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Lecture Goal and Outcome

Goals:

Identify functions of two variables
Determine the first-order partial derivatives of functions
Determine second-order partial derivatives,
Use the chain rule
Find stationary points for a function.

Learning Outcome: After today you will be able to solve problems like
the following:

Problem
Find all the stationary points of the function
f (x , y) = (4− x − y2)(x + 1).
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Why you should care

Problem
A firm produces two different kinds of commodities A,B. The daily
cost of producing x units of A and y units of B is given by

C(x , y) = 4x2 + xy + y2 + 400x + 200y + 500,

If the firms sells its production at a price per unit 15 for A and 9 for B,
how can we find the daily production levels x , y that maximise the
profit?
If x and y are related, say y = y(t) and x = x(t), how can we
maximise that profit?
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Cobb-Douglas model
Productivity depends on several variables such as labor, capital land
or raw materials. For instance, the Cobb-Douglas model depending
only capital and Labour is given by

Y = f (K ,L) := AKαLβ ,

where

Y ≡ total production
L ≡ Labour input
K ≡ Capital invested

A ≡ total factor productivity.
α, β are the output
elasticities.
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Lecture Plan

§14.1 Functions of Two Variables
§14.2 Partial Derivatives with Two Variables
§14.3 Geometric Representation
§14.4 Surfaces and Distance
§14.5 Functions of More Variables
§15.1 A Simple Chain Rule
§17.1 Two Variables: Necessary Conditions
(§17.7 Comparative statistics and the envelope Theorem)
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Section 1
Functions of several

variables



Functions of two variables

A company produces two goods (A,B) in quantities x , y respec-
tively. The total cost of producing them is given by

C(x , y) = 1000 + 20x + 40y ,

Let D ⊂ R2. A function f : D → R is a rule, that for each (x , y) ∈ D it
gives us a value f (x , y). D is called the domain of definition of f .
Examples:

1 f (x , y) = x2 + y2

2 f (x , y) = x2 − y2

3 f (x , y) = x2ex+y

4 f (x , y) = 1/(x2 + 2y2 + 1)

The domain of definition of these functions is ...
If D ⊂ Rn, we say that f is a function of n-variables.
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Domain of definition

Let f (x , y) = ln(x − y) +
√

1− x + y .
The domain of definition of

ln(x − y) is all points (x , y) such that x − y > 0 (i.e. y < x).√
1− x + y is all points (x , y) such that 1− x + y ≥ 0 (i.e.

y ≥ x − 1).
Hence, the domain of definition of f is the set of all points (x , y)
satisfying both conditions:

{(x , y) : x − 1 ≤ y < x} ,
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Partial derivatives

We define the partial derivative of f with respect to x at (x0, y0) as

∂f
∂x

(x0, y0) = f ′x(x0, y0) := lim
h→0

f (x0 + h, y0)− f (x0, y0)

h

We fix y0, and differentiate the function as a one-variable func-
tion in x

Similarly we define the partial derivative of f with respect to y at
(x0, y0) as

∂f
∂y

(x0, y0) = f ′y (x0, y0) := lim
h→0

f (x0, y0 + h)− f (x0, y0)

h
,

Example: If f (x , y) = x2 + xy + 3y2 then

f ′x(x , y) = 2x + y , f ′y (x , y) = x + 6y
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Examples

We can use all the rules we have learnt to compute partial derivatives:
If f (x , y) = (x2 + y)exy then

f ′x(x , y) =
[
∂

∂x
(x2 + y)

]
exy + (x2 + y)

[
∂

∂x
exy
]

= [2x ]exy + (x2 + y) [yexy ]

= (2x + x2y + y2)exy

Similarly

f ′y (x , y) =
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Higher order derivatives

We can define

f ′′xx(x , y) =
∂

∂x

(
∂f
∂x

)
(x , y) f ′′yx(x , y) =

∂

∂y

(
∂f
∂x

)
(x , y)

f ′′xy (x , y) =
∂

∂x

(
∂f
∂y

)
(x , y) f ′′yy (x , y) =

∂

∂y

(
∂f
∂y

)
(x , y)

Example If f (x , y) = x3ey2
then f ′x(x , y) = 3x2ey2

, f ′y (x , y) = 2yx2ey2
,

f ′′xx(x , y) = 6x2ey2
f ′′yx(x , y) = 6x2yey2

f ′′xy (x , y) = 6x2yey2
f ′′yy (x , y) =

If the second partial derivatives exists and are continuous then
f ′′yx(x , y) = f ′′xy (x , y)
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Geometric representation

A real number x
A pair of numbers (x , y)
A triple of number (x , y , z)

A point on the line R
A point on the plane R2

A point in space R3

The graph of f : D → R is the set of points

If D ⊂ R
in R2 of the form (x , f (x))
with x ∈ D.

- 3 - 2 - 1 1 2 3

2

4

6

8

If D ⊂ R2

in R3 of the form
(x , y , f (x , y)) with
(x , y) ∈ D.
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A way of representing graphically a function f is by plotting in the
(x , y)-plane the sets of points satisfying that

f (x , y) = c

for a range of constants c. These are called level curves of f .
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Distance

Given two points in the plane X = (x , y),
Y = (a,b) the distance between them is

d(X ,Y ) :=
√
|x − a|2 + |y − b|2,

So, if Y = (0,0), f (x , y) :=
√

x2 + y2 rep-
resents the distance of (x , y) to the origin.
The level curves of the form

x2 + y2 = r2, r > 0

are circle of radius c. Also, the sets of
points (x , y) such that

x2 + y2 ≤ r2, r > 0

are disks of radius r .

(x, y)

x2

y2
r2
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Given two points in the plane X =
(x , y , z), Y = (a,b, c) the distance be-
tween them is

d(X ,Y ) :=
√
|x − a|2 + |y − b|2 + |z − c|2,

So,
√

x2 + y2 + z2 represents the dis-
tance of (x , y , z) to the origin.
The set of points (x , y , z) such that

x2 + y2 + z2 = r2, r > 0

is a sphere of radius r . Also, the set of
points (x , y , z) such that

x2 + y2 + z2 ≤ r2, r > 0

is a (solid) ball of radius r .
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Section 2
The chain rule



Chain rule

Assume that f (x , y) is a function of two variables and both x = x(t),
and y = y(t) are functions of one variable t . Then we can consider
the one-variable function

g(t) := f (x(t), y(t))

- 2 - 1 1 2

- 2

- 1

1

2 The points t 7→ (x(t), y(t))
can be thought describing a
curve on the domain of f .
So g describes the values of
f along that curve.

The chain rule

d

dt
g(t) =

∂

∂x
f (x(t), y(t))

d

dt
x(t) +

∂

∂y
f (x(t), y(t))

d

dt
y(t)
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Example

If f (x , y) = x2y + 3y , and

{
x(t) = t2

y(t) = t3 t ∈ R then by the chain rule

d

dt
f (x(t), y(t)) =

∂

∂x
f (x(t), y(t))

d

dt
x(t) +

∂

∂y
f (x(t), y(t))

d

dt
y(t)

=
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Example: Envelope theorem

Suppose that f depends on a variable x and a parameter t . For a
fixed t , let x∗(t) be the value such that

f ∗(t) := min(max)x f (x , t) = f (x∗(t), t) (the value function),

Assume that such x∗(t) exists, depends smoothly on t , and that it
belongs to the interior of the domain of variation of x . In particular

∂

∂x
f (x∗(t), t) = 0 (first-order conditions)

The chain rule yields the so-called Envelope Theorem:

d

dt
f ∗(t) =

∂

∂x
f (x∗(t), t)

d

dt
x(t) +

∂

∂y
f (x∗(t), t)

d

dt
t =

∂

∂y
f (x∗(t), t)
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∂tj f
∗(t) = ∂yj f (x

∗(t), t) t = (t1, . . . , tn) ∈ Rn

Let f (x , r1, r2) = x r1 − r2x for x ≥ 0, where 0 < r1 < 1.
This function is concave, and any solution of

max
x

f (x , r)

is positive, so a solution satisfies the first-order condition

r1x r1−1 − r2 = 0⇒ x∗(r) = (r1/r2)
1/(1−r1),

So that the value function is

f ∗(r) = (x∗(r))r1 − r2x∗(r) = (r1/r2)
r1/(1−r1) − r2(r1/r2)

1/(1−r1)

Hence

∂

∂r1
f ∗(r) =

∂f
∂r1

(x∗(r), r) = (x∗(r))r1 ln(x∗(r))

=
1

1− r1
(r1/r2)

r1/(1−r1) ln(r1/r2)
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Example: Directional derivatives

Fix (v1, v2) a vector in the plane, and (x0, y0) ∈ R2 and let

{
x(t) = x0 + tv1

y(t) = y0 + tv2
t ∈ R

(x0, y0)(v1, v2)

(x(t), y(y))

This describe a line through the point (x0, y0) with direction (v1, v2).

So f (x(t), y(t)) gives the
values of f along that
line.
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{
x(t) = x0 + tv1

y(t) = y0 + tv2
t ∈ R. By the chain rule

d

dt
f (x(t), y(t)) =

∂

∂x
f (x(t), y(t))v1 +

∂

∂y
f (x(t), y(t))v2

=
[
∂
∂x f (x(t), y(t)) ∂

∂x f (x(t), y(t))
] [v1

v2

]
For t = 0

Dv f (x0, y0) :=
d

dt
f (x(t), y(t))|t=0 =

Df (x0,y0)︷ ︸︸ ︷[
∂
∂x f (x0, y0)

∂
∂x f (x0, y0)

] [v1
v2

]
Dv f (x0, y0) is called the directional derivative of f in the direction v .
Df (x0, y0) is called the total derivative of f at (x0, y0).
Note that De1 f (x0, y0) =

∂
∂x f (x0, y0), De2 f (x0, y0) =

∂
∂y f (x0, y0)
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Lets take in particular

f (x , y) = 18+x2−2y2,

{
x(t) = t
y(t) = t

, t ∈ R g(t) = f (t , t) = 18−t2

- 2 - 1 1 2

15

16

17

18

Then D(1,1)f (0,0) = g′(0) = 0.
Note that De1 f (0,0) = De2 f (0,0) = 0
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Section 3
Unconstrained

optimisation: Necessary
conditions



Stationary points
We say that a point (x0, y0) is a stationary point (critical point) if

∂

∂x
f (x0, y0) = 0 AND

∂

∂y
f (x0, y0) = 0,

i.e. Df (x0, y0) = (0,0).

Examples
The point (0,0) is a stationary point for the functions f (x , y) = x2 + y2

and f (x , y) = x2 − y2
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Theorem
Given f : D = [a,b]→ R, if x0 lies inside the domain of definition D,
and x0 is a local extremum, then f ′(x0) = 0. That is, x0 is a stationary
point (critical point).

The set [a,b] is closed (i.e. contain its boundary) and bounded (i.e.
we can enclose it within a circle).
Sets that are closed and bounded are called compact.

Theorem
Let D ⊂ R2 be a compact set. Given f : D → R, if (x0, y0) lies inside
the domain of definition D, and (x0, y0) is a local extreme, then
Df (x0, y0) = (0,0). That is, (x0, y0) is a stationary point (critical point).
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Example

Let f (x , y) = x2 + y2 on the set of points D with x2 + y2 ≤ 1.
The set D is a disk, centered at
(0,0) of radius 1.
Note that{

∂
∂x f (x , y) = 2x = 0⇔ x = 0
∂
∂y f (x , y) = 2y = 0⇔ y = 0

So (0,0) is the only stationary
point.
Clearly or all (x , y),

f (x , y) = x2 + y2 ≥ 0 = f (0,0)

so (0,0) is a (local) minimum for f .
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Not every stationary point is a local extreme.

Example The function f (x , y) = x2 − y2 defined on the set of points
x2 + y2 ≤ 1, satisfies that (0,0) is a stationary point inside the
domain, but it is not an extreme point.
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Thank you for your attention!
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