

d[s(log(Ti)|γ,K)]

d[log(Ti)]
+ α

dmi(Ti)

dTi

}
exp(ηi(Ti))

]di
x exp[− exp(ηi(Ti))].

(4.50)

The advantage of this survival density compared to the survival density
in Equation (4.19) is that it is easier to compute the cumulative hazard
functions due the the absence of an integral which means dealing with nested
numerical integration.

4.8 Joint models using finite mixture models

As an alternative to the joint models with flexible parameters using the
Royston-Paramer model, that modelled the baseline hazard on the log cu-
mulative hazard scale in Section 4.7, Crowther (2014) [8] proposes in Chapter
8, a parametric survival submodel where the parametric distributions have
finite mixtures and the baseline hazard is modelled on the log hazard scale.
In this joint model approach, Crowther assume a survival submodel based
on a finite mixture of parametric distributions. The motivation for using
this approach is that the use of finite mixture models increase the flexibility
and improve the estimates.

4.8.1 Defining the model

The longitudinal submodel is defined as in Equations (4.5) and (4.6), that
is,
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yi(t) = mi(t) + εi(t), εi(t) ∼ N(0, σ2)

mi(t) = xi
T (t)β + zi(t)

Tbi, bi ∼ N(0,Σ)

To obtain flexibility in this model, we can allow for the design matrices
xi and zi to obtain restricted cubic spline function or polynomials.

To define the parametric submodel a two-component mixture propor-
tional hazards model is derived.

The baseline survival function S0(t) is defined as,

S0(t) = pS01(t) + (1− p)S02(t), (4.51)

where S01(t) and S02(t) represents the two component survival function and
0 ≤ p ≤ 1 is the mixture parameter. From Equation (2.7), the baseline
hazard function is the following,

h0(t) = −d logS0(t)

dt
(4.52)

with the proportional hazards function to be

h(t) = h0(t) exp(Xiβ), (4.53)

where Xiβ is a linear predictor with no intercept.
The survival functions S01(t) and S02(t) can take any distribution form.

Following Crowther (2014) [8] we will use the Weibull distribution with the
baseline hazards function, using the survival function defined in Equation
(2.27), written as

S0(t) = p exp(−λ1t
γ1) + (1− p) exp(−λ2t

γ2). (4.54)

The scale parameters are λ1, λ2 and the shape parameters are γ1, γ2.
The cumulative hazard function is, Equation (2.8) defined as
H(t) = − logS(t), which gives

H0(t) = − logS0(t) = − log[p exp(−λ1t
γ1) + (1− p) exp(−λ2t

γ2)]. (4.55)

The baseline hazards function can then be derived by h0(t) = −d logS0(t)
dt ,

using Equation (4.55)

h0(t) =
λ1γ1t

γ1−1p exp(−λ1t
γ1) + λ2γ2t

γ2−1(1− p) exp(−λ2t
γ2)

p exp(−λ1tγ1) + (1− p) exp(−λ2tγ
2)

, (4.56)

where we use the derivative rule [46], d
dx log(x) = 1

x .
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Inserting this baseline hazard function of the Weibull distribution into
the proportional hazards function, Equation (4.53) gives

h(t) =
λ1γ1t

γ1−1p exp(−λ1t
γ1) + λ2γ2t

γ2−1(1− p) exp(−λ2t
γ2)

p exp(−λ1tγ1) + (1− p) exp(−λ2tγ
2)

exp(Xs(t)β),

(4.57)
with the matrix of time-independent/dependent covariates Xs(t) and β as
the log hazard ratios associated with the covariates.

The two-component mixture proportional hazards model can be used
with the joint models in different ways. We are now going to state three ex-
amples, stated by Crowther (2014) [8], of where the two-component mixture
model is used with the joint models.

Consider the survival submodel from Equation (4.1),

hi(t|Mi(t),wi) = h0(t) exp{γTwi + αmi(t)},

where mi(t) is the longitudinal response that determines the association be-
tween the survival model and longitudinal model at time t. Now interchange
h0(t) with the two-component baseline hazards function, Equation (4.56),
we obtain,

h(t|Mi(t),wi) =
λ1γ1t

γ1−1p exp(−λ1t
γ1) + λ2γ2t

γ2−1(1− p) exp(−λ2t
γ2)

p exp(−λ1tγ1) + (1− p) exp(−λ2tγ
2)

x exp{γTwi + α1mi(t)}.
(4.58)

The vector γ contains the log hazard ratios that corresponds to the base-
line covariates in wi and α1 is a parameter that determines the relationship
between the survival and longitudinal components.

The next example is if we want to study how the change of the longitudi-
nal data, that is the biomarker trajectory, affects the survival. The survival
submodel is then written as,

h(t|Mi(t),wi) =
λ1γ1t

γ1−1p exp(−λ1t
γ1) + λ2γ2t

γ2−1(1− p) exp(−λ2t
γ2)

p exp(−λ1tγ1) + (1− p) exp(−λ2tγ
2)

x exp{γTwi + α2m
′
i(t)},

(4.59)

with the first derivative of the longitudinal submodel m′i(t) = d
dtmi(t) and

α2 estimates the relationship between the change of biomarker trajectory
and the survival.

In the last example we include random effects into the survival submodel,
hence it can be written as,
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h(t|Mi(t),wi) =
λ1γ1t

γ1−1p exp(−λ1t
γ1) + λ2γ2t

γ2−1(1− p) exp(−λ2t
γ2)

p exp(−λ1tγ1) + (1− p) exp(−λ2tγ
2)

x exp{γTwi + α3(β0 + b0i)},
(4.60)

where β0 denotes the intercept such that for a one unit increase in the
biomarker baseline value for subject i at t = 0, α3 denotes the log hazard
ratio.

4.8.2 Joint likelihood function

We define the likelihood function for a continuous biomarker as [8],

n∏
i=1

∫ ∞
−∞

mi∏
j=1

f{yi(tij)|bi; θ}

 f(bi|θ)f(Ti, di|bi; θ)dbi

 , (4.61)

where the conditional survival density f(Ti, di|bi, θ) is analogous to the def-
inition in Section 4.4,

f(Ti, di|bi, θ) = h(Ti, di|bi, θ)di x S(Ti, di|bi, θ), (4.62)

where h(Ti, di|bi, θ)di is defined as in Equation (4.58) and

S(Ti, di|bi, θ) = exp

(
−
∫ Ti

0
h(u, di|bi, θ)du

)
. (4.63)

The conditional normality density of the longitudinal response f{yi(tij)|bi, θ}
is given by

f{yi(tij)|bi, θ} =
1√

2πσ2
e

exp

{
− [yi(tij)−mi(tij)]

2

2σ2
e

}
. (4.64)

And, finally, the normal distribution of the random effects f(bi|θ) is

f(bi; θ) =
1

(2π|Σ|)q/2
exp

{
−bi

TΣ−1bi
2

}
, (4.65)

where q is the dimension of the vector with random effects, bi.
The full likelihood in Equation (4.61) can be estimated using the adaptive

Gauss-Hermite from Section 4.4.1, according to Crowther (2014) [8].
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5 Data analysis

In this section we are going to present the data used in this thesis as well
as the procedure to implement the joint model on these data. In Section 5.1
the cohort where the data are taken from is described, following by Section
5.2 in which the variables in the data are defined. In Section 5.3 we describe
the implementation details of the joint model using the R - package JM.

5.1 The AMORIS cohort

The data used in this thesis are taken from the AMORIS cohort at Karolinska
Institutet in Stockholm, Sweden. AMORIS is an abbreviation of Apolipopro-
tein related mortality risk. The observations in the cohort were collected
between 1985 and 1996, where the 812 073 subjects, 51 % women and 49 %
men [18], provided blood and urine samples which were then analysed at the
Central Automation Laboratory, (CALAB) in Stockholm [16], resulting in
about 35 million values. This large amount of subjects and laboratory values
allows the data to represent the population in Stockholm county in between
this year span as the total population then was about 1.6 million people in
Stockholm County [18]. Up until 2012, the follow-up has been updated with
information about mortality, cancer and hospitalisation. Not only does the
AMORIS cohort contain laboratory values, but for about 50% of the subject
it also contains information about smoking, physical activity, blood pressure
and BMI [17]. Half of the subjects included in the cohort were healthy, so the
laboratory values were either collected from yearly health check-ups, 26% of
the subjects, or occupational health care, 24%. The remaining 50 % were so
called outpatients, that is patients who are in need of medical care but do
not have to be hospitalised [18].

The AMORIS cohort differs from the general population of Stockholm
County based on year 1990 in a way that the mean age of the first given
observation in AMORIS was 42.6 years and the mean age in Stockholm was
38.4 years. Also the age distribution of the AMORIS cohort differs from the
true age distribution in Stockholm. In AMORIS, 8 % of the subjects were
20 years or younger, 39 % were between 20 and 39 years, 38% between 40
and 59 years, 13 % between 60 and 79 years and finally 2 % of the subjects
were 80 years or older. The corresponding percentages in Stockholm County
were, 24 % who were 20 years or younger were, 31 % between 20 and 39
years old, 26% between 40 and 59 years, 16 % between 60 and 79 years and
3 % of the population were 80 years or older. [18]

5.2 Description of data

The AMORIS dataset that is used in this thesis consists of 266 037 observa-
tions and 29 variables which are the following;
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• Personal ID-number Each subject is assigned an individual identi-
fication number, this to distinguish the subjects.

• Sex The sex of the subjects where 1 denotes a man and 2 a woman.

• Date of birth The date of birth of each subject, on the format
"YYYY-MM-DD".

• Sampling date The date of examinations for each subject.

• Sequence number The order number of sampling. For example,
Subject with ID-number 7 had four samples at different time points,
so the sequence number of the first sampling date will be 1, the number
for the second is denoted 2 and so on.

• Age The age of the subject at the sampling date.

• BMI Body mass index, but is missing for the majority of subjects.

• First emigration after sampling If the subject moves to another
country they leave the study and the date of emigration is recorded.

• Date of death For the individuals who have died, the date of death
is recorded. If a subject has emigrated, the date of death is a missing
value as no further information of these individuals are recorded.

• Underlying cause of death For those subjects who have died, the
cause of death are uniquely coded. In this dataset, there are 1625
different causes of death, for example, subject no. 604 had cause of
death J449 which means that this person died of the lung disease
chronic obstructive pulmonary disease [44].

• Last date for FoB/RTB FoB (Folk- och bostadsräkningen) stands
for the people and and housing census and RTB (Registret över total-
befolkningen) is the register of the total population [65]. At the end
of each year, all Swedish residents are registered, that is, this variable
stands for the last year that the individual was registered in Sweden.
For example, subject no. 103 died in year 2001, so the last year this
individual was registered was in "2000-12-31". This dataset contains
data up until 2012, so those who have not died have a last date for
FoB/RTB equal to "2011-12-31".

• Fasting status Before the examination, each subject were asked if
they had eaten on the day or the night before the examination.

• S-Apolipoprotein A (g/L) Apolipoprotein A is a protein that is a
part of the HDL cholesterol. This cholesterol is good for the body as it
decreases the fat storage in the blood vessels by transporting the excess
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cholesterol in the cells to the liver [75]. A high value of Apolipoprotein
A indicates a low risk for heart diseases and a low value of under 1.25
g/L for women and 1.15 g/L for men is associated with a high risk of
cardiovascular disease [61].

• S-Apolipoprotein B (g/L) Apolipoprotein B is a carrier protein
that is included in the transport of the LDL-cholesterol [76]. LDL
contains high values of cholesterol so when it is transported, it easily
loses cholesterol along the way that gets stuck in the vessel walls, this
causes cardiovascular disease [31]. An Apolipoprotein B value higher
than 0.9 g/L indicates a higher risk of developing a cardiovascular
disease [62].

• S-Cholesterol (mmol/L) S-cholesterol is a measure of the total
cholesterol, that is both the "good" cholesterol, HDL, and the "bad"
cholesterol, LDL. A total cholesterol value of under 5.2 mmol/L (1 g/L
= 0.129116 mmol/L) is considered to be a good value for a healthy
person [34].

• fs-Triglycerider (mmol/L) Triglycerides are, together with the choles-
terol, the fat in the blood. Triglycerides are an important source of
energy and are produced in the liver and by the intake of food such as
diary products, meat and fats. A healthy person should have triglyc-
eride levels under 1.7 mmol/L. High values increase the risk of cardio-
vascular diseases and factors that cause high levels could be a diet that
mainly consist of sugars, meat and diary togehter with poor physical
activity, or the reason for high values cold be genetic [28].

• fs-Glucose (mmol/L) When we eat bread, pasta, fruits and vegeta-
bles, the carbohydrates in these foods are converted to glucose. Glucose
circulates in the blood system and is the source of energy to the cells,
the brain and the nervous system. A hormone called insulin that is
produced in the pancreas, transports the glucose to the cells. A person
who has diabetes has a low production of insulin so the cells does not
obtain the energy, hence the glucose levels in the blood are higher [77].
A non-diabetic healthy person should have a glucose level between 4.0
mmol/L - 5.9 mmol/L before meals and less than 7.9 mmol/L after
meal. For a diabetic, the levels before a meal are between 4 and 7
mmol/L and between 5 and 9 mmol/L after a meal. A diabetic person
with high levels of glucose over a long period of time have an increase
risk of developing heart disease, kidney disease or stroke [12].

• S-Haptoglobin (g/L) The red blood cells transport oxygen from the
lungs to the rest of the body. By time, the red blood cells are destroyed
and release a protein called hemoglobin. The haptaglobin binds with
the hemoglobin and transports it to the liver where it is removed from
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the body. If the red blood cells are destructed faster than they are
produced, the haptaglobin levels will decrease. Low levels indicate
a developement of hemolytic anemia. This condition can result in
dizziness, fatigue or increased heart rate [57]. The haptaglobin levels
for a healthy adult should be between 0.24 g/L and 1.9 g/L [63].

• S-CRP (mg/L) Another protein found in the blod is the C-reactive
protein (CRP) which is part of the immune system that is produced
from the liver. The CRP indicates if the body is infected, when a dis-
ease or inflammation is developing, the CRP value increases. A highly
sensitive CRP measures the risk of cardiovascular diseases. A CRP
level that is higher than 3 mg/L indicates a high risk for developing
cardiovascular disease. A level higher than 10 mg/L indicates that
there is an ongoing infection in the body such as a cold, the individ-
ual is a smoker, has diabetes or is obese. Therefore, interpretation
about cardiovascular diseases must be made with caution when the
CRP value is higher than 10 mg/L [78].

• LDL-C-Jr (mmol/L)

Low-density lipoprotein-cholesterol, LDL-C is known as the "bad" choles-
terol as it leaves behind cholesterol in the blood vessels that eventually
clogs the blood vessels which leads to cardiovascular diseases. For a
healthy person, the LDL value should be below 3.4 mmol/L [34].

• HDL-C-Jr (mmol/L)

High density lipoproteins-cholesterol, HDL-C is known as the "good"
cholesterol. The cholesterol decreases the amount of cholesterol in the
blood vessels by transporting the excess to the liver where it is removed
from the body [75]. A low value of HDL means that the blood vessels
have an excess of cholesterol, which causes them to clog and this leads
to cardiovascular diseases. A healthy man should have a HDL vaule
between 1.1-1.8 mmol/L and a healthy woman should have a level
between 1.2-2.0 mmol/L [4].

• S-Albumin (g/L)

Albumin is a protein, produced in the liver that transports vitamins,
hormones, enzymes and medicines through the body. A low value of
albumin is an indication of a liver or kidney disease because as the
kidney begins to fail, the albumin will leave the body trough the urine.
For a healthy person without any liver or kidney disease has an albumin
level between 34 g/L and 54 g/L [2].

• First date for AAA The aorta is the blood vessel that goes from the
heart down to the chest and stomach where it then divides in two and
goes down the leg. The aorta is the main blood vessel that provides
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blood to the whole body. The walls of the aorta can be weakened with
age, which causes the walls to bulge out, called aneurysm, so that the
aorta swells up. This condition is called abdominal aortic aneurysm,
(AAA) [37]. The size of the AAA can vary, if it is between 3 cm and
5.4 cm, regularly screenings must be made to control the size. If the
AAA is larger than 5.5 cm a surgery must be performed, as there is
a high risk that the aorta will burst. If the aorta bursts it can lead
to internal bleeding which is very severe. This variable states the date
that the subject was diagnosed with AAA.

• First diagnosis of AAA

The diagnosis for AAA is in this dataset coded differently depending
on the ICD, indicates International Classification of Disease. The three
editions of ICD that are relevant for this dataset are the eighth edition,
ICD-8, which was used until the end of 1986, the ninth edition, ICD-9,
which was used between 1987 and 1996, and lastly the 10th edition
denoted ICD-10 which has been used since 1997. The code for AAA in
ICD-9 is 441D and 441E and in ICD-10, it is coded I713, I714, I715 or
I716. However, in this data there is only occurence of I714 in ICD-10.
The code 44iD in ICD-9 can also stand for a rupture AAA. [39].

• First date for CVD

The date where the subject was diagnosed with a cardiovascular dis-
ease, if not diagnosed, the date is a missing value.

• First diagnosis for CVD

The type of CVD the subject was diagnosed with. For example the
code I619 stands for a intracerebral haemorrhage [14] which is caused
when a blood vessel in the brain bursts and blood is leaking into the
brain, this can lead to severe damage to the brain [36].

• First date for IHD

The date when some subjects were diagnosed with ischemic heart dis-
ease, IHD. An IHD is when the arteries that transport blood to the
heart are narrowed io that the heart will not get enough blood and
oxygen. If the arteries are completely clogged and the heart does not
get any blood at all, the heart muscle will die and it will result in a
myocardial infarction or heart attack [35].

• First diagnosis for IHD There are different types of IHD diagnosis
that all have a unique code. For example, I21.9 denotes an acute
myocardial infarction and I21.4B is an acute subendocardial infarction
[13].
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• Socioeconomic index

The individuals in the data are given a socioeconomic index, (SEI).
The index used was defined in the book published by SCB, the Central
Bureau of Statistics in Sweden [66]. The index in the data are based
on the occupation that was registered in FoB in 1990 so the index
indicates the occupations of the individuals in the data in November
1990. The socioeconomic index is the following:

– 11 Unskilled workers, producing goods

– 12 Unskilled workers, producing services

– 21 Skilled workers, producing goods

– 22 Skilled workers producing services

– 33 Lower official I (level of education; less than 2 years)

– 36 Lower official I (level of education; 2 but not 3 years)

– 46 Middle-level official

– 56 Senior official

– 57 Leading positions

– 60 Freelancers with an academic education

– 79 Entrepreneurs not including farmers

– 89 Farmers

5.3 Joint models in R - The JM package

In this section, we will go through the procedure to fit the joint model for
survival and longitudinal data on the AMORIS dataset using the statistical
computing software RStudio [59]. To implement the joint model on the data,
the R package JM developed by Rizopoulos (2018) [55] will be utilised.

The first step is to specify and fit the linear mixed effects model for the
longitudinal data using the function lme() from the nlme package in R [48].
The main argument in this function is to specify the random effects and fixed
effects [54].

The survival data are then fitted by a Cox model with the function
coxph() from the survival package in R [69]. The main argument in this
function is the formula where we specify the relationship between the ob-
served event times and covariates [54].

The results from the linear mixed effects model and the Cox model are
then applied to the jointModel() function from the JM package. The
structure of the fitted joint model will be the same as if the linear mixed
effects model and Cox model were fitted separately, but with the joint model
function, the survival submodel will contain the estimated true longitudinal
outcome mi(t) in the linear predictor, as described in Section 4.1.1.

50



The JM package includes various options for the model specification,
that is, how the survival submodel should be fitted and which type of nu-
merical integration method to be used. For this analysis, the method called
"piecewise-PH-aGH" will be used which follows the theory of the adaptive
Gauss-Hermite rule described in Section 4.4.1. Other methods can also be
used to fit the joint model by, for example, applying a spline approximation
or a Weibull assumption to the baseline risk function. Readers interested in
the other possible methods are referred to Joint Models for Longitudinal and
Time-to-Event Data With Applications in R [54] by Rizopoulos (2012b) or
to his article JM: An R Package for the Joint Modelling of Longitudinal and
Time-to-Event Data [52].

The motivation to use the adaptive Gauss-Hermite quadrature rule in-
stead of the simple Gauss-Hermite quadrature rule is based from the result of
the article Fast fitting of joint models for longitudinal and event time data us-
ing a pseudo-adaptive Gaussian quadrature rule by Rizopoulos (2012a) [53].
In this article Rizopoulos investigate the computational difference between
the two procedures where he concluded that the adaptive Gauss-Hermite
quadrature was 18 times faster to compute than the simple Gauss-Hermite
and both of the methods produced the same amount of bias.

To predict the probability of survival for the subjects who are still alive at
the end of the study we use the function survfitJM() from the JM package.
This function takes the joint model as argument to predict the conditional
survival probabilities πi(u|t) that we defined in Section 4.5. The function
follows the Monte Carlo simulation scheme as presented in Rizopoulos (2010)
[52] where we use the default of 200 Monte Carlo samples.

In addition to the predicted survival probabilities we can also analyse
how the survival probability changes over time as more longitudinal measure-
ments are collected from the subjects. In Section 4.5 we mentioned that the
predicted survival probabilities follows a time dynamic procedure. As more
observations from the subjects are obtained, the survival probabilities are
updated and these are called dynamic predictions of the conditional survival
probabilities. To illustrate this theory, we construct a for-loop in R which
updates πi(u|t) for a subject after each additional longitudinal measurement
of the longitudinal measurements, following Chapter 7 in Rizopoulos (2012b)
[54].

In Section 4.6.1 we defined how to calculate the residuals for the longi-
tudinal and survival part of the joint model. In this section we are going
to illustrate these residuals of the joint model, following Chapter 6 in Ri-
zopoulos (2012b) [54]. If we simply plot the joint model in R we obtain
three residual plots representing the residual values versus the fitted values,
a Q-Q plot of the subject specific residuals, the marginal survival and the
marginal cumulative hazard which is calculated as H(t) = − logS(t). To
plot the marginal survival, the following expression is used [54],
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S(t) =

∫
Si(t|bi; θ̂)p(bi; θ̂)dbi ≈

∑
i Si(t|b̂i; θ̂)

n
. (5.1)

The residuals from the longitudinal part, that is, the subject specific and
marginal residuals defined in Section 4.6.1, are obtained using the functions
residuals() and fitted() from base R. The standardised marginal residuals
rysmi and the marginal fitted values Xiβ̂ are plotted by specifying the type
to stand-Marginal and Marginal respectively. Similarly, the standardised
subject specific residuals ryssi and the subject specific fitted values are plotted
by specifying the type to stand-Subject and Subject respectively.

The martingale residual defined in Section 4.6.2 for the survival part of
the joint model is also fitted using the function residuals() but we specify
the type of residual to martingale.

6 Results of joint model on AMORIS data

The dataset that we are going to use to fit the joint model is a subset
from the AMORIS cohort with 266 037 observations and 29 variables, which
were defined in Section 5.2. To illustrate the joint model approach on the
AMORIS data, we will perform a simple study where the variable Age will
be the predictor variable.

The AMORIS data contains numerous variables with longitudinal mea-
surements and predictor variables. As the dataset contains a large number
of observations, we will choose to implement the joint model on a sample of
these data. This to be able to perform a simple, but illustrative, example on
how the theory of joint models is used on real data that is not computation-
ally heavy. To create a sample of the data, we will first separate men and
women and choose to work with the dataset with observations from the men
population. Following the results in Figure 4 we observe that the age span
of the male dataset is between 30 and 95 and that the subjects provided
measurements mainly between the ages of 40 and 65. We then choose to
include the measurements obtained between the age of 40 and 50 in our data
analysis as this is an age span with many observations.
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Figure 4: Distribution of the age of the subjects at observation.

The selection of longitudinal biomarkers that we are going to analyse are
Apolipoprotein A, Apolipoprotein B, total cholesterol and triglycerides, so
only the subjects who have measurements from all of these biomarkers will
be included in the data-subset. Before the examination, each subject were
asked if they had eaten on the day or the night before the examination and
we choose to only include the subjects who had not eaten the night before
as this might affect the biomarker measurements. This simplification of the
data results in a dataset of 33 930 observations from 23 768 subjects. The
number of subjects that experienced the event, that is the subjects who have
died at the end of the study, is 2444 individuals, which corresponds to 89.7%
censoring.

Before we get into the joint model, we will fit the extended Cox model
from Section 2.8.3. We decide to include this model as well to compare the
results of the α parameter that yields the association between the risk of
death and a one unit increase of the biomarkers, between the Cox and the
joint model. The extended Cox model takes the longitudinal biomarkers
separately as an exogenous time-dependent covariate and we will control for
the age variable. The survival model is the following,

hi(t) = h0(t) exp{γAge + αyi(t)}, (6.1)

where yi(t) is the observed value of the biomarker at time t.
In the longitudinal part of the joint model, we will fit linear mixed

effects models on each of the longitudinal biomarkers, Apolipoprotein A,
Apolipoprotein B, total cholesterol and triglycerides. The predictor variable
in this model will be the age of each subject at observation time. Using the
definition of a longitudinal submodel in Equations (4.5) and (4.6), the linear
mixed model is defined as
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yi(t) = mi(t) + εi(t)

= β0 + β1Age + bi0 + bi1Age + εi(t)
(6.2)

In the fixed effect part, the main effect of age is included and in the
random effect design matrix we have an intercept and age term.

For the survival part of the joint model we will analyse if the subjects
are alive or dead at the end of the study. The subjects entered the study
when they were between 40 and 50 years old which they were somewhere in
the years 1985 and 1996. The end of the study is the 31st December 2011 as
this is the last date that we have information if they are alive or not. The
survival submodel is defined as,

hi(t) = h0(t) exp{γAge + αmi(t)} (6.3)

As we use a piecewise adaptive Gauss-Hermite quadrature rule to model
the data, the baseline risk function, h0(t) is assumed to be piecewise con-
stant. The number of knots that we will use are six which are placed at
equal intervals of the observed event times [54]. The association parame-
ter α determines the association between the true value of the longitudinal
biomarkers and the risk for an event at time t [53].

To fit the data to the jointModel() function in the JM package, we first
have to specify and fit the linear mixed effects model for the longitudinal data
and the Cox models for the survival data and then apply the results to the
joint model function.

In the remaining of this section, we will present the results obtained
from analysing the AMORIS data of men who have provided longitudinal
measurements of Apolipoprotein A, Apolipoprotein B, total cholesterol and
triglycerides between the age 40 and 50. The results will include analyses
of the extended Cox model, the joint model with age as predictor variable,
predicted and dynamic survival probabilities from a selection of subjects and
finally some diagnostic plots in the form of residuals. But first, we provide
some illustrations of the dataset.

6.1 Illustration of data

To illustrate the dataset that we are going to analyse, we plot the survival
probabilities. In Figure 5 the survival probabilities for the whole dataset,
both men and women, are illustrated and we can observe that the probability
of survival when the subjects are aged 0 to about 40 years is 1. Then there
is a small decrease up until age 60 where there the probability of survival
steeply decreases until the age of 100 when the probability is equal to 0.
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Figure 5: Survival probability for whole data.

The survival probabilities for the dataset that we are going to use are
illustrated in Figure 6. At first, we observe a similar pattern as in the
previous figure, that the survival probability is equal to 1 until about the
age of 40. Then the survival probability decreases to about 0.7 at the age of
80.

Figure 6: Survival probability for men aged 40-50.

Table 1 presents some statistics of the age at death of the 2444 individuals
who died by the end of the study. The mean age at death was 61 years old,
the median 61.4 and the subject who lived the longest was 76.6 years old,
and the one who died the youngest was 41.8 years old.

55



Table 1: Statistics of age at death of the subjects who died by the end of
the study.

Mean Median Max Min

Age at death 61 61.4 76.6 41.8

In Table 2 we have some statistics of the age of the subjects who were
alive at the end of the study. The mean and median age was 66 years, the
maximum age was 77.9 years and the minimum age was 41 years.

Table 2: Statistics of age of the subjects who were alive at the end of the
study.

Mean Median Max Min

Age at death 66 66 77.9 41

6.2 Apolipoprotein A

Figure 7 presents the longitudinal measurements of Apolipoprotein A for 12
subjects who all, but the last one in the right corner, were censored, that
is they were alive at the end of the study. These subjects were selected
because they were the top 12 subjects with the most number of follow-ups,
this enables us to easier observe a pattern of the measurements over time.
From the description of data in Section 5.2, we know that a Apolipoprotein
A value of over 1.15 g/L for men indicates a low risk for heart disease and
a value under this threshold is associated with a high risk of developing
cardiovascular disease [61]. From the figure we can observe that almost all
subjects have measurements that are higher than 1.15 g/L and according
to the data, only subject number 693 384 had a heart disease. None of the
subjects in the middle column nor the subject in the right bottom corner
developed a cardiovascular disease, and studying the graphs in the figure, we
can observe that none of these subjects had values lower than 1.15 g/L.
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Figure 7: Longitudinal measurements of Apolipoprotein A for some subjects.

Before we fit and present the results from the joint model, we fit the
extended Cox model from Equation (6.1) with the resulting parameter esti-
mates presented in Table 3.

Table 3: Parameter estimates from extended Cox model fit on Apolipopro-
tein A.

coef exp(coef) se(coef) z p
Age -0.03 0.97 0.01 -5.60 0.00

S-ApoA -0.12 0.89 0.08 -1.42 0.16

The estimate for Apolipoprotein A in Table 3 indicates that there is a
exp(−α) = 1.13 fold increase , with a 95% confidence interval of (0.95, 1.32),
in the risk of death for a one unit decrease in Apolipoprotein A.

The joint model for longitudinal and survival data as defined in Equa-
tions (6.2) and (6.3) was fitted to the data with Apolipoprotein A as the
longitudinal observation. The result of this fit is presented in Table 4.
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Table 4: Parameter estimates for Apolipoprotein A, standard errors and p-
values under the joint modeling analysis. Σij denote the ij-element of the
covariance matrix for the random effects.

Event Process Longitudinal Process
Value Std.Err p-value Value Std.Err p-value

Age -0.0357 0.0070 < 0.0001 (Intercept) 0.9606 0.0157 < 0.0001
Assoct 2.9436 0.1333 < 0.0001 Age 0.0088 0.0003 < 0.0001
log(ξ1) -9.4061 0.3657 log(σ) -1.9631 0.0072
log(ξ2) -7.7585 0.3950
log(ξ3) -7.7306 0.4025 Σ11 0.0297 0.0005
log(ξ4) -7.4600 0.4083 Σ12 -0.0002 0.0000
log(ξ5) -7.5776 0.4167 Σ22 0.0000 0.0000
log(ξ6) -7.1440 0.4222
log(ξ7) -7.0706 0.4343

From the parameter estimates in Table 4 we observe that a one unit
increase of Apolipoprotein A will result in a exp(2.94) = 18.98 fold increase,
95% confidence interval (14.62, 24.65), risk of death for a subject. The
estimates ξi, i = 1, ..., 7 are the parameters from the piecewise-constant
baseline risk function in Equation (4.3). The standard error of the covariance
matrix Σ12 in the longitudinal process is 0.0000042 and the value of Σ22 is
0.0000064 with standard error 0.0000001. The estimated parameters in the
longitudinal process are not values that can be interpreted, so we continue
to predict the survival probabilities.

Using the function survfitJM() from the JM package we can predict
the survival probabilities for subjects who have not yet died at the end of
the study. From Table 1 we know that the maximum age of the subjects
who died at the end of the study was 76.6 years old. This means that for the
prediction of survival probability, we will estimate the probability that the
subjects will be older than 76.6 years old. We select to study the conditional
survival probability for four subjects in the data. The resulting survival
probabilities are illustrated in Figure 8
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Figure 8: Predicted survival probabilities from joint model fit on Apolipopro-
tein A.

The red dashed line in Figure 8 represents the median estimator from
Equation (4.34) and the solid green line is the mean estimator from Equation
(4.35). The black dotted lines is a 95% confidence interval. Studying the
four predicted survival probabilities of four different subjects we can observe
that subject 158 677 has the highest survival probability of about 0.9 at
the age of 80. As we move along to the other three subjects, the predicted
survival probability decreases gradually to a survival probability of about
0.4 for subject 527 044. If we look back at the longitudinal outcomes for
Apolipoprotein A in Figure 7 for these four subjects, we can observe that
subject 158 677, which had the highest survival probability, had very low
Apolipoprotein A and subject 527 044 with the lowest survival probability
had the highest Apolipoprotein A values out of these four subjects.

Based on the predicted survival probabilities we can transform these es-
timates to obtain subject specific log survival and cumulative risk. In Figure
9, the predicted survival probability, the log survival and the cumulative risk
are illustrated for subject 158 677.
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Figure 9: Transformations of predicted survival probabilities for subject 158
677 based on 200 Monte Carlo samples from joint model for Apolipoprotein
A.

The first plot is the predicted survival from Figure 9, the second is the
survival on the log scale and the last plot is the cumulative risk for subject
158 677. As before, the dashed red line is the median estimate, the solid green
line is the mean estimate and the dotted black line is the 95% confidence
interval. The cumulative risk is non existent up until the age of 50 when
there is a small increase, which after the age of 60 rapidly increases.

To illustrate the dynamic subject specific survival probabilities we con-
struct a for-loop in R which updates πi(u|t) for patient 158 677 after each
additional longitudinal measurement of Apolipoprotein A. The results are
displayed in Figure 10.
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Figure 10: Dynamic survival probabilities for subject 158 677 during follow-
up from Apolipoprotein A measurements.

The vertical dotted lines in Figure 10 is the time of the last measurement
of Apolipoprotein A at each follow-up. The left side of the vertical line
presents the fitted longitudinal trajectory of Apolipoprotein A and the value
of these measurements. To the right of the vertical line we have the predicted
survival probability at the time of follow-up where the solid green line is the
median estimator and the dashed lines is the 95% confidence interval. The
first plot in Figure 10 presents the predicted survival after the first follow-up,
the second after the 5th follow-up where we have 5 longitudinal measurements
available to predict the survival probability. Then follows the predicted
survival probability after the 10th follow-up and lastly after the 18th. This
subject had a total of 19 longitudinal measurements of Apolipoprotein A
in this time span. Studying these four plots we can observe that the more
longitudinal measurements of Apolipoprotein A that are collected, the higher
is the survival probability for subject 158 677.

Figure 11 below illustrates three diagnostic plots for the fitted joint model
obtained from using the function plot() on the joint model. The black dotted
points in the normal QQ-plot declares that the data follows the dotted line
in the middle of the plots, but at the two ends the points deviate from the
line. This means that this data have more extreme values than if we would
have expected it to be of a normal distribution [23]. The marginal survival

is calculated as
∑
i Si(t|b̂;θ̂)

n and the cumulative hazard as H(t) = − logS(t)
as we described in Section 5.3. Note that the marginal survival follows the
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pattern from the subject specific survivals in Figure 8.

Figure 11: Standard diagnostic plots of the joint model with Apolipoprotein
A as longitudinal data.

In Section 4.6.1 we defined two residuals for the longitudinal data, namely
the subject specific residuals and the marginal residuals. In Figure 12 these
two residuals are illustrated as well as the martingale residual was defined in
Section 4.6.2 as a residual for the survival data. The y-axis on the top left
plot illustrates the subject specific residuals for the longitudinal part with
the fitted values on the x-axis. The shape of the points in this plot shows
that as the fitted values increase, the variation of the residuals increase as
well. As the predictor variable is age, this suggests that there is a variability
between the fitted values and the predictor variable age. The second plot
illustrates the marginal residuals vs the fitted values. The red line is a
fitted loess curve which is a vertical line following zero. This suggests that
the covariance for each subject is on the form Vi from Section 4.6.1. The
final plot illustrates the martingale residuals and fitted values where we can
observe that for larger values of Apolipoprotein A the fitted loess curve in
red deviates from zero,
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Figure 12: Diagnostic plots of the joint model with Apolipoprotein A as
longitudinal data.

6.3 Apolipoprotein B

In Figure 13 we have a collection of plots representing longitudinal measure-
ments of Apolipoprotein B for 12 different subjects, the same subjects as in
Figure 7. From Section 5.2 we know that a value of Apolipoprotein B higher
than 0.9 g/L indicates a higher risk of developing a cardiovascular disease
[62]. We can observe that all the subjects in the first and last row have
values over this threshold. Only the two subjects in the middle, subject 491
616 and 527 044 have values lower than 0.9 g/L. From the data, none of the
subjects from the middle row, that is subjects 374 156, 491 616, 527 044,
536 098 nor subject 371 766 had developed a cardiovascular disease.
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Figure 13: Longitudinal measurements of Apolipoprotein B for some sub-
jects.

We begin the analysis by fitting the data to the extended Cox model to
later compare the results obtained from the joint model.

Table 5: Parameter estimates from extended Cox model fit on Apolipopro-
tein B.

coef exp(coef) se(coef) z p
Age -0.04 0.96 0.01 -5.92 0.00

S-ApoB 0.30 1.35 0.05 6.61 0.00

The result of the extended Cox model in Table 5 indicates that the esti-
mate for Apolipoprotein B is 0.30 which means that there is a exp(0.30) =
1.35 fold increased risk, with a 95% confidence interval (1.24, 1.48), that the
ith subject dies when there is a one unit increase in Apolipoprotein B.

The joint model with Apolipoprotein B as longitudinal data and age
as predictor was fitted with the resulting parameter estimates presented in
Table 6.

64



Table 6: Parameter estimates for Apolipoprotein B, standard errors and p-
values under the joint modeling analysis. Σij denote the ij-element of the
covariance matrix for the random effects.

Event Process Longitudinal Process
Value Std.Err p-value Value Std.Err p-value

Age -0.0431 0.0071 < 0.0001 (Intercept) 0.6336 0.0250 < 0.0001
Assoct 1.9165 0.0643 < 0.0001 Age 0.0164 0.0005 < 0.0001
log(ξ1) -7.7093 0.3250 log(σ) -1.4331 0.0064
log(ξ2) -6.1812 0.3431
log(ξ3) -6.2027 0.3502 Σ11 0.0758 0.0012
log(ξ4) -5.9360 0.3558 Σ12 -0.0005 0.0000
log(ξ5) -6.0570 0.3642 Σ22 0.0000 0.0000
log(ξ6) -5.6302 0.3687
log(ξ7) -5.5307 0.3781

The parameter estimates for Apolipoprotein B from the joint model fit
in Table 6 states that for one unit increase of Apolipoprotein B, there is
a exp(1.92) = 6.80 fold , with a 95% confidence interval (5.99, 7.71), risk
of death. This value is considerably higher compared to the risk from the
extended Cox model in Table 5. The standard error of covariance matrix Σ12

is 0.00001 and the value of covariance matrix Σ22 is 0.00002 with standard
error equal to 0.0000002.

Figure 14 illustrates survival probabilities for four different subjects who
were all alive at the end of the study. The green solid line represents the
mean estimator from Equation (4.35), the red dashed line that coincide with
the green line is the median estimator defined in Equation (4.34) with a 95%
confidence interval.
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Figure 14: Predicted survival probabilities from joint model fit on
Apolipoprotein B.

Studying the four predicted survival probabilities of the four different
subjects we observe that the two top plots have a predicted survival prob-
ability at age 76.6 of approximately 0.7-0.8. The bottom two plots have
a predicted probability of 0.9 of surviving to age 76.6. If we compare the
survival probabilities with the longitudinal measurements of Apolipoprotein
B for these four subjects in Figure 13 we can conclude that subject 158 677
and 527 044 had low values of Apolipoprotein B and survival probabilities
of approximately 0.8 and 0.9 respectively. Subjects 491 616 and 164 278 had
high values of Apolipoprotein B with survival probabilities of approximately
0.7 and 0.9 respectively.

From the predicted survival probabilities we can transform obtain subject
specific log survival and cumulative risk based on 200 Monte Carlo samples.
Figure 15 illustrates the predicted survival probability, the log survival and
the cumulative risk for subject 158 677. The same pattern is observed for
the cumulative risk as the corresponding plot for Apolipoprotein A. In that
plot, the cumulative risk reached a maximum value of 0.10 while in Figure
15 we observe that the cumulative risk reaches a higher value of 0.25.
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Figure 15: Transformations of predicted survival probabilities for subject 158
677 based on 200 Monte Carlo samples from joint model for Apolipoprotein
B.

As was described for Figure 10 in the previous section 6.2, we plot the
dynamic survival probabilities for subject 158 677 during four follow-ups to
observe how the survival probability changes when more information about
this subject is known. Figure 16 presents the survival probability after follow-
up from Apolipoprotein B measurements.
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Figure 16: Dynamic survival probabilities for subject 158 677 during follow-
up from Apolipoprotein B measurements.

From the first plot in Figure 16 we observe that the survival probability
is 0.6 and the Apolipoprotein B measurement is almost 2 g/L which is higher
than the threshold value of 0.9 g/L. After follow-up 5 and 10, the probability
of survival has increased and the measurements have become lower than the
first measurements. In the last plot, after the 18th out of 19 follow-ups in this
age span, the survival probability has increased to 0.8 with Apolipoprotein
B measurements between 1 and 2 g/L.

The Q-Q plot from the diagnostic plots in Figure 17 shows that the data
follows a normal distribution but at the end tails it deviates from the line,
suggesting that we have more extreme values than the normal distribution
assumption. The marginal survival and marginal cumulative hazard follows
the same curves as the survival curve and cumulative hazard curve in Figure
15.
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Figure 17: Standard diagnostic plots of the joint model with Apolipoprotein
B as longitudinal data.

Figure 18 illustrates the residual plots of the subject specific and marginal
residuals for the longitudinal part and the martingale residuals for the sur-
vival part. From the shape of the points in this plot we observe clearly that
the variation increases as the fitted values increase. Thus, as the predic-
tor variable is age, this suggests that the measurement for Apolipoprotein B
varies depending on the age at measurement. The loess curve in the marginal
residual curve follows a horizontal line at zero which suggests a covariance
on the form Vi and from the martingale residual plot we can observe that
for larger values of Apolipoprotein B, the residual deviates from zero.
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Figure 18: Diagnostic plots of the joint model with Apolipoprotein B as
longitudinal data

6.4 Total cholesterol

In this section we repeat the analysis from Section 6.2 and 6.3 but with total
cholesterol as longitudinal measurements. To begin with, we study some lon-
gitudinal measurements of total cholesterol for 12 different subjects shown
in Figure 19, the same selection of subjects as in the previous sections. In
Section 5.2 the definition of total cholesterol was stated to be a measurement
of both the good and bad cholesterol. A total cholesterol value of under 5.2
mmol/L is characterised with a healthy person [34]. From the first row of
plots in Figure 19 we observe that almost all measurements of total choles-
terol for these four subject exceeds 5.2 mmol/L. In the second row we can
observe that subject 491 616 has the majority of measurements below this
threshold and subject 527 044 has some values under 5.2 mmol/L and the
remaining a bit above. The last row represents four subjects where three of
them have high total cholesterol measurements and the last two have some
measurements below the threshold and the remaining just above.

70



Figure 19: Longitudinal measurements of total cholesterol for some subjects.

Table 7 represents the results from the extended Cox model with age and
total cholesterol as predictors. From the result we can depict that for a one
unit increase of total cholesterol, there is a exp(0.08) = 1.08 fold, with a 95%
confidence interval (1.05, 1.11), increased risk of death.

Table 7: Parameter estimates from extended Cox model fit on total choles-
terol.

coef exp(coef) se(coef) z p
Age -0.04 0.96 0.01 -6.00 0.00
TC 0.08 1.08 0.01 5.34 0.00

We proceed to study the results from the joint model where we used the
total cholesterol as longitudinal biomarker.
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Event Process Longitudinal Process
Value Std.Err p-value Value Std.Err p-value

Age -0.0408 0.0071 < 0.0001 (Intercept) 3.4533 0.0760 < 0.0001
Assoct 0.6314 0.0210 < 0.0001 Age 0.0589 0.0017 < 0.0001
log(ξ1) -9.0475 0.3517 log(σ) -0.3925 0.0067
log(ξ2) -7.5609 0.3743
log(ξ3) -7.6078 0.3816 Σ11 1.1140 0.0144
log(ξ4) -7.3225 0.3871 Σ12 -0.0052 0.0001
log(ξ5) -7.4289 0.3951 Σ22 0.0001 0.0000
log(ξ6) -6.9947 0.3999
log(ξ7) -6.8758 0.4097

Table 8: Parameter estimates for total cholesterol, standard errors and p-
values under the joint modeling analysis. Σij denote the ij-element of the
covariance matrix for the random effects.

From Table 8 we have that the parameter estimate of the parameter
α, describing the association between the longitudinal data and the risk of
an event, is equal to 0.63. This means that there is a exp(0.63) = 1.88
fold, with a 95% confidence interval of (1.80, 1.96), increase that the ith

subject experience the event, with the event being death, if there is a one
unit increase of total cholesterol. Contrary to the analysis of Apolipoprotein
A and B, this value is not far from the one obtained from the extended Cox
model. Lastly, the standard error of the covariance matrix Σ22 is 0.0000006.

The predicted survival probabilities for four subjects who did not expe-
rience the event at the end of the study is illustrated in Figure 20.
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Figure 20: Predicted survival probabilities from joint model fit on total
cholesterol.

The top left plot illustrates that the predicted survival probability for
subject 158 677 is approximately 0.8. The following top plot indicates that
subject 491 616 has a lower survival probability of 0.7. The predicted value
for the first subject of the two bottom plots is between 0.8 and 0.9 and the
last plot shows a survival probability of 0.8. Comparing these results with
the corresponding plots for Apolipoprotein A, the predicted survivals when
we model on total cholesterol are all slightly higher. The greatest difference
in survival probability is found for subject 527 044 who in Figure 20 has
a predicted value of 0.8 whilst when we model for Apolipoprotein A the
probability is 0.3. Comparing the probabilities the results when we model
on Apolipoprotein B, the survivals are approximately the same.

In Figure 21 the predicted survival for subject 158 677 is transformed
into the log survival and the cumulative risk. In the plot for cumulative risk,
we observe that the risk is at 0 up until the subject reaches the age of 60,
then there is a steep increase of the risk to a value of 0.20, a value between
the cumulative risks from the previous sections.
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Figure 21: Transformations of predicted survival probabilities for subject 158
677 based on 200 Monte Carlo samples from joint model for total cholesterol.

Figure 22 illustrates the dynamic survival probabilities for subject 158
677 after four different follow-ups.
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Figure 22: Dynamic survival probabilities for subject 158 677 during follow-
up from total cholesterol measurements.

Similarly to the corresponding plots in previous sections, the survival
probability in Figure 22 is low after the first follow-up and then increases
as more longitudinal measurements are obtained from the subject and hence
more information is known to better predict the survival probability. For
this specific subject, the measurements for total cholesterol are roughly the
same for all follow-ups and all the measurements are slightly higher than the
threshold value of 5.2 mmol/L.

The descriptive plots in Figure 23 suggests that the data is more extreme
than the normal distribution assumption as the two endpoints varies from
the straight line. The survival and cumulative hazard curves in Figure 21
resembles the marginal survival and marginal cumulative hazard in the plots
below.
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Figure 23: Standard diagnostic plots of the joint model with total cholesterol
as longitudinal data.

As for the residual plots of Apolipoprotein B, in the first residual plot
for total cholesterol in Figure 24, the variability of the residual increases as
the fitted values increase suggesting that the variability of the measurements
for total cholesterol for the different ages, between 40 and 50, in the fitted
joint model is not the same. The horizontal fitted loess curve in the marginal
residual plot indicates that the covariance for each subject is on the same
form. The fitted loess curve follows the horizontally zero line at first but for
the largest fitted values, it deviates a little from zero.
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Figure 24: Diagnostic plots of the joint model with total cholesterol as lon-
gitudinal data.

6.5 Triglycerides

Now we have reached the last analysis where we fit the joint model with
triglycerides as longitudinal biomarker. Triglycerides are the fat in the blood
and a healthy person should have a value under 1.7 mmol/L [28]. Figure 25
illustrates triglycerides measurements from different follow-ups together with
the age of the subjects at the time of follow-up. The selection of subjects
is the same as for the previous analysis. From the first row of subjects
we observe that all of them have some measurements below the threshold
value of 1.7 mmol/L and that the spread of values is quite wide and varies
between approximately 0.5 and 4.5. The measurements for the first three
subjects in the middle row are all below 1.7 mmol/L but the last subject has
values that are all higher. Finally, in the last row, the first two subjects have
all measurements below the threshold value while the last two have higher
values of triglycerides and hence have higher risk of developing cardiovascular
diseases. From data we know that all subjects expect the ones in the middle
row and subject 371 766, had developed cardiovascular disease by the end of
the study.
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Figure 25: Longitudinal measurements of triglycerides for some subjects.

Table 9 presents the parameter estimates obtained from the extended
Cox model where we modelled the survival with age and triglycerides as
predictors. From this table we can declare that for a one unit increase of
triglycerides, there is a exp(0.12) = 1.12 fold, with a 95% confidence interval
of (1.10, 1.14), increase to experience the event.

Table 9: Parameter estimates from extended Cox model fit on triglycerides.
coef exp(coef) se(coef) z p

Age -0.04 0.96 0.01 -5.85 0.00
TG 0.12 1.12 0.01 13.48 0.00

The results from the joint model fit with age as predictor variable are
presented in Table 10.
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Table 10: Parameter estimates for triglycerides, standard errors and p-values
under the joint modeling analysis. Σij denote the ij-element of the covari-
ance matrix for the random effects.

Event Process Longitudinal Process
Value Std.Err p-value Value Std.Err p-value

Age -0.0189 0.0070 0.0073 (Intercept) -0.7775 0.1000 < 0.0001
Assoct 0.4352 0.0116 < 0.0001 Age 0.0548 0.0022 < 0.0001
log(ξ1) -6.9510 0.3182 log(σ) -0.0643 0.0060
log(ξ2) -5.2201 0.3299
log(ξ3) -5.1873 0.3363 Σ11 1.1232 0.0171
log(ξ4) -4.8984 0.3413 Σ12 -0.0029 0.0001
log(ξ5) -5.0039 0.3492 Σ22 0.0000 0.0000
log(ξ6) -4.5349 0.3521
log(ξ7) -4.3849 0.3604

The estimate for the association parameter in from the joint model fit
presented in Table 10 indicates a exp(0.44) = 1.54 fold, with a 95% confi-
dence interval of (1.51, 1.58), increased risk of death for a one unit increase
in triglycerides. This estimate gave a similar increase of risk compared to the
result from the extended Cox regression model. The value of the covariance
matrix Σ22 is 0.00004 with standard error 0.0000004.

Figure 26 illustrates the predicted survival probabilities for four differ-
ent subjects who were alive at the end of the study. We can observe that
the probabilities are approximately the same, at a value of 0.8, for all the
subjects.
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Figure 26: Predicted survival probabilities from joint model fit on triglyc-
erides.

The predicted survival probabilities are in the next plots, Figure 27 trans-
formed into log survival and cumulative risk. Similarly to what we previously
have observed, the cumulative risk is at 0 until the age of 60 when there is
a large increase in the risk of death.
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Figure 27: Transformations of predicted survival probabilities for subject 158
677 based on 200 Monte Carlo samples from joint model for triglycerides.

Figure 28 illustrates how the survival probability for subject 158 677
evolves over time as more information about the level of triglycerides are
added. After the first follow-up, the survival probability is almost 0.6 with
the triglyceride value over 1.7 mmol/L. At the fifth follow-up, the triglyceride
levels are lower and the survival probability has increases to about 0.7. Then
finally after the 18th follow-up, the survival probability has reached almost
0.8.
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Figure 28: Dynamic survival probabilities for subject 158 677 during follow-
up from triglycerides measurements.

Figure 29 illustrates some diagnostic plots of the fitted model. The Q-Q
plot illustrates an even more deviation from the normal distribution than the
previous Q-Q plots indicated. This means that the joint model with triglyc-
erides as longitudinal data have more extreme values than the previous joint
models. The marginal survival was fitted by

∑
i Si(t|b̂;θ̂)

n and the marginal
cumulative hazard as H(t) = − logS(t).
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Figure 29: Standard diagnostic plots of the joint model with triglycerides as
longitudinal data.

Figure 30: Diagnostic plots of the joint model with triglycerides as longitu-
dinal data.

The last plots in this section illustrates in Figure 30 diagnostic plots for
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the longitudinal and survival parts of the joint model. The black points
in the subject specific residuals plots show clearly that as the value of the
fitted value increases, the variability of the fitted variables increase. The
marginal residuals in the second plot presents a horizontally fitted loess line
suggesting that the subjects have the same variance of the form Vi, see
Section 4.6.1. The fitted loess curve in the martingale residual plot indicates
that the subjects all fit well to the model.

7 Conclusion and Discussion

In this section the results from the data analyses are summarised. Some
of the limitations that appeared during the process of writing this thesis
are discussed together with some of my personal remarks on the results.
Finally, in Section 7.3, some suggestions for future research on this topic are
proposed.

7.1 Conclusion

The joint model combines the survival analysis, that is, the time until an
event, together with the longitudinal observations to make predictions of
survival probability. Further, the joint model provides a value representing
the increased/decreased risk of death at a one unit increase of a specific
longitudinal measurement. The joint model also allows producing residual
plots.

In this thesis, we have learned and used the theory of a joint longitudi-
nal and survival model to predict subject specific survival probabilities with
longitudinal measurements in the form of Apolipoprotein A, Apolipoprotein
B, cholesterol and triglycerides. In addition, we also produced residual plots
and compared the results of the increased/decreased risk of death at a one
unit increase of the longitudinal observations from the joint model, with the
results from the extended Cox model. The data used in this thesis are a
subset from the AMORIS cohort where we selected to include all men aged
40-50 at observation who had provided measurements of the four longitu-
dinal measurements: Apolipoprotein A, Apolipoprotein B, cholesterol and
triglycerides. This resulted in a data containing 23 768 subjects with a total
of 33 930 observations.

The parameter estimate for Apolipoprotein A in the joint model indicated
that a one unit increase of Apolipoprotein A results in a 18.98 fold increase
in the risk of death. A rather high increase compared to the estimate from
the extended Cox model that indicated a 1.13 fold increase of the risk of
death.

The parameter estimate for Apolipoprotein B in the joint model indicated
that a one unit increase of Apolipoprotein B results in a 6.80 fold increase
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in the risk of death, whereas the estimate from the extended Cox model
indicated a 1.35 fold increase of the risk of death.

Moving on to the results from the parameter results for the joint model
with total cholesterol as longitudinal measurements we obtained that a one
unit increase of total cholesterol results in a 1.88 fold increase in the risk
of death. The estimate from the extended Cox model indicated a 1.08 fold
increase of the risk of death.

Finally, the parameter estimates from the joint model where triglycerides
were the longitudinal measurements indicated a 1.54 fold increase of the risk
of death at one unit increase of triglycerides. The corresponding value from
the extended Cox model indicated a 1.12 fold increase.

7.2 Discussion

In Table 4 the parameter estimates for the joint model on Apolipoprotein A
are presented. In the table we found that the association parameter α was
equal to 2.9 which means that the a one unit increase of Apolipoprotein A is
associated with a exp(2.94) = 18.98 fold risk of death. However, these results
do not seem to be reliable as first of all, a higher value of Apolipoprotein
A is associated with a smaller risk of developing a heart disease or cardio-
vascular disease according to the definition of Apolipoprotein A. Second, I
also performed a fit model on the AMORIS data, but for the age span 30-60
years for Apolipoprotein A and the result of this fit was that the estimated
associated parameter was exp(−α) = 1.23 which implies a 1.23 fold risk of
death for a one unit increase of Apolipoprotein A. This result appears to be
much more reasonable and the result concurs better with the result from the
extended Cox model in Table 3 which indicated a 1.05 fold increase of the
risk of death if a one unit decrease of Apolipoprotein A.

In the study of the predicted survival probabilities for Apolipoprotein
A we observed that the subject with the lowest Apolipoprotein A values,
subject 158 677, had the highest survival probability of approx 0.9 and the
subject with the highest Apolipoprotein A values, subject 527 044, had the
lowest survival probability of approx 0.4. This is a contradiction to the
theory of Apolipoprotein A as a higher value indicates a low risk for heart
disease, which can lead to death. As both the joint model fit and the survival
probability fit contradicts to the theory of Apolipoprotein A, we can conclude
that based on this data of men aged 40-50, the true association between
Apolipoprotein A and the survival probability is not justified.

The parameter estimate results from the joint model of Apolipoprotein
B seems more reasonable as we got the result that for a one unit increase
of Apolipoprotein B, the risk of death is 6.80 fold increased, and from the
definition of Apolipoprotein B, a higher value indicates a higher risk of devel-
oping severe diseases. The same goes for the joint model parameter estimates
results for total cholesterol and triglycerides.
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Comparing the predicted survival probabilities for the four selected sub-
jects from the four joint models with different longitudinal data, we can note
that for Apolipoprotein A, subject 158 677 has the highest survival probabil-
ity of about 0.9. The probability decreases to 0.8 for Apolipoprotein B and
stays on that level for the joint models of total cholesterol and triglycerides.
For patient 491 616, the survival probability is 0.8 for Apolipoprotein A, then
decreases to about 0.7 for Apolipoprotein B and total cholesterol, to then in-
crease to 0.8 for triglycerides. Subject 164 278 commences with a probability
of survival at 0.6 for Apolipoprotein A, but for Apolipoprotein B, triglyc-
erides and total cholesterol, the value is 0.8. In the result of the predicted
survival probabilities for Apolipoprotein A, subject 527 044 has the lowest
probability of 0.4, which is contradictory looking at this subjects longitudi-
nal measurements in Figure 7, where we observe that the measurements are
far over the threshold value. Moreover, the result from the predicted sur-
vivals of Apolipoprotein B for this subject indicates a survival probability of
over 0.9, to then decrease to 0.8 for total cholesterol and triglycerides. The
longitudinal measurements of Apolipoprotein B for subject 527 044 are all
low with most of them below the threshold value which can be the reason
for the very high survival probability of over 0.9.

Studying Figures 7, 13, 19 and 25 that illustrates the longitudinal mea-
surements of the four different biomarkers, we can observe nonlinear relation-
ships for the selection of subject specific measurements. Rizopoulos (2012b)
[54] discussed in his book in Chapter 4.3.7 that nonlinear relationships can
cause convergence problems which he suggested can be solved by using, for
example, a spline function in the longitudinal submodel. This is an impor-
tant note for future research on this topic, however, as convergence was not
an issue with the dataset used for the analysis in this thesis, this method
was not utilised.

7.3 Future work

From the results of this analysis we can conclude that using joint longitu-
dinal and survival submodels is an effective model to analyse and predict
survival probabilities. This as we can both predict subject specific survival
probabilities based on longitudinal outcomes as well as studying the dynamic
survival predictions over time.

Further and better studies can be made using the AMORIS data to im-
plement joint longitudinal and survival models. For example, to obtain a
better picture of the data and include as many observations as possible, the
whole data can be used to fit the model, or choose an age span between 40
and 65 in which we noted from Figure 4 is the age where most of the ob-
servations were made. More predictor variables can also be utilised, such as
socioeconomic index and the inflammation indicator S-CRP, both described
in Section 5.2. As was discussed in Section 7.2, the longitudinal biomarkers
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follow a nonlinear pattern. Further studies can be made to investigate if
the results can be improved, by for example, adding a spline function to the
longitudinal submodel or adding arguments in the longitudinal function or
the joint model function as described in Chapter 4.3.7 in Rizopoulos (2012b)
[54].

In this thesis, we chose the event time to be the time of death for the
survival part of the joint model. From the AMORIS data we can also anal-
yse the event of the disease AAA and predict the survival time after first
diagnosis of AAA or the event of cardiovascular disease.
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A Appendix

A.1 Maximum Likelihood Estimation

The computation to obtain the maximum likelihood estimate for β in the
linear mixed effects model is derived in this section. From Eq. (3.6), the
likelihood of the linear mixed effects model which is a multivariate normal
distribution.

Li(θ) = p(yi;θ) =
1√

(2π)ni |Vi|
exp

{
−

(yi −Xiβ)TV −1
i (yi −Xiβ)

2

}
.

.
The log-likelihood is then given as,

logLi(θ) = −ni
2

log(2π)− 1

2
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1

2
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The partial derivative, with respect to β gives
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Set this expression to 0 and solve the ML estimator β̂

β̂ML =
(
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i Xi
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And, finally for i = 1, ..., n the ML estimator is

β̂ML =
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