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Lecture Goal and Outcome

Goals:

@ Identify functions of two variables

@ Determine the first-order partial derivatives of functions
@ Determine second-order partial derivatives,

@ Use the chain rule

@ Find stationary points for a function.

Learning Outcome: After today you will be able to solve problems like
the following:

Problem

Find all the stationary points of the function
f(x,y) = (4 —x—y?)(x +1).
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Why you should care Sl

Problem

A firm produces two different kinds of commodities A, B. The daily
cost of producing x units of A and y units of B is given by

C(x,y) = 4x? 4+ xy + y? + 400x + 200y + 500,

If the firms sells its production at a price per unit 15 for A and 9 for B,
how can we find the daily production levels x, y that maximise the
profit?

If x and y are related, say y = y(t) and x = x(t), how can we
maximise that profit?
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Or

Cobb-Douglas model

Productivity depends on several variables such as labor, capital land
or raw materials. For instance, the Cobb-Douglas model depending
only capital and Labour is given by

Y = f(K,L) == AK®L?,

where
@ Y = total production @ A = total factor productivity.
@ L = Labour input @ «, 5 are the output

@ K = Capital invested elasticities.
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Lecture Plan %tk“;l

@ §14.1 Functions of Two Variables

@ §14.2 Partial Derivatives with Two Variables

@ §14.3 Geometric Representation

@ §14.4 Surfaces and Distance

@ §14.5 Functions of More Variables

@ §15.1 A Simple Chain Rule

@ §17.1 Two Variables: Necessary Conditions

@ (§17.7 Comparative statistics and the envelope Theorem)
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Section 1
Functions of several
variables
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Functions of two variables e
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A company produces two goods (A, B) in quantities x, y respec-
tively. The total cost of producing them is given by

C(x,y) = 1000 + 20x + 40y,

Let D c R2. A function f : D — R is a rule, that for each (x,y) € D it
gives us a value f(x, y). D is called the domain of definition of f.
Examples:

Q f(x.y)=x*+y? Q f(x,y) =x*etY
Q f(x,y)=x*—y? Q f(x,y)=1/(x*+2y2+1)

The domain of definition of these functions is ...
If D Cc R", we say that f is a function of n-variables.
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Letf(x,y)=In(x—y)+ V1 —x+Vy.
The domain of definition of
@ In(x — y) is all points (x, y) such that x — y > 0 (i.e. y < x).
@ /1 —x+yisallpoints (x, y) suchthat1 — x + y > 0 (i.e.
y>x—1).
Hence, the domain of definition of f is the set of all points (x, y)
satisfying both conditions:

{xy)ix=1<y<xj,
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We define the partial derivative of f with respect to x at (xo, ¥o) as

of , . f(xo+ h,yo) — f(xo,
87(X07YO) = (X0, Y0) := A@O (o yo,)7 (x0. o)

We fix yo, and differentiate the function as a one-variable func-
tion in x

Similarly we define the partial derivative of f with respect to y at
(X0, ¥o0) as
of / - f(X0, Yo + h) — f(Xo0, o)

@(Xodfo) = (X0, o) :== Jim Y ;

Example: If f(x,y) = x®> + xy + 3y? then
fxy)=2x+y,  f(x,y)=x+6y
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We can use all the rules we have learnt to compute partial derivatives:
If f(x,y) = (X2 + y)e¥ then

Gy = | 5508 40| &7+ (€ 4y) | e
= x]e + (4 + y) e
= (2x + X2y + y?)e¥

Similarly

f(x,y) =
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Higher order derivatives &
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We can define
o) = 5 (5 ) e aten = 3 (5
e = 5 (5 ) 00 aten = (5) o)
Example If f(x, y) = x3¢”’ then f/(x, y) = 3x2e"’, f(x,y) = 2yx2e”’,

fa(x,y) =6x°¢"  f1(x,y) = 6x*ye”
fo(x.y) =6x2ye" 1 (x,y)=

If the second partial derivatives exists and are continuous then
fix(X,y) = £y (X, y)
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A real number x A point on the line R
A pair of numbers (x, y) A point on the plane R?
A triple of number (x, y, ) A point in space R3
The graph of f : D — R is the set of points
If Dc R2
fDcCR in R3 of the form
in R2 of the form (x, f(x)) (x, ¥, f(x,y)) with

with x € D. (x,y) e D.
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A way of representing graphically a function f is by plotting in the
(x, y)-plane the sets of points satisfying that

fix,y)=c

for a range of constants ¢. These are called level curves of f.



Distance

Given two points in the plane X = (x, y),
Y = (a, b) the distance between them is

d(X,Y):=\/Ix — a2 + |y - bl

So, if Y =(0,0), f(x,y) := /X + y? rep-
resents the distance of (x, y) to the origin.
The level curves of the form

XC+y?=r? r>0

are circle of radius c¢. Also, the sets of
points (x, y) such that

X24+y?<r? r>0

are disks of radius r.
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Given two points in the plane X
(x,y,2), Y = (a,b,c) the distance be-

tween them is
d(X,Y):=/Ix —aP +|y - b + |z - c2

So, /X2 + y2+ z2 represents the dis-

tance of (x, y, z) to the origin.
The set of points (x, y, z) such that

r>0

X2+ Y24+ 22 =12
is a sphere of radius r. Also, the set of

points (x, y, z) such that

XC+yP4+22<r?, r>0

is a (solid) ball of radius r.
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Assume that f(x, y) is a function of two variables and both x = x(t),
and y = y(t) are functions of one variable t. Then we can consider
the one-variable function

g(t) := f(x(1), y (1))

The points t — (x(t), y(1))
can be thought describing a
curve on the domain of f.
So g describes the values of
f along that curve.

The chain rule

d 0 d 0] d
G900 = G fx(0.y(O0) Fx(0) + 5 A0, Y () Gy
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x(t) =t

y(t) = £ t € R then by the chain rule

If f(x,y) = x2y + 3y, and {

S0, 9(0) = A0 10) Sox(0) + 2 0000, y(0) Syt



< Yo,

Example: Envelope theorem sl

Suppose that f depends on a variable x and a parameter t. For a
fixed t, let x*(t) be the value such that

(1) := min(max)xf(x, t) = f(x*(1), t) (the value function),

Assume that such x*(t) exists, depends smoothly on ¢, and that it
belongs to the interior of the domain of variation of x. In particular

%f(x*(t), H=0 (first-order conditions)
The chain rule yields the so-called Envelope Theorem:

d%f*(t) _ 8%f(x*(f), t)d%x(t) + %f(x*(t), t)ditt - %f(x*(t), )
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Let f(x,r1,r2) = x" —rox for x > 0, where0 < ry < 1.
This function is concave, and any solution of

max f(x,r)

is positive, so a solution satisfies the first-order condition
X" =0= x*(r) = (ry/r2)"/07"),

So that the value function is
Fo(r) = (" ()" = rx*(r) = (r1/r2)"/ 0= — po(ry /1) V(1 =1)

Hence
8 £3 8f * * r *
or (/=50 (1)) = (¢ (1) n(x ()

|
S (ri/r2)"/ 0= In(ry /1)
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Fix (v, v») a vector in the plane, and (xo, yo) € R? and let

(0, y0)

{X(t):X0+tV1 teR

y(t)=yo +tv (@(1), y(v))

This describe a line through the point (xo, yo) with direction (v1, v2).
’;‘/ So f(x(t), y(t)) gives the

values of f along that
line.
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t € R. By the chain rule

x(t) = Xxo + tvy
y(t) =yo + tvz

SETOY(0) = LAY O + 5 Ax(). Y (D)ve

Fort=20

Df(x0,¥0)

Dyf(30.30) i= o FX(D¥(D)lhco = [ f00,30) 510,30 m

D,f(xo, o) is called the directional derivative of f in the direction v.
Df(xo, yo) is called the total derivative of f at (xo, ¥o)-
Note that De1 f(Xo,yo) = ox f(X07yo) Dezf(XanO) gf(XO,yo)
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Lets take in particular
x(t)=t

y(t)=t JteR g(t)=f(tt)=18-1

f(x,y) = 18+x2—2y2, {

Then D(1?1)f(0,0) = g/(O) =0.
Note that De, £(0.0) — D, £(0,0) = 0



St(ickholm
University

Section 3
Unconstrained
optimisation: Necessary
conditions
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Stationary points
We say that a point (xo, yo) is a stationary point (critical point) if

0 0
gf(xov}/o) =0 AND @f(xo,}/o) =0,

i.e. Df(xo, Yo0) = (0,0).

Examples
The point (0, 0) is a stationary point for the functions 7(x, y) = x2 + y?
and f(x,y) = x? — y?
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Theorem

Given f: D = [a, b] — R, if xg lies inside the domain of definition D,
and X is a local extremum, then f'(xp) = 0. That is, xo is a stationary
point (critical point).

The set [a, b] is closed (i.e. contain its boundary) and bounded (i.e.
we can enclose it within a circle).
Sets that are closed and bounded are called compact.

Theorem

Let D c R? be a compact set. Given f : D — R, if (xo, yo) lies inside
the domain of definition D, and (xo, yo) is a local extreme, then
Df(xo, ¥o) = (0,0). Thatis, (X0, o) is a stationary point (critical point).
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Let f(x, y) = x2 + y? on the set of points D with x® + y? < 1.
The set D is a disk, centered at

(0,0) of radius 1.

Note that

Lix,y)=2x=0<x=0
Zfx,y)=2y=0sy=0

So (0,0) is the only stationary
point.
Clearly or all (x,y),

f(x,y) = x*+y*>0=1(0,0)

s0 (0,0) is a (local) minimum for f.
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Not every stationary point is a local extreme.

Example The function f(x, y) = x> — y? defined on the set of points

x? 4 y? < 1, satisfies that (0, 0) is a stationary point inside the

domain, but it is not an extreme point.




Thank you for your attention!
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