

Course MM1005

Lecture 5: Implicit derivations and Taylor formula

Sofia Tirabassi

tirabassi@math.su.se

Salvador Rodriguez Lopez

s.rodriguez@math.su.se

Questions?

Lecture Goal and Outcome

Goal: Overview of implicit derivation and polynomial approximation. **Learning Outcome:** At the end of today lecture you will be able to

solve a problem like the following:

Problem

Suppose that a commodity is sold at price P with a taxation of τ . Suppose that the demand and supply functions are linear, that is

$$D = a - b(P + \tau), \quad S = \alpha + \beta P,$$

Then the equilibrium price is determined by equating the supply to the demand:

$$a - b(P + \tau) = \alpha + \beta P$$

Compute $\frac{dP}{d\tau}$ What is its sign? What is the sign of $\frac{d}{d\tau}(P+\tau)$

Outcome 2

After today you will understand the rule of 70:

Rule of 70

Given an interest rate of p% the doubling time is approximately 70/p years.

Why you should care

- Implicit derivation is a really important technique in economics, as sometimes it is impossible to define a quantity Y directly as a function of another. But still one would want to examine how the two quantities are correlated.
- As you are going to deal with real data and real functions, it will be important to approximate them, otherwise some problems cannot be solved.
- Whenever you approximate something it is really important to have an idea of the magnitude of your error. Taylor formula provide just that for the approximation we will learn today.

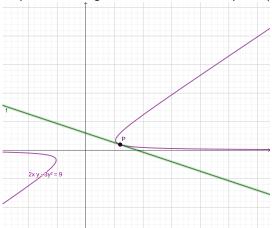
Lecture Plan

- Implicit derivation (7.1) usually an exam question
- Linear approximation (7.4)
- Polynomial approximation (7.5)- ALWAYS an exam question.
- Taylor Formula (7.6)

Section 1 Implicit Derivation

Example

Consider the plane curve $2xy - 3y^2 = 9$. We want to compute the slope of the tangent to the curve in the point (6, 1).



The general method

We have an equation f(x, y) = 0 and consider y = y(x) we want to determine y'(x) in a point (x_0, y_0) .

• We differentiate each side of f(x, y) = 0 with respect to x, considering y as a function of x. We get

$$\frac{d}{dx}f(x,y(x))=0,$$

- We set $x = x_0$ and $y = y_0$ and we get an equation in which the only unknown is $y'(x_0)$
- We solve the equation.

The general method

We have an equation f(x, y) = 0 and consider y = y(x) we want to determine y'(x) in a point (x_0, y_0) .

• We differentiate each side of f(x, y) = 0 with respect to x, considering y as a function of x. We get

$$\frac{d}{dx}f(x,y(x))=0,$$

- We set $x = x_0$ and $y = y_0$ and we get an equation in which the only unknown is $y'(x_0)$
- We solve the equation.

If we want to compute y''(x), we repeat the process:

We compute

$$\frac{d^2}{dx^2}f(x,y(x))=0$$

- We set in $x = x_0$, $y = y_0$ and $y'(x) = y'(x_0)$ which we have previously computed.
- We solve for $y''(x_0)$

The initial problem

Problem

Suppose that a commodity is sold at price P with a taxation of τ . Suppose that the demand and supply functions are linear, that is

$$D = a - b(P + \tau), \quad S = \alpha + \beta P,$$

Then the equilibrium price is determined by equating the supply to the demand:

$$a - b(P + \tau) = \alpha + \beta P$$

Compute $\frac{dP}{d\tau}$ What is its sign? What is the sign of $\frac{d}{d\tau}(P+\tau)$

Further Examples

Determine the slope of the tangent of the unit circle at any point (but not (1,0) and (-1,0))

Further Examples

From a previous final

Consider the following curve

$$y^3e^x + x^2e^y + y^3 - 2y = C,$$

for some real number C.

- Suppose that the curves passes for (1, 1), determine C,
- 2 Determine the slope of the curve (that is the slope of its tangent) in the point (1, 1).
- **3** Consider y as a function of x. Is this increasing around x = 1?
- Determine the equation of the tangent line in the point (1, 1)

Further Examples

From an old exam

Consider the curve

$$y^2x^2 + \frac{x}{\sqrt{y}} = 6$$

- Ompute the slope of the curve in (2, 1).
- ② Consider y as a function of x, compute y''(2).

Questions?

Section 2 Linear approximation

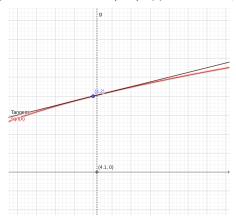
Example

We want to approximate $\sqrt{4,1}$.

Example

We want to approximate $\sqrt{4,1}$.

Idea: We find y = t(x), the equation of the tangent to the graph of $y = \sqrt{x}$ in the point x = 4. Then t(4,1) approximates $\sqrt{4,1}$.



In general

Let y = f(x) the graph of a function differentiable in the point x = a. Then the equation of the tangent to the grap in (a, f(a)) is

$$y = f(a) + f'(a)(x - a),$$

When x is near a we have that

$$f(x) \simeq f(a) + f'(a)(x - a)$$

The rule of 70

Rule of 70

Given an interest rate of p% the doubling time is approximately 70/p years.

Questions?

Section 3 Polynomial approximation

Quadratic approximation

Instead of approximate a function with a line, we approximate it with a quadratic function. That is we want to find

$$p(x) = A + B(x - a) + C(x - a)^2$$

such that p(x) is really close to f(x) when x is near a. We require the following conditions

- f(a) = p(a)
- f'(a) = p'(a)
- f''(a) = p''(a)

Quadratic approximation

Instead of approximate a function with a line, we approximate it with a quadratic function. That is we want to find

$$p(x) = A + B(x - a) + C(x - a)^2$$

such that p(x) is really close to f(x) when x is near a. We require the following conditions

- f(a) = p(a)
- f'(a) = p'(a)
- f''(a) = p''(a)

We get a unique solution

$$p(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^{2}$$

Examples

- Find the quadratic approximation of $\sqrt{4,1}$
- Find the quadratic approximation of $ln(1 + \frac{p}{100})$

Higher-order approximations

The Taylor Polynomial

Given a function f differentiable n times at a point a, we have that the degree n Taylor polynomial associated to f in a is:

$$p(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Examples

- Compute the Taylor polynomial of degree 3 of $f(x) = e^x$ around x = 1. How do you think the one of degree 50 looks like?
- (Exam question) Compute p(x) the Taylor polynomial of degree 3 of the function $f(x) = x^2 e^x$ around x = 1. What is the value of p(1,1)?
- (Exam question) Compute p(x) the Taylor polynomial of degree 3 of the function $f(x) = \ln(1 + e^x)$ around x = 0. What is the value of p(0,1)?
- (Exam question) Compute p(x) the Taylor polynomial of degree 3 of the function $f(x) = \ln(x^2 + 2x + 1)$ around x = 1.

Questions?

Section 4 Taylor Formula

Question

How good are our approximations?

Taylor Formula

Suppose that f is a function differentiable n+1 times in an interval I containing the point a. Let p(x) be the Taylor polynomial of degree n of f(x) in a. For every $x \in I$ there is a $z \in I$ such that

$$|f(x)-p(x)|=\left|\frac{f^{(n+1)}(z)}{(n+1)!}(x-a)^{n+1}\right|$$

Example

Compute $e^{1/10}$ with two correct decimals.

Questions?

Thank you for your attention!

