

Course MM1005

Lecture 7: Optimization and graphing

Sofia Tirabassi

tirabassi@math.su.se

Salvador Rodriguez Lopez

s.rodriguez@math.su.se

Questions?

Lecture Goal and Outcome

Goal: Understand how the graph of a function looks like by looking at its law. Solve optimization problems.

Learning Outcome: At the end of today lecture you will be able to solve problem like the following

Problem

A firm production function is $Q(L) = 12L^2 - \frac{1}{20}L^3$, where $L \in [0, 200]$ denotes the number of workers.

- What number of worker maximise Q?
- 2 Let L^* denote the size of the workforce that maximizes the output per worker Q(L)/L. Find L^* .

Why you should care

- Optimization is the heart of Economic analysis. Everyone of your future employer will want to maximize the revenue and minimize the costs.
- Some techniques you have glanced in high school and you will see again in deep in other courses (like in Econometrics) are just optimization problems under disguise. For example: linear regression is an example of an optimization problem in many variables.

Lecture Plan

- Extreme points (definition and existence) (9.1, 9.4)
- The hunt for critical points (9.2)
- Local extreme points (9.6)
- The second derivative test Inflection points (8.6)

Attention!

We are going to solve a lot of previous finals exercises

Section 1 Extreme points

Extreme points

Definition

Let f be a function with domain D, we say that

1 $a \in D$ is a (global) maximum point for f and f(a) is the maximum value of f if

$$f(x) \le f(a)$$
 for every $x \in D$

② $a \in D$ is a (global) minimum point for f and f(a) is the minimum value of f if

$$f(x) \ge f(a)$$
 for every $x \in D$

Extreme points

Definition

Let f be a function with domain D, we say that

• $a \in D$ is a (global) maximum point for f and f(a) is the maximum value of f if

$$f(x) \le f(a)$$
 for every $x \in D$

② $a \in D$ is a (global) minimum point for f and f(a) is the minimum value of f if

$$f(x) \ge f(a)$$
 for every $x \in D$

Example

The point x = 0 is a minimum point of $x^2 - 30$. The minimum value of the function $f(x) = x^2 - 30$ is f(0) = -30.

They exists!

Extreme value Theorem

A continuous function defined on a closed interval [a, b] has (at least) a maximum and a minimum point.

They exists!

Extreme value Theorem

A continuous function defined on a closed interval [a, b] has (at least) a maximum and a minimum point.

Example

Find the maximum and the minimum points of $f(x) = x^2 + 5$ on [-2,2]. Give the maximum and the minimum value of f on [-2,2].

Questions?

Section 2 The hunt for extreme points

Critical points and extreme points

Definition

A point c where a function f is differentiable and such that f'(c) = 0 is called critical point for f.

Necessary first order condition

Suppose that the function f, defined on [a, b] is differentiable in (a, b). If $c \in (a, b)$ is a maximum or minimum point for f on [a, b], then c is a critical point for f, that is

$$f'(c)=0$$

Critical points and extreme points

Definition

A point c where a function f is differentiable and such that f'(c) = 0 is called critical point for f.

Necessary first order condition

Suppose that the function f, defined on [a, b] is differentiable in (a, b). If $c \in (a, b)$ is a maximum or minimum point for f on [a, b], then c is a critical point for f, that is

$$f'(c)=0$$

Consequences

This tell us that min/max point on a closed interval [a, b] can be

- on critical points
- on the extremes a and b
- in points where f is not differentiable

Consequences

This tell us that min/max point on a closed interval [a, b] can be

- on critical points
- on the extremes a and b
- in points where f is not differentiable

You get a finite number of candidates, compute *f* at those point, compare and decide!

Consequences

This tell us that min/max point on a closed interval [a, b] can be

- on critical points
- on the extremes a and b
- in points where f is not differentiable

You get a finite number of candidates, compute *f* at those point, compare and decide!

The initial problem

A firm production function is $Q(L) = 12L^2 - \frac{1}{20}L^3$, where $L \in [0, 200]$ denotes the number of workers.

- What number of worker maximise Q?
- 2 Let L^* denote the size of the workforce that maximizes the output per worker Q(L)/L. Find L^* .

Questions?

Section 3 Local extreme points

Local extreme points

Definition

Let f be a function with domain D, we say that

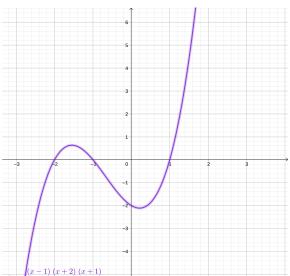
1 $a \in D$ is a local maximum point for f if there is an interval $I = (\alpha, \beta)$ containing a such that

$$f(x) \le f(a)$$
 for every $x \in I \cap D$

2 $a \in D$ is a local minimum point for f if there is an interval $I = (\alpha, \beta)$ containing a such that

$$f(x) \ge f(a)$$
 for every $x \in I \cap D$

Example



The first derivative test

Necessary condition

Let f be defined on an interval I and cbe an element of the interior of I such that f is differentiable at c. If f has a local extreme point at c, then c is a critical point for f.

First derivative test

Consider the function f(x) and let c be a critical point for f

• If f'(x) change sign at c from positive to negative, then x = c is a local

The first derivative test

Necessary condition

Let f be defined on an interval I and cbe an element of the interior of I such that f is differentiable at c. If f has a local extreme point at c, then c is a critical point for f.

First derivative test

Consider the function f(x) and let c be a critical point for f

- If f'(x) change sign at c from positive to negative, then x = c is a local maximum point.
- If f'(x) change sign at c from negative to positive, then x = c is a local

The first derivative test

Necessary condition

Let f be defined on an interval I and cbe an element of the interior of I such that f is differentiable at c. If f has a local extreme point at c, then c is a critical point for f.

First derivative test

Consider the function f(x) and let c be a critical point for f

- If f'(x) change sign at c from positive to negative, then x = c is a local maximum point.
- If f'(x) change sign at c from negative to positive, then x = c is a local minimum point.
- If f'(x) does not change sign then c is not a local extreme (it could be an inflection point)

Example from an old exam

$$f(x) = \sqrt{x}e^{-x}$$

- Find the domain of f
- Find in which interval the function is increasing/decreasing. Find all local extreme point and decide their type.
- **3** Compute $\lim_{x\to\infty} f(x)$
- Sketch the graph

Example from an old exam

$$f(x) = \sqrt{x}e^{-x}$$

- Find the domain of f
- Find in which interval the function is increasing/decreasing. Find all local extreme point and decide their type.
- **3** Compute $\lim_{x\to\infty} f(x)$
- Sketch the graph (Sofia's Tip: do this along the other points)

Example from an old exam II

$$f(x) = \frac{(4+x)^2}{x-1}$$

- Find the domain of f
- Find in which intervals the function is increasing/decreasing. Find all local extreme points and decide their type.
- **3** Compute $\lim_{x\to\infty} f(x)/2x$
- Has f and global maximum or minimum?

Example from an old exam III

$$f(x) = x^3(x-1)$$

- Find in which intervals the function is increasing/decreasing.
- ② Find the maximum and minimum value of f in the interval [-1,1].
- **3** Compute $\lim_{x\to\infty} f(x)/e^x$,

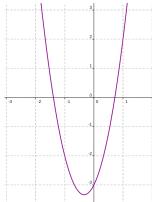
Section 4 Convexity and second derivatives

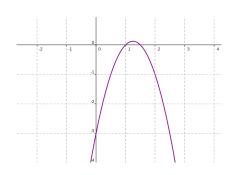
Convexity

We are not going to give the formal definition of convex and concave functions. We will just say, really informally, that a function is convex around a point *a* if its graph looks like a bowl. It is concave if it looks like a cap.

Convexity

We are not going to give the formal definition of convex and concave functions. We will just say, really informally, that a function is convex around a point *a* if its graph looks like a bowl. It is concave if it looks like a cap.





The second derivative tests

Test for convexity

Let f be a function twice differentiable in an interval I.

- If $f''(c) \ge 0$ for every point c in I we have that f is convex on I.
- ② If $f''(c) \le 0$ for every point c in I we have that f is concave on I.

Test for local extrema

Let f be a function twice differentiable in an interval I, and let c be a critical point of f, lying in the interior of I.

- If f''(c) > 0 we have that c is a local minimum.
- ② If f''(c) < 0 we have that c is a local maximum
- If f''(c) = 0 it can be neither or either. In any case we say that c is an inflection point.

Example (Old Exam)

$$f(x) = (x^2 - 9)e^{5x}$$

- Find the the places where the function is 0, all local extreme points and decide their type. Find where the function is concave and convex.
- Sketch the graph and compute, if exist the limits of f(x) when x tends to $+\infty$ and $-\infty$.

Questions?

Thank you for your attention!

