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Abstract

Complex models and methods has received plenty attention over
the recent years and various authors have shown the power of e.g.
neural networks and random forests over traditional insurance pricing
models. This thesis investigates the predictive power for a simulated
insurance portfolio where there is less exposure among policyholders
who have higher risk by utilising a synthetic minority oversampling
technique (SMOTE) and comparing the predictive performance with-
out application of SMOTE. In addition the same comparison is applied
to a real insurance data set. The thesis shows that without SMOTE
and where there is clearly less exposure among high risk customers
compared to the rest of the portfolio, the traditional vanilla GLM
outperforms the more complex models in predictive power. On the
contrary, by utilizing SMOTE and oversampling the high risk policy-
holders such that the data is more balanced, neural networks, regres-
sion trees and random forests make better prediction based on the 10
fold cross validation technique.
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1 Introduction

A non-life insurance contracts purpose is to transfer economic risk from the
policyholder to the insurance company. Insurance companies rely on the law of
large numbers for the sum of a large number of small individual losses which
ultimately become predictable on an aggregate level. If the previous statement
holds, the premium charge for this transfer of economic risk between the pol-
icyholder and the insurance company should be based on the expected value
of the loss. This expected value is commonly referred to as the pure premium
in the industry and is required from the policyholders for the company to be
solvent. As a result of the principle and the increased competition on the in-
surance market, a portfolio will consist of different types for risk profiles. For
instance the reimbursement of a vehicle insurance will vary depending on the
vehicles price which in turn gives need of statistical models in the insurance rate
making process.

Policyholders needs are reflected by the products offered in the insurance mar-
ket and can attract different samples of the population. Travel insurance is
demanded by potential policy buyers who frequently travel which may have dif-
ferent background and different behaviour than the rest of the population that
do not travel as frequently. Likewise someone who wants to transfer risk of
vehicle damage might be inclined to purchase an insurance that covers damage
to a greater extent the newer or more expensive the vehicle is. Calculating the
price of the insurance therefore needs to be done with care with respect to the
properties of the insured portfolio rather than assuming that the portfolio is a
random sample of the general population.

Rate making has in the past, and still is partly done currently, as with regards
to some basic information about the policyholder. The information usually re-
sults in a few different pieces of information such as age, geographic location etc.
called tariffs which are then summed to obtain a insurance price. Naturally the
prices and the tariffs can be set and optimized to give a fair price and margin to
all customers regardless of their tariff arguments or for example be optimized to
reach an overall portfolio profit. In addition, other parameters can be included
not directly related to the risk such as price elasticises, longevity of the policies
etc. adding more complexity to the problem of insurance rate making.

With the increased competition between insurance companies and increased
demands of self-regulation and capital requirements of the insurance companies
it is becoming progressively important for insurers to charge fair premiums for
their customers. Insurers need therefore to be more precise in determining the
correct price for their portfolio and also be dynamic enough to adjust prices
when the underlying distribution of the risk changes.

As stated in [24] the increase of data availability and increase of modern tech-
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nology drives the rise of alternatives to traditional actuarial methods in order
to meet the demand and the complexity of risk. More specifically the writers
say that

...We need to evolve, working intelligently with a wide cross-function
of skill sets such as data experts, data scientists, economists, statis-
ticians, mathematicians, computer scientists and, so to improve the
transformation of data to information to customer insights, behavioural
experts. This is a necessary evolution for actuaries and the profes-
sion to remain relevant in a high-tech business world.

Additionally, it has been reported by consultancy firm Accenture [2] that insur-
ance companies process and use about 10-15% of the available data creating a
large potential for applications of recent techniques in the day to day business.
Naturally this does not only apply to pricing but also other areas necessary in
running an insurance business such as analysis of risk appetite or claims man-
agement. The recent development creates potential for uses of more accurate
predictive methods in insurance rate making.

Machine learning methods have been applied and discussed in insurance litera-
ture extensively [9] [18] [30]. Although the same methods are applicable within
rate making, there are not many examples where they have been applied. Insur-
ance pricing is a regulated field which requires some model transparency. The
different types of applicable Machine Learning techniques and models are often
to complex to be able to fit the transparency criterion. The standard methods
for rate making and pricing within PC insurance is a combination of generalized
linear models [23]. Utilizing certain distributional assumption with some linear
transformation, GLM’s in the standard form do not take into account effects
of interactions between the studied variables if not explicitly specified. GLM’s
have also been extended to account for smooth effects of the explanatory vari-
ables such as GAM’s. Their power in insurance rate making application stems
from ability to capture complex structures in risk of the insurance portfolio as
well being interpretable by the actuary. GLM’s however require some a pri-
ori assumption about the underlying data generating process to be able to fit
the data as well as possible. Moreover, actuarial methods has historically been
adaptable to regression methods [26], [11] and [6] which makes the problems
suitable for other types of estimation methods to the ones of GLM.

This paper aims to investigate how Machine Learning methods compare to tra-
ditional actuarial rate making methods when there are complexities such as
interactions and non-linearity which are difficult to observe from the observed
data. Following the introduction of chapter 1, chapter 2 covers the theoretical
background applied in this thesis, chapter 3 presents the data on which the
methods are applied, chapter 4 presents the results together with the imple-
mentation methods applied which are then commented in chapter 5.
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2 Theory

This part describes the modelling theory applied in this thesis. Generalized
linear models, generalized additive models, tree based models, neural networks
and imbalanced data handling is described in the following subsections.

2.1 Insurance Pricing

A fundamental difference in the insurance industry compared to other industries
is that costs do not occur at the time of the writing of the product. Costs occur
instead if a policyholder experiences a economic loss reimbursable by the written
insurance contract. In that sense, the business of selling insurances is essentially
selling future promises to anyone that holds the insurance contract. The seller
of the insurance contract does not know when the cost will occur therefore has
to rely on historical data and estimations to find an adequate price for the con-
tract. Actuarial estimates often consider the pure premium which is the best
estimate of the future liabilities per insured. In effect, natural questions occur
such as how much to charge a specific group of customers if they for example
have less claims than the rest of the portfolio?

Actuarial estimates of the insurance price often deals with some kind of modelled
price because outcomes of the costs of the insurance prices might be subject to
large random fluctuations. Additionally, prices need to take into consideration
the market level of the premiums to be able to attract customers as well as the
insurance company’s costs for running the business of risk transferring.

Insurance companies cover the costs by collecting premiums from the insur-
ance buyers in exchange for the transfer of risk from the policyholder to the
insurance company. Premiums can be paid in various ways but the insurance
company needs to hold capital to be able to cover potential losses and it is not
therefore uncommon for premiums to be paid in advance (i.e. prior to the period
during which risk is transferred or prior to claim payouts). Defining the pure
premium (the premium paid by policyholders to cover risk) utilizes the law of
large numbers. Define Y1, Y2, Y3, ... as i.i.d random variables representing the
claims paid by the insurance company for a period of 1 year. Define

Ȳn =
1

n

n∑
i=1

Yi (1)

as the average claim amount for the total portfolio for the same time period
during which Y1, Y2, Y3, ... are observed. If Y1, Y2, Y3, ... are considered to be
i.i.d. they will have the same distribution function F such that

F (y) = P [Y1 ≤ y] (2)
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and the expectation

E[Y1] =

∞∫
0

ydF (y). (3)

By the law of large numbers

Ȳn → E[Y1] as n→∞. (4)

[14] From (4), a portfolio has better estimates of the average claims costs as the
number of policyholders increases. Hence the estimator from (1) improves and
the insurance company could charge a premium which does not have to take
into account large variations in the outcome of the claims costs to cover the
variance of the cost. A central question from this property is how to distribute
the expectation of the average claims costs amongst the policyholders fairly and
with respect to the market values of similar with the inclusion of loading’s for
other costs. The expected claims costs can be further split such that

pure premium = claim frequency× claim severity. (5)

To be able to split the premiums between the policyholders, various statisti-
cal methods are applied estimate fair prices given policyholders characteristics.
Failure to do so may generate price difference in the market which can affect
the stability of the insurance company and hence the policyholders economic
safety.[29]

A classical approach for non-life insurance has been to model insurance costs as

S = Z1 + Z2 + ...+ ZN =

N∑
k=1

Zk (6)

where Zk are individual claim sizes and N is the number of claims. Both N and
Zk are in (6) stochastic meaning that S is also stochastic. It is of interest to
study S or the compounded claims cost in a general setting and to understand
the structure and use it in analysis. N in (6) is defined as a discrete random
variable which is a integer that can be modelled with Poisson distribution

P (N = k) = exp(−µ)
µk

k!
for all k ∈ N0, (7)

where N0 = 0, 1, 2, .... µ > 0 is the only parameter in (7) and is the expected
number of claims if N is number of claims. It is also necessary to introduce a
representation of the proportion of time that the insurance company has been
in risk. Usually in insurance the proportion of time is called exposure and is
measure in insurance years denoted in this paper as w. Instead of number of
claims, a volume scaled property will be used in this thesis. By defining

Y =
N

w
(8)
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if N is a Poisson distributed random variable and w is the risk exposure then Y
becomes the claims frequency and will be modelled in this thesis. If the number
of claims are considered on the aggregate level where the insured policyholders
are subjected to i.i.d risks proportional to their exposure, the expectation of N
scaled with the exposure is then

E[N ] = wµ (9)

and
E[Y ] = µ. (10)

Similarly if the number of claims are considered on the aggregate level where the
insured policyholders are subjected to i.i.d risks proportional to their exposure,
the variance is then

V ar[N ] = wµ (11)

since the property of the Poisson distribution with parameter µ is

E[N ] = V ar(N). (12)

The variance of Y is then

V ar(Y ) =
wµ

w2
=
µ

w
. (13)

A interesting property of (13) is that the variance of the frequency Y is reduced
as the exposure w is increased. on a very basic level the quantity of interest to
model will be

Y = µ+ ε (14)

with epsilon being centered with variance µ/w.

2.2 Statistical Learning

Define a collection X = (X1, ..., Xp) of observed values with certain characteris-
tics, often denoted predictors, independent variables or features, with a observed
variable of interest denoted Y called the response or observed variable which
ideally exists for each collection of (X1, .., Xp). Under the assumption that there
is some relationship between Y and (X1, ..., Xp) denoted as

Y = f(X) + ε (15)

where f() in (15) is some function of (X1, ..., Xp) and ε is a random error term
which consists of the unexplained part of Y from the function f(). Naturally,
except from some special circumstances or simulation studies, f() is not known
but has to be estimated using a set of approaches called Statistical Learning [16].
There a re mainly two reasons for the purpose of estimating f(). Prediction
of the response Y or inference about Y using the observed characteristics in
(X1, ..., Xp), becomes, with estimate notation,

Ŷ = f̂(X). (16)
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It is the specification, or parameters, of f̂() and the accuracy of Ŷ which is
of interest to be estimated or analyzed in statistical learning. For prediction
purposes, the estimate of Y denoted as Ŷ , there are two possible sources of
error named as reducible error and irreducible error. Errors that occur from the
failure of getting a perfect estimate of f̂() is referred to as the reducible error.

Unless f̂() is the correct function, then there is always a possibility to improve

the fit of f̂() to Y as a function of (X1, ..., Xp) hence the error is possible to
reduce. The irreducible error of the learning problem stems from ε of (15). As
ε is not used in the estimation result of (16), it will not be estimated. This part
usually is considered stochastic and is required to have stochastic properties.
To measure both the errors of (16) a squared deviance from the true f() can be
defined as

E(Y − Ŷ )2 = E[f(X) + ε− f̂(X)]2

E(Y − Ŷ )2 = [f(X)− f̂(X)]2 − V ar(ε). (17)

The first term of (17) measures the error which can be reduced and the second
is the error which cannot be reduced. [16]

2.2.1 Estimation

A central problem in statistical learning, or in statistics and machine learning
separately, is the estimation of f̂() and there are methods of varying complexity
as well as properties such as linearity or non-linearity. Regardless of the meth-
ods of choice, the principle is to minimize some kind of fit to the data points
(Yi, Xi1, ...Xip) where i denotes the i-th observation. Two groups of estimation
procedures are defined, on a general level, as parametric and non-parametric
methods. By assuming, or experimentally proving, that the observations under
study follow some kind of well defined distribution or pre-determined model,
the parametric approach can be used to find the relationship of interest. To
estimate f̂() using parametric methodology, first a assumption is made for the
form of f(). For example a linear assumption is

f(X) = β0 + β1X1 + β2X2 + ...+ βpXp (18)

and requires only the estimation of the parameters (β1, β2, ..., βp) for which there
are several estimation methods such as least squares or maximum likelihood for
example. The method is considered parametric since there are a fixed number
(p) parameters to estimate and the function is .

On the contrary of parametric methods, non-parametric methods do not re-
quire any assumptions of the form of f() prior to estimation and can have a
unlimited number of parameters. f() is not required to have a linear form as
and can take on any form which is necessary to meet some criterion. The goal
in the non-parametric setting is to get the estimate f̂() as close to the observed

data points as possible with the requirements that f̂() is to a acceptable degree
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neither explains data too well nor too poorly. Plenty of texts on the subject of
classifying the different types of approaches has been done over time and new
are being produced but these will not be further discussed in this thesis. [20]

Depending of the chosen method, the characteristics of the optimizing target
changes somewhat. Estimating a function such as (18) or a non parametric

function a measure of how far from the true f() the estimated f̂() has to be
defined.

Error(Ŷ ) =

n∑
i

wi(Yi − Ŷi)2 (19)

is the an example of the error in general terms which is to be minimized with wi
being the exposure meaning that the error is weighted according to how much ex-
perience we have from each observation. Expression (19) is defined such that the
deviance of the predicted value Ŷ from the outcome Y is squared and summed
for all the observation. Depending on what quantity Y is to be predicted, (19)
can be adjusted such that instead of the deviance squared an absolute deviance
can be used instead for example. A function such as (19) can be used in a para-
metric or non parametric setting as it is a function of the predicted value Ŷ .

In the case of estimating with maximum likelihood, a prior assumption needs
to be made for a distribution for which a likelihood function exists and is
well behaved. With a sample of observed i.i.d. random variables of interest
(Y1, Y2, ..., Yn) and with the assumption that the data generating process result-
ing in the observations (Y1, Y2, ..., Yn) is from a Poisson distribution. Under the
assumptions, the probability distribution function of the sample (Y1, Y2, ..., Yn)
is a product of the individual probability distributions

L(µ, Y1, ..., Yn) =

n∏
i=1

e−µ

Yi!
µYi . (20)

Searching for a solution for (20) becomes a problem of finding a value for the
parameter µ. A criterion for which values µ can have needs to be specified. The
term maximum likelihood stems from the criterion to specify µ such that (20)
is maximized. Maximization is done such that the log of (20) is used instead to
obtain a easier form to work with (20) becoming

log(L(µ, Y1, ..., Yn)) = −nµ+

n∑
i=1

Yi log(µ)−
n∑
i=1

log(Yi!). (21)

Taking the derivative of (21) with respect to µ and solving for µ results in the
maximum likelihood estimate

µ̂ =
1

n

n∑
i=1

Yi

(22)
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which is the mean of the observed values. As mentioned in earlier paragraphs
of this section, this estimation procedure is parametric resulting in the one pa-
rameter estimated which specifies the Poisson distribution.

Expanding the reasoning about maximum likelihood and parametric estima-
tion of a assumed distribution of the observed quantities (Y1, Y2, ..., Yn) to some
a error function such as (19). The mean, or weighted mean, of the squared
deviance as specified in (19) for example punishes a deviance from the obser-
vation equally and symmetrically around the mean. It is usable if the data is
observed or assumed to be symmetric but can result in strange punishments
if the data is non-symmetric. Since it is assumed that the response is from a
Poisson distribution the error function (19) can be improved to more reflect the
distribution of choice. Using reasoning from statistics, it is of interest to find
the difference between a model of the observations without imposing any restric-
tions, i.e. a fully saturated model compared to a model with some restrictions.
[19] Since assuming a distribution of the data generating process of the observed
values gives a probability distribution, the difference of the likelihood between
the two models could be utilized as a measure of difference. In essence this
gives a likelihood of observing the values of a model given a set of parameters
and the likelihood of observing the values given that each observatory is its own
parameter. Scaling the difference gives then

D(µ, Y1, ..., Yn) = 2
(
log(L(µsaturated, Y1, ..., Yn))− log(L(µpartial, Y1, ..., Yn))

)
(23)

where L is the likelihood function and the deviance is compared between the
saturated model and a model with parameter µpartial. Minimizing the deviance
(23) is equivalent to maximizing the likelihood (22). Inserting the Poisson dis-
tribution in (23) gives then that

D(µ, Y1, ..., Yn) = 2

n∑
i=1

(
Yi log(Yi)− Yi − log(Yi!)− Yi log(µi) + µi + log(Yi!)

)
.

(24)
Simplifying (24) gives then

D(µ, Y1, ..., Yn) =

n∑
i=1

(
Yi log

(Yi
µi

)
− (Yi − µi)

)
. (25)

A natural extension of (24) used in this thesis is to weight the deviance by how
much exposure the observation carries as well as the adjustment for estimat-
ing frequencies rather than the count of claims. Weighting (24) results in the
weighted deviance on the form

Deviance(µ̂) = 2

n∑
i=1

(
wiYi log

(
Yi
µ̂i

)
− wi(Yi − µ̂i)

)
(26)
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where Yi is the observed frequency of claims for policyholder or group of poli-
cyholders i and wi the exposure or number of insurance years, for policyholder
i.[22] Expression (26) is adjusted such that it does not produce undefined vari-
ables by introducing the continuous correction. Since the number of claims
Ni = Yiwi the extension

Ni log(Ni) =

{
Ni log(Ni), if Ni > 0

0 if Ni = 0
(27)

solves the issue of the log not being defined at 0 and having the limit −∞ as
the value approaches 0 from its domain. Note that the maximum likelihood
is one approach for minimizing (24) among others. Other solutions will be
applied in this thesis when dealing with regression trees and neural networks
but with the objective of minimizing the same deviance function although with
the correction.

2.3 Generalized Linear Models in Non-Life Insurance Pric-
ing

Generalized linear models (GLM’s in short) are considered well suited for in-
surance rate making as the goal is to estimate a response variable Y which is
described by and varies with respect to some characteristics of the policyholders.
Defining these characteristics as explanatory variables or features denoted as xi
resembles a lot like a standard linear regression or a general type of curve fitting
problem. Given the nature of insurance claims and risk more flexibility needs to
be added as the losses are generally positive with non-normal errors. To adjust
for these non-standard conditions, generalized linear models use transformation
of probability distributions in the exponential dispersion family and transforma-
tion of the mean function to be a monotone function of the explanatory variables.

The probability distribution of the exponential dispersion family can be written
on the form

fYi
(yi; θi, φ) = exp

{
yiθi − b(θi)

φ/wi
+ c(yi, φ, wi)

}
(28)

where yi is the the response observation of the data or the variable of interest
to predict, θi is some parameter related to the distribution of interest, φ is the
dispersion parameter and wi is some kind of weight related to the observations.
In insurance wi is generally set to exposure often set to insurance years to
adjust for that not all observations has been insured equally long time. b(θi)
is a monotonic convex function of the parameter. The probability distribution
is completely specified by parameters θi and φ conditioned on the choice of
the function b(). c() is a function which is not of importance in the pricing
application but can be summarized as the part were the rest of the terms which
are not dependent on the quantity of interest are collected. In the Poisson case,
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Yi! would be collected in c() [22]. Generalized linear models are specified by
their EDM property as described, a linear predictor η = Xβ and a linear link
function expressing the expected value of Y given the observations X such that

E[Y |X] = µ = g−1(Xβ). (29)

For example for the normal distribution of EDM family is the identity link giving

Xβ = µ. (30)

Application to the assumed distributions in this thesis are presented in the next
section.

2.3.1 Poisson Distribution for Claims Count

Of the EDM families, the Poisson distribution is commonly used for count data
and thus is suitable to model the stochastic process of claims count given certain
assumptions which often are satisfied for insurance applications. [25]. If N(t)
is defined as the number of claims during the time interval [0, t] and N(0) =
0, i.e. that at time 0 no claims have been observed. If then an additional
assumption is that the risk of the policies in the portfolio are independent, the
Poisson distribution holds for the aggregate portfolio as well. Because insurance
policies can start during any time of the year, it can be assumed that the risk is
proportional to how long during a period the insurance company has transferred
the risk. If Xi is the number of claims for policyholder or group of policyholders
with similar risk i. The probability density function of Xi is then defined as

fXi
(xi;µi) = e(−wiµi)

(wiµi)
xi

xi!
, i = 1, 2, 3, ... (31)

By transforming the number of claims, the claims frequency can be expressed
as Yi = Xi/wi which then transforms the Poisson distribution to the form

fY i(yi;µi) = P (Yi = yi) = P (Xi = wiyi) = e−wiµi
(wiµi)

wiyi

(wiyi)!
, (32)

with wiyi being a positive integer.[22]

2.3.2 Gamma Distribution for Claim Severity

Similarly to the Poisson distribution there are two quantities of interest for the
claims cost of policyholders och group of policyholders i.If Xi denotes the total
claim cost for the customer and wi in this case the number of claims for the
corresponding customer then Yi = Xi/wi, the quantity of interest, is defined as
average claim cost. Note that wi is in this case considered deterministic and
observed at the time of the analysis. In addition, an important assumption in
the standard setting is that number of claims and claims costs are independent.
As with the other assumptions, the assumption of independent claim counts and
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can be relaxed as shown in [10]. Choosing the distribution of X depends on a
number of preferences. Arguing a distribution which is on the positive real line
is not difficult since the insurance company does not reimburse negative claim
costs as a standard. Another desirable property is that the distribution has a
nice form under summation and scaling of the probability distribution. There
are many distributions that satisfy these properties but the Gamma distribution
has become an industry standard for insurance applications [21]. With wi = 1
the gamma distribution is

f(xi) =
βα

Γ(α)
xα−1
i e−βx, x > 0 (33)

with α > 0 and β > 0. Applying the transformation Yi = Xi/wi transforms the
distribution in (33) to

fY i(yi) = wifXi(wiyi) =
(wiβ

wiα)

Γ(wiα)
ywi−1
i e−wiβyi . (34)

The Gamma distribution is also part of the EDM but it will not be shown
here.[22]

2.3.3 Maximum Likelihood Estimation for GLM

As explained i earlier section maximum likelihood estimation gives a parameter
estimate which fits a distribution to the observed values of (Y1, ..., Yn) which are
most probable given the assumed distribution they belong to. The output from
the estimation is a set of parameters for the distribution.

For the EDM family with the observed values (Y1, Y2, ..., Yn) the likelihood func-
tion is

L(θ) =

n∏
i=1

exp

(
Yiθ − b(θ)
φ/wi

+ c(Yi, φ, wi)

)
(35)

where (Y1, ..., Yn) is the observation of interest and wi is the exposure value.
Expression (35) is estimated with respect to θ. Maximizing (35) is equivalent
to maximizing the log of (35)

logL(θ) =

n∑
i=1

(
Yiθ − b(θ)
φ/wi

+ log c(Yi, φ, wi)

)
(36)

giving a easier function to work with. By defining that θi = g−1(Xi
Tβ) where

Xi = (X1, X2, ..., Xp) are the observed explanatory parameters of the observa-
tions and β are the corresponding parameters for the GLM which need to be
estimated. Maximizing (36) with respect to β is procedurally similar to maxi-
mizing any type of function. Taking the derivative of (36) with respect to a β
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gives then

∂ logL(θ)

∂βj
=

n∑
i=1

∂

∂βj

(
Yiθi − b(θi)

φ/wi

)

=

n∑
i=1

∂

∂θi

(
Yiθi − b(θi)

φ/wi

)
∂θi
∂µi

∂µi
∂βj

(37)

with µi = b′(θi) and in situations where g() is a canonical link it holds that

g
(
b′(θi)

)
= θi. (38)

The maximization in the procedure requires solving

n∑
i=1

∂

∂θi

(
Yiθi − b(θi)

φ/wi

)
∂θi
∂µi

∂µi
∂βj

= 0. (39)

With the addition that ∂µi/∂θi = b′′(θi),the variance of µi being v(µi) = b′′(θi)
and finally that ∂g(µi)/∂βi = Xij simplifies the problem to

n∑
i=1

Yi − µi
v(µi)g′(µi)

Xij = 0. (40)

See [22] for proofs.

2.4 Generalized Additive Models in Non-Life Insurance
Pricing

One drawback of applying GLM in insurance pricing is the handling of contin-
uous variables which are used as rating factor for the pricing of the insurance
policies. For example these would include the policyholders age or residence dis-
tance form a highly busy highway. Using these variables in the standard GLM
setting usually resolves in having to group the variables into distinct group and
use dummy variables in the estimation algorithms. The dummy variable method
fits well when there are naturally distinct groups that fits well. However there
are more naturally fitting models to parameters which can behave continuously.

The application of continuous estimation of explanatory variables in the general
setting is done using smoothing splines to estimate the risk based on a contin-
uous value. Splines are constructed to form a linear function from other piece
wise continuous functions to fit some smooth line [15]. The additive model can
be, in its simplest form, expressed as

ηi = β0 + f1(xi1) + ...+ fJ(xiJ) (41)

for observation of policyholder or group of policyholders i for some general
functions fj which in the application of this thesis is splines which are not more
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complex than being polynomials. One example of such functions is the cubic
spline on the form

pi(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3 (42)

where there are points t1, ..., tm referred to as knots where on a closed sub
interval [ti, ti+1]. Expression (42) has favorable properties such as being twice
differentiable. The estimation problem essentially reduces to minimizing a cost
function where a part of that function are defined as cubic splines. In numerical
applications there are a few alternatives to parameterize and apply cubic splines
numerically. One such solution is the application of B-splines which from a linear
combination form a set of basis for the cubic splines [7]. The definition of such
basis splines is for the zeroth spline

B0,i(t) =

{
1, t ∈ [ti, ti+1)

0, otherwise
i = 1, ...,m− 2

(43)

B0,i(t) =

{
1, t ∈ [ti, ti+1]

0, otherwise
i = m− 1

where m is the number of points through which the smoothing function is to be
smoothed. To estimate the rest of the splines the recursion

Bk+1,1(t) =
t2 − t
t2 − t

Bk,1(t)

Bk+1,i(t) =
t− tmax(i−k−1,1)

tmin(i,m) − tmax(i−k−1,1)
Bk,i−1(t) +

tmin(i+1,m)−t

tmin(i+1,m) − tmax(i−k,1)
Bk,i(t)

Bk+1,m+k(t) =
t− tmax(m−1,1)

tm − tm−1
Bk,m+k−1(t) (44)

for i = 2, ...,m+ k − 1. When k = 2 then (45) is a cubic spline. The spline can
be, in term of basis functions, summarized as

s(t) =

m+2∑
i=1

βiB3,i(t) (45)

where β1, ..., βm+2 are parameters to be estimated.

2.4.1 Poisson Case

To estimate the parameters of the GAM in the Poisson case a deviance func-
tion defined as in (23). For the Poisson case without continuous variables the
deviance becomes as in (20). Introducing a continuous variable in estimating
equation requires an introduction of penalty term in (20) the expression to min-
imize becomes

∆(f) = D(Y , µ̂) + λ

∫ b

a

(f ′′(x))2dx (46)
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with a penalty term λ. More specifically (46) becomes, with a single continuous
variable,

∆(s) = 2

n∑
i=1

= wi(Yi log(Yi)− Yis(Xi)− Yi + exp{s(Xi)}) + λ

∫ b

a

(f ′′(x))2dx

(47)
called the penalized deviance. In (47) exp(s(Xi)) = µi where s(X) is the spline.
Writing (47) in terms of the expressions in this chapter (β from (45)), (47)
becomes for a set of parameters β = (β1, ..., βm+2)

∆(β) = 2

n∑
i=1

wi

(
Yii − Yi

m+2∑
j=1

βjBj(xi)− Yi + exp

{m+2∑
j=1

βjBj(xi)

})
(48)

+ λ

m+2∑
j=1

m+2∑
k=1

βjβkΩjk.

Ωjk in (48) is defined as
zm∫
z1

B′′j (x)B′′k (x)dx (49)

with the properties that

B′j+1,k

j + 1

uk − uk−j−1
Bj,k−1(x)− j + 1

uk+1 − uk−j
Bj,k(x), (50)

B′j+1,k

j + 1

uk − uk−j−1
Bj,k−1(x)− j + 1

uk+1 − uk−j
Bj,k(x), (51)

B′′j+1,k

j + 1

uk − uk−j−1
B′j,k−1(x)− j + 1

uk+1 − uk−j
B′j,k(x), (52)

for a set of knots (points where the piece wise splines meet) u1, ..., um. Ex-
pression (48) is then solved for the vector of parameters β by applying some
numerical method such as Newton-Rhapson. [22]

2.4.2 Gamma Case

For the Gamma distribution case, the same approach is applied but with the
deviance

D(Y, λ) = 2

n∑
i=1

wi(Yi/λi − 1− log(Yi/λi)). (53)

For the single variable case, (53) is then as in the Poisson case changed such
that λi = exp(s(Xi)) where again s(X) is the spline. Expression (53) is then
solved for its vector β to find the parameters for the model. [22]
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2.5 Tree Based Methods

Moving beyond the classical regression methods gives rise to a number of meth-
ods with similar objectives but different methodologies where the models are
not restricted for the same effects for all other parameters unless specified. Re-
gression trees build on the more classification oriented methods of decision trees
where, as in the regression models, the goal is to form conclusions about a target
variable given the observation of the input variables.[3]

2.5.1 Regression Tree

The main difference between decision trees and regression trees is that deci-
sion trees are mainly use to predict the outcome of a qualitative response while
regression trees is used to predict the outcome of a quantitative response. Com-
paring with the classical regression models on the form

f(X) = β0 +

p∑
i=1

Xiβi, (54)

regression trees are similar but is instead

f(X) =

n∑
i=1

ci1X∈Ri
(55)

with (R1, ..., Rn) representing a partition of the feature space. The feature
space is the space mapped from the explanatory variables (X1, ..., Xp) to the
predictions denoted by R. For two variables X1 and X2 the partition can look
like in Figure 1.
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Figure 1: Partition for two explanatory variables X1 and X2.

Considering Figure 1, the partition maps from two variables to five outcomes.
Estimating procedure for regression trees starts from the set ofX = (X1, ..., Xp)
predictor variables and the response variable Y . Observing the pairs (Xi, Yi) for
observation of policyholder i assuming they are i.i.d. the partition is then done
into a set of regions (R1, ..., Rn) using recursive binary splitting. The estimation
starts from the full predictor space with the start of splitting variable j and a
split-point s ∈ R resulting in that the predictor space R = R1(j, s)∪R2(, s). In
this first instance R is then

R1(j, s) = {x ∈ Rp : xj ≤ s} = R× R×, ...,×(−∞, s]× R×, ...,×R
R2(j, s) = {x ∈ Rp : xj > s} = R× R×, ...,×(s,∞)× R×, ...,×R.

(56)

From (56), the algorithm continues by splitting one of the regions into two more
regions and so on until a stopping rule criterion is reached. The goal is to find
an estimator ĉn for cn for (55).

As mentioned in the statistical learning section, the general principle for es-
timating a regression tree is to define some kind of evaluation of how close the
actual prediction is to the real value. As in the rest of this thesis and as specified
in (26), the measure of fit is chosen to be the Poisson deviance for the claim
frequency in algorithm 1 [3] adjusted for the Poisson distribution.[16]
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Algorithm 1 CART for Poisson Predicted Variable

1.Initialization:
Initialize the split

R1(j, s) = {x : xj ≤ s}
R2(j, s) = {x : xj > s},

and find j and s by finding the solution to

min
j,s

[
min
µ1

∑
{i:xi∈R1(j,s)}

2

(
wiYi log

(
Yi
µ1

)
− wi(Yi − µ1)

)

+ min
µ2

∑
{i:xi∈R2(j,s)}

2

(
wiYi log

(
Yi
µ2

)
− wi(Yi − µ2)

)]
.

µ1 and µ2 are then estimated by

µ̂1 =
1∑

{i:xi∈R1(j,s)}
wi

∑
{i:xi∈R1(j,s)}

Ni

and

µ̂2 =
1∑

{i:xi∈R2(j,s)}
wi

∑
{i:xi∈R2(j,s)}

Ni

2.Recursion:

Repeat step one for the rest of the regions to partition R into |R| potential
regions. The new region is chosen such that the deviance is minimized over
the whole region. Resulting in

K+ = arg min
k∈{1,...,|R|}

n∑
i=1

2

(
wiYi log

(
Yi
µ̂kn

)
− wi(Yi − µ̂kn)

)

with k being the k:th partition of the region R.
3.Repeat:

Repeat 2 until a stopping rule is fulfilled.

Before choosing the final tree in the estimation procedure and the number of
partitions, there has to be rules defined for how to choose the number of leaves
in the tree. Compared to other models and methods to predict outcomes from
a specific input, regression trees need also to handle the problem of over fitting.
Specifying a regression tree which is fully partitioning data results in a tree for
which every data point in the data set. Therefore a regression tree need to be
less complex than having a perfect fit to the data. Starting with a perfect fit
and then excluding splits backwards systematically is a strategy which might
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be feasible to find a tree with a acceptable fit to some measure. In essence, the
strategy will result in a sub tree from the original very large tree. Iteratively this
strategy can be formulated as specifying a sub tree, running a cross validation
on the predictions of the sub tree and saving the sub tree if it has a lower
prediction error than other sub trees. The strategy however will result in many
sub trees which will then be computationally heavy to find the best tree among
these. Another more efficient strategy is necessary to find a adequate tree or to
limit the set of sub trees. This strategy is generally referred to cost complexity
pruning and applies an additional parameter which is used to index a sequence
of trees[16]. The estimation algorithm with the α parameter results in a adjusted
loss function to

|T |∑
n=1

∑
{i:xi∈Rn}

2

(
wiYi log

(
Yi
µ̂n

)
− wi(Yi − µ̂n)

)
+ α|T | (57)

with |T | being the size of the tree and α a tuning parameter which needs to
be specified. Expression (57) is designed such that large trees get penalized
compared to small trees. n is the number of regions in (57) for the trees. If n
is as large as the number of observations and α is small then the tree would be
the maximum of the size. On the contrary having a α which is increasing all
the trees will have a penalty term which is large and the function will be the
observed average.

Summarizing the cost complexity pruning as an algorithm gives an estimate
to α and to the tree. An algorithm for finding the tree size as well as the cost
parameter can be specified as

Algorithm 2 CART for Poisson Predicted Variable

1.Initialization:
Initialize the regression tree by running the splitting algorithm

2.Recursion:
Apply cost complexity pruning to find the set of best sub trees as a function
of α as described in the next step.

3.-fold cross validation:

Apply K-fold cross validation to find α such that steps 1 and 2 are repeated
on the training data from the specification of the K-fold cross validation
and find the prediction error as a function of α and finally pick α such that
the prediction error is minimized.

2.5.2 Random Forest

Random forests are an extension of the regression tree as hinted in the name.
Regressions trees are suitable for the training set but have poor performance on
a test set [16]. A natural property of trees which are very deep (have a large
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number of partition) is that they will perfectly fit the data and cause over fitting
issues. By building the predictions using multiple trees instead of one the errors
or over fitting issues get averaged out.

Aggregating a prediction works in the sense that a set of p observed response
variables and explanatory variables P = {(X1, Y1), (X2, Y2), ..., (Xp, Yp)}. Ap-

plying some prediction algorithm a predictor f̂(X,P) of the true function f()
can be obtained as explained in the previous sections. If there instead exists or
is constructed as sequence of sets of data {Pk}k≥1 the aggregated predictor can
be for example the average of the predictors of this set defined as

f̂agg(X) =
1

K

K∑
k=1

f̂(X,Pk). (58)

Expression (58) works well because of the property of law of large numbers [16]
that

lim
K→∞

1

K

K∑
k=1

f̂(X,Pk)
P−→ E[f̂(X,P)]. (59)

The details and proof of why aggregation does not change bias but increases
predictability will not be discussed here but the reader can refer to [16].

If observed data is used instead of simulated, it is difficult to obtain a suf-
ficiently large enough number of samples to estimate f(). Bootstrapping is
therefore applied to find the aggregated estimator for f(). Usually the method-
ology is performed by re-sampling with replacement a sequence of samples of
{P} such that from {P(b)}b=1,...,B a aggregated bootstrap predictor

f̂bagg(X) =
1

B

B∑
b=1

f̂(X,P(b)). (60)

Ideally bagging estimators will reduce the variance of the predictors. Random
forests are an extension of the bagging procedure with the tweak that samples
will be de correlated. At each re sampling of the data set, the algorithm instead
chooses a subset of the predictor variables

√
p instead of p. The algorithm is

outlined in algorithm table 2.[16]
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Algorithm 3 Random Forest

Consider the B as the number of sub samples from observations of P
for i in 1, ..., B do

Generate a sample from B∗ from B

Select m variables randomly from p possible variables.
Using the m variables. Split the tree according the the previously
defined algorithm. For example CART.

The result is a tree from the random forest f̂(X,L(P))
end for
Calculate

f̂Brf (X) =
1

B

B∑
b=1

f̂(X,Lb(P)).

Algorithm 2 in essence estimates many regression trees on different samples
of the underlying data and calculates the average of all predictors to find an
estimate.

2.6 Neural Networks

Neural networks or artificial neural networks have recently gained popularity
as a result of increasing computing power, development of algorithms, better
hardware and increasing data collection capabilities. Recent areas of devel-
opment and applications of neural networks include image classification and
speech recognition for example. The idea behind neural networks were origi-
nally to mimic the neurons of the brain and use them for prediction or clas-
sification purposes.[12] Mathematically a neural network is essentially a non-
linear function describing a output Y in terms of its observed characteristics
X = (X1, X2, ..., Xp) weighted with the parameters θ = (θ1, θ2, ..., θp) such that

Y = f(X1, X2, ..., Xp; θ) + ε. (61)

The error term ε of the neural network estimation will not be presented in the
estimated quantity of Y , Ŷ meaning that the estimate will try to capture the
systematical components rather than the noise. To introduce non-linearity to
(61) a scalar function referred to as the activation function, σ : R → R, is
applied to X = (X1, X2, ..., Xp) instead of f() in (61) similarly as in the GLM
application described in previous sections. Choosing which activation function
to apply is not trivial and there are many choices in the literature such as the
rectified linear unit (ReLU)[12]

σ(x) = max(0, x). (62)

In this thesis the sigmoid function

σ(x) =
1

1 + e−δx
(63)
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is applied to the layers with the parameter δ = 1 since the objective is to
estimate a positive quantity which will also be between 0 and 1 and in the
estimation procedure.[12] In many senses a neural network on this form is very
much a generalized linear model. Building the neural network has however a
key difference which can be described as adding more layers with additional
activation functions between the input and the output. Defining a hidden unit
in the neural network such as

Hi = σ(β0i + β1iX1 + β2iX2 + ...+ βpiXp) (64)

where i is the i-th hidden unit in the network is essentially setting parameters
as weights for the inputs and running through a activation functions not much
different from a GLM. Figure 2 illustrates a neural network with one hidden
layer and output as an estimate.

Figure 2: A neural network with one hidden layer.

Proceeding until some criteria is met, there can be more hidden units defined
as

H1 = σ(β
(1)
01 + β

(1)
11 X1 + β

(1)
21 X2 + ...+ β

(1)
p1 Xp)

H2 = σ(β
(1)
02 + β

(1)
12 X1 + β

(1)
22 X2 + ...+ β

(1)
p2 Xp)

...

HM = σ(β
(1)
0M + β

(1)
1MXi + β

(1)
2MX2 + ...+ β

(1)
pMXp). (65)

Having two layers results in that the output Ŷ is defined by the hidden units as

Ŷ = σ(β
(2)
0 + β

(2)
1 H1 + β

(2)
2 H2 + ...+ β

(2)
M HM ) (66)

with p explanatory variables and M hidden units having the structure as in
Figure 3.
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Figure 3: A neural network with M hidden units.

With the same approach as developing a a network with two layers, extending
the network to multiple layers as in (64) results in a multi layer neural network.
Similarly to Figure 3 extending the network is simply adding more hidden layers
where the output form the first layer is input into the second and so on.

Rewriting (70) in matrix notation with β(1) = [β
(1)
01 , β

(1)
02 ...β

(1)
0M ],

W(1) =


β

(1)
11 · · · β

(1)
1M

...
. . .

...

β
(1)
p1 · · · β

(1)
pM

 ,
β(2) = [β

(2)
0 ] and W (2) = [β

(2)
1 ...β

(2)
M ]T giving (64) and (70) in matrix notation

H = σ1(W (1)TX + β(1)T ) (67)

Ŷ = σ2(W (2)TH + β(2)) (68)

where σ1() and σ2() does not have to be the same function. Extending (69) and
(68) to include more layers denoted l is a exercise of stacking each layer l to
include the input from the previous layer (l − 1) such that

H(l) = σl(W
(l)TH(l−1) + β(l)T ). (69)

and that each layer H(l) = [H
(1)
1 , ...,H

(l)
Ml] consist of a number of hidden units

which can be of different dimensions. Summarizing the layers results in

H(1) = σ(W (1)TX + β(1)T )

H(2) = σ(W (2)TX + β(2)T )

...

H(L−1) = σ(W (L−1)TH(L−2) + β(L−1)T )

Ŷ = σ(W (L)TH(L−1) + β(L)T ) (70)
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which is a neural network with L layers. Collecting the parameters and denoting
the vector to estimate results in

θ = [vec(W (1))T vec(W (2))T . . . vec(W (L))T β(1)T β(2)T . . .β(L)T ]T

(71)

solved for with some kind of minimization of error or maximization of likelihood.
The matrix W (1) has dimensions p ×M1 and β(1) has dimension 1 ×M1 and
so forth.

2.6.1 Estimation of Parameters With Back Propagation

Estimating the vector of parameters θ is similar to the estimation of parameters
in a general setting by solving

θ̂ = arg min
θ

1

n

n∑
i=1

L(Xi, Yi, θ) (72)

by setting a predefined loss or deviance function L. By having the objective
function as the Poisson deviance from (26), the analysis data is adjusted to esti-
mate the parameters for predicting a claim frequency in the insurance context.
Applying a neural network which takes an input through the network and gives
an output without circling back the result from one layer to a previous layer is
refereed to as a feed forward neural network. To efficiently estimate the param-
eters of the feed forward neural network a algorithm called back propagation
is deployed.[13] As the objective of the estimation is to minimize a function of
loss or deviance, the estimations usually will involve the computation of some
derivatives. In addition, as it is likely that the estimation problem will have
a multi dimensional loss function, there will be a need for the computation of
the gradient with respect to each parameter. Naturally a naive computation of
the gradient with respect to each weight will be computationally difficult. An
alternative approach is to deploy the chain rule starting with computing the
gradient at the loss function and the iterating backwards by then computing
the gradient at each layer it the network. Such an algorithm is called back
propagation and the approach avoids redundant calculation of the intermediate
terms in the chain rule.

Illustrating the back propagation algorithm with X as input of the observed
features, Y as target output, L as the loss function or deviance function, W (l)

as the weight matrix at layer l and σ as the activation function at each layer.
Expressing the output of neural network in a loss or error function in terms of
the matrix weights and the input matrix iteratively as

Ŷ = σ(L)(W (L)σ(L−1)(W (L−1)...σ(1)(WX)...)) + β(L) (73)
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gives the possibility of the iterative application of the chain rule backwards.
There are a few derivatives from the neural network which need to be defined to
be able the compute the gradient. Firstly the derivative of the loss with respect
to the weight at the layer l is

∂L

∂W (l)
=

∂L

∂U (l)

∂U (l)

∂W (l)
(74)

by applying the chain rule and with setting a intermediate term for σ(L)(W (L−1))+
β(l) = U (l) and with respect to the additive term as

∂L

∂β(l)
=

∂L

∂U (l)

∂U (l)

∂β(l)
. (75)

Solving (75) requires the derivatives ∂L
∂U(L) , ∂L

∂U(l) , ∂U(l)

∂W (l) and U(l)

∂β(l) with (L) being

the final layer. The derivatives needed are

∂L

∂U (L)
=

∂L

∂σ(U (L))

∂σ(U (L))

∂U (L)
=

∂L

∂σ(U (L))
◦ σ′(U (L)) (76)

where ◦ is the element wise multiplication of the matrix,

σ′(U (L)) = σ(U (L))(1− σ(U (L))), (77)

∂L

∂U (l)
=

∂L

∂U (l+1)

∂U (l+1)

∂σ(U (l))

∂σ(U (l))

∂U (l)
. (78)

Since
U (l+1) = W (l+1)σ(U (l)) + β(l+1) (79)

the derivative becomes

∂U (l+1)

∂σ(U (l))
=

∂

∂σ(U (l))
W (l+1)σ(U (l)) + β(l+1) = W (l+1) (80)

and
∂σ(U (l))

∂U (l)
= σ′(U (l)) (81)

resulting in that

∂L

∂U (l)
=
(
W (l+1) ∂L

∂U (l+1)

)
◦ σ′(U (l)). (82)

Proceeding with

U (l) = W (l)σ(U (l−1)) + β(l)

∂U (l)

∂W (l)
=

∂

∂W (l)
(W (l)σ(U (l−1)) + β(l))

∂U (l)

∂W (l)
= σ(U (l−1)). (83)
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Further
∂L

∂W (l)
=

∂L

∂U (l)
σ(U (l−1)), (84)

∂U (l)

∂β(l)
=

∂

∂β(l)
(W (l)σ(U (l)) + β(l)) = 1 (85)

and finally
∂L

∂β(l)
=

∂L

∂U (l)
. (86)

Using the previous equations and derivatives for a two-layer hidden network as
an example the expressions

∂L

∂W (1)
=

∂L

∂σ(U (3))

∂σ(U (3))

U (3)

∂U (3)

∂σ(U (2))

∂σ(U (2))

∂U (2)

∂U (2)

∂σ(U (1))

∂σ(U (1))

∂U (1)

∂U (1)

∂W (1)
(87)

and

∂L

∂β(1)
=

∂L

∂σ(U (3))

∂σ(U (3))

U (3)

∂U (3)

∂σ(U (2))

∂σ(U (2))

∂U (2)

∂U (2)

∂σ(U (1))

∂σ(U (1))

∂U (1)

∂U (1)

∂β(1)
(88)

which are solved using the derived derivative equations in this chapter. As
illustrated the derivatives are calculated and applied starting with the output
and going backwards to the input layer. Numerically the update of the current
value of the parameters in the back propagation algorithm summarizes as

W (l) = W (l) − α ∂L

∂W (l)
(89)

β(l) = β(l) − α ∂L

∂β(l)
. (90)

α is called the learning rate or the tuning parameter and is the rate at which
the network learn. In the application α is a additional parameter which needs
to be taken into consideration when running the model fit. The algorithm for
fitting the neural network is as follows,[12]
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Algorithm 4 Back propagation Neural Network

Consider the n as the total number of observations in the test set of observa-
tions X

0. Initialize vector of parameters

θ=[vec(W (1))T vec(W (2))T ... vec(W (L))T β(1)T β(2)T ...β(L)T ]T

while Convergence criteria for not fulfilled do

for a vector Xi = (X1, X2, ..., Xp) in 1, ..., n do
1. Compute the output of the neural network. I.e. forward prop-
agate step in the algorithm.
2. Compute the error for the output of the neural network
3. Compute the values of the derivatives in the backward pass

end for
4. Update the values of the weight vector using

W (l) = W (l) − α ∂L

∂W (l)

5. Break if the values of the weights are converged.
end while

6. Store the values in the vector for estimates.
θ̂=[vec(W (1))T vec(W (2))T ... vec(W (L))T β(1)T β(2)T ...β(L)T ]T

2.6.2 Variable Transformation

There is a sensitivity to the scale of the input variables in plenty of statistical
models. If for example a model is estimated such that it takes input variables in
thousands and estimates an output in thousands will produce different results
if the data is suddenly input is changed to millions or hundreds. Apart from
different inputs and outputs, the estimated weights can be sensitive as well.
Non-scaled input variables in the training set can give estimates of the weights
which are relatively large. Larger weights will then be sensitive to the input
value in the test set and is likely to produce large error. Scaling in this thesis is
called min-max feature scaling and is defined as

XScaled Input =
X −Xmin

Xmax −Xmin
(91)

for continuous variables.

For categorical variables a different scaling is applied. Because of the multi-
plicative structure in the GLM case, having just the variable labels as groups
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wont pose a problem. In the case when there is not a natural ordering of the
categories for a neural network the labels might be interpreted by the model as
some quantifiable order. One-hot encoding is then applied instead to circumvent
the issue. The encoding creates as many dummy variables as there are levels
for the variable. So if there are 3 levels of gender, one hot encoding creates
3 dummy variables with 1 when the gender of the observation belongs to the
current level and 0 for the others.

2.7 Imbalanced Data

Insurance data is naturally imbalanced since insurance by nature is supposed
to cover sudden accidental events. Specifying the insurance coverages usually
results in that the insurance cover only covers events which are of low probabil-
ity. It is not uncommon that the observed frequency of claims over a couple of
years for the insurance company is 5%−10% depending on the product and the
type of insurance. Since frequencies are low by specification of the product, the
data at hand for insurance companies will have a lot of observations from non
claiming groups compared to the ones which are claiming. If analyst wants to
find underlying structure, it might be difficult as observations of claims will be
quite low. A frequency of 5% results in that 95% of the portfolio will not have
any claims and the underlying structure of the data generating process will be
difficult to find.

As explained in section 2, applying the duration solves the issue partly of imbal-
anced data sets as the observations with more duration will have more weight
and thus influence the estimates more than the observations with low duration.
Additional complexity is introduced when there is a low duration in groups
which have a higher frequency or where the risk is considered to be higher than
the rest of the policy. Models which fail capture the increased risk despite the
lower exposure might end up smoothing out the risk in these individuals. The
result of the smoothing is that insurance prices for high risk individuals are
priced lower than their corresponding risk. There is therefore a risk that po-
tential policyholders will take advantage of the incorrect pricing and purchase
policies which are cheap.

Adjusting imbalanced data can be done with a number of approaches usually
involving some form of sampling method. Random under sampling [17] for
example randomly samples observations form the groups which are over repre-
sented in the data and removes them to balances out the observations. Over
sampling on the other hand creates more observations from the smaller group
in the data. The method applied in this thesis is called synthetic minority over-
sampling technique or SMOTE fort short. SMOTE does utilize a over-sampling
technique but instead of just oversampling of the smaller group, new synthetic
observations are created for the group which is under represented in the data
out of the existing observations [5].
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Creating the synthetic observations is done by selecting a random observation
from the under represented group in the data which contains the observation
variable and all of the explanatory variables. A group of new observations form
the k-nearest neighbours of the first selected observation. K-nearest neighbours
are then used to create a new synthetic observation from the data. In this the-
sis the new quantities created from the selected observation will be number of
claims as well as duration. The SMOTE algorithm used in this thesis is defined
as

Algorithm 5 SMOTE Algorithm

Define D = (Xi, Yi) as the training sample for observation i = 1, ..., n in the
data set. Define for example extreme high cases of the response as Y > t
where t is for example the number of claims observed or a observed level of
the frequency. Define also a relevance function such that observations above
t receive relevance 1 while values below t receive relevance 0 meaning that
the extreme values are more relevant in the data. This creates a subset of D,
Dr = {(Xi, Yi) ∈ D : Yi ≥ t} which are used to create synthetic observations.

0. Define D,Dr as the data set of interest and the data set considered under
represented, t as the threshold defining when Y is considered extreme, %o as
the percentage of oversampling of Dr i.e. how many extra samples should be
created with response of interest, k as the number of nearest neighbours of
each observations should be used to generate new observations.

nng← number of new observations to be generated
for all observations ∈ D do

1. Set nns← kNN(k, observation, Dr \ observation)
for i in 1, ...,nng do

2. Randomly choose X with replacement from nns
for all (Xi, Yi) ∈ (X, Y ) do

if Xi is numeric then
Xi diff ← Xi observation −Xi {// Difference between the numeric value

of the explanatory variable Xi of the observation and of the kNN Xi}

Xi new ← Xi observation + RANDOM[0, 1]×Xi diff

else
Xi new ← randomly select among Xi observation and Xi

end if
end for

3. Calculate d1 ← HEOMDistance(Xi new, Xi observation) and d1 ←
HEOMDistance(Xi new, Xi) to find the new target value.

Yi new ←
d2 × Yi observation + d1 × Yi

d1 + d2

end for
end for
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[28] Algorithm 5 will be applied to find the number of claims and the duration
for the synthetic observations. ’HEOMdistance’ is for clarification a heteroge-
neous distance measure where the abbreviation ’HEOM’ means Heterogeneous
Euclidean Overlap Metric. It is defined as

HEOM(Xi,Xj) =

R∑
r=1

dr(Xi,r, Xj,r) (92)

with

dr(Xi,r, Xj,r) =

{ |Xi,r−Xj,r|
max(Xj,r)−min(Xj,r) if Xr is a continuous variable

δi,j if Xr is a categorical variable
(93)

for R variables with δi,j = 1 if Xi,r 6= Xj,r and δi,j = 0 if Xi,r = Xj,r.[27]

2.8 Model Comparison

2.8.1 Measure of Error

Comparing and evaluating any model requires some form of measurement for
how far from observed values the model prediction is. Summarizing such a
measure can be done in many ways but a common approach is to use the mean
of the squared error

MSE =
1

n

n∑
i=1

(
f̂(Xi)− Yi

)2

. (94)

Note that the mean squared error is not used to fit the data or update parameters
but used to evaluate how well the model fits to the observed values.[8] If there
exists a group of candidates of models, the aim of the comparison is to find the
model which minimizes

E
[
(f̂(X)− Y )2

]
. (95)

Since (95) will not be known it has to by estimated with (94). Applying the
rule of total expectations to (95), it can be shown that

E
[
(f̂(X)− Y )2

]
= E

[
(f̂(X)− E[Y |X])2

]
(96)

is minimized when f̂(X) = E[Y |X]. Depending on the type of variable esti-
mated, the evaluation function can be altered to give different estimate than
the mean squared error.[8] The measurement of error for the model prediction
in this thesis will be the out of sample deviance based on the log likelihood, i.e.

n∑
i=1

2(wiYi log

(
Yi
µ̂i

)
− wi(Yi − µ̂i)) (97)

with µ being the estimated frequency for each observation.
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2.8.2 Cross-validation

Assessing the model performance will be done using k-fold cross validation by
defining

CV (f̂ ,θ) =
1

k

k∑
j=1

(
f̂−j(Xj ,θ)− Yj

)2

(98)

as the cross validation error for j folds where f̂−j(Xj ,θ) is the target function
estimated with parameters θ on all folds but the j:th fold. The j : th fold is
used to estimate the mean square error and is called the test set. 10-fold cross
validation will be applied where 10% of the data is used to test at and the rest
of the data will be used to estimate the prediction error. Adjacent 10% of the
data will then be used and so on.[16] As with the measure or error the cross
validation will be applied with the deviance measure of error rather than the
mean square error. The result for the CV will be

CV (f̂ ,µ) =

k∑
j=1

2(wjYj log

(
Yj
µ̂−j

)
−wj(Yj − µ̂−j)) (99)

with −j meaning the estimate of µ is from all data but on the j:th fold. The
evaluation is done by vector for all the observations in the test set j.
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3 Data & Model Specification

Two data sets are used in this thesis to compare the models. One set is generated
to test the models in setting where the data generating process is known and
can be controlled. Set number two is real insurance data often used in insurance
literature. Both data sets are commented in this section.

3.1 Simulated Data

Simulated data is generated to have specific properties for the risk in the fictional
insurance portfolio. Motivating the use simulated data is the the objective of
the thesis is to evaluate predictive performance of the specified models used in
the insurance pricing. Knowing the data generating process behind the obser-
vations allows for the evaluation of the modelled performance compared to the
true model. The generated data from the simulation has 2 continuous random
variables where one has quadratic behaviour and the other a linear. Simulating
number of claims requires a specification from the µ parameter for the Poisson
distribution or in the case a function representing the Poisson distribution. In
addition, exposures needs to be simulated to represent the proportion of insured
with each risk characteristic.

The µ function used in the thesis is

µ(variable1, variable2) =

a× (variable1 − b)2 + c× variable2

+ d× I{variable1≥55}∩{variable2≥170} (100)

where the parameters a, b, c and d are chosen such that µ represents a frequency
and hence becomes a value 0 < µ ≤ 1. The threshold choices for the interaction
factor in (100) are chosen arbitrarily to provide some meaningful parameter µ.
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Figure 4: Surface of the frequencies derived from the µ function in (100).

The resulting shape of the frequency function is seen in Figure 4. As Figure 4
shows there is a linearly increasing z along the x-axis for y below 55. There is
also an interaction effect in the upper left side of Figure 4 where z increases.

Since the objective of the thesis is to compare how the models perform in the
presence of imbalanced data, the exposure is adjusted to reflect that the ob-
served data is not uniform over all of the possible combinations of x1 and x2.
To do so, the exposure is adjust to be less in the areas where µ changes the most.
If one of the variables is assumed to represent age y in Figure 4 and variable1

in (100), then the assumption is that there is considerably less exposure for low
and for higher ages.
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Figure 5: Proportion of the exposure by variable1.

Figure 5 shows the proportion of the exposure by variable1. As Figure 5 shows,
the proportions in the tails are decreased to represent the imbalance in the
regions. The data stems form the population distribution by age in Sweden.[4]
A simulation is done for variable2 such that

variable2 ∼ N(170, 40) (101)

resulting in the exposure distribution in Figure 6
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Figure 6: Total distribution of exposure in the simulated data.

The properties of the exposure distribution will then have a lot of exposure
where the properties of the claims are easy to capture but a lower exposure
where there are interactions and higher complexity in the claims generating
process. Claims and exposure were simulated from a total number of 200 000
fictitious insurances were used in the simulated data set. This is not uncommon
in practice for a large property & casualty insurance portfolio in Sweden. In
summary, first data is downloaded from SCB [4] to obtain a distribution of the
populations. The proportions of ages < 25 and 65 > are lowered such that there
is clear under representation in the tails as in Figure 6. 200 000 observations
are sampled form the empirical distribution of Figure 6. For each observation
of the sample from variable1 a second variable is sampled at random from (101)
and a random uniform variable is sampled to represent the exposure during
the period. Claims are then simulated from a Poisson distribution using the
function from (100) based on the value of the simulated variable1 and variable2.

3.2 Wasa Motorcycle Insurance 1994-1998

Real data is from the former Wasa insurance company in Sweden and is from
a partial casco for motorcycles during years 1994-1998.[22] A total of 64 548
observations are recorded over the period and aggregated for the policy holders
with one row per observation during this period. Table 1 presents the available
variables in the data set and their formats.
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Variable Explanation Values

agarald Owners age integer 0-99
kon Owners gender M or K

zon
Geographic zone -
Standard classification
in Sweden

integer 1-7

mcklass
EV ratio of vehicle classification.
EV = floor((Engine power × 100)/(Vehicle weight in kg))

integer 1-7

fordald Vehicle age integer 0-99

bonuskl

Bonus class - policy holders start at bonus class 1 and gets
increased if the policy holder has a claim. If there is a claim free year
the bonus class is decreased. At class 7 the holder has to have 6
consecutive claim free years to get decreased to level 6

integer 1-7

duration Number of policy years numeric
antskad Number of claims numeric
skadkost Claim cost numeric

Table 1: Variables and explanation of the Ohlsson motorcycle insurance data
set.

The sum of the total policy insured years is 65 236 for the period and the number
of claims during the same period are 697 giving a total frequency of 1.07% on the
total portfolio leaving a comparably small part to estimate the characteristics
which increases the risk.If a actuary estimates the risk to be 0.5% or simply just
0% she would be correct in majority of the times but the insurance company
will likely loose money. Figure 8, shows the frequency and the duration by age
for example and is a clear indication that the frequency is the highest where the
duration is not. The majority of the exposure in year 46 and upwards does not
have any claims and thus a frequency of below 2%. A question to ask is how to
estimate the characteristics of the portfolio which actually have claims. Simi-
larly Figure 8 shows the number of observations in the data set by age where it
is clearly seen that the observations which have had claims are scarce.
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Figure 7: Frequency and exposure by age.
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Figure 8: Frequency and exposure by age.

3.3 Model Specifications

3.3.1 GLM Specification

GLM specifications are done with various settings in the simulated data and
the motorcycle insurance data. There are mainly two specifications used for
the simulated data. A model without an interaction effect and a model with
an interaction effect between the both variables. Continuous variables will be
grouped with various settings denoted with intervals being specified in the set
with lengths

interval = {1, 2, 3, 4, 5} (102)

where the number assings the length of the interval. If 5 is applied for age
for example then ages would be grouped in groups of 5. The grouping mainly
concerns variables which such as age or engine power for example. Models will
be specified with the Poisson setting although other choices are possible.

3.3.2 GAM Specification

In the case with simulated data GAM will be applied for both variables with
and without an interaction effect. For the Wasa motorcycle data GAM will
be applied for the variables which can be considered continuous and not pre
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grouped, i.e. ages or powers of the vehicle. For the Wasa motorcycle data this
means that there will be two variables which will be fitted with splines and and
the rest as categorical variables.

3.3.3 Regression Tree and Random Forest Specification

The specifications of the regression tree and random forest is done similarly
as with the GLM models. Continuous variables are grouped according to the
same intervals as in the GLM case. Regression trees do not need specification of
interactions for the simulated data as the model takes interactions into consid-
erations by definition. The trees chosen as the final model are pruned according
to the CV rule descried in section 2.5.1.

3.3.4 Neural Network Specification

Fitting the neural network to date causes additional problems which will affect
both the estimation result as well as the estimation time. Also, since the algo-
rithm requires starting values as input, convergence to is not guaranteed and
might depend on the starting values. Choosing starting values also depends on
how many parameters which should be estimated and increase with the number
of layers and with the number of nodes in each layer i.e. the architecture of
the neural network and there are many texts on the topic. The approach to
choosing the number of input nodes and number of input layers in this thesis
is to iteratively run combinations of neurons and layers and evaluate the pre-
diction of each model. Starting with 1 hidden layer and 1 neuron and moving
to a combination of 3 hidden layers and 5 neurons for the simulated data and 7
neurons for the Wasa motorcycle data. In addition and as explained earlier, the
loss or deviance function will be adjusted such that duration and the Poisson
distribution are taken into account.
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4 Results

4.1 Hardware & Software Specifications

The specifications of the thesis gives a total 410 models to be fitted and evalu-
ated in one of the cases. For example in the case of the motorcycle insurance
data, estimating a fully connected neural network required at least 7 neurons.
The specification also had two cases of 2 and 3 layers respectively resulting in
7 × 7 combinations of model specification in the 2 layer case and a additional
7× 7× 7 combinations in the 3 layer case. Applying a 10−fold cross validation
to the specifications and with a total of 4 different data sets requires running
the fitting algorithms approx. 16000 times where each time a model is fitted.
Including each of the 100 times for the 5 specifications of the random forests for
the 4 data sets and 10−fold cross-validation gives an additional 19999 times the
model needs to run on the data sets which contain at least 50000 observations.
A specification of such magnitude took for example 25 − 30 hours just to run
a subset of the neural networks on a machine with 64GB RAM and a AMD
Ryzen 93900X with 12 cores. As a solution a GPU-enabled Linux server with
AMD Radeon Instinct MI25 with 16GB of GPU memory was used instead to
run the computations. Computation time was drastically reduced to almost half
compared to running the computations on a desktop machine. Good memory
management is also essential since the many computations as well as the data
set sets keep increasing in size while data is stored for analysis. Outcomes in the
4 cases are described in this section with the simulated data without SMOTE
applied, with SMOTE applied and finally the corresponding cases from the mo-
torcycle insurance data.

Before the CV process of section 2.8.2 was utilized, the data was randomly
shuffled such to avoid any sorted columns prior to running the models. As there
are a large number of models specified the reader can refer to the theoretical
specifications of the models to section 3.3 for the exact models compared. The
software used for this thesis was R with several different packages depending on
which type of model was used. For the generalized additive models ’mgcv’ in R
was used without any modifications and for the generalized linear models the
standard R function ’glm()’ was used to fit the generalized linear regression as
specified in section 3.3.1. The parameters of the fitted models where then used
to predict the outcome of the test data with the function ’pred()’ in R.

Own code with together with package ’rpart’ was developed for implementa-
tion of the random forest to be able to apply the theory of having Poisson
deviance. In each CV loop (from a total of 10 loops), a total number of 200
trees were utilized to be able to fully benefit from the method. Total number
features −1 were used for each tree and were chosen at random for each tree.
The trees were then used to find the prediction of the test data at each loop.
Regression trees were fitted with the ’rpart’ function with Poisson deviance such
that the weights of observations could e taken into account.
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For the neural networks, tensorflow [1] was used together with the R package for
tensorflow with the GPU installation such that it utilizes the full parallel pro-
gramming functionality. As mentioned in the theory section, a weighted Poisson
deviance is used in this thesis and the specification required a user defined loss
function with the continuity correction stated in section 2.2.1. The optimizer
used from the package is ’adam’ with a default learning rate of 0.0001, 100
epochs with a stopping rule which monitors the loss function implemented with
the ’EarlyStopping()’ function which usually triggered after approx. 60 epochs.
A batch size of 10% of the data was utilized since a lot of the data could be
used with the computation running on the GPU. These specifications were cho-
sen after a few initial runs to prevent from over fitting of the whole training set
and as mentioned in the beginning of this section, data was shuffled prior to
defining test and validation sets. Starting values of the parameters in the neural
network was just randomly sampled from a uniform distribution. The out of
sample deviance of the CV was finally estimated by predicting the test data
using the estimated model. Other than these specifications the specifications of
the neural network architecture can be found in section 3.3.4.

To apply the SMOTE algorithm the package ’UBL’ with the function ’SmoteRegress’
was used with setting the relevance function such that all observations with 1
claim and above were relevant and the rest irrelevant. Distance was set to
’HEOM’ (Heterogeneous Euclidean-Overlap Metric) in the function and the
model was calibrated such that the observations with claims were over sampled
by 20%. The algorithm for the ’SmoteRegression’ is specified in section 2.7.

4.2 Simulated Data Without SMOTE

Figure 9 plots the result of the 10-fold cross validation of the models run on
the simulated data from section 3 without SMOTE algorithm applied. As can
be seen from the chart the GLM with both variables grouped in groups of 5 is
performing well compared to the neural network models. The best performing
model, i.e. the one with the lowest 10-fold CV error is the regression tree with
both variables grouped in intervals of 5 although the difference on is not sig-
nificantly large judging by the y-axis of the plot. The best performing neural
networks are ones with 3 layers and with 5 neurons on the final layer. They
do not however perform better than the GAM-model for the simulated data set
without application of the SMOTE algorithm. The result show that there is
not a benefit of increased complexity when the data is specified as in section 3.1
with the data having less exposure in the areas which are of interest to analyze.

Tables 2 and 3 show the in sample and out of sample deviance for each of
the CV folds run in the mode. As the table shows, the GLM with grouped
variables in intervals of 5 performs the second best both for in sample and out
of sample data after the regression tree models. The difference in deviance is so
small that it is difficult to conclude which model is better to use for prediction
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purposes. It does not seem as if there is large benefit of introducing more com-
plexity in the data. This is as expected since the data is skewed such that there
is not enough exposure in the part of the portfolio where the risk has non-linear
behaviour. There does not seem to be any large differences in the best perform-
ing models compared to the rest of the specifications. Comparing to Figure9
however shows that the variations of errors are not large for the rest models but
models do exist were difference to the best performing model is quite large.

Figure 9: Cross validation errors of claims frequency for 168 different models
applied on the Simulated data without SMOTE algorithm applied. ”tot” in-
dicates no grouping of continuous,”g(number)” indicated continuous variable
has been grouped by interval of ”number”. ”RF” is abbreviation for ”Random
Forest”, ”RT” is abbreviation for ”Regression Tree” and ”NN(n,k)” are Neural
Networks with ”k” hidden layers with ”n” and ”k” neurons in each layer.

GLM
(interaction)

GLM
(grouped variables by 5)

GAM NN(2,3,5)

In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample
1 15239,265 1688,563 14957,455 1657,338 15778,862 1744,098 15588,844 1736,350
2 15239,505 1688,699 14928,088 1654,190 15764,642 1770,537 15526,340 1748,472
3 15183,211 1744,712 14803,259 1701,051 15734,038 1781,430 15541,125 1818,103
4 15195,545 1732,182 14874,465 1695,581 15766,427 1776,021 15662,323 1701,062
5 15229,776 1698,021 15043,279 1677,228 15744,972 1772,383 15599,286 1752,377
6 15264,363 1663,693 14999,635 1634,839 15785,546 1727,320 15607,023 1749,708
7 15226,551 1701,286 14918,449 1666,861 15760,824 1756,946 15712,202 1660,230
8 15257,160 1670,747 15066,590 1649,878 15775,479 1736,955 15683,917 1672,650
9 15260,989 1667,109 15010,445 1639,740 15761,935 1737,108 15584,617 1782,957
10 15252,277 1675,669 14864,873 1633,108 15802,302 1728,994 15592,409 1720,147
Average 15234,864 1693,068 14946,654 1660,981 15767,503 1753,179 15609,809 1734,205

Table 2: Part 1 of the in sample and out of sample Poisson deviance of the 8
best performing models based on the 10-fold CV from out of sample predictions
for the simulated data set. In sample and out of sample deviance’s are presented
for each of the folds from the 10-fold CV as well as the average of the CV.
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NN(4,4,5)
RF

(grouped variables by 5)
In Sample Out of Sample In Sample Out of Sample

1 15623,208 1740,119 15627,991 1748,850
2 15609,527 1760,349 15629,987 1746,855
3 15538,784 1817,452 15621,810 1755,032
4 15664,764 1701,370 15607,888 1768,953
5 15611,048 1753,823 15641,199 1735,643
6 15613,096 1750,117 15656,894 1719,948
7 15683,084 1657,037 15625,148 1751,694
8 15693,256 1673,747 15655,826 1721,015
9 15589,297 1783,418 15661,126 1715,716
10 15580,480 1718,796 15663,707 1713,135
Average 15620,654 1735,623 15639,157 1737,684

Table 3: Part 2 of the in sample and out of sample Poisson deviance of the 8
best performing models based on the 10-fold CV from out of sample predictions
for the simulated data set. In sample and out of sample deviance’s are presented
for each of the folds from the 10-fold CV as well as the average of the CV.
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4.3 Simulated Data With SMOTE

Figure 10 shows the 10 fold cross validated prediction error of the frequency
for the simulated data set with the SMOTE algorithm applied. It is clear that
the more complex models perform better in this setting in terms of predictive
performance of the models. Having tree layers instead of 2 is better for the
neural networks. The regression tree gives the lowest 10-fold cross validation of
the errors. SMOTE models will be wrong as more samples are created which
we do not know anything about other than the information from their k nearest
neighbours. Given that setting GLM fails to perform as good as without any
new data simulated based on the data already accessible in the data set. Note
that compared to section 4.2 the models are less scattered in terms of the 10-fold
CV errors with the synthetic data present in the model.

Tables 4 and 5 present the in sample and out of sample Poisson deviance for
the best performing models in the case with simulated insurance data and with
creating synthetic observations. There are not large differences between the
models but there is definitely a benefit of applying more complex models when
data is more balanced indicating that both customers and companies might
benefit from better data usage and pre-processing of data. Interestingly GLM
did not appear in the top models with data being more balanced.

Figure 10: Cross validation errors of claims frequency for 168 different models
applied on the Simulated data with SMOTE algorithm applied. ”tot” indicates
no grouping of continuous,”g(number)” indicated continuous variable has been
grouped by interval of ”number”. ”RF” is abbreviation for ”Random Forest”,
”RT” is abbreviation for ”Regression Tree” and ”NN(n,k)” are Neural Networks
with ”k” hidden layers with ”n” and ”k” neurons in each layer.
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RT NN(2,5) NN(1,2,4)
In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample

1 25726,974 2578,214 45062,136 4779,904 48694,279 5417,677
2 25756,626 2588,730 26202,029 2923,042 37961,375 4195,913
3 25760,520 2603,277 33463,150 2813,038 45601,523 5056,003
4 25746,163 2646,892 26015,122 2008,504 55724,241 6152,621
5 25769,545 2640,172 19294,935 1524,747 23493,449 2630,592
6 25789,178 2594,702 36884,883 3128,732 27821,479 3069,298
7 25703,500 2621,138 23902,662 1860,521 49339,464 5503,973
8 24994,857 3381,858 28435,373 2419,146 41013,897 4558,548
9 21511,589 9246,025 35063,887 2983,485 28722,056 3225,044
10 20721,553 11297,514 48245,657 18141,801 26185,989 2925,688
Average 24748,050 4219,852 32256,983 4258,292 38455,775 4273,536

Table 4: Part 1 of the in sample and out of sample Poisson deviance of the 5
best performing models based on the 10-fold CV from out of sample predictions
for the simulated data set with SMOTE algorithm applied. In sample and out
of sample deviance’s are presented for each of the folds from the 10-fold CV as
well as the average of the CV.

NN(2,1,5) NN(4,2,5)
In Sample Out of Sample In Sample Out of Sample

1 20128,086 2240,360 25598,234 2852,135
2 28771,925 3167,124 18901,915 2072,396
3 57064,535 6327,241 29875,532 3299,445
4 43330,944 4780,237 41511,785 4578,784
5 38165,836 4266,143 44432,657 4966,182
6 23179,560 2553,854 37638,445 4150,206
7 53157,436 5928,068 53286,284 5943,161
8 60573,690 6735,514 45826,016 5107,407
9 42586,340 4765,789 53940,111 6032,998
10 19470,642 2178,679 29956,480 3347,302
Average 38642,900 4294,301 38096,746 4235,002

Table 5: Part 2 of the in sample and out of sample Poisson deviance of the 5
best performing models based on the 10-fold CV from out of sample predictions
for the simulated data set with SMOTE algorithm applied. In sample and out
of sample deviance’s are presented for each of the folds from the 10-fold CV as
well as the average of the CV.

4.4 Wasa Motorcycle Insurance Data Without SMOTE

Figure 11 shows the plot of the cross validation error of claims frequency for
each of the models trained on their test data. The labels of the 10 models with
the lowest cross validation level on the are indicated on the plot. The RTG5
(regression tree with variables group as intervals of 5) model gives int the case
the smallest deviation from the frequency meaning that the RTG5 manages to
capture the underlying risk better than the other models. The other models are
somewhat scattered around having various errors. Note her that the bulk of the
data was simulated such that the most of the claims observations were observed
where there risk was particularly well behaved giving the best performance for
models which capture well behaved properties good. Note also that the scale of
the errors is not excessively large. The performance of the error is measured on
data which the models have not seen and more complex will have problems with
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over-fitting and will have trouble performing on unseen extremes in the data.

Tables 6 and 7 present the in sample and out of sample Poisson deviance for
the claims frequency in the data set for each of the folds in the 10-fold cross
validation procedure. GLM has the lowest out of sample data deviance but not
the lowest in sample deviance as the Regression Tree without grouping of the
continuous variables has a lower in sample deviance. Interestingly the average
in sample deviance of the neural networks seem to be higher compared to the
other models but with a smaller difference in the out of sample performance.

Figure 11: Cross validation errors of claims frequency for 410 different models
applied on the Wasa Motorcycle Data without any SMOTE algorithm applied.
”tot” indicates no grouping of continuous,”g(number)” indicated continuous
variable has been grouped by interval of ”number”. ”RF” is abbreviation for
”Random Forest”, ”RT” is abbreviation for ”Regression Tree” and ”NN(n,k)”
are Neural Networks with ”k” hidden layers with ”n” and ”k” neurons in each
layer.
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GLM
Regression Tree
(w.o. grouping)

Random Forest
(grouping interval of length 5)

NN(5,6)

In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample
1 3590,854 397,032 3576,353 419,528 4121,631 443,281 3996,428 422,560
2 3668,115 331,488 3679,610 316,552 4291,811 273,100 4592,085 430,703
3 3577,146 411,540 3590,620 409,590 4091,135 473,776 5416,510 384,101
4 3535,255 451,667 3497,633 469,948 4074,610 490,302 5164,117 251,768
5 3538,184 440,577 3535,683 462,772 4038,655 526,256 5146,010 501,268
6 3642,546 349,045 3683,340 366,717 4153,309 411,602 4890,586 527,409
7 3502,037 487,953 3551,583 525,154 3860,013 704,899 4551,993 508,875
8 3593,209 392,761 3509,431 391,542 4149,031 415,880 5462,625 505,420
9 3579,455 404,206 3618,402 406,601 4119,775 445,136 5074,039 478,804
10 3633,612 353,310 3586,512 367,746 4184,231 380,680 5332,250 260,811
Average 3586,041 401,958 3582,917 413,615 4108,420 456,491 4962,664 427,172

Table 6: Part 1 of the in sample and out of sample Poisson deviance of the 8 best
performing models based on the 10-fold CV from out of sample predictions for
the Wasa motorcycle insurance data set. In sample and out of sample deviance’s
are presented for each of the folds from the 10-fold CV as well as the average of
the CV.

NN(6,7) NN(3,2,5) NN(2,2,4)
In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample

1 4018,204 426,482 4674,467 463,185 4664,399 501,376
2 4892,104 436,486 5143,674 442,505 5188,266 442,814
3 4886,550 373,565 5877,059 393,070 5630,738 388,321
4 4612,126 230,909 6074,270 282,444 6173,129 285,955
5 4664,478 455,804 5546,145 493,867 5647,108 559,856
6 5426,586 575,145 5396,362 469,993 5344,586 505,974
7 4784,758 577,094 5201,118 508,062 5336,007 481,386
8 4395,758 534,893 5627,640 498,665 5525,130 453,085
9 4669,312 464,403 5782,013 480,545 5376,447 462,784
10 5004,815 244,676 6150,708 291,077 6135,545 290,869
Average 4735,469 431,946 5547,346 432,341 5502,136 437,242

Table 7: Part 2 of the in sample and out of sample Poisson deviance of the 8
best performing models based on the 10-fold CV from out of sample predictions
for the Wasa motorcycle insurance data set without SMOTE applied. In sample
and out of sample deviance’s are presented for each of the folds from the 10-fold
CV as well as the average of the CV.

4.5 Wasa Motorcycle Insurance Data With SMOTE

Applying first the SMOTE data to include a larger proportion of claims changes
the picture of the best performing model drastically as can be seen in Figure 12 .
The best model with the lowest 10-fold cross validation error being the random
forest specifications. Also the neural networks performs in the top 10 of the 400
different specifications. Balancing out the data became more difficult for the
GLM models to find a generalization of the underlying trend and the non-linear
models performed better based on the 10-fold CV error. Especially the random
forest with the grouped continuous variables with groups of 5. Comparing to
the rest of the models performances there is a l difference of approximately 1500
in deviance of the out of sample error to the best performing model.

Table 8 summarizes the out of sample and in sample Poisson deviance for the
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Wasa motorcycle data with SMOTE algorithm applied. On the contrary to
the case when no SMOTE was not applied, the best performing is the Random
Forest together with neural networks of various specifications. Both in sample
deviance and out of sample deviance seem to agree on which of the best modes
performs the best. It is important to note that the Random Forest is for the
grouping of the variables which can be regarded as continuous in groups of 5.

Figure 12: Cross validation errors for 410 different models applied on the Wasa
Motorcycle Data with SMOTE algorithm applied. ”tot” indicates no grouping
of continuous,”g(number)” indicated continuous variable has been grouped by
interval of ”number”. ”RF” is abbreviation for ”Random Forest”, ”RT” is
abbreviation for ”Regression Tree” and ”NN(n,k)” are Neural Networks with
”k” hidden layers with ”n” and ”k” neurons in each layer.

RF (grouping
interval 5)

NN(6,7) NN(1,7,6) NN(7,7,7) NN(5,1,4)

In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample In Sample Out of Sample
1 20113,115 2543,333 43583,312 4756,914 33316,679 3634,824 31662,589 3453,836 27561,409 3096,340
2 20721,266 1935,182 16721,163 1845,358 9341,709 986,749 10992,408 1210,286 32339,571 3452,502
3 20538,917 2117,532 37811,732 4233,372 30217,968 3362,993 28135,716 3144,691 34152,411 3875,772
4 20112,608 2543,840 32195,199 3570,006 31380,612 3553,561 38817,222 4384,006 28989,096 3134,294
5 20333,593 2322,855 45504,745 5099,110 31107,976 3426,575 25381,115 2871,400 28192,537 3242,873
6 20635,213 2021,236 28584,536 3569,373 27593,555 3522,359 38057,707 4856,650 35512,177 4339,555
7 19755,002 2901,446 31736,420 3713,372 31893,397 3762,696 37211,935 4386,795 27774,054 3113,875
8 20481,973 2174,475 41476,526 4242,016 30323,677 3072,816 28039,420 2867,633 32233,558 3436,651
9 20489,833 2166,615 44179,090 4932,655 31179,014 3508,889 32747,831 3664,416 31151,712 3436,513
10 20726,515 1929,933 48313,359 5107,647 34198,606 3636,109 28806,258 3041,208 28135,587 2972,205
Average 20390,803 2265,645 37010,608 4106,982 29055,319 3246,757 29985,220 3388,092 30604,211 3410,058

Table 8: In sample and out of sample Poisson deviance of the 5 best performing
models based on the 10-fold CV from out of sample predictions with SMOTE
algorithm applied for the Wasa motorcycle insurance data set. In sample and
out of sample deviance’s are presented for each of the folds from the 10-fold CV
as well as the average of the CV.
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5 Conclusion

The objective of the thesis is to investigate the impact of imbalanced data with
high risk customers being underrepresented in the data in terms of number of
claims as well as exposure. As comparison, synthetic data was generating by
using a SMOTE algorithm.

The thesis show that given the imbalance in the data, more sophisticated mod-
els fail to outperform standard models such as the GLM meaning that the price
will be more or less smoothed given that the claim cost is stable which can be
seen in Figure 9 and Figure 11 as well ass tables 2,3,6 and 7. However, when
synthetic observations applying the SMOTE method were included, GLM failed
to perform better than the models which are designed to fit the data better as
summarized by the 10-fold cross validation in Figure 10 and Figure 9 and tables
4,5 and 8.

This is not surprising as even if there exist high risk customers in the port-
folio but with a relatively small proportion of the portfolio, their outcome will
have a small weight and effect of the prediction error costs relatively less despite
perhaps having larger claims than actual. Including more data however, shifted
the errors and models which were able to capture more complex structures in
the data performed better than the GLM (Figure 10, Figure 12). This shows
that data balancing, a situation which is difficult to attain without additional
expensive data collection or bold assumptions, is required to show that the
modern machine learning type algorithms are performing better and to utilize
their benefits in insurance pricing. There is however potential to formulate some
form of tuning process more efficient than utilized in this thesis to discard the
large number of models specified in order to find some optimal specification or
number of trials.

Despite data being deliberately created such that there is a presence of non-
linearity in section 4.2 it seemed as if the machine learning methods where
quite sensitive to the non-linear structures having quite a weak signal. In sec-
tion 4.3 on the other hand SMOTE was applied to over sample by 20% meaning
that only an extra 20% of synthetic claims were used in the data. In a real
world insurance pricing application there can be substantial consequences to
the insurance providers profitability or portfolio health. A result of GLM per-
forming the most will impact policyholders such that high risk customers will
pay less than they need to and low risk more. If this can be mitigated applying
SMOTE and machine learning predictive techniques there is a big potential for
the method.

There are a few areas where the thesis could be extended and improved. First
of all the complexity of the mu parameters of simulated data could have been
increased gradually in combination with shifting the exposure with data im-
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balance to investigate potential threshold where the performance of the model
shift fast. This could give insight to pricing professionals of the level of balance
needed in the data to use more complex methods in their insurance pricing.
Further, the specification of the SMOTE algorithm could be investigated closer
as well as other data balancing methods in order to find both the level at which
there are large shifts in model performance. Comparisons with simulated bal-
anced data are interesting and could be evaluated but since it is not a realistic
situation it is unlikely of interest. The comparison could be done to evaluate the
fit of the training data rather than comparing with the test data using the 10-
fold CV technique. In realistic situations, a insurance stock will be somewhat
static with the new unseen data being marginal compared to the rest of the
portfolio where it will be more of interest in updating the prices of the current
stock. Instead of the approach of balancing the data, a Bayesian approach on
the simulated data could be used in the comparison to investigate if the model
can be improved further as well as comparing the performance of the method
to a Bayesian technique and over-sampling using SMOTE. Also there are the
possibilities to work with different types of variable transformation and data
split to improve the prediction properties of the method.
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kön. År 1968 - 2020, 2021. Accessed 2021-02-15.

[5] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research, 16:321–357, 2002.

[6] Iain D. Currie. On fitting generalized linear and non-linear models of mor-
tality. Scandinavian actuarial journal, 2016(4):356–383, 2016.

[7] H. B. Curry and I. J. Schoenberg. On pólya frequency functions iv: The fun-
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