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Lecture Goal and Outcome e
University

Goal: Overview of implicit derivation and polynomial approximation.
Learning Outcome: At the end of today lecture you will be able to

solve a problem like the following:

Problem

Suppose that a commodity is sold at price P with a taxation of .
Suppose that the demand and supply functions are linear, that is

D=a-b(P+7), S=a+pjP,

Then the equilibrium price is determined by equating the supply to
the demand:
a-b(P+71)=a+pP

Compute 9 What is its sign? What is the sign of (P + 7)
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After today you will understand the rule of 70:

Rule of 70

Given an interest rate of p% the doubling time is approximately 70/p
years.
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Why you should care Sl
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@ Implicit derivation is a really important technique in economics,
as sometimes it is impossible to define a quantity Y directly as a
function of another. But still one would want to examine how the
two quantities are correlated.

@ As you are going to deal with real data and real functions, it will
be important to approximate them, otherwise some problems
cannot be solved.

@ Whenever you approximate something it is really important to
have an idea of the magnitude of your error. Taylor formula
provide just that for the approximation we will learn today.
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@ Implicit derivation (7.1) - usually an exam question
@ Linear approximation (7.4)

@ Polynomial approximation (7.5)- ALWAYS an exam question.
@ Taylor Formula (7.6)
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Example
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Consider the plane curve 2xy — 3y? = 9. We want to compute the

slope of the tangent to the curve in the point (6, 1).

/

2xy;73y2=9

\J
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The general method Soskaly

We have an equation f(x, y) = 0 and consider y = y(x) we want to
determine y’(x) in a point (xo, ¥o)-
@ We differentiate each side of f(x, y) = 0 with respect to x,
considering y as a function of x. We get

d
2 y(0) =0,

@ We set x = xp and y = yp and we get an equation in which the
only unknown is y’(xo)
@ We solve the equation.
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The general method Soskaly

We have an equation f(x, y) = 0 and consider y = y(x) we want to
determine y’(x) in a point (xo, ¥o)-
@ We differentiate each side of f(x, y) = 0 with respect to x,
considering y as a function of x. We get

d
2y =0,

@ We set x = xp and y = yp and we get an equation in which the
only unknown is y’(xo)
@ We solve the equation.
If we want to compute y”(x), we repeat the process:
@ We compute
d2
3t y(x) =0
@ We setin x = xp, ¥ = yp and y’(x) = y’(xo) which we have
previously computed.
@ We solve for y”(xo)
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The initial problem Sesinam

Problem

Suppose that a commodity is sold at price P with a taxation of .
Suppose that the demand and supply functions are linear, that is

D=a-b(P+7), S=a+fjP,

Then the equilibrium price is determined by equating the supply to
the demand:
a—-bP+r7)=a+pP

Compute 9 What is its sign? What is the sign of (P + 7)
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Determine the slope of the tangent of the unit circle at any point (but
not (1,0) and (-1,0))



5 Qs
£
Sl

Further Examples

Stockholm
University

From a previous final

Consider the following curve

Or

ye¥ +x2¢ +y* -2y =C,

for some real number C.
@ Suppose that the curves passes for (1, 1), determine C,
© Determine the slope of the curve (that is the slope of its tangent)
in the point (1, 1).
© Consider y as a function of x. Is this increasing around x = 1?
© Determine the equation of the tangent line in the point (1, 1)
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Further Examples %ﬁ%ﬁ?&’%{?

From an old exam
Consider the curve

252, X _g
YTy

@ Compute the slope of the curve in (2,1).
@ Consider y as a function of x, compute y”'(2).
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Example

We want to approximate /4,1.
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Example Stockholm
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We want to approximate /4,1.
Idea: We find y = t(x), the equation of the tangent to the graph of

y = v/x in the point x = 4. Then t(4,1) approximates /4,1.

9

(’2)/
g/

(X)

|
Y\
5\

(4.1,0)
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Let y = f(x) the graph of a function differentiable in the point x = a.
Then the equation of the tangent to the grap in (a, f(a)) is

y =f(a)+f(a)(x - a),
When x is near a we have that

f(x) ~f(a)+ f'(a)(x — a)
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The rule of 70 e
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Rule of 70

Given an interest rate of p% the doubling time is approximately 70/p
years.
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Section 3
Polynomial
approximation
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Quadratic approximation sl

Instead of approximate a function with a line, we approximate it with a
quadratic function. That is we want to find

p(x) = A+ B(x — a) + C(x — a)®
such that p(x) is really close to f(x) when x is near a. We require the
following conditions
° /(&) = p(a)

o 1'(a) = p/(a)
o 1"(a) = p'(a)
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Instead of approximate a function with a line, we approximate it with a
quadratic function. That is we want to find

p(x) = A+ B(x — a) + C(x — a)®
such that p(x) is really close to f(x) when x is near a. We require the
following conditions
o f(a) = p(a)
o f'(a)=p(a)
o f'(a) = p’(a)
We get a unique solution

p(x) = 1(2) + F(a)(x — &) + y"(@)(x — &




Examples

@ Find the quadratic approximation of /4,1
@ Find the quadratic approximation of In(1 + 755)
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The Taylor Polynomial

Given a function f differentiable n times at a point a, we have that the
degree n Taylor polynomial associated to f in ais:

! (a)

> (x—af+--+

p(x) = () + F(a)(x - a) +
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@ Compute the Taylor polynomial of degree 3 of f(x) = e* around
x = 1. How do you think the one of degree 50 looks like?

@ (Exam question) Compute p(x) the Taylor polynomial of degree 3
of the function f(x) = x?e* around x = 1. What is the value of
p(1,1)?

@ (Exam question) Compute p(x) the Taylor polynomial of degree 3
of the function f(x) = In(1 + €*) around x = 0. What is the value
of p(0,1)?

@ (Exam question) Compute p(x) the Taylor polynomial of degree 3
of the function f(x) = In(x? + 2x + 1) around x = 1.
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How good are our approximations?

Taylor Formula

Suppose that f is a function differentiable n + 1 times in an interval /
containing the point a. Let p(x) be the Taylor polynomial of degree n
of f(x) in a. For every x € [ there is a z € | such that

f(n+1)(z)

m(x _ a)n+1

[f(x) = p(x)| =




Example

Compute e'/10 with two correct decimals.
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Thank you for your attention!



