Graphs with prescribed degree sequence

- Consider a random graph of \(n \) vertices
- Fix the degree of vertex \(i \) by \(d_i \)
- What do we know about the graph?
- How many graphs are possible?
 (Try for \(n = 4 \) and all degrees are 2)
- Is it always possible to create such a graph?

Easier case: Multigraph with prescribed degree sequence, self-loops add two to the degree

Still not all sequences are possible. Indeed \(\ell_n = \sum_{i=1}^{n} d_i \) should be even

One way to create a random graph is:
- draw \(d_i \) half edges pointing out of vertex \(i \) for all \(i \)
- pair the \(\ell_n \) half edges uniformly at random

The number of ways to pair up \(\ell_n \) half-edges is
\[
(\ell_n - 1)!! = (\ell_n - 1) \times (\ell_n - 3) \times \cdots \times 3 \times 1
\]

Not all pairings lead to different graphs

Let \(X_{ij} = X_{ji} \) be the number of edges between \(i \) and \(j \) in the multigraph and \(X_{ii} \) the number of self-loops
- \(d_i = X_{ii} + \sum_{j=1}^{n} X_{ij} \) (So, \(X_{ii} \) is counted twice)

Number of different matchings of half-edges which lead to graph \(G \) described by \(\{X_{ij}\}_{i,j} \) is
\[
\frac{\prod_{i=1}^{n} d_i!}{(\prod_{i=1}^{n} 2^{X_{ii}}) \prod_{i=1}^{n} \prod_{j=1}^{n-1} X_{ij}!}
\]

We see that all simple graphs have equal probability

Some conditions (7.5)

Let \(F_n(x) = n^{-1} \sum_{i=1}^{n} \mathbb{1}(d_i \leq x) \), and \(D_n \) the corresponding random variable
- \(D_n \) converges in distribution to some specified distribution \(D \) with distribution function \(F(x) \)
 - In this case this means \(\lim_{n \to \infty} F_n(x) = F(x) \) for all \(x \geq 0 \)
- \(\lim_{n \to \infty} \mathbb{E}(D_n) = \mathbb{E}(D) \)
- Sometimes we assume \(\lim_{n \to \infty} \mathbb{E}(D_n^2) = \mathbb{E}(D^2) \)

An example: Create degree sequence through drawing i.i.d. random variables
Exercise: Show that the conditions are satisfied (sometimes under extra conditions). What conditions are needed?
What if the graph is not simple?

- We might erase the self-loops and merge the multiple edges
- We might condition on the random graph being simple

Note that in multi-graph the expected number of self-loops is

\[\frac{1}{2} \sum_{i=1}^{n} d_i (d_i - 1) \frac{\ell_n - 1}{\ell_n} \]

The number of multiple edges is roughly the square of this

Thm 7.8 and Prop 7.9

- Let \(\mu = \mathbb{E}(D) \) and \(\nu = \mathbb{E}((D)(D - 1))/\mu \)
- The number of self-loops is asymptotically Poisson with mean \(\nu/2 \)
- The number of multiple edges is asymptotically Poisson with mean \(\nu^2/4 \), independently.
- Number of simple random graphs with given degree sequence is roughly

\[e^{-\nu/2-\nu^2/4} \frac{(\ell_n - 1)!!}{\prod_{i=1}^{n} d_i!} \]

Theorem (Cor 7.12)

If the degree sequence satisfies all conditions in 7.5 and \(\ell_n \) is even. Then an event \(A \) occurs with high probability in the uniform simple random graph with prescribed degree distribution, if it occurs with high probability in the corresponding configuration model multi-graph.

Proof:

\[\mathbb{P}(A^c \text{ in simple graph}) = \mathbb{P}(A^c \text{ in CM | CM graph is simple}) \]

\[= \frac{\mathbb{P}(A^c \text{ in CM and CM graph is simple})}{\mathbb{P}(\text{CM graph is simple})} \leq \frac{\mathbb{P}(A^c \text{ in CM})}{\mathbb{P}(\text{CM graph is simple})} \]

and result follows

Components: playing the physicist’s game

- Assume that \(n \) vertices have i.i.d. degrees with distribution \(D \), represented by half edges. Let \(p_k = \mathbb{P}(D = k) \)
- In case \(\ell_n \) is odd, add one half-edge to vertex \(n \)
- pair half-edges uniformly at random one by one (but in a nice order)
- What is the size of the component of vertex 1?
The number of neighbors of vertex 1 is distributed as D.

The degree of a neighbor of vertex 1 is not distributed as D.

Let $\mathbb{P}(\tilde{D} = k) = g_k = kp_k / \mathbb{E}(D)$.

Let

$$\nu = \mathbb{E}(\tilde{D} - 1) = \sum_{k=1}^{\infty} (k-1) g_k = \sum_{k=1}^{\infty} \frac{(k-1)kp_k}{\mathbb{E}(D)} = \frac{\mathbb{E}(D(D-1))}{\mathbb{E}(D)}$$

The degrees of neighbors of 1 are assumed to be distributed as \tilde{D} and independent.

Question: Why is this not correct?

The expected number of vertices at distance 2 of vertex 1 is $\mathbb{E}(D) \times \nu$.

What does \tilde{D} look like?

- Exercise in pairs: Assume $\mathbb{P}(D = k) = \frac{\lambda^k}{k!} e^{-\lambda}$, give distribution of \tilde{D}?
- If $\mathbb{P}(D = k) = ck^{-\gamma}$, for $\gamma > 2$, then $\mathbb{P}(\tilde{D} = k) = \frac{k^{-\gamma-1}}{\sum_{k=1}^{\infty} k^{-\gamma}}$.
- Note that if D has infinite variance, then \tilde{D} has infinite mean.
- Let $G(x) = \mathbb{E}(x^D) = \sum_{k=0}^{\infty} p_k x^k$.

$$G(x) = \mathbb{E}(x^{\tilde{D} - 1}) = \sum_{k=1}^{\infty} g_{k-1} x^{k-1} = \sum_{k=1}^{\infty} \frac{kp_k}{\mathbb{E}(D)} x^{k-1} = \sum_{k=0}^{\infty} \frac{p_k}{\mathbb{E}(D)} \frac{d}{dx} x^k = \frac{d}{dx} \mathbb{E}(D) \Bigr|_{y=1}$$

As long as the number of paired half-edges is small, the degree distribution of the vertex of a uniformly chosen half-edge is roughly \tilde{D}.

Furthermore, the probability of choosing a half-edge belonging to a vertex with all its half-edges previously unpaired is high as well.

Use two stage branching process: number of children of generation 0 vertex is distributed as D.

Number of children of other vertices in process distributed as $\tilde{D} - 1$.

Probability of extinction of branching process with offspring distribution defined by g_k is given by smallest solution of

$$\xi = \sum_{k=1}^{\infty} g_k \xi^k$$

Survival probability of the two-stage branching process approximating the cluster of vertex 1 is

$$1 - \sum_{k=1}^{\infty} p_k \xi^k$$

This survival probability is positive if $\xi < 1$ and 0 if $\xi = 1$.

$\xi < 1$ if and only if $\nu = \sum k g_k = \mathbb{E}(D(D-1))/\mathbb{E}(D) > 1$ (or $g_1 = 2p_2 / \mathbb{E}(D) = 1$, i.e. if $p_2 = 1$).
Theorem (Thm. 10.1)
Assume that $D_n \rightarrow D$ in distribution and $\mathbb{E}(D_n) \rightarrow \mathbb{E}(D)$. Furthermore $p_2 < 1$.

- If $\nu > 1$, then there exists $\zeta \in [0, 1]$ and $\xi \in [0, 1]$, such that
 \[\frac{|C_{\max}|}{n} \rightarrow \zeta \text{ in probability}\]
 and n^{-1} times the number of vertices of degree k in C_{\max}
 converges in probability to $p_k(1 - \xi^k)$
 and n^{-1} times the number of edges in C_{\max} converges in
 probability to $\mathbb{E}(D)(1 - \xi^2)/2$
 the proportion of vertices and edges in the second largest
 component converges in probability to 0
- If $\nu < 1$, then the proportion of vertices and edges in C_{\max}
 converges in probability to 0.

Questions to think about

- What happens if $p_2 = 1$?
- Why is in the sub-critical case the largest cluster size not necessarily $\Theta(\log n)$?