
Masteruppsats i försäkringsmatematik
Master Thesis in Actuarial Mathematics

On Claims Reserving with Machine
Learning Techniques

Vilma Härkönen

Matematiska institutionen

Masteruppsats 2021:4
Försäkringsmatematik
Juni 2021

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2021:4

http://www.math.su.se

On Claims Reserving with Machine Learning

Techniques

Vilma Härkönen
∗

June 2021

Abstract

In this thesis we will explore the possibility of improving traditional
non-life claims reserving models with machine learning techniques.
We present three models; gradient boosting machines (GBM) and two
neural network models. The first neural network reserving model is
specified such that the claim counts and claim amounts are modelled
separately in their own networks. The second one models the claim
counts and amounts jointly in one network. The starting point for
both neural network reserving models is the over-dispersed Poisson
(ODP) reserving model estimates. Hence, the neural network models
can be thought of as neural network boosting of the traditional ODP
reserving model. We discuss the fitting procedure of the machine
learning models and predict the outstanding reserves for simulated
and real-world data. In addition, we calculate the mean squared error
of prediction (MSEP) to examine the variation of the models. The
presented models perform very well on the simulated data, especially
GBM shows excellent performance. Moreover, the predictions are also
improved for real-world data with GBM compared to the traditional
Chain-Ladder reserving model.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: harkonen.vilma@gmail.com. Supervisor: Mathias Millberg Lindholm.

Acknowledgements

I would like to thank my supervisor Mathias Millberg Lindholm for his guidance and valu-
able feedback throughout this thesis project. I would also like to thank Daniel Andersson,
Elin Roos and Folksam for interesting discussions and providing me data. Thank you to
Henning Zakrisson for inspirational ideas. And finally, I would like to thank my fiancé
Carlos for his support.

2

Contents

1 Introduction 4
1.1 Outline . 5

2 Methods 5
2.1 Over-Dispersed Poisson Reserving Models 5
2.2 Tree-Based Gradient Boosting Machines . 7

2.2.1 Regression Trees . 7
2.2.2 Gradient Tree-Boosting . 8
2.2.3 Loss Function . 10

2.3 Neural Networks . 11
2.3.1 Feed-Forward Neural Network . 11
2.3.2 Regularisation . 11
2.3.3 A Neural Network Reserving Model 12

2.3.3.1 Embedding Layers . 12
2.3.3.2 Cross-Classified Structure 14
2.3.3.3 Neural Network Structure 14
2.3.3.4 Cross-Classified Neural Network Regression Model 15

2.3.4 Double Neural Network Model . 16
2.3.4.1 Embedding Layers . 16
2.3.4.2 Claim Counts Regression Function 17
2.3.4.3 Payout Attention Layer . 19
2.3.4.4 Claim Amounts Regression Function 20

2.3.5 Loss Functions . 21
2.4 Conditional Mean Squared Error of Prediction 24

3 Simulation study 27
3.1 Data Description . 27
3.2 Results . 28

4 Application to real-world data 45
4.1 Data Description . 45
4.2 Results . 46

5 Discussion & Conclusions 52

6 References 54

7 Appendix A 56

8 Appendix B 60

3

1 Introduction

Actuarial science focuses on quantifying the risk of an event occurring in the future. A
key question for actuaries is to estimate the future claim payments so that the insurance
company is able to cover all future claims. Normally, this problem is solved by finding some
appropriate regression function to estimate the average claim costs. In this thesis we explore
the possibilities to improve claims reserving using machine learning techniques. We use
the traditional over-dispersed Poisson (ODP) model as benchmark. The machine learning
techniques used in this thesis are neural networks and gradient boosting machines (GBM).
The models are applied to simulated Swiss claims data from [6] and we test different types
of fitting and tuning to find the optimal calibration. In addition, we calculate predicted
outstanding reserves and compute the mean squared error of prediction (MSEP). Thereafter
we apply the models to rather more complicated real-world data that is from a Swedish
insurance company Folksam.

Today, there are several machine learning models but these are more seldom used in
the claims reserving context. In [15] a blended model that combines a more conventional
regression model with a neural network model is introduced. The idea is to use an ap-
propriate regression model to obtain the initial parameter estimates that is then used in
a neural network as inputs. Hence, the goal is to calibrate the estimation of the outcome
from the regression model with a more sophisticated machine learning model. This can
also be thought of as neural network boosting of the traditional reserving model.

In [5] the authors present a neural network model to model the claim amounts where
they calibrate the estimation from the ODP model. Another approach is presented in [4]
where the authors implement a double feed-forward network to model the claim counts
and claim amounts simultaneously. The results from both of these articles indicate that
the traditional reserving model has potential for improvement as the predicted outstanding
reserves are considerably better with neural network boosting.

However, in the real-world industry the outstanding reserves are often divided into
RBNS (reported but not settled) and IBNR (incurred but not reported) reserves. The
authors in [10] take reporting delay after the claim date into account which allows for
separate modelling of the RBNS and IBNR reserves. Yet, the modelling is still performed
on an aggregated level with the neural network model from [5]. A tree-based method,
GBM, is also introduced by the authors into the claims reserving context which shows
great performance. In addition, an advantage of GBM is its simple implementation with
e.g. the statistical software R.

Tree-based models can be divided into regression trees and classification trees but here
we focus on the first type. The idea of tree-based models is to successively divide the
feature space into rectangles. Moreover, the regression tree models are easy to illustrate
and interpret which have contributed to their popularity. In previous literature tree-based
models have been applied to individual claims reserving, see [2] and [16] where claim counts
are modelled with regression trees. These papers have found tree-based models promising

4

in the claims reserving context.

1.1 Outline

In Section 2 we present the theoretical framework of the models used in this thesis. There-
after the models are evaluated on simulated data in Section 3. Moreover, we apply the
models to real-world data in Section 4. Lastly, we discuss the results in Section 5.

2 Methods

In this section we present the theoretical framework that is applied in this thesis. First
in Section 2.1 we will discuss over-dispersed Poisson reserving models. Then we move
on to the machine learning models and present GBM in Section 2.2. Neural networks are
discussed in Section 2.3. Finally, we will cover conditional mean squared error of prediction
in Section 2.4.

2.1 Over-Dispersed Poisson Reserving Models

For the general theory used in this section we refer to [13] and for the more specific reserve
modelling application used in this thesis to [10].

The over-dispersed Poisson distribution differs from the Poisson distribution by allowing
the variance to be proportional to the mean, i.e. not equal as for a Poisson distribution. Let
Xij be an incremental claim payment made j ∈ {0, ..., I−1} years later for claims occurred
during accident year i ∈ {1, ..., I}. Further, the Xij ’s are independent over-dispersed
Poisson distributed and have the following mean and variance

E[Xij] = µij and Var(Xij) = φµij , (1)

where φ > 0 is the over-dispersion parameter. With log-link function the mean can be
expressed as

µij = exp{c+ αi + βj} (2)

where c, αi and βj are the covariate coefficients for the intercept, accident year i and
development year j. When used in practice, all parameters are replaced by the maximum
likelihood (ML) estimates µ̂ij , ĉ, α̂i and β̂j . It should be noted that the over-dispersion
parameter does not affect the ML parameter estimation, instead it increases the standard
deviation.

One stochastic model producing the Chain Ladder model is the over-dispersed Poisson
model as in (1) with link function

log(µij) = log(ei) + c+ αi + βj ⇔ µij = ei exp{c+ αi + βj} (3)

5

where the ei’s are exposures that are modelled as offsets in the GLM framework and by
default set to 1. In order to avoid over-parametrisation it is important to set the following
constraint α1 = β1 = 0. The model parameters are estimated on the upper left triangle of
data, i.e. the Xij ’s where i + j ≤ I, and the target values, the Xij ’s where i + j > I, are

predicted according to µ̂ij = ei exp{ĉ+ α̂i + β̂j}, see [13].
In this thesis we will mainly work with more granular data where we have divided the de-

velopment dynamics into reporting delay j ∈ {0, ..., I−1} and payment delay k ∈ {0, ..., d}
after reporting the claim, see [10]. In particular, we let Xijk|Nij ∼ ODP(µXijkNij , φ

X) with
mean

E[Xijk|Nij] = µXijkNij = Nij exp{cX + αXi + βXj + γXk } (4)

and variance
Var[Xijk|Nij] = φXµXijkNij = φXE[Xijk|Nij] (5)

where βj and γk are now the covariate coefficients for reporting delay j and payment delay
k. The exposures, the ei’s in (3), are replaced with the observed number of claims Nij ’s
per accident year i and reporting delay j.

We can analogously define the over-dispersed Poisson model for the claim counts Nij ’s
that depend only on the accident year i and reporting delay j by Nij ∼ ODP(µNij , φ

N)

E[Nij] = µNij = exp{cN + αNi + βNj } (6)

and
Var[Nij] = φNµNij = φNE[Nij] (7)

Hence the outstanding reserve Ri for accident year i is defined as

Ri := RRi +RIi (8)

where RRi and RIi denote the outstanding RBNS and IBNR reserves. If we take the
expectation of these reserves we obtain

E[RRi |N0] =

I−1+d∑
j=I−i+1

j∧d∑
k=j−I−1

µXi,j−k,kNi,j−k (9)

and

E[RIi |N0] =

I−1+d∑
j=I−i+1

(j−I+i−1)∧d∑
k=0∨(j−I+1)

µXi,j−k,kµ
N
i,j−k. (10)

where N0 := σ{Nij : i + j ≤ I, i = 1, ..., I, j = 0, ..., I − 1} is the known number of claims
at time i+ j ≤ I, see [10].

6

2.2 Tree-Based Gradient Boosting Machines

The idea of the tree-based models is to divide the feature space into several smaller rectan-
gles and then fit a simple model, e.g. a constant, in each of these smaller areas. The whole
feature space can thereafter be plotted in a tree-like plot based on the partitioning of the
feature space. Tree models are popular due to their easy interpretation and illustration.
Tree models can generally be dived into regression trees and classification trees, but here
we will focus on the first one, see [8]. The main reference in this section for the general
theory is [8] and for the application to claims reserving we refer to [10].

2.2.1 Regression Trees

In order to grow a regression tree, the algorithm needs to automatically decide which
features should be partitioned and where to make the split. Assume that we have p input
parameters and the data is in the form (xi, yi) for i = 1, ..., n where yi is the response and
xi = (xi,1, ..., xi,p) are the features for observation i. If we decide to partition the feature
space into A regions R1, ..., RA and we model the response as a constant θa in each region
then we would have:

f(x) =
A∑
a=1

θaI(x ∈ Ra) (11)

In case the minimisation criterion is the sum of squares
∑

(yi− f(xi))
2 then the best θ̂a is

the average of yi in region Ra:

θ̂a = ave(yi|xi ∈ Ra). (12)

The minimisation problem above is computationally difficult and therefore in order to make
the minimisation problem possible, we construct an approximate greedy algorithm. This
means that we only optimize the regions at a given depth, leaving the previously optimised
regions as fixed. Then the algorithm continues to the next level and so on. Hence, the
same covariates may appear on different levels in the same tree. Consider starting with all
of the data with splitting variable q and split point s, we define a pair of half-planes

R1(q, s) = {x|xq ≤ s} and R2(q, s) = {x|xq > s} (13)

The goal is to find a splitting variable v and a split point s that solve

min
q,s

[min
θ1

∑
xi∈R1(q,s)

(yi − θ1)2 + min
θ2

∑
xi∈R2(q,s)

(yi − θ2)2] (14)

The optimisation problem in (14) is solved for any q and s by

θ̂1 = ave(yi|xi ∈ R1(q, s)) and θ̂2 = ave(yi|xi ∈ R2(q, s)) (15)

7

where ave(yi|xi ∈ R1(q, s)) corresponds to the average of yi in region R1, see [8].
Like any other regression model, a binary regression tree can be thought of as producing

the expected value of Y given x. Since in our case we focus on ODP models, we can define

T (x; Θ) := u(E[Y |x; Θ]) (16)

where u(·) is a given link-function, x is the feature vector x = (xi, ..., xp) and xi =
(xi,1, ..., xi,p) and Θ is the parameter vector. The distribution of Y |x implies a given loss
function to be used in the estimation of x. Since we are interested in ODP models a Poisson
likelihood, or deviance, is an appropriate loss function. A binary regression tree of depth
v splits the feature space into 2v regions Ra where a = 1, ..., 2v = A and we can re-write
(11) as

T (x; Θ) =

2v∑
a=1

θaI(x ∈ Ra) (17)

where Θ is the feature vector containing all the θa’s and additional parameters needed to
define the Ra’s. We can also define (12) more formally as

θa := arg min
θ
−

∑
i:xi∈Ra

L(yi, T (xi; Θ)) (18)

where
T (xi; Θ) = θ, i : xi ∈ Ra (19)

and where L denotes the Poisson log-likelihood function. In tree based modelling the
regions Ra are often referred to as the ”leaves” of the tree and v denotes the depth of the
tree i.e. how many splits there will be in the feature space, see [10].

While growing a tree a question may arise; how big tree should we grow? The problem
with a large tree is that it may overfit data and a too small tree might not capture the
structure of the data well enough. The procedure above will always grow a tree of depth
v but this might not always be the optimal choice for the depth. The optimal choice of
the tree size must always be adapted to data. A common method in choosing a tree size
is called pruning where the algorithm stops when some minimum node size is reached, see
[8]. For example we could decide to have at least 10 observations in each leaf.

Moreover, an advantage of regression trees is that they handle several features easily.
The problem though is the risk of overfitting which can be handled with regularisation, for
example boosting, see [8]

2.2.2 Gradient Tree-Boosting

The idea of boosting is to combine the output of many ”weak” predictors to construct
a more powerful predictor. This is done by sequentially applying the weak prediction

8

algorithm to repeatedly modified versions of the data resulting in several weak predictors.
The final prediction will then be a weighted sum of the weaker predictions.

The gradient giu is defined as

giu =

[
∂L(yi, G(xi))

∂G(xi)

]
G(xi)=Gu−1(xi)

. (20)

The aim of gradient boosting is to find a tree with low depth such that the predictions
at the uth iteration are as close as possible to the point-wise negative gradient of the loss
function

Θ̃u = arg min
Θ

n∑
i=1

(−giu − T (xi; Θ))2, (21)

where squared error is used to measure the closeness and Θ̃u = {Rvu, θvu}Vu1 . Hence the
tree is fitted to the negative gradient values. The generic algorithm for gradient descent
tree-boosting regression is as follows

Algorithm 1: The gradient tree-boosting algorithm

1. Initialise G0(x) = arg minθ
∑n

i=1 L(yi, θ)
2. For u=1 to U:

(a) For i = 1, ..., n compute

−giu = −
[
∂L(yi,G(xi))
∂G(xi)

]
G(xi)=Gu−1(xi)

.

(b) Fit a regression tree to the targets giu giving terminal regions
Rvu, v = 1, ..., Vu.

(c) For v = 1, ..., Vu compute
θvu = arg minθ

∑
xi∈Rvu

L(yi, Gu−1(xi) + θ)

(d) Update Gu(x) = Gu−1(x) +
∑Vu

v=1 θvuI(x ∈ Rvu)

3. Output Ĝ(x) = GU (x).

The tuning parameters U and Vu, u = 1, ..., U corresponds to the number of iterations
and the sizes of each tree respectively. In case of too large U we run a risk of overfitting
and the choice of U should always be adapted to data. In order to avoid overfitting we can
also add other regularisation strategies to the tree model such as shrinkage and bagging.
By introducing a shrinkage parameter ξ, that takes values between 0 and 1, we scale
the contribution of each tree to the current gradient approximation. Hence, line 2.(d) in
Algorithm 1 would be replaced with

Gu(x) = Gu−1(x) + ξ

Vu∑
v=1

θvuI(x ∈ Rvu) (22)

and after U iterations we would have

GU (x) = ξ

VU∑
v=1

θvUI(x ∈ RvU). (23)

9

That is, the gradient boosting machine predictor fGBM (x; θ̂) is given by

fGBM (x; Θ̂) := ξ

VU∑
v=1

T (x; Θ̂). (24)

Bagging is a bootstrap averaging strategy to improve the performance of the predictor
where only a subset of the observations are used in each updating of Gu(x). A common
value for the bagging parameter η is 1

2 meaning that at each iteration we sample without
replacement half of the training observations. The advantage of bagging is that it reduces
the computation time by fraction η and can reduce the variance of the predictor, see [8].

Since we are using a Poisson model with log-link function the estimated reserving model
will be {

µ̂X := Ê[Xi,j,k|Ni,j] = Ni,j exp{fGBM,X(i, j, k; Θ̂)}
µ̂N := Ê[Ni,j] = exp{fGBM,N (i, j; Θ̂)}

(25)

and the estimates of the over-dispersion parameters φ̂X and φ̂N are based on Pearson or
deviance residuals.

We emphasise that Algorithm 1 is a generic gradient descent tree-boosting algorithm.
For implementation of GBM we use gbm-package in R and refer to the documentation of
the package, utils::browseVignettes("gbm"), for more details.

2.2.3 Loss Function

The loss function that is minimised in the GBM reserving models in (25) is the unscaled
Poisson deviance. In [12] this is defined as

L(yi;µi) = 2
∑
i

{yi log(yi/µi)− (yi − µi)}. (26)

By changing the notation of (26) as in [5] we obtain the loss function for the claim counts
function

LN (µNi,j ,DNI) = 2
∑
i+j≤I

µNi,j −Ni,j +Ni,j log

(
Ni,j

µNi,j

)
, (27)

where DNI denotes the upper triangle defined as DNI = {Ni,j , i = 1, ..., i, j = 0, ..., J, i+ j ≤
I}. For the claim amounts we minimise the following

LX(µXi,j,k,DXI) = 2
∑

i+j+k≤I
µXi,j,k −Xi,j,k +Xi,j,k log

(
Xi,j,k

µXi,j,k

)
, (28)

where DXI = {Xi,j,k, i = 1, ..., i, j = 0, ..., J, k = 0, ...,K, i+ j + k ≤ I}.

10

2.3 Neural Networks

In this section we will discuss two neural network models that we call simple and double
neural networks. The first one models the claim amounts and the claim counts separately
in their own networks, see Section 2.3.3. The second one, presented in Section 2.3.4, allows
joint modelling of the claim counts and the claim amounts in a two feed-forward network.
But first, we introduce some general background used in the network in Sections 2.3.1-2.3.2.
We use mainly [7] for the general theory of neural networks and follow [5] and [4] closely
for the theory of the simple and neural network reserving models, respectively.

2.3.1 Feed-Forward Neural Network

A feed-forward neural network is an algorithm that is inspired by neuroscience. It often
consists of several different functions, z(h)’s, where h = 1, ...,H + 1. The information flows
from the input vector z(0) to the intermediate functions z(1), ..., z(H) and finally to the
output z(H+1), hence the name feed-forward network.

For example a three layer feed-forward network is given by z(x) = z(3)(z(2)(z(1)(x)))
where x is a vector of covariates and z(1) is the first layer, z(2) is the second layer and so
on. The layers, z(h)’s, are defined as

z(h) = f (h)(bh + 〈wh, z
(h−1)(x)〉) (29)

where z(h−1) ∈ Rqh−1 , bh ∈ Rqh are the biases, wh ∈ Rqh−1×qh the weights and f (h) some
function that is also called as the activation function which is applied element-wise. In case
of exponential activation we have f (h) = exp{·}. The operation 〈·, ·〉 denotes the scalar
product in Euclidean space. The depth of the model is given by the length of the function
chain. In the example above, the depth of the network z(x) is 3.

The goal of the feed-forward neural network is to provide as close approximation of the
outcome, z, as possible. The other layers z(h) where h = 1, ...,H are called as the hidden
layers since we do not obtain the outcome of these layers. Here we have two hidden layers.
The hidden layers have qh units that can be thought as vector-to-scalar functions since
they take in a vector and give an output as a scalar. For more on feed-forward networks,
see [7].

2.3.2 Regularisation

Neural networks have a tendency of easily overfitting data as these are highly flexible
models. The number of parameters increases for each layer and neuron. In order to avoid
this there are several different regularisation methods. A common regularisation method is
L2-regularisation, also known as the ridge regression or weight decay in a neural network
context. This method penalises the fit of the model by adding a term λ

∑p
j=1w

2
j to the

objective function that it minimised, where p is the total number of parameters in the

11

model and λ is the shrinkage factor. The effect of the shrinkage is larger for higher values
of λ. The residual sum of squares with L2-regularisation becomes

w̃ = arg min
w
{
n∑
i=1

(yi − w0 −
p∑
j=1

xijwj)
2 + λ

p∑
j=1

w2
j}, (30)

where i = 1, ..., n denotes the number of observations. The idea of L2-regularisation is
to penalise the objective function for large weights and thus, prevent the weights from
exploding, see [8].

Another regularisation method is so-called dropout which can be seen as a stochastic
regularisation method. The idea of dropout is to randomly drop hidden units from the
network during training. By dropping neurons we mean temporarily remove random units
from the network. This corresponds to sampling a ”thinned” network during training. Let

r
(h)
j ∼ Bernoulli(1 − ρ), where ρ ∈ {0, 1} is called the dropout rate. Then the ”thinned”

outputs from a hidden layer h− 1 are defined as

z̃(h−1) = zh−1 � r(h−1), (31)

where � denotes the Hadamard product. Hence, (29) becomes

z(h) = f (h)(bh + 〈wh, z̃
(h−1)〉). (32)

The motivation for dropout is that by dropping some of the neurons, the neurons have to
learn to co-operate with a random sample of other neurons and thus create useful features
on its own and not rely on the other neurons to correct its mistakes, see [14].

2.3.3 A Neural Network Reserving Model

In this section we will present the neural network reserving model where the claim counts
and claim payments are modelled separately. We call this model a simple neural network
model. All references in this section are with respect to [5] if not stated otherwise and
throughout this section we use the notation Y ∈ {N,X} where N denotes the number of
claims and X the claim payments.

Figure 1 illustrates the architecture of the simple neural network model. The first part
of the model is the blue area that is the input variables and the embedding layers. Notice
that for the claim amount network model we also have a third input variable depending
on k. The black boxes illustrate the hidden layers in the neural network structure and the
red circle is the output. The green line is called skip-connection that directly connects the
ODP reserving model structure to the neural network structure.

2.3.3.1 Embedding Layers

A crucial point of the neural network reserving model is that the ODP reserving model
can easily be integrated to a more complex network modelling. The ODP reserving model

12

Figure 1: Illustration of the neural network reserving model architecture.
Source: Figure 1 in [5].

implicitly assumes a categorical representation of the covariates accident year i, reporting
delay j and payment delay k as each year gets its own parameter coefficient. By adopting
embedding layers we are able to blend the ODP reserving model with a neural network
structure.

Embedding layers are used when categorical data is applied to a neural network. The
idea of embedding layers is to learn a low-dimensional representation of the categorical
variable by mapping every level of the categorical variable to a vector in Rp for some p
∈ N. The embedding layers are then used as variables that can be trained in the neural
network.

Since the ML-estimates from the ODP reserving model are already reasonable repre-
sentations of the input variables accident year i, reporting delay j, and payment delay k,
we choose these as mappings for the one-dimensional embedding layers

α(·) : (1, ..., I) → R, i→ α̂(i) = α̂Yi (33)

β(·) : (1, ..., J) → R, j → β̂(j) = β̂Yj (34)

and
γ(·) : (1, ...,K) → R, k → γ̂(k) = γ̂Xk (35)

where α denotes the covariate coefficients for accident year, β for reporting delay, γ for
payment delay.

13

2.3.3.2 Cross-Classified Structure

The embedded input parameters are then adopted in an exponential activation function.
Hence we have the following cross-classified neural network structure for the claim counts
part

(i, j)→ µCC,N (i, j) = exp{α̂N (i) + β̂
N

(j)}. (36)

For the claim amounts part we define the following

(i, j, k)→ µCC,X(i, j, k) = exp{α̂X(i) + β̂
X

(j) + γ̂X(k)} (37)

Thus, equations (36) and (37) define the neural network models of the classical ODP
reserving model. The aim is to connect this cross-classified structure to a more general
neural network structure in order to calibrate the predictions from the ODP reserving
model, see green line in Figure 1.

2.3.3.3 Neural Network Structure

Next we define the neural network structure of the model, see black boxes in Figure 1. The
embedding layers defined in (33) - (35) are used as inputs in the first hidden layer z(0),Y .
For the claim counts part that is

z(0),N = z(0)(i, j) = (α̂(i), β̂(j)) = (α̂Ni , β̂
N
j) ∈ Rq0 , (38)

where q0 := qN0 denotes the number of neurons in the first hidden layer. For the claim
amounts part we have

z(0),X = z(0)(i, j, k) = (α̂(i), β̂(j), γ̂(k)) = (α̂Xi , β̂
X
j , γ̂

X
k) ∈ Rq0 . (39)

where q0 := qX0 .
The number of hidden layers has to be chosen when designing the architecture of a

neural network model. Neural networks with a single hidden layer, sufficiently large num-
ber of units q1 ∈ N and a non-polynomial activation function have a so-called universal
approximation property. However, adding more layers to the network may improve the
model and allow the network to explore interactions of the covariates. Since we are inter-
ested in finding covariance structure beyond the ODP reserving model we decide to have
three hidden layers, i.e. H = 3. The following hidden layers are defined as

z(h),N = z(h)(i, j) = tanh(bh + 〈wh, z
(h−1)(i, j)〉) ∈ Rqh , (40)

where bh := bNh and wh := wN
h , and

z(h),X = z(h)(i, j, k) = tanh(bh + 〈wh, z
(h−1)(i, j, k)〉) ∈ Rqh , (41)

14

where bh = bXh , wh = wX
h , bh ∈ Rqh are the vectors of biases and wh ∈ Rqh−1×qh the

weight matrices. The hidden layers have q1 = 20, q2 = 15 and q3 = 10 units. We have
chosen the hyperbolic tangent activation function f = tanh since it will allow us to compute
the gradients efficiently due to f ′ = 1− f2. In addition the property f ∈ (−1, 1) prevents
the neurons from exploding. The output layer is finally defined as

(i, j)→ µNN,N (i, j) = exp{bH+1 + 〈wH+1, z
(H),N 〉} (42)

and
(i, j, k)→ µNN,X(i, j, k) = exp{bH+1 + 〈wH+1, z

(H),X〉} (43)

where cH+1 ∈ R is a scalar intercept and wH+1 ∈ RqH are the weights. We set qH+1 = 1
and use the exponential activation function.

2.3.3.4 Cross-Classified Neural Network Regression Model

Next we will connect the cross-classified structure in Section 2.3.3.2 to the neural network
structure in Section 2.3.3.3 in order obtain the cross-classified neural network regression
model. This results in

(i, j)→ µN (i, j) = exp{αN (i) + βN (j) + bH+1 + 〈wH+1, z
(H)〉}

= µCC(i, j)µNN(i, j)
(44)

for the claim counts part and analogously for the claim amounts part

(i, j, k)→ µX(i, j, k) = exp{log(Ni,j) + αX(i) + βX(j) + γX(k)

+ bH+1 + 〈wH+1, z
(H)〉}

= Ni,jµ
CC(i, j, k)µNN(i, j, k)

(45)

Hence, we obtain the network parameter Θ̂ = {(α̂Yi)i, (β̂
Y
j)j , (bh)h, (wh)h} and for the

claim amounts Θ̂ also includes (γ̂Xk)k. Adding the cross-classified structure to the neural
network structure is called a skip connection, i.e. we directly add the embedding layer to
the more classical neural network structure in (42) and (43), see the green line in Figure 1.

Initialisation of the network parameter Θ̂ is the second crucial moment in this blended
model structure. We want the model to start exactly at the ODP reserving model and
thus choose the initial value Θ̂0 as follows:

α̂i = α̂Yi , β̂j = β̂Yj , γ̂k = γ̂Xk , bH+1 = ĉYm and wH+1 = 0, (46)

where b̂Y is the intercept from the ODP reserving model in (4) and (6). Setting the weights
wH+1 to zero and the bias term bH+1 to the intercept from the ODP reserving models

15

ĉYm allows us to start the gradient descent algorithm exactly at the ODP estimates (4) and
(6). Finally, we can write the neural network reserving model similarly as in (25)

Ê[Xi,j,k|Ni,j] = Ni,j exp{fNN,X(i, j, k; Θ̂)}
= Ni,jµ

X(i, j, k)

Ê[Ni,j] = exp{fNN,N (i, j; Θ̂)}
= µN (i, j)

(47)

2.3.4 Double Neural Network Model

The idea of the double feed-forward neural networks is that the joint modelling of the claim
counts and claim amounts in (47) should improve the prediction of the claim amounts. The
output of this neural network model is a two-dimensional vector as we model both claim
counts and claim amounts simultaneously. The architecture of the model is illustrated in
Figure 2. We can divide the model structure into four main parts: embedding layers (blue
boxes), claim counts regression function (green boxes), payout attention function (violet
boxes) and claim amounts regression function (red boxes). In this section we follow closely
the neural network model description in [4].

Figure 2: Illustration of the double neural network reserving model architecture.
Source: Figure 1 in [4].

2.3.4.1 Embedding Layers

The first part of the double neural network model is the same as in Section 2.3.3.1, i.e. we
embed the ODP regression coefficients into input variables for the double neural network
model:

16

α(·) : (1, ..., I) → R2, i→ α̂(i) = (α̂Ni , α̂
X
i) (48)

β(·) : (1, ..., J) → R2, j → β̂(j) = (β̂Nj , β̂
X
j) (49)

and
γ(·) : (1, ...,K) → R, k → γ̂(k) = γ̂Xk (50)

The embedding layers for the accident year, (48), and reporting delay, (49), are two-
dimensional since both of these variables are included in the claim counts and payments
models. As the payment delay is only relevant for the claim amounts part, the embedding
layer for the payment delay, (50), is one-dimensional.

We choose to set the our embedding layers as non-trainable as we already have reason-
able representation from the ODP reserving model. Another choice would be to train the
embedding layers as well but since the starting values are already reasonable this should
not make a huge difference on the output.

2.3.4.2 Claim Counts Regression Function

The second part of our neural network model is the claim counts regression function which
is in green in Figure 2. We feed the five-dimensional vector consisting of the embedding
layers

z(0),N = z(0)(i, j, k) = (α̂(i), β̂(j), γ̂(k)) = (α̂Ni , α̂
X
i , β̂

N
j , β̂

X
j , γ̂

X
k) (51)

into the first feed-forward neural network. Notice that unlike in (38), here we feed the also
the embedded variables for the claim amounts part into the first hidden layer z(0),N , since
we model the claim counts and payments jointly. The following layers are defined as

z(h),N = z(h)(i, j, k) = tanh(bh + 〈wh, z
(h−1)(i, j, k)〉) ∈ Rqh (52)

where bh denotes the bias and wh denotes the weights of the hth hidden layer. Here as well,
we have chosen the hyperbolic tangent activation function due to same argumentation as
in Section 2.3.3.4. We define the output of the first feed-forward neural network for given
(i, j, k) ∈ {1, ..., I} × {1, ..., J} × {1, ...,K} as

z(H),N = z(H)(i, j, k) = tanh(bH + 〈wH , z
(H−1)(i, j, k)〉) ∈ RqH (53)

where H = 2 and qH is the number of neurons in the output layer. We follow [4] and choose
q1 = 30 and q2 = 25 neurons for the two hidden layers. Since neural networks are easily
overfitted we use a dropout rate of 20 % at every layer h to prevent this. Moreover, we
include L2-regularisation for each hidden layer with regularisation parameter λ = 0.001.

For the simple neural network in Section 2.3.3.4 we modelled E[Ni,j] individually for a
given input (i, j) and obtained a one-dimensional output vector in (44). Here instead, we
consider a representation of the whole vector (E[Ni,0], ...,E[Ni,J]) simultaneously. Thus, we

17

define s as the (J + 1)-dimensional claim counts layer that follows after the output layer
z(H),N in the first feed-forward network. This layer is defined as

s = s(i, j, k) = (s0(i, j, k), ..., sJ(i, j, k)), (54)

where
sl(i, j, k) = exp{α̂Ni + β̂Nl + bs

l + 〈ws
l , z

(H)(i, j, k)〉} (55)

for all l = 0, ..., J . The bias and the weights of the lth neuron of the claim counts layer
s are denoted by bs

l ∈ R and ws
l ∈ RqK . Notice that similarly as in (44), we have used a

skip-connection to connect the ODP reserving model parameters α̂Ni and β̂Nj directly to
the neural network structure in the claim counts layer s . By using initialisation

bs
l = ĉNm and ws

l = 0 ∈ RqH (56)

for all l = 0, ..., J , we have

s(i, j, k) = (exp{ĉNm + α̂Ni + β̂N0 }, ..., exp{ĉNm + α̂Ni + β̂NJ })
= (µ̂Ni,0, ..., µ̂

N
i,J).

(57)

Hence, the starting point for the claim counts layer is exactly the estimates µ̂Ni,0, ..., µ̂
N
i,J of

E[Ni,0], ...,E[Ni,J] from the ODP reserving model.
The expected claim amounts E[Xi,j,k] should depend on the number of observed claims

Ni,j ,, i.e. E[Xi,j,k|Ni,j]. Yet, the number of claims at times i+j > I is unknown. Therefore,
to avoid a break between training and prediction we use the predicted number of claims
in the claim counts layer s for modelling the claim payments, i.e. we require the expected
claim payment E[Xi,j,k] to depend on s0(i, j, k), ..., sJ(i, j, k) in (54).

Since we require E[Xi,j,k] to depend on the claim counts layer s, it is important to ensure
that only the claim counts Ni,j have an effect on the expected claim payments E[Xi,j,k]
and not the claim amounts after i + j, i.e. Ni,j+1. Moreover, we believe that the claim
counts Ni,0,k should have a similar effect on the claim amounts Xi,0,k as the claim counts
Ni,j,k have on Xi,j,k for all j = 0, ..., J . As the model is defined now, the claim counts
Ni,0,k would have a similar effect on Xi,0,k and Xi,J,k which may cause too high predicted
reserves since the claim payments and claim counts are often larger on the upper triangle
than on the lower.

This leads us to the next step of the double neural network model, namely the ordered
claim counts layer sord that is defined as follows

sord = sord(i, j, k) = (sj(i, j, k), sj−1(i, j, k), ..., s0(i, j, k), 0, ..., 0) ∈ RJ+1. (58)

Thus, we take the first j+1 neurons of the claim counts layer s and set them in the reverse
order. In order to obtain a (J + 1)-dimensional vector, we fill the rest of the elements in
the vector with J − j zeros.

18

Now that we have ordered the claim counts layer we can finally define the claim counts
regression function as

(i, j) 7→ µ̂N (i, j, k) = sj(i, j, k) = exp{α̂Ni + β̂Nj + bsj + 〈ws
j , z

(H)(i, j, k)〉} (59)

Note that we only need the first neuron sj(i, j, k) of the ordered claim counts layer sord

to model the expected number of claims at time i + j. With initialisation as in (56), the
claim counts regression function starts at exactly the ODP reserving model estimates

µ̂N (i, j, k) = exp{ĉNm + α̂Ni + β̂Nj } = µ̂Ni,j,k (60)

Remark that in (59) we do not have the intercept ĉNm from the ODP reserving model. Only
after initialisation as in (56) we retrieve the ĉNm which allows us to start exactly at the ODP
estimates.

2.3.4.3 Payout Attention Layer

The third part of the double neural network reserving model is the payout attention layer
(see violet parts in Figure 2). The first step in this part is to define the second feed-forward
network to capture the influence of the dependence of the accident year and reporting delay
of past reported claims on the current claim amounts. The output from this is the payout
attention layer that will be multiplied with the claim counts from the ordered claim counts
layer sord.

The second feed-forward network could be set up in multiple different ways but for
simplicity we re-use the architecture from the first feed-forward network from Section
2.3.4.2. Hence, we have the same number of hidden layers, H = 2, the hyperbolic tangent
activation function and the same number of neurons qh. Moreover, we regulate the layers
with 20 % dropout rate and L2-regularisation with λ = 0.001.

Similarly as in (51), we feed the five-dimensional vector consisting of the embedding
layers in (48)-(50) into the first layer of the second feed-forward network:

z(0),X = z(0)(i, j, k) = (α̂(i), β̂(j), γ̂(k))

= (α̂Ni , α̂
X
i , β̂

N
j , β̂

X
j , γ̂

X
k).

(61)

The following hidden layers in the network are defined as

z(h),X = z(h)(i, j, k) = tanh(bh + 〈wh, z
(h−1)(i, j, k)〉) ∈ Rqh . (62)

The output from the second feed-forward network for h = H is mapped to the (J + 1)-
dimensional vector that we call the payout attention layer. The name payout attention
layer comes from attention mechanisms used e.g. in modelling natural languages, see [1]
and [11]. The idea is that the layer focuses only on some relevant inputs and not all of
them. We define the payout attention layer a as

a = a(i, j, k) = (a0(i, j, k), ..., aJ(i, j, k)),∈ RJ+1, (63)

19

where
al(i, j, k) = ba

l + 〈wa
l , z

(H),X(i, j, k)〉 (64)

for all l = 0, ..., J where ba
l ∈ R denotes the bias of the lth neuron of the payout attention

layer a and wa
l denotes the weights. Notice that instead of choosing an exponential activa-

tion function for the output layer as in our previous networks, see (44), (45) and (55), we
choose a linear activation function. As before, the initialisation for the payout attention is
important for the model structure which is set up as follows

ba
l = 1 and wa

l = 0 ∈ RqH (65)

for all l = 0, ..., J . Thus the payout attention layer a is initially given by

a = a(i, j, k) = (1, ..., 1),∈ RJ+1. (66)

The payout attention layer will be multiplied with the ordered claim counts layer sord de-
fined in (58). Hence, with this initialisation we begin the gradient descent algorithm by
assuming that the effect of past reported claim is the same across accident years and re-
porting / payment delays. Then we let the network explore and learn possible dependencies
during several iterations.

2.3.4.4 Claim Amounts Regression Function

The final part of the double neural network model is the claim amounts regression function
(see the parts in red in Figure 2). The first step is to calculate the element-wise (Hadamard)
product between the ordered claim counts layer sord and the payout attention layer a and
concatenate this with the output layer zH,N from the first feed-forward neural network in
(53). More formally

r = r(i, j, k) = (zH(i, j, k),a(i, j, k)� sord(i, j, k)) = (zH,N ,a� sord), (67)

where � denotes the Hadamard product. Notice that we have applied batch normalisation,
that is introduced in [9], to transform the values of the neurons in the ordered claim counts
layer sord close to 0. The motivation for batch normalisation is that the distribution of the
inputs of each layer varies during the training as the parameters from the previous layers
changes for each iteration. Batch normalisation regulates the inputs and hence accelerates
the gradient descent algorithm. The normalisation is beneficial for this complex network
structure.

Finally, the concatenated layer r is mapped to the claim amounts regression function
µX(·, ·, ·) given by

(i, j, k) 7→ µ̂X(i, j, k) = exp{α̂Xi + β̂Xj + γ̂Xk + bXm + 〈wX
m, r(i, j, k)〉}, (68)

where bXm ∈ R and wX
m ∈ RqH+J+1 denote the bias and the weights of the output neuron

µ̂X(i, j, k) respectively. Note that the modelled claim amount µX(i, j, k) depends on the

20

regularised claim counts sj(i, j, k), ..., s0(i, j, k) up to time i+ j through the ordered claim
counts layer sord. Moreover, the reader might recognise the concept of skip-connection
which we have used in (68) to connect that part of the embedding layer that refers to the
claim amounts to the model, α̂Xi , β̂

X
j , γ̂

X
j directly to the neural network output.

In order to start the calibration exactly at the ODP reserving model estimates, we use
the following initialisation

bXm = ĉXm and wX
m = 0 ∈ RqH+J+1. (69)

Hence, the claim amounts regression in (68) starts at

µ̂X(i, j, k) = exp{ĉXm + α̂Xi + β̂Xj + γ̂Xk } = µ̂Xi,j,k. (70)

To summarise, the output from the double neural network model is the estimates for
the claim counts from the claim counts regression function µ̂N in (59) and the estimates
for the claim amounts from the claim amounts regression function µ̂X in (68).

2.3.5 Loss Functions

The ODP covariate estimates α̂Y , β̂Y and γ̂X are found by minimising the Poisson deviance.
We want to preserve the same structure in the neural network reserving models and hence,
the loss function used in the simple neural network reserving model (see Section 2.3.3 and
[5]) for the claim counts is the unscaled Poisson deviance given by

LN ((µN (i, j))i,j ,DNI) =2
∑
i+j≤I

µN (i, j)−Ni,j

+Ni,j log

(
Ni,j

µN (i, j)

)
,

(71)

where DNI denotes the upper triangle defined as DNI = {Nij , i = 1, ..., i, j = 0, ..., J, i+ j ≤
I}. For the claim amounts we have

LX((µX(i, j, k))i,j,k,DXI) =2
∑

i+j+k≤I
µX(i, j, k)−Xi,j,k

+Xi,j,k log

(
Xi,j,k

µX(i, j, k)

)
,

(72)

where DXI = {Xijk, i = 1, ..., i, j = 0, ..., J, k = 0, ...,K, i+ j + k ≤ I}, see [5].
For the double neural network reserving model (see Section 2.3.4), we minimise the

21

scaled deviance for claim counts and claim amounts simultaneously as follows

LN,X((µN (i, j, k), µX(i, j, k))i,j,k,DNI ∪ DXI ; φ̂Nm, φ̂
X
m)

= 2
∑

i+j+k≤I
µ̃N (i, j, k)− Ñi,j,k + Ñi,j,k log

(
Ñi,j,k

µ̃N (i, j, k)

)

+ µ̃X(i, j, k)− X̃i,j,k + X̃i,j,k log

(
X̃i,j,k

µ̃X(i, j, k)

) (73)

where DNI ∪ DXI = {Nij , Xijk, i = 1, ..., i, j = 0, ..., J, k = 0, ...,K, i+ j + k ≤ I} and

µ̃Y (i, j, k) = µY (i, j, k)/φ̂Ym and Ỹi,j,k = Yi,j,k/φ̂
Y
m (74)

Hence, we minimise the sum of the claims counts loss (Y = N) and claim amounts loss
(Y = X). Notice that we have scaled the predicted and observed values with the estimated
over-dispersion parameter φ̂Y . The loss function in (73) could be a weighted sum as well
where we could set more weight to the claim amounts part. But since the claim counts are
important for our model we choose equal weights for the claim counts and claims amounts
parts, see [4].

The loss functions in (71), (72) and (73) for the simple and double neural network
models are calculated iteratively using gradient descent method. We apply rmsprop which
according to [7] has been empirically shown to be an effective method for training a deep
neural network and it is widely used amongst practitioners. This method performs espe-
cially well in non-convex cases since it sets the gradient accumulation into an exponentially
weighted moving average. RMSProp uses a hyperparameter ρ that controls the length of
the weighted average and therefore discards the information from past extremes so that
it can converge rapidly after finding a convex bowl. The generic RMSProp optimisation

22

algorithm is as follows

Algorithm 2: The RMSProp algorithm

Require: Global learning rate ε, decay rate ρ
Require: Initial parameter θ
Require: Small constant δ, usually 10−6, used to stabilise division by small
numbers
Initialise accumulation variables r = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set {x(1), ...,x(m)} with
corresponding targets y(i).

Compute gradient: g← 1
m∇θ

∑
i L(x(i);θ),y(i)).

Accumulate squared gradient: r← ρr + (1− ρ)g � g.

Compute parameter update: ∆θ = − ε√
δ+r
� g.

(
ε√
δ+r

applied element-wise
)

Apply update: θ ← θ + ∆θ.
end

For the implementation of the neural network reserving models we have used the keras-
package in R. Hence, we refer to the documentation of the package for more details of the
implementation of RMSProp algorithm in keras.

The double neural network model has total of

2

(
H+1∑
h=1

(qh−1 + 1)qh

)
+ 2(J + 1) + (qH + J + 1) + 1 (75)

trainable parameters, where q0 = 5 and qH+1 = 12. The simple neural network for claim
counts part has (

H+1∑
h=1

(qh−1 + 1)qh

)
+ 1 (76)

trainable parameters if we set the input parameter to non-trainable where q0 = 2 and
qH+1 = 1. Otherwise we will have to add I + J to equation (76). For the claim payments
part we have (

H+1∑
h=1

(qh−1 + 1)qh

)
+ 1 + 1 (77)

trainable parameters with non-trainable inputs. Analogously, if we have trainable inputs
then we have I+J+K more trainable parameters. As we can see, the number of trainable
parameters in the neural network models increases rather quickly as the number of hidden
layers and units increases which make them easy to overfit. For example for the simulated
data set in Section 3 with 12 accident years the number of trainable parameters in the
double neural network model will be 2 596.

23

2.4 Conditional Mean Squared Error of Prediction

In this section we present the estimation of the conditional mean squared error of prediction.
We follow closely [10].

The conditional mean squared error of prediction is given by

MSEP(R, R̂|N0) := E
[
(R− R̂)2|N0

]
= Var(R|N0) + (R− E[R̂|N0])2

(78)

Given the ODP assumptions, we can estimate the conditional mean squared error of pre-
diction (MSEP) semi-analytically. The variance part of the MSEP can be calculated ana-
lytically and the estimation error part with bootstrap.

It follows from the ODP assumptions that

Var(Xi,j,k|N0) = Var(Xi,j,k|Ni,j) = φXµXi,j,kNi,j . (79)

where i + j ≤ I. Since the claim amounts, the Xi,j,k’s, are independent given Ni,j the
RBNS variance for accident year i is given by

Var(RRi |N0) =
I−i∑
j=0

∑
k>I−i−j

Var(Xi,j,k|N0)

= φX
I−i∑
j=0

∑
k>I−i−j

µXi,j,kNi,j

(80)

The RBNS variances can be then summed over all accident years to obtain the total RBNS
variance.

The process variance for the IBNR reserves is a bit more challenging since we are
not conditioning on the claim amounts, the Xi,j,k’s, on the claim counts, the Ni,j ’s. For

24

accident year i this is

Var(RIi |N0) =

I−i∑
j=I−i+1

Var

(∑
k

Xi,j,k

)

=
I−i∑

j=I−i+1

(
E

[
Var

(∑
k

Xi,j,k|Ni,j

)]
+ Var

(
E

[∑
k

Xi,j,k|Ni,j

]))

=
I−i∑

j=I−i+1

(
E

[
Var

(∑
k

Xi,j,k|Ni,j

)]
+ Var

(∑
k

µXi,j,kNi,j

))

=
I−i∑

j=I−i+1

E

[∑
k

φXµXi,j,kNi,j

]
+

(∑
k

µXi,j,k

)2

φNµNi,j

=

I−i∑
j=I−i+1

(
φX + φN

∑
k

µXi,j,k

)
µNi,j

∑
k

µXi,j,k

(81)

As for the RBNS variances, the IBNR variances can be summed over the accident years to
obtain the total process variance.

For the estimation error part of MSEP we simulate new in-data samples from a Poisson
distribution using the following property

Ni,j/φ
N ∼ Po(µNi,j/φ

N) (82)

then
Ni,j ∼ ODP(µNi,j , φ

N). (83)

Hence we can simulate data from a Poisson distribution with mean µNi,j/φ
N and then

multiply the observations with the over-dispersion parameter φ to obtain a random sample
from ODP(µNi,j , φ

N).

The over-dispersion parameters, the φY ’s, are based on the Pearson statistics defined
in [12]. For the claim counts part this is

φ̂N :=
1

n− pN

∑
i+j≤I

(Ni,j − µ̂Ni,j)2

µ̂Ni,j
(84)

where pN is the number of the parameters (pN = 2I−1) and n is the number of observations
in the upper left triangle. For the claim amounts part of the estimated over-dispersion
parameter φ̂X is given by

φ̂X :=
1

n− pX

∑
i+j+k≤I

(Xi,j,k − µ̂Xi,j,kNi,j)
2

µ̂Xi,j,kNi,j
(85)

25

where n is the sample size of the Xi,j,k’s and pX is the number of parameters (pX = 3I−2).
Now that we have the variance part of the MSEP in (78) defined, we proceed to the

estimation error part (R−E[R̂|N0])2. This is computed with the predicted RBNS and IBNR

reserves R̂R, R̂I and the bootstrapped reserves R̂
R,∗
(b) , R̂

I,∗
(b) . More formally, the estimation

error is given by

1

B

B∑
b=1

(R̂R + R̂I − (R̂
R,∗
(b) + R̂

I,∗
(b)))2, (86)

where B is the number of bootstrap iterations. The bootstrap reserves R̂
R,∗
(b) , R̂

I,∗
(b) are

estimated with the following algorithms:

Algorithm 3: Bootstrap RBNS reserves

1. Estimation of parameters: Estimate the payment part parameters of the model
using the original data to get the estimators µ̂Xi,j,k and µ̂N .

2. Bootstrapping the data: With the same claim counts Ni,j , generate new
bootstrap aggregated payments {X∗i,j,k : i+ j + k ≤ I} by simulating from

Po(µ̂Xi,j,kNi,j/φ̂
X) and multiplying by φ̂X .

3. Bootstrapping the parameters: Compute the estimators µ̂X,∗i,j,k using
{Ni,j : i+ j ≤ I} and the bootstrap data {X∗i,j,k : i+ j + k ≤ I}.

4. Bootstrapping the RBNS predictions: Using the original incurred claim counts
{Ni,j : i+ j ≤ I} and the bootstrap parameters µ̂X,∗i,j,k compute the RBNS reserve

prediction R̂R,∗, according to (9).
5. Monte Carlo approximation: Repeat steps 2. - 4. B times to get an approximate
bootstrap distribution of the RBNS reserve from the bootstrapped {R̂R,∗

(b) }
B
b=1.

Algorithm 4: Bootstrap IBNR reserves

1. Estimation of parameters: Estimate the parameters of the model using the
original data to get the estimators µ̂Ni,j , µ̂

X
i,j,k, φ̂

N and φ̂X .
2. Bootstrapping the data: Generate new bootstrap data {N∗i,j : i+ j + k ≤ I} and
{X∗i,j,k : i+ j + k ≤ I} by simulating the X∗i,j,ks exactly as in step 2. of the RBNS

algorithm and the N∗i,js by simulating from Po(µ̂Ni,j/φ̂
N) and multiplying by φ̂N .

3. Bootstrapping the parameters: Compute the estimators µ̂X,∗i,j,k using
{Ni,j : i+ j ≤ I} and the bootstrap data {X∗i,j,k : i+ j + k ≤ I} and compute the

estimators µ̂N,∗i,j using {N∗i,j : i+ j ≤ I}.
4. Bootstrapping the IBNR predictions: Using the bootstrap parameters µ̂N,∗i,j and

µ̂X,∗i,j,k, compute the IBNR reserve prediction R̂I,∗, according to (10).
5. Monte Carlo approximation: Repeat steps 2. - 4. B times to get an approximate
bootstrap distribution of the IBNR reserve from the bootstrapped {R̂I,∗(b)}

B
b=1.

26

3 Simulation study

In this section we present the results from the simulation study performed in the software
R where we have applied the machine learning models discussed in Section 2 to a simulated
claims data set.

3.1 Data Description

Data used in the simulation study is the same as in [5] and [10]. The data consists of
individual non-life insurance claim histories from 6 different lines of business (LoB) and is
generated with the claims simulation machine from [6]. We use the following information
in our analysis; accident year ∈ {1994, ..., 2005}, reporting delay ∈ {0, ..., 11} and payment
delay ∈ {0, ..., 11} which is defined as the number of years after reporting the claim the
payment incurs. There are approximately 250 000 claims for each LoB except for LoB 3
and 6 that have close to 100 000 claims respectively. As we can see from Table 1 most of
the claims are RBNS claims and the outstanding reserves varies from around 17 million to
73 million.

LoB N Payment RBNS % Reserve

1 250 040 285 989 99.40 39 689
2 250 197 278 621 99.41 37 037
3 99 969 108 345 99.26 16 878
4 249 683 429 344 99.20 71 630
5 249 298 437 728 99.19 72 548
6 99 701 171 482 99.10 31 117

Table 1: Number of claims, total payments, percentage of the claims that are RBNS and
outstanding reserve for each LoB (in thousands).

In Figure 3 (left) the average total payment per development year for each LoB is
illustrated. Most of the payments are made during the first development year and the
payment sizes declines rather fast during the first development years. The average payments
are almost identical for the first two LoBs and LoBs 4 and 5.

The average claim cost per accident year is illustrated in Figure 3 (right). We can see
that the first three LoBs have lower average claim cost compared to the last three LoBs
but all LoBs have a positive trend in the average claim cost over the years. The cumulative
claim payments for each LoB are found in Tables 12 - 17 in Appendix A.

For training the models we have divided the individual claims data into training and
validation data that are approximately the same size (50/50) since the model parameters
from the ODP model are sensitive to the volume of the data and these are the input
weight to our neural network models. Data is thereafter aggregated by LoB, accident
year, reporting delay and payment delay the same way as in [10]. Some of the aggregated

27

Figure 3: Left: Average payment per development year (in thousands). Right: Average
claim cost over accident years.

payments are negative in the accident year, reporting and payment delay groups and since
our models use the Poisson loss function we replace the negative payments with zeros. The
training is done on the upper left triangles, DYI , and after the optimal hyper-parameters
are found we predict the outstanding reserves and calculate the prediction error (out-of
the sample error) on the lower triangles.

3.2 Results

We start by finding the optimal tuning parameters for our models and begin with GBM.
Notice that we treat all the variables as numerical in the GBM models and therefore it is
easy to add linear combinations of the variables. Hence we add an inflation factor to the
model, defined as the sum of accident year and reporting delay. Standard values for the
tuning parameters discussed in Section 2.2 in the gbm-function are: shrinkage 0.1, depth
1 i.e. no interactions, bagging factor 0.5 and at least 10 observations per leaf. We will
try slightly different values for the tuning parameter to find the optimal ones for the claim
counts and claim amounts models respectively. The training and validation loss plots are
very similar for all of the LoBs. Thus we show the plots only for LoB 1 here and the
remaining plots for the other LoBs are found in Appendix B.

Figure 4, top left corner, shows the training and validation loss for the claim counts
model with shrinkage factor 0.1 (green and violet lines) and 0.01 (red and blue lines). The
validation error would eventually be a bit lower with shrinkage factor 0.01 but it would
require considerably more trees compared to setting the shrinkage factor to 0.1. We do not
believe that the gain in the prediction ability is significant when using the smaller shrinkage
factor 0.01 and therefore choose the simpler model with shrinkage 0.1.

The training and validation loss with at least 1 observation per node (green and violet
lines) and 10 observations per node (red and blue lines) is illustrated in the top right corner
of Figure 4. The validation loss curves are very similar despite the choice of the tuning

28

parameter. Since we model the claim count and amounts on aggregated data we have quite
few observations in the upper left triangle. Especially for the claim counts we only have
78 observations per LoB. Thus we do not want to restrict the model to obtain at least 10
observations per node. Notice though that this can lead to that the average of the outcome
is the outcome itself.

Figure 4: Training and validation error for the claim counts part of GBM for LoB 1. Up
left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and 10.
Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

Bagging leads to more volatile training and validation losses as is seen in the bottom
left corner in Figure 4. We obtain a smaller and more stable loss when choosing bagging
factor 1 i.e. we do not include bagging in the model. Finally, the training and validation
loss for the claim counts model with tree interaction depth 2 (blue and red lines) and 1,
i.e. no interactions, (violet and green lines) are illustrated in the bottom right of Figure
4. With interaction depth 2 the validation loss declines faster than with no interactions.
Hence, we include interactions in the model.

Now that we have the tuned parameters for the claim counts part of the GBM we
proceed with the claim amounts part. In the same way we compare the validations losses
for two different choices of tuning parameters. The training and validation losses for the
claim amounts GBM model LoB 1 are illustrated in Figure 5. In the top left corner, the red
and blue lines shows the training and validation losses with shrinkage factor 0.1 and 0.01.

29

As we saw in Figure 4, with shrinkage factor 0.1 the validation loss reaches its minimum
faster than with 0.01 as expected. Hence, we choose the larger value for shrinkage. The
larger shrinkage factor leads also to 10 times faster computation time.

Figure 5: Training and validation error for the claim amounts part of GBM for LoB 1. Up
left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and 10.
Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

The training and validation loss for the model with at least 1 and 10 observation per
node is shown in the top right corner of Figure 5. There is hardly any difference between
the choices of the tuning parameter. Thus, with the same argumentation as for the claim
counts part, we choose a minimum 1 observation per node due to the restricted amount of
data.

In the bottom left corner, the red and blue lines shows the training and validation
losses with bagging factor 0.5 and the green and violet lines for bagging factor 1, i.e. no
bagging. The validation loss is very similar for both values of the bagging factor. As
expected bagging of 0.5 yields a more volatile validation loss curve than without bagging.
Moreover, the validation loss without bagging requires fewer trees at its minimum. Hence,
we choose to not to include bagging in the model.

The training and validation losses for depth 1 (green and violet lines) and 2 (red and
blue lines) are shown in the bottom right corner of Figure 5. The validation loss with
interaction depth 2 first declines and then rises whereafter it decreases again to the same

30

level as with interaction depth 1, i.e. no interactions. We tested the fitting with both
choices of interaction depth and noticed that the out-of the sample error is terrible when
we include interactions, thus we decide to leave it out.

To summarise, the tuning parameters that we have chosen for the GBM models are as
follows: bagging factor 1, i.e. no bagging, shrinkage 0.1, minimum observations per node
1, interaction depth 2 for the claim counts part and 1 for the claim amounts part. The
final tuning parameter to be chosen for GBM is the number of trees.

In Figure 6 the training and validation losses for the standard tuning (red and blue
lines) and for our tuning (green and violet lines) are shown for the claim counts part for
all LoBs. It is clear that our tuning improves the fitting significantly compared to the
standard tuning and hence we choose our tuning.

Figure 6: Training and validation error for GBM models for our fitting (green and violet
line) and standard fitting (red and blue line). Up: Claim counts part. Down: Claim
amounts part.

The standard tuning gives quite similar results compared to our tuning for claim
amounts part as is seen from Figure 7. As discussed before the bagging factor yields a
bit more unstable losses compared to no bagging. In order to avoid overfitting the models
we use early stopping by choosing the number of trees where the validation loss is at its
minumum. As we can see the models converge rather fast and do not require a large num-
ber of trees. All of the LoBs need less than 400 trees for the claim amounts part and less

31

than 800 for the claim counts part. The exact number of trees for each LoB and model is
summarised in Table 2.

Figure 7: Training and validation error for GBM models for our fitting (green and violet
line) and standard fitting (red and blue line). Up: Claim counts part. Down: Claim
amounts part.

We now proceed with the fitting of the neural network reserving models presented in
Section 2.3. The only tuning parameter we consider here is the number of epochs. Models
are fitted for 10 000 epochs and the training and validation losses are illustrated in Figure
8. The number of epochs is then chosen by a simple central moving average with window
size 100. From the top of Figure 8 we can see that the claim counts part of the simple
neural network model converges slowly and we might benefit from letting the model run
more than 10 000 epochs, especially LoBs 1, 4 and 5. For LoBs 2 and there is hardly any
decrease in the validation loss indicating that the predictions from the ODP model are
sufficient. The training and validation losses for the payment part of the simple neural
network model are shown in the middle of Figure 8. We can see that the model starts to
overfit for LoBs 2, 3, 5 and 6 after less than 1 000 epochs as the validation loss starts to
increase and the training loss decreases. LoBs 1 and 4 do not have similar increase in the
validation loss and the minimum of the moving average with window size lands to more
than 9 000 epochs.

At the bottom of Figure 8 we can see the ODP model does not improve significantly in

32

the double neural network model for LoB 5 as the validation loss is a straight line through
all 10 000 epochs. For LoB 6 we can notice that the validation error first drops and then
starts to increase again which indicates that we should choose the number of epochs were
the validation loss is at its lowest, otherwise we could have a model that overfits data. For
most of the LoBs (except for 3 and 6) we choose number of epochs around 7 000. Table 2
summarises the number of trees and epochs needed for the models.

LoB
Model Type 1 2 3 4 5 6

GBM Count 635 455 778 304 632 373
GBM Amount 279 200 240 171 384 204
Simple NN Count 9 950 9 865 9 266 9 893 4 566 2 567
Simple NN Amount 9 560 274 421 9 899 392 326
Double NN Claims 7 549 6 285 2 115 7 423 7 935 944

Table 2: Number of trees and epochs used in the machine learning models.

Now that we have optimised all the tuning parameters for the models, we proceed with
examining how well the models actually predict the outstanding reserves, i.e. data that
the models have not seen before. Hence, the models are fitted again on the entire upper
triangle (training and validation data) and predictions are made on the lower triangle.

Table 3 shows the actual outstanding reserves for each LoB and the predicted reserves
together with the relative biases for Chain-Ladder, ODP reserving model, GBM and the
two neural network models. We can notice that GBM model performs well as the highest
bias is only 3.20 %. Especially excellent performance is shown for LoB 1 where the bias
is only 0.02 % which can be compared to -2.82 % for Chain-Ladder. The neural network
models have more variation in the performance, the simple neural network has bias 0.07 %
at its lowest and -9.02 % at its highest. This model gives the most accurately predicted
reserves for LoB 4. For LoBs 3 and 5 we obtain a slightly worse prediction than for the
ODP model and Chain-Ladder. Overall the double neural network model seems to perform
better than the simple neural network.

We also fitted the simple neural network model with trainable input weights (TW) to
test if the predictions would improve. As a result, the predictions indeed improved for most
of the LoBs and especially for LoB 3 where the bias was already worst. The double neural
network was also fitted with trainable input weights but this did not make any significant
difference on the predictions. It should be noted that by letting the input weights to be
trainable, the computation time of the network increases.

During the fitting procedure we found that the machine learning models can be sensitive
to the division of training and validation sets. Hence, we fitted the models also by flipping
the training and validation sets, i.e. we trained the model with our original validation data
and then validated on the training data. The results are shown at the bottom of Table

33

3 (VT). For some models and LoBs the results are better than the original results, for
example simple neural network model with LoBs 1-4 and 6. For other models the effect is
the opposite, see GBM for LoB 5 where the relative bias in the original model is -1.54 %
and when flipping the training data it increases to 12.04 %. Interestingly the double neural
network model is the best predictor for most of the LoBs and outperforms GBM when
flipping the training and validation data. Notice that the bias for several models and LoBs
is the opposite for VT models which gives rise to selecting the average outstanding reserve
as the prediction. The average predicted reserves are shown in the parenthesis in Table 3.

LoB
Model Type 1 2 3 4 5 6

True Reserve 39 689 37 037 16 878 71 630 72 548 31 117
CL Reserve 38 569 35 460 15 692 67 574 70 166 29 409
CL Bias % -2.82 -4.26 -7.02 -5.66 -3.28 -5.49
ODP Reserve 38 308 35 151 15 452 67 055 69 470 29 115
ODP Bias % -3.48 -5.10 -8.45 -6.39 -4.24 -6.44
GBM Reserve 39 697 37 229 16 367 72 667 71 433 32 114
GBM Bias % 0.02 0.52 -3.03 1.44 -1.54 3.20
Simple NN Reserve 41 268 34 779 15 356 71 682 70 649 29 336
Simple NN Bias % 3.98 -6.10 -9.02 0.07 -2.62 -5.73
Simple NN TW Reserve 41 005 39 135 15 949 75 646 75 438 29 640
Simple NN TW Bias % 3.31 5.66 -5.50 5.54 3.98 -4.75
Double NN Reserve 40 029 35 959 15 686 69 509 72 512 30 047
Double NN Bias % 0.85 -2.91 -7.06 -2.96 -0.05 -3.44

GBM VT Reserve 39 925 35 624 17 240 68 333 81 279 30 348
GBM VT Bias % 0.59 -3.82 2.15 -4.61 12.04 -2.47

(0.31) (-1.65) (-0.44) (-1.58) (5.25) (0.37)
Simple NN VT Reserve 38 738 38 657 15 719 70 146 70 017 29 465
Simple NN VT Bias % -2.40 4.37 -6.86 -2.07 -3.49 -5.31

(0.78) (-0.86) (-7.94) (-1.00) (-3.05) (-5.52)
Simple NN TW VT Reserve 41 704 38 882 17 583 73 925 74 483 31 701
Simple NN TW VT Bias % 5.08 4.98 4.18 3.20 2.67 1.87

(4.20) (5.32) (-0.66) (4.40) (3.32) (-1.43)
Double NN VT Reserve 38 577 35 822 15 580 70 522 71 818 30 615
Double NN VT Bias % -2.81 -3.28 -7.69 -1.55 -1.01 -1.61

(-0.97) (-3.09) (-7.38) (-2.25) (-0.53) (-2.53)

Table 3: True reserves and predicted reserves with relative biases for each LoB. The pre-
dicted reserves at the top of the table are from the models with the original split into
training and validation data. At the bottom of the table are shown the predicted reserves
when training is performed on the original validation data and validation on the training
data (VT). The relative bias for the average predicted reserve is shown in the parenthesis.
Simple neural network model is also fitted with trainable input weights (TW).

34

As we condition the expected claim amounts on the number of claims, the predicted
number of claims are also of interest. The results from the claim counts models are shown
in Table 4. GBM is the best predictor for almost all of the LoBs except for LoB 2 where the
neural network models appears to have better predictions. Notice that the neural network
models seem to improve the ODP predictions somewhat. The number of predicted claims
are divided into RBNS claims and IBNR claims for the double neural network model since
the RBNS reserve uses the predicted number of claims and not the actual. The biases
for the number of RBNS claims are quite small though which seems reasonable since the
model has seen the actual number of RBNS claims during the fitting.

LoB
Model Type 1 2 3 4 5 6

True Claims 1 490 1 479 740 1 992 2 008 893
ODP Claims 1 712 1 719 835 2 398 2 412 1 092
ODP Bias % 14.90 16.23 12.84 20.38 20.12 22.28
GBM Claims 1 654 1 691 767 2 117 2 077 930
GBM Bias % 11.01 14.33 -3.65 6.28 3.44 4.14
Simple NN Claims 1 678 1 630 786 2 302 2 360 1 053
Simple NN Bias % 12.62 10.21 6.22 15.56 17.53 17.92
Double NN Claims IBNR 1 165 1 667 872 2 348 2 428 1 046
Double NN Bias % 11.74 12.71 17.84 17.87 20.92 17.13
Double NN Claims RBNS 228 729 228 420 93 126 227 763 228 278 91 299
Double NN Bias % -0.06 0.06 0.15 -0.06 0.09 -0.26

Table 4: True and predicted IBNR claim counts with relative biases for each LoB for the
lower right triangle. The predicted RBNS claim counts are only shown for double neural
network model. Since the other models use the actual number of claims for modelling of
the RBNS reserves, the predicted IBNR claims are only of interest.

The advantage of dividing the development dynamics into reporting and payment delay
is that it allows us to predict the RBNS and IBNR reserves separately. Table 5 shows the
RBNS and IBNR reserves for each LoB. The relative biases for the IBNR reserves are
worse than for the RBNS reserves as expected since the IBNR reserves are much smaller
and the conditioned claim counts are the predicted ones. Here as well, we notice the good
performance of the GBM model that predicts the IBNR reserves best for all of the LoBs,
expect for LoB 3. The relative bias for LoB 5 with GBM is 2.15 % while the other models
have relative bias between 25 % to 30 %.

The relative biases for the claim amounts per accident year and development year are
shown in Figure 9 for Chain-Ladder, GBM, double and simple neural network reserving
models. The results for the neural network models are similar to Chain-Ladder and it
is clear that the models underestimate the reserves systematically on the lower triangle.
GBM instead eliminates the systematic underestimation. Notice that the highest biases
are observed for the last development years but the payments are very small meaning that

35

LoB
Model Type 1 2 3 4 5 6

True IBNR 1 597 1 538 603 3 594 2 739 1 048
ODP IBNR 1 861 1 835 1 020 3 664 3 549 1 651
ODP Bias % 16.53 19.31 69.15 1.95 29.57 57.54
GBM IBNR 1 644 1 629 837 3 186 2 797 1 405
GBM Bias % 2.90 5.91 38.77 -11.34 2.15 34.07
Simple NN IBNR 1 803 1 712 929 3 433 3 519 1 578
Simple NN Bias % 12.91 11.30 53.89 -4.48 28.52 50.61
Double NN IBNR 1 890 1 813 1 004 3 691 3 437 1 736
Double NN Bias % 18.34 17.84 66.32 2.68 25.49 65.68

True RBNS 38 093 35 500 16 275 68 038 69 810 30 070
ODP RBNS 36 447 33 317 14 432 63 392 65 922 27 464
ODP Bias % -4.32 -6.15 -11.32 -6.83 -5.57 -8.67
GBM RBNS 38 053 35 600 15 529 69 481 68 636 30 709
GBM Bias % -0.01 0.28 -4.58 2.12 -1.68 2.12
Simple NN RBNS 39 465 33 067 14 427 68 249 67 130 27 758
Simple NN Bias % 3.60 -6.85 -11.35 0.31 -3.84 -7.69
Double NN RBNS 38 139 34 146 14 682 65 818 69 075 28 311
Double NN Bias % 0.12 -3.81 -9.78 -3.26 -1.05 -5.85

Table 5: True RBNS and IBNR reserves and predicted reserves with relative biases for
each LoB.

the absolute biases are not large. The relative biases for the claim counts part are shown
in Figure 10. Simple neural network predicts the number of claims almost exactly on the
upper triangle. Chain-Ladder is the worst predictor for claim counts for development years
10 and 11 where the number of claims is very small. The machine learning models succeed
to predict the number of claims better than Chain-Ladder.

In order to examine how well the models perform we have plotted the average total
payment per development year and average claim cost per accident years for LoB 6 in Figure
11. The predicted average payments per development year are very close to the observed
average payments and there is no clear difference between the models. Furthermore, the
predicted average claim costs are very close to the true values for all the models except
GBM where the average claim cost is more stable over the accident years. The reason why
we choose to illustrate these for LoB 6 is that the average claim cost for GBM differs in
comparison to the other models. For all the other LoB’s all the models follows the true
average claim cost closely.

During the fitting procedure we noticed that the neural network models are quite sen-
sitive for the choice of seed as well. The results in Table 3 are generated with seed 75 and
we were also interested in how much the predictions varies when changing the seed but still
preserving the same number of epochs as in the original model. Thus, we fitted the double

36

neural network model for 20 different seeds to get a more stable prediction by taking the
mean of the predicted reserves. The relative biases are illustrated in a box plot in Figure
12. There is indeed some fluctuation in the predictions, particularly for LoB 2 with seeds
65-84. LoB 1 have more variation in the predictions for seeds 1-20 than for seeds 65-84.
Based on Figure 12 it might be beneficial to fit several models with different seeds and
then choose the average prediction as the predictor of the outstanding reserve.

We were also interested in exploring how well the reserving models would perform if we
reduce the training data. Thus, we fitted the models while removing the last diagonal from
the training set. Notice that this method is only possible for the GBM reserving model since
the neural network models require input values for each accident year, reporting delay and
payment delay. As we remove the last diagonal we do not have input for the last accident
year and hence neural network reserving models are not applicable. The GBM model still
performs well even without the last diagonal in the training set with the following relative
biases: 1.79 %, 0.90 %, -1.56 %, -3.21 %, -3.71 % and -1.97 %. In fact, the predictions are
even better for LoB 3 and 6 without the last diagonal.

Figure 13 shows the relative bias when gradually removing some of the individual
observations from the data. Before aggregating the individual claims per accident year,
reporting delay and payment delay, the individual claims data is sorted per LoB and
accident year. We removed systematically every other observation when reducing the
number of individual observations to half, every third when removing one third and so on.
GBM has more difficulties in predicting the outstanding reserves compared to the other
models. Here we see that GBM fails especially for LoB 3 since the number of claims is
quite small and therefore the division into groups by the covariates becomes hard. The
neural network models are always smooth and hence they are able to fit the data better
when the number of observations declines. Interestingly for LoB 5 there is a peak in the
bias when 75 % of the observations are removed and yet when 90 % of the observations
are removed the bias is close to 0 %.

So far we have used the relative bias when comparing and evaluating the performance of
the reserving models. However, normally we do not know the true reserves which prevents
us from computing the relative bias. In addition, we have only seen how well the models
perform on one data set. As a consequence, we need to expand our tools for evaluating
the models and therefore it might be interesting to look at the conditional MSEP that is
computed according to (78). When calculating the conditional MSEP we assume that the
predicted reserves are the true ones and bootstrap several new data sets that have similar
characteristics as the original data set. MSEP balances the trade-off between variance and
bias and a small value is desired.

Fitting the models to each new simulated data set requires considerably computation
power which is why we have chosen to restrict the number of simulations. We have per-
formed 1 000 simulations for all the models, except for the simple neural network model for
which the fitting is remarkably slower than the other models. Thus, we have performed 100
simulations for the neural network reserving model. Table 6 summarises the MSEPs for

37

the reserving models together with the root of the process variances and estimation errors.
The highest MSEPs are observed for GBM and the lowest for ODP and Chain-Ladder.
The drawback of Chain-Ladder is though that it does not allow for separate modelling
of the RBNS and IBNR reserves. As the GBM and neural network models are highly
parametrised we can expect greater estimation error than for the ODP and Chain-Ladder
reserving models. Notice that neural network has the smallest process variance.

Histograms of the predicted reserves for the simulated datasets for LoB 2 are illustrated
in Figure 14 where the red lines show the predicted reserves for each reserving model and
the black lines show the true reserves. The distributions of predicted reserves with Chain-
Ladder and ODP reserving models are rather similar. Moreover, both of these models,
as well as neural network reserving model, underestimates the true reserves whereas GBM
overestimates. Recall that in our estimation of MSEP we assume that the predicted reserves
are true ones. Chain-Ladder and ODP reserving model predictions are around the median
of the distribution of the simulated predictions. GBM instead overestimates and neural
network underestimates the predicted reserves severely.

Table 6 shows also the over-dispersion parameters for the claim counts φN and claim
amounts φX . For the claim counts part the over-dispersion parameters are rather small
and even smaller than 1 for GBM.

For the estimation of the MSEPs we have used parametric bootstrap simulations which
does not catch model error since we assume that the predicted values are the true values.
The MSEPs in Table 6 could also be compared to the unconditional MSEPs where instead
of parametric bootstrap new data is simulated from the simulation machine in [6] with
different seeds. However we expect the unconditional MSEPs to be close to the conditional
MSEPs. By comparing these we could get an indication of the models true MSEPs.

38

LoB
MSEP 1 2 3 4 5 6

CL 1 120 1 287 480 2 195 2 000 953
ODP 1 017 1 158 617 1 706 2 353 1 162
GBM 1 746 2 699 1 263 5 877 4 597 3 052
NN 1 881 1 794 750 3 216 3 709 1 305

Process Variance 1 2 3 4 5 6

CL 587 715 245 1 110 1 000 491
ODP 560 633 330 877 1 208 600
GBM 683 751 410 1 030 2 031 746
NN 442 598 327 677 1 130 598

Estimation Error 1 2 3 4 5 6

CL 954 1 069 412 1 894 1 732 817
ODP 849 969 521 1 463 2 019 995
GBM 1 607 2 593 1 195 5 786 4 124 2 959
NN 1 828 1 691 675 3 144 3 533 1 160

Over-dispersion φX 1 2 3 4 5 6

CL 8.9 14.4 3.8 18.2 14.2 8.2
ODP 8.1 11.3 6.9 11.2 20.8 12.2
GBM 11.7 15.1 10.2 14.5 57.7 17.2
NN 4.6 10.2 6.9 6.2 17.9 12.0

Over-dispersion φN 1 2 3 4 5 6

ODP 1.9 1.7 1.2 2.8 2.5 1.8
GBM 0.9 0.8 0.7 1.2 0.9 1.1
NN 1.7 1.5 1.3 2.4 2.4 1.7

Table 6: Conditional root mean squared error of prediction for each LoB together with the
process variance and estimation error. Over-dispersion parameters for the claim counts φN

and claim amounts φX for each LoB and model.

39

Figure 8: Training and validation error for the neural network models for each LoB. Top:
Simple neural network claim counts part. Middle: Simple neural network claim amounts
part. Bottom: Double neural network. 40

Figure 9: Heat maps of the relative biases for the reserving models for claim amounts for
LoB 1.

Figure 10: Heat maps of the relative biases for the reserving models for claim counts for
LoB 1.

41

Figure 11: Left: True and predicted average payments per development year for LoB 6 (in
thousands). Right: True and predicted average claim costs over accident years for LoB 6.

Figure 12: Boxplot of relative biases from predictions of double neural network model with
different seeds.Left: Seeds 65-84. Right: Seeds 1-20.

42

Figure 13: Relative bias for each LoB and model when removing part of the observations.

43

Figure 14: Histogram of the predicted reserves with parametric bootstrap for 1 000 sim-
ulations for LoB 2. For neural network only 100 simulations were performed. The black
line shows the true reserve and the red line the predicted reserve as in Table 3.

44

LoB N Payment RBNS % Reserve

1 146 843 4 225 281 96.93 734 200
2 1 148 018 8 140 364 98.93 135 241
3 346 126 6 734 117 99.47 486 714

Table 7: Number of claims, total payments, percentage of the claims that are RBNS and
outstanding reserve for each LoB (in thousands).

4 Application to real-world data

In this Section we apply the models discussed in Section 2 to real-world data and test their
prediction ability.

4.1 Data Description

The data is from Folksam Ömsesidig Sakförsäkring and it consists of individual non-life
insurance claims histories from three different LoBs. Similarly as in Section 3, we use three
variables in our analysis: accident year, reporting delay and payment delay after reporting
the claim. Some of the aggregated payments in the accident year, reporting and payment
delay groups are negative and as in Section 3 we set the negative aggregated payments to
zero. For LoB 1 0.57 % of the total payments are negative, for LoB 2 0.73 % and for Lob
3 0.13 %.

Table 7 shows the total number of claims, total claim payments, the percentage of the
payments that are RBNS and the outstanding reserves for each LoB. The most claims are
found in LoB 2 with more than 1 million claims and the fewest LoB 1 with 146 843 claims.
The total payments are between 4 billion to 8 billion and the outstanding reserves varies
between 135 million to 734 million. LoB 3 has the highest percentage of RBNS claims as
99.47 % of the claims are RBNS and LoB 2 has fewest with 96.93 % RBNS claims.

The average payment per development year for each LoB is shown in Figure 15 (right).
The payments for LoB 1 start often after two years from the claim date as there are hardly
any payments during the same year as the accident year. The claim payments peak after
two years from the accident whereafter they decline and the claims are fully developed
after 15 years.

The green line in Figure 15 shows the average payments per development year for LoB
2. Compared to LoB 1 the payment structure is quite different as most payments are made
during the accident year. Finally, LoB 3 has quite similar development of payments as LoB
2. Here as well, most of the claim payments are made during the first two development
year as we can see from the blue line in Figure 15 and are fully developed after 10 years.

Figure 15 illustrates the average claim cost for the three LoBs over the accident years.
The average claim cost for LoB 1 was quite stable during the first eight years and started
to decline after 1997. For LoB 2 there is a clear positive trend instead as the average claim

45

Figure 15: Left: Observed average payment per development year (in thousands). Right:
Observed average claim cost over accident years.

cost have been rising since 1998 which is due to inflation. As we can see from the green line
in Figure 15 the average claim cost for LoB 3 had a positive trend during the first seven
years and thereafter we can notice a slight decrease in the claim costs. Thus, the highest
claim costs are for claims from LoB 1 and the lowest from LoB 2.

4.2 Results

We perform the same model fitting procedure as in Section 3.2. The training and validation
loss plots are very similar to Figures 4 - 8 and hence without showing the training and
validation plots for GBM we observe that for all of these data sets the best fit is found with
the same hyper-parameters as in Section 3.2, i.e. we choose shrinkage factor 0.01, bagging
factor 1, i.e. no bagging, minimum observations per node 1 and interaction depth 2 for
number of claims and 1 for claim amounts, i.e. no interactions. The number of trees used
in fitting the claim counts and claim amounts models are summarised in Table 8. The claim
counts model requires more trees compared to the claim amounts part and overall our real
data set needs more trees compared to the simulated data, see Table 2. The validation
loss in the neural network models have quite slow convergence and all of the LoBs need at
least 6 000 epochs.

After finding the optimal tuning parameters, we fit the models for the upper left triangle
and predict on the lower right triangle to obtain the predicted reserves. Table 9 shows true
and predicted reserves for all the models and their relative biases. LoB 1 and 3 are more
challenging compared to LoB 2. With GBM the relative bias for LoB 1 is only 6.77 % and
-18.90 % for LoB 3. However, for LoB 2 the GBM model predicts slightly worse than the
other models with relative bias 7.38 %. GBM succeeds to have the most accurate prediction
of the outstanding reserves for LoB 1 as the other models have biases from -20 % to -45 %.
The simple neural network model predicts the outstanding reserve for LoB 2 best as the
relative bias is only -0.15 %.

46

LoB
Model Type 1 2 3

GBM Count 3 602 4 903 1 008
GBM Amount 462 4 000 520
Simple NN Count 7 227 6 308 8 729
Simple NN Amount 9 721 8 629 6 526
Double NN Claims 3 000 9 565 1 207

Table 8: Number of trees and epochs used in the machine learning models.

LoB
Model Type 1 2 3

True Reserve 734 200 135 241 486 714
CL Reserve 401 572 131 799 375 972
CL Bias % -45.30 -2.55 -22.75
ODP Reserve 459 873 141 439 374 627
ODP Bias % -37.36 4.58 -23.03
GBM Reserve 783 878 145 219 394 719
GBM Bias % 6.77 7.38 -18.90
Simple NN Reserve 593 404 135 031 388 580
Simple NN Bias % -19.18 -0.15 -20.16
Double NN Reserve 474 484 138 474 375 805
Double NN Bias % -35.37 2.39 -22.78

Table 9: True reserves and predicted reserves with relative biases for each LoB. The mini-
mum relative bias for each LoB is in bold.

The simple neural network model here is fitted with trainable weights as the results
are much better than with non-trainable weights, especially for LoB 1. The results with
non-trainable weights were close to the ones we obtain with double neural network model.
We tried also to fit the double neural network model with trainable input weights but
this did not have significant effect on the predictions. The simple neural network model
succeeds indeed to calibrate the ODP predictions to be more accurate. The same effect is
not visible with the double neural network though where the predicted reserves are very
close to the ones from the ODP reserving model. As in Section 3.2 we fitted the models
when flipping the training and validation data but the predictions were very close to the
predictions presented in Table 9.

The true and predicted IBNR and RBNS reserves are found in Table 10. The GBM
model had the best predicted total reserves for LoB 1 but the relative bias for the IBNR
reserve is terrible 99.80 %. With simulated data the IBNR biases were often worse than
the RBNS biases (see Table 5) but here instead the IBNR biases in some cases are even

47

better than RBNS. For example GBM have relative bias for RBNS reserve of 15.56 % for
LoB 2 and only -8.23 % for the IBNR reserve. Moreover, the double neural network model
predicts IBNR reserves better than the RBNS reserves.

LoB
Model Type 1 2 3

True IBNR 114 617 46 497 30 311
ODP IBNR 79 027 42 456 25 106
ODP Bias % -31.05 -8.69 -17.17
GBM IBNR 229 007 42 668 24 708
GBM Bias % 99.80 -8.23 -18.49
Simple NN IBNR 80 601 40 507 24 538
Simple NN Bias % -29.68 -12.88 -19.04
Double NN IBNR 85 551 41 103 25 101
Double NN Bias % -25.36 -11.60 -17.18

True RBNS 619 583 88 743 456 403
ODP RBNS 380 847 98 983 349 521
ODP Bias % -38.53 11.54 -23.42
GBM RBNS 554 871 102 551 370 012
GBM Bias % -10.44 15.56 -18.93
Simple NN RBNS 512 803 94 524 364 042
Simple NN Bias % -17.23 6.51 -20.24
Double NN RBNS 388 933 97 370 350 104
Double NN Bias % -37.23 9.72 -23.29

Table 10: True RBNS and IBNR reserves and the predicted reserves with relative biases
for each LoB.

We proceed with the predictions of the claim counts. The number of claims are showed
in Table 11. We are mainly interested in the prediction ability of the IBNR claims since
the models use the occurred claim counts when modelling the RBNS reserves, except the
double neural network model where the number of claims are used for modelling both
the RBNS and IBNR reserves. Notice that the bias for the RBNS claim counts is very
small. GBM shows good performance here when it comes to the number of claims for LoB
3 as the bias is only -13 (-0.71 %). The neural network models instead seems to make
even worse predictions than the ODP reserving model which is the starting point for the
neural network models. This indicates that the neural network models do not calibrate the
estimates from the ODP model very well.

Heat maps of the relative biases for the claim amounts for LoB 1 is shown in Figure 16.
The worst predictions are found for accident year 9 and development year 15. In this cell the
observed claim payment is much smaller than in the same development year for the other

48

LoB
Model Type 1 2 3

True IBNR 4 506 12 300 1 835
True RBNS 133 665 1 007 143 314 079
ODP IBNR 6 787 9 639 1 789
ODP Bias % 50.62 -21.63 -2.51
GBM IBNR 5 605 10 058 1 822
GBM Bias % 24.39 -18.23 -0.71
Simple NN IBNR 6 910 9 189 1747
Simple NN Bias % 53.35 -25.29 -4.80
Double NN IBNR 7 763 9 398 1 741
Double NN Bias % 72.28 -23.59 -5.12
Double NN RBNS 133 436 1 086 563 314 113
Double NN Bias % -0.17 0.87 0.01

Table 11: True claim counts and predicted claim counts with relative biases for each LoB
for the lower right triangle.

accident years. GBM have the most extreme relative biases and yet it performs the best in
total. Moreover, the machine learning models have more difficulties in predicting the claim
payments for the first development year than Chain-Ladder as all of them overestimates
the payments considerably. The relative biases for the claim counts are illustrated in Figure
17. The worst relative bias is for double neural network model for accident year 16 and
development year 9. It is clear that the machine learning models predicts the number of
claim better than Chain-Ladder. Observe that the results for the simple neural network
model are rather similar to GBM.

In Figure 18 the true and predicted average payments per development year and average
claim costs per accident year are illustrated. Although GBM predicts the outstanding
reserves considerably better than the other models it does not capture the true structure
for the average payments. Chain-Ladder and simple neural network have similar total
predictions and they follow the true payment structure over the development years better.
In Figure 18 we see that all the models underestimates the average claim cost severely
for the two latest accident year which is reasonable as the claim cost during the first
development years are considerably smaller than for the older years but the total payments
after 15 years are still close to 200 000 as for the older years, see Table 18. Furthermore,
GBM overestimates the average claim cost with more than 10 000 for accident year 11. To
conclude, GBM have most bias per accident and development year but in total they weigh
out which leads to a good total prediction.

49

Figure 16: Heat maps of the relative biases for the reserving models for claim amounts for
LoB 1. All biases over 300 % are set to 300 %.

Figure 17: Heat maps of the relative biases for the reserving models for claim counts for
LoB 1. All biases over 300 % and under -300 % are set to 300 % and -300 % respectively.

50

Figure 18: Left: True and predicted average payments per development year for LoB 1 (in
thousands). Right: True and predicted average claim costs over accident years for LoB 1.

51

5 Discussion & Conclusions

In this thesis we have used both classical and machine learning methods for claims reserving.
The goal has been to illustrate how machine learning models can be implemented in the
claims reserving context.

What we have seen in Sections 3.2 and 4.2 is that the machine learning methods dis-
cussed in this thesis predict the outstanding reserves at least as well as the traditional
Chain-Ladder model and often considerably better. This gives rise to use these methods
in practice for example as a complement to Chain-Ladder. As we saw in Section 4 the
real-world claims data might be more complicated to predict than the simulated data sets
and in this case it would be helpful to use the machine learning methods in the analysis.
Especially reserving for LoB 1 could be improved significantly with GBM or the simple
neural network reserving models. To conclude, most often GBM had the best point esti-
mate of the total outstanding reserves and hence we would choose this reserving model if
the focus is on the best point estimate.

An advantage with the neural network models is that they are able to model non-
linear dependencies of the covariates indirectly whereas with linear models one have to add
these kind of dependencies explicitly. As we saw in Section 3.2, the double neural network
model performed better than the simple in most cases. Thus, we can conclude that there
is a non-linear relationship between the claim amounts and claim counts that the simple
neural network model does not catch. Although, a disadvantage is that the neural network
reserving model is more difficult to interpret than linear models.

The implementation of GBM in R is very straightforward and it requires less compu-
tation time than the neural network models. When implementing a neural network one
has to define the input values for the covariates and set up the network architecture which
requires more time from the practitioner. The handling of the covariates in the GBM
reserving model is not predefined. Here, we have chosen to handle the covariates in the
GBM model as numeric which allows for simple addition of the inflation effect. Another
choice could be to treat the covariates as categorical as in ODP and neural network mod-
els. Notice that for the neural network models the categorical input covariates are crucial
for the embedding of the ODP reserving model. Thus, we would recommend GBM if the
simplicity of the model implementation is crucial for the choice of the reserving model.

If the goal is to choose a model that minimises the MSEP then based on the results in
Table 6 CL or ODP would be the choice. These models would also be the choice is the goal
is to avoid large estimation errors. As the machine learning models have more parameters
compared to CL and ODP we do expect higher estimation error. Moreover, as we use
parametric bootstrap and assume that the predicted values are the true ones we do not
catch the model error. Thus, a model with large relative bias may still achieve low MSEP.
Although, the neural network reserving model has many parameters it still has fairly low
estimation error. Consequently, we would recommend neural network model over GBM if
one seeks for a model with low estimation error.

52

As we saw in Section 3.2, the neural network models are quite sensitive for the choice
of seed and division to training and validation data. Hence, in order to get a more stable
prediction it could be beneficial to fit the model for a number of seeds and take the average
prediction as the predicted outstanding reserve. Alternatively, one could use k-fold cross-
validation for example by flipping the training and validation data and take the average of
the predicted reserves.

In this thesis we have mostly included all the observation in the training data. The split
of the training and validation data could also be chosen differently for example one could
remove some of the observations for the older accident years and thus putting less weight on
the older years and more on the latest years. This method could be especially beneficial for
LoB 3 in the real-world data part where we observed that the average claim cost increased
which probably caused that all of the methods underestimated the outstanding reserves
with approximately 20 %.

The only tuning parameter for neural networks that we have considered here is the
number of epochs as we have closely followed the architecture of the network from [4] and
[5]. One could also optimise the number of neurons, dropout rate or activation functions
for each hidden layer. This can be done following the same steps as we saw for GBM, i.e.
comparing the training and validation losses for the different choices of tuning parameters.
By optimising the tuning parameters the prediction accuracy might be improved for the
neural network reserving models.

Notice that division with the overdispersion parameter in the double neural network
model is necessary to regulate the difference of the volumes of the estimates, i.e. the de-
viances from the claim counts part are in general considerably smaller than the deviances
from claim amounts part. This risks that the loss function in (73) focuses more on minimiz-
ing the loss from the claim amounts part and hence the claim amounts part is penalized
more than the claim counts. Both here and when calculating MSEP we have used the
number of parameters from the ODP reserving model to compute the overdispersion pa-
rameter but the actual number of parameters in the neural network models is noticeably
larger. Moreover, in our case the number of parameters in the neural network models is
even larger than the number of observations which implies that the estimated overdisper-
sion parameter cannot be computed according to Pearson statistics. The estimation of the
overdispersion parameter when considering the actual number of parameters in the model
is left for future work.

53

6 References

[1] Bahdanau, D., Cho, K. & Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv 1409.0473, Version of May 19, 2016.

[2] Duval, F. & Pigeon, M. (2019). Individual loss reserving using a gradient boosting-
based approach. Risks, 7(3):79.

[3] Efron, B. & Hastie, T. (2014). Computer Age Statistical Inference: Algorithms, Evi-
dence, and Data Science. Cambridge University Press.

[4] Gabrielli, A. (2020). A Neural Network Boosted Double Overdispersed Poisson Claims
Reserving Model. ASTIN Bulletin, 50(1):25-60.

[5] Gabrielli, A., Richman, R. & Wüthrich, M. V. (2020). Neural Network Embedding
of the Over-Dispersed Poisson Reserving Model. Scandinavian Actuarial Journal,
2020(1):1-29.

[6] Gabrielli, A. & Wüthrich, M. V. (2018). An Individual Claims History Simulation
Machine.Risks, 6(2):29.

[7] Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. MIT Press. Available
at http://www.deeplearningbook.org.

[8] Hastie, T., Friedman, J. & Tibshirani, R. (2008). The Elements of Statistical Learning,
Springer Series in Statistics.

[9] Ioffe, S. & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. Proceedings of Machine Learning Research,
37:448-456.

[10] Lindholm, M., Verrall, R., Wahl, F. & Zakrisson, H. (2020). Machine Learning, Regres-
sion Models, and Prediction of Claims Reserves. Casualty Actuarial Society E-Forum,
Summer.

[11] Luong, M.-T., Pham, H. and Manning, C.D. (2015). Effective Approaches to
Attention-based Neural Machine Translation. Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 1412–1421.

[12] McCullagh, P. & Nelder, J. (1989). Generalized Linear Models. Chapman & Hall/CRC.

[13] Renshaw, A. & Verrall, R. (1998). A Stochastic Model Underlying the Chain-Ladder
Technique. British Actuarial Journal, 4(4):903-923.

54

[14] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014).
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research, 15:1929-1958.

[15] Wüthrich, M. V. & Merz, M. (2019). Editorial: Yes, we CANN! ASTIN Bulletin,
49(1):1-3.

[16] Wüthrich, M. V. (2018). Machine learning in individual claims reserving. Scandinavian
Actuarial Journal, 2018(6):465–480.

55

7 Appendix A

Tables 12 - 20 show the cumulative payments for simulated and real data sets used in
Sections 3 - 4.

HHH
HHH

AY
DY 0 1 2 3 4 5 6 7 8 9 10 11

1994 9 416 14 267 15 863 16 734 17 328 17 774 18 096 18 337 18 526 18 703 18 862 18 992
1995 9 822 15 115 16 941 17 967 18 624 19 081 19 445 19 737 19 965 20 156 20 302 20 440
1996 9 613 14 516 16 181 17 150 17 744 18 187 18 512 18 775 18 987 19 164 19 323 19 444
1997 9 788 15 038 16 861 17 946 18 691 19 241 19 672 19 975 20 201 20 397 20 608 20 775
1998 9 955 15 676 17 765 18 924 19 714 20 273 20 731 21 085 21 343 21 580 21 763 21 916
1999 10 453 16 575 18 789 20 100 20 959 21 589 22 086 22 442 22 721 22 945 23 138 23 285
2000 11 130 17 607 20 008 21 363 22 253 22 930 23 442 23 853 24 207 24 515 24 765 24 950
2001 11 268 17 896 20 401 21 894 22 901 23 589 24 073 24 435 24 736 25 020 25 251 25 453
2002 11 475 18 427 21 075 22 553 23 506 24 206 24 722 25 107 25 444 25 693 25 913 26 088
2003 12 172 19 256 22 002 23 398 24 252 24 834 25 313 25 694 25 955 26 191 26 405 26 571
2004 12 816 20 844 23 943 25 696 26 878 27 701 28 308 28 748 29 113 29 401 29 640 29 841
2005 13 239 20 648 23 398 24 896 25 770 26 414 26 918 27 342 27 640 27 886 28 073 28 233

Table 12: Cumulative claim payments for LoB 1 simulated data.

HHH
HHH

AY
DY 0 1 2 3 4 5 6 7 8 9 10 11

1994 9 638 14 449 16 107 17 024 17 645 18 062 18 374 18 622 18 807 18 990 19 128 19 239
1995 10 042 15 035 16 807 17 774 18 407 18 853 19 185 19 439 19 642 19 824 19 977 20 102
1996 9 515 14 429 16 121 17 102 17 658 18088 18 406 18 657 18 848 19 020 19 177 19 285
1997 9 659 14 336 15 935 16 807 17 364 17 724 17 983 18 147 18 265 18 353 18 416 18 489
1998 10 298 15 948 18 051 19 270 20 197 20 844 21 319 21 683 21 965 22 223 22 427 22 589
1999 10 722 17 337 19 868 21 339 22 340 22 995 23 500 23 943 24 313 24 592 24 851 25 077
2000 10 363 16 250 18 339 19 599 20 384 20 950 21 381 21 680 21 908 22 109 22 278 22 404
2001 11 113 17 429 19 939 21 335 22 275 22 927 23 380 23 777 24 079 24 340 24 549 24 721
2002 11 316 17 729 20 066 21 393 22 220 22 758 23 139 23 438 23 657 23 824 23 988 24 138
2003 12 609 19 894 22 733 24 287 25 292 25 978 26 488 26 915 27 264 27 560 27 816 28 039
2004 12 387 19 751 22 510 24 019 25 013 25 681 26 194 26 548 26 834 27 089 27 311 27 525
2005 12 798 19 867 22 558 24 002 24 935 25 510 25 936 26 290 26 547 26 724 26 886 27 014

Table 13: Cumulative claim payments for LoB 2 simulated data.

56

H
HHHHH
AY

DY 0 1 2 3 4 5 6 7 8 9 10 11

1994 2 888 4 382 4 881 5 181 5 370 5 497 5 584 5 626 5 657 5 697 5 742 5 770
1995 3 098 4 697 5 280 5 602 5 811 5 969 6 100 6 196 6 263 6 328 6 384 6 426
1996 3 125 4 710 5 258 5 578 5 803 5 971 6 095 6 195 6 290 6 348 6 387 6 419
1997 3 411 5 451 6 157 6 580 6 831 6 989 7 123 7 241 7 307 7 381 7 439 7 497
1998 3 564 5 407 5 979 6 264 6 466 6 612 6 735 6 827 6 893 6 951 6 987 7 027
1999 3 780 5 772 6 457 6 831 7 119 7 326 7 463 7 573 7 644 7 715 7 784 7 838
2000 3 996 6 197 6 937 7 374 7 651 7 862 7 992 8 097 8 204 8 281 8 363 8 425
2001 4 800 7 583 8 564 9 122 9 483 9 748 9 926 10 079 10 196 10 292 10 381 10 457
2002 4 686 7 273 8 268 8 787 9 092 9 315 9 479 9 667 9 776 9890 9 955 10 021
2003 5 380 8 555 9 752 10 369 10 776 11 068 11 257 11 438 11 564 11 660 11 738 11 805
2004 5 890 9 321 10 644 11 487 11 973 12 303 12 507 12 664 12 773 12 934 13 020 13 098
2005 6 163 9 789 11 192 11 941 12 394 12 720 12970 13 144 13 273 13 379 13 465 13 560

Table 14: Cumulative claim payments for LoB 3 simulated data.

HH
HHHH

AY
DY 0 1 2 3 4 5 6 7 8 9 10 11

1994 12 442 19 854 22 590 24 162 25 222 25 950 26 533 27 007 27 399 27 730 28 013 28 246
1995 11 986 19 094 21 714 23 233 24 248 24 960 25 470 25 861 26 176 26 460 26 728 26 940
1996 12 404 19 994 22 887 24 530 25 620 26 451 27 047 27 575 27 997 28 331 28 618 28 844
1997 12 508 20 004 22 910 24 646 25 805 26 605 27 194 27 639 27 972 28 289 28 576 28 792
1998 14 002 23 436 27 563 29 960 31 583 32 726 33 595 34 340 34 901 35 415 35 797 36 126
1999 13 031 22 306 25 976 28 086 29 542 30 586 31 422 32 108 32 667 33 176 33 606 33 956
2000 14 097 23 707 27 594 29 930 31 525 32 700 33 541 34 216 34 746 35 174 35 554 35 868
2001 15 052 25 770 30 394 33 026 34 937 36 263 37 317 38 243 38 949 39 553 40 063 40 441
2002 15 812 25 937 30 138 32 485 34 050 35 151 36 012 36 678 37 186 37 606 37 963 38 266
2003 16 469 28 397 33 375 36 203 38 197 39 638 40 700 41 531 42 204 42 755 43 229 43 679
2004 17 341 29 320 34 467 37 472 39 465 40 834 41 866 42 673 43 210 43 660 44 120 44 441
2005 17 856 29 761 34 617 37 410 39 292 40 543 41 502 42 175 42 669 43 035 43 435 43 746

Table 15: Cumulative claim payments for LoB 4 simulated data.

HH
HHHH

AY
DY 0 1 2 3 4 5 6 7 8 9 10 11

1994 12 195 19 207 21 725 23 159 24 208 24 951 25 512 25 950 26 286 26 577 26 818 27 011
1995 12 929 20 818 23 907 25 673 26 899 27 835 28 533 29 024 29 478 29 832 30 174 30 450
1996 12 720 20 953 24 263 26 163 27 427 28 416 29 179 29 760 30 220 30 643 31 003 31 295
1997 13 833 22 338 25 775 27 723 29 035 30 021 30 789 31 332 31 798 32 229 32 588 32 869
1998 14 131 23 945 28 096 30 541 32 259 33 516 34 465 35 262 35 875 36 404 36 885 37 282
1999 13 072 21 489 24 929 26 916 28 278 29 269 30 018 30 565 31 018 31 375 31 723 31 996
2000 14 703 24 834 29 006 31 419 33 088 34 320 35 331 36 117 36 787 37 364 37 894 38 355
2001 14 825 23 994 27 815 30 093 31 616 32 648 33 301 33 783 34 196 34 562 34 863 35 059
2002 15 514 26 368 31 046 33 723 35 555 36 818 37 821 38 582 39 125 39 614 40 005 40 338
2003 16 045 27 178 31 866 34 635 36 413 37 677 38 631 39 311 39 870 40 320 40 681 41 055
2004 17 480 30 213 36 115 39 525 41 835 43 421 44 580 45 466 46 119 46 613 47 078 47 388
2005 18 536 30 523 35 359 38 117 39 882 41 155 42 097 42 821 43 398 43 859 44 269 44 628

Table 16: Cumulative claim payments for LoB 5 simulated data.

57

HH
HHHH

AY
DY 0 1 2 3 4 5 6 7 8 9 10 11

1994 4 645 7 539 8 616 9 213 9 626 9 926 10 159 10 344 10 483 10 622 10 727 10 813
1995 5 174 8 028 9 159 9 817 10 250 10 559 10 791 10 974 11 124 11 255 11 368 11 444
1996 4 500 7 096 8 026 8 557 8 934 9 236 9 465 9 643 9 785 9 913 10 004 10 083
1997 4 904 8 318 9 645 10 410 10 943 11 371 11 685 11 940 12 121 12 294 12 436 12 595
1998 4 891 8 272 9 720 10 536 11 077 11 477 11 790 12 042 12 246 12 438 12 587 12 700
1999 4 596 7 467 8 592 9 209 9 568 9 833 10 029 10 186 10 319 10 398 10 457 10 523
2000 5 247 8 782 10 279 11 100 11 677 12 073 12 375 12 594 12 799 12 967 13 098 13 201
2001 5 956 9 990 11 686 12 646 13 311 13 780 14 163 14 482 14 726 14 945 15 134 15 298
2002 6 387 10 671 12 522 13 614 14 315 14 850 15 225 15 501 15 737 15 924 16 080 16 203
2003 6 811 11 653 13 871 15 162 15 989 16 528 16 901 17 207 17 416 17 576 17 716 17 837
2004 7 431 12 822 15 278 16 702 17 615 18 236 18 596 18 856 19 088 19 295 19 439 19 559
2005 8 388 14 203 16 678 18 088 18 991 19 630 20 075 20 416 20 694 20 916 21 082 21 227

Table 17: Cumulative claim payments for LoB 6 simulated data.

HHH
HHH

AY
DY 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1990 1936 43 294 120 841 172 234 196 610 210 598 219 812 226 035 231 294 234 392 238 104 239 580 240 461 241 262 241 765 242 074
1991 1676 48 853 147 859 192 838 220 941 239 590 249 603 256 548 260 317 263 986 267 139 268 966 270 294 270 866 272 728 27 3031
1992 1109 58 800 154 259 209 938 240 284 255 826 267 502 273 999 277 598 280 995 282 781 285 149 286 117 286 710 287 013 287 150
1993 1462 52 914 161 194 223 546 253 213 274 219 285 197 291 802 296 280 299 606 301 674 304 180 306 575 306 940 307 462 307 989
1994 1790 63 049 181 066 245 148 275 631 292 691 305 081 311 433 317 039 320 598 324 126 325 866 326 952 327 410 327 811 328 031
1995 323 18 061 102 030 190 459 220 657 241 487 253 734 260 531 268 731 273 717 277 210 280 474 281 209 283 275 283 851 284 259
1996 897 14 853 107 534 187 555 230 578 249 691 262 851 270 509 276 141 279 958 282 286 283 867 285 295 285 654 285 958 286 140
1997 525 15 598 94 300 189 305 235 196 257 279 275 155 286 450 291 897 296 101 299 818 302 760 303 446 303 868 304 627 304 726
1998 942 14 106 102 536 194 097 234 188 258 717 273 993 284 327 289 858 292 410 296 149 298 621 299 497 300 264 300 912 300 926
1999 1113 12 127 97 967 186 954 227 545 255 509 271 178 281 036 287 161 290 329 293 533 295 142 296 220 296 416 296 696 297 081
2000 512 9 360 74 406 153 962 199 983 222 410 236 929 244 149 249 617 253 360 255 434 257 545 258 457 258 690 259 023 259 569
2001 334 8 270 65 382 153 017 192 590 213 103 224 169 230 977 234 911 238 901 240 240 241 403 242 175 242 492 244 104 243 325
2002 1684 9 123 78 735 159 715 196 129 211 266 222 744 228 607 231 683 233 403 235 478 236 197 236 310 236 548 236 718 236 844
2003 132 4 483 73 944 137 904 165 127 180 414 187 364 193 002 196 884 199 342 200 614 201 385 201 870 201 980 202 059 202 126
2004 23 3 834 64 649 131 496 157 915 170 336 177 372 182 497 185 704 187 948 189 163 189 716 190 331 190 544 190 612 190 640
2006 63 2 208 57 076 123 388 149 283 164 484 171 104 173 678 175 640 177 255 178 787 180 128 180 474 180 896 181 333 181 369

Table 18: Cumulative claim payments for LoB 2 real data (in thousands).

HHH
HHH

AY
DY 0 1 2 3 4 5 6 7 8 9

1998 227 336 316 071 313 741 313 994 314 398 314 174 314 336 314 358 314 370 314 392
1999 663 745 761 039 757 558 756 495 755 995 756 377 756 457 756 509 756 583 756 648
2000 739 064 843 048 836 355 823 719 836 903 836 963 836 925 837 029 837 050 837 188
2001 723 910 852 387 853 819 854 743 854 732 854 751 854 801 854 864 854 771 854 865
2002 743 203 870 406 873 217 874 318 875 153 875 308 875 373 875 514 875 529 875 586
2003 746 454 870 587 872 058 874 744 875 058 874 959 875 118 875 322 875 424 875 475
2004 799 155 940 223 943 321 944 389 945 071 945 169 945 287 945 488 945 531 945 468
2005 827 690 960 643 962 556 963 506 963 618 963 807 964 470 964 472 964 518 964 577
2006 747 098 882 656 883 038 884 360 885 292 885 691 885 768 885 780 885 698 885 695
2007 702 351 827 073 829 111 829 912 830 125 830 260 830 307 830 316 830 322 830 469

Table 19: Cumulative claim payments for LoB 5 real data (in thousands).

58

H
HHH

HH
AY

DY 0 1 2 3 4 5 6 7 8 9

1998 259 064 432 045 447 060 455 107 458 230 459 847 460 363 461 695 461 815 461 864
1999 286 494 545 344 569 480 576 245 578 451 575 951 576 446 576 867 577 453 577 573
2000 348 800 635 330 666 144 674 992 677 419 677 298 677 951 679 812 680 948 682 265
2001 369 085 662 471 696 755 705 912 708 861 710 564 711 129 712 228 712 989 713 324
2002 361 526 640 113 665 701 673 664 676 697 678 119 679 214 680 031 680 395 680 438
2003 368 598 641 813 667 759 669 925 671 551 673 122 673 551 673 923 674 173 674 218
2004 334 501 630 481 656 391 664 007 666 074 666 255 666 813 667 933 667 775 668 137
2005 446 834 758 596 796 982 804 656 810 007 812 864 811 236 811 557 811 669 811 779
2006 360 231 675 552 715 969 728 853 732 065 733 185 737 022 735 929 734 645 737 232
2007 330 935 671 189 714 700 722 895 726 676 725 816 726 782 726 840 727 104 727 287

Table 20: Cumulative claim payments for LoB 7 real data (in thousands).

59

8 Appendix B

In this section we show the training and validation plots for the GBM models for LoBs 2-6.

Figure 19: Training and validation error for the claim counts part of GBM for LoB 2. Up
left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and 10.
Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

60

Figure 20: Training and validation error for the claim counts part of GBM for LoB 3. Up
left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and 10.
Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

61

Figure 21: Training and validation error for the claim counts part of GBM for LoB 4. Up
left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and 10.
Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

62

Figure 22: Training and validation error for the claim counts part of GBM for LoB 5. Up
left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and 10.
Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

63

Figure 23: Training and validation error for the claim counts part of GBM for LoB 6. Up
left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and 10.
Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

64

Figure 24: Training and validation error for the claim amounts part of GBM for LoB 2.
Up left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and
10. Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

65

Figure 25: Training and validation error for the claim amounts part of GBM for LoB 3.
Up left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and
10. Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

66

Figure 26: Training and validation error for the claim amounts part of GBM for LoB 4.
Up left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and
10. Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

67

Figure 27: Training and validation error for the claim amounts part of GBM for LoB 5.
Up left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and
10. Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

68

Figure 28: Training and validation error for the claim amounts part of GBM for LoB 6.
Up left: Shrinkage factor 0.1 and 0.01. Up right: Minimum observations per node 1 and
10. Bottom left: Bagging factor 0.5 and 1. Bottom right: Interaction depth 1 and 2.

69

